diffusers 0.32.1__py3-none-any.whl → 0.33.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +198 -28
  13. diffusers/loaders/lora_conversion_utils.py +679 -44
  14. diffusers/loaders/lora_pipeline.py +1963 -801
  15. diffusers/loaders/peft.py +169 -84
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +653 -75
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +22 -32
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +409 -49
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +593 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +722 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +725 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +10 -2
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +14 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/METADATA +76 -44
  384. diffusers-0.33.0.dist-info/RECORD +608 -0
  385. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.1.dist-info/RECORD +0 -550
  387. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.1.dist-info → diffusers-0.33.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,770 @@
1
+ # Copyright 2025 The EasyAnimate team and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ from typing import Callable, Dict, List, Optional, Union
18
+
19
+ import torch
20
+ from transformers import (
21
+ BertModel,
22
+ BertTokenizer,
23
+ Qwen2Tokenizer,
24
+ Qwen2VLForConditionalGeneration,
25
+ )
26
+
27
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
28
+ from ...models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel
29
+ from ...pipelines.pipeline_utils import DiffusionPipeline
30
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
31
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
32
+ from ...utils.torch_utils import randn_tensor
33
+ from ...video_processor import VideoProcessor
34
+ from .pipeline_output import EasyAnimatePipelineOutput
35
+
36
+
37
+ if is_torch_xla_available():
38
+ import torch_xla.core.xla_model as xm
39
+
40
+ XLA_AVAILABLE = True
41
+ else:
42
+ XLA_AVAILABLE = False
43
+
44
+
45
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
+
47
+ EXAMPLE_DOC_STRING = """
48
+ Examples:
49
+ ```python
50
+ >>> import torch
51
+ >>> from diffusers import EasyAnimatePipeline
52
+ >>> from diffusers.utils import export_to_video
53
+
54
+ >>> # Models: "alibaba-pai/EasyAnimateV5.1-12b-zh"
55
+ >>> pipe = EasyAnimatePipeline.from_pretrained(
56
+ ... "alibaba-pai/EasyAnimateV5.1-7b-zh-diffusers", torch_dtype=torch.float16
57
+ ... ).to("cuda")
58
+ >>> prompt = (
59
+ ... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
60
+ ... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
61
+ ... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
62
+ ... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
63
+ ... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
64
+ ... "atmosphere of this unique musical performance."
65
+ ... )
66
+ >>> sample_size = (512, 512)
67
+ >>> video = pipe(
68
+ ... prompt=prompt,
69
+ ... guidance_scale=6,
70
+ ... negative_prompt="bad detailed",
71
+ ... height=sample_size[0],
72
+ ... width=sample_size[1],
73
+ ... num_inference_steps=50,
74
+ ... ).frames[0]
75
+ >>> export_to_video(video, "output.mp4", fps=8)
76
+ ```
77
+ """
78
+
79
+
80
+ # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
81
+ def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
82
+ tw = tgt_width
83
+ th = tgt_height
84
+ h, w = src
85
+ r = h / w
86
+ if r > (th / tw):
87
+ resize_height = th
88
+ resize_width = int(round(th / h * w))
89
+ else:
90
+ resize_width = tw
91
+ resize_height = int(round(tw / w * h))
92
+
93
+ crop_top = int(round((th - resize_height) / 2.0))
94
+ crop_left = int(round((tw - resize_width) / 2.0))
95
+
96
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
97
+
98
+
99
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
100
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
101
+ r"""
102
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
103
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
104
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
105
+
106
+ Args:
107
+ noise_cfg (`torch.Tensor`):
108
+ The predicted noise tensor for the guided diffusion process.
109
+ noise_pred_text (`torch.Tensor`):
110
+ The predicted noise tensor for the text-guided diffusion process.
111
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
112
+ A rescale factor applied to the noise predictions.
113
+
114
+ Returns:
115
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
116
+ """
117
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
118
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
119
+ # rescale the results from guidance (fixes overexposure)
120
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
121
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
122
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
123
+ return noise_cfg
124
+
125
+
126
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
127
+ def retrieve_timesteps(
128
+ scheduler,
129
+ num_inference_steps: Optional[int] = None,
130
+ device: Optional[Union[str, torch.device]] = None,
131
+ timesteps: Optional[List[int]] = None,
132
+ sigmas: Optional[List[float]] = None,
133
+ **kwargs,
134
+ ):
135
+ r"""
136
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
137
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
138
+
139
+ Args:
140
+ scheduler (`SchedulerMixin`):
141
+ The scheduler to get timesteps from.
142
+ num_inference_steps (`int`):
143
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
144
+ must be `None`.
145
+ device (`str` or `torch.device`, *optional*):
146
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
147
+ timesteps (`List[int]`, *optional*):
148
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
149
+ `num_inference_steps` and `sigmas` must be `None`.
150
+ sigmas (`List[float]`, *optional*):
151
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
152
+ `num_inference_steps` and `timesteps` must be `None`.
153
+
154
+ Returns:
155
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
156
+ second element is the number of inference steps.
157
+ """
158
+ if timesteps is not None and sigmas is not None:
159
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
160
+ if timesteps is not None:
161
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
162
+ if not accepts_timesteps:
163
+ raise ValueError(
164
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
165
+ f" timestep schedules. Please check whether you are using the correct scheduler."
166
+ )
167
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
168
+ timesteps = scheduler.timesteps
169
+ num_inference_steps = len(timesteps)
170
+ elif sigmas is not None:
171
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
172
+ if not accept_sigmas:
173
+ raise ValueError(
174
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
175
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
176
+ )
177
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
178
+ timesteps = scheduler.timesteps
179
+ num_inference_steps = len(timesteps)
180
+ else:
181
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
182
+ timesteps = scheduler.timesteps
183
+ return timesteps, num_inference_steps
184
+
185
+
186
+ class EasyAnimatePipeline(DiffusionPipeline):
187
+ r"""
188
+ Pipeline for text-to-video generation using EasyAnimate.
189
+
190
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
191
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
192
+
193
+ EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.
194
+
195
+ Args:
196
+ vae ([`AutoencoderKLMagvit`]):
197
+ Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
198
+ text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]):
199
+ EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.
200
+ tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]):
201
+ A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text.
202
+ transformer ([`EasyAnimateTransformer3DModel`]):
203
+ The EasyAnimate model designed by EasyAnimate Team.
204
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
205
+ A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.
206
+ """
207
+
208
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
209
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
210
+
211
+ def __init__(
212
+ self,
213
+ vae: AutoencoderKLMagvit,
214
+ text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel],
215
+ tokenizer: Union[Qwen2Tokenizer, BertTokenizer],
216
+ transformer: EasyAnimateTransformer3DModel,
217
+ scheduler: FlowMatchEulerDiscreteScheduler,
218
+ ):
219
+ super().__init__()
220
+
221
+ self.register_modules(
222
+ vae=vae,
223
+ text_encoder=text_encoder,
224
+ tokenizer=tokenizer,
225
+ transformer=transformer,
226
+ scheduler=scheduler,
227
+ )
228
+ self.enable_text_attention_mask = (
229
+ self.transformer.config.enable_text_attention_mask
230
+ if getattr(self, "transformer", None) is not None
231
+ else True
232
+ )
233
+ self.vae_spatial_compression_ratio = (
234
+ self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 8
235
+ )
236
+ self.vae_temporal_compression_ratio = (
237
+ self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 4
238
+ )
239
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
240
+
241
+ def encode_prompt(
242
+ self,
243
+ prompt: Union[str, List[str]],
244
+ num_images_per_prompt: int = 1,
245
+ do_classifier_free_guidance: bool = True,
246
+ negative_prompt: Optional[Union[str, List[str]]] = None,
247
+ prompt_embeds: Optional[torch.Tensor] = None,
248
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
249
+ prompt_attention_mask: Optional[torch.Tensor] = None,
250
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
251
+ device: Optional[torch.device] = None,
252
+ dtype: Optional[torch.dtype] = None,
253
+ max_sequence_length: int = 256,
254
+ ):
255
+ r"""
256
+ Encodes the prompt into text encoder hidden states.
257
+
258
+ Args:
259
+ prompt (`str` or `List[str]`, *optional*):
260
+ prompt to be encoded
261
+ device: (`torch.device`):
262
+ torch device
263
+ dtype (`torch.dtype`):
264
+ torch dtype
265
+ num_images_per_prompt (`int`):
266
+ number of images that should be generated per prompt
267
+ do_classifier_free_guidance (`bool`):
268
+ whether to use classifier free guidance or not
269
+ negative_prompt (`str` or `List[str]`, *optional*):
270
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
271
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
272
+ less than `1`).
273
+ prompt_embeds (`torch.Tensor`, *optional*):
274
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
275
+ provided, text embeddings will be generated from `prompt` input argument.
276
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
277
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
278
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
279
+ argument.
280
+ prompt_attention_mask (`torch.Tensor`, *optional*):
281
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
282
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
283
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
284
+ max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
285
+ """
286
+ dtype = dtype or self.text_encoder.dtype
287
+ device = device or self.text_encoder.device
288
+
289
+ if prompt is not None and isinstance(prompt, str):
290
+ batch_size = 1
291
+ elif prompt is not None and isinstance(prompt, list):
292
+ batch_size = len(prompt)
293
+ else:
294
+ batch_size = prompt_embeds.shape[0]
295
+
296
+ if prompt_embeds is None:
297
+ if isinstance(prompt, str):
298
+ messages = [
299
+ {
300
+ "role": "user",
301
+ "content": [{"type": "text", "text": prompt}],
302
+ }
303
+ ]
304
+ else:
305
+ messages = [
306
+ {
307
+ "role": "user",
308
+ "content": [{"type": "text", "text": _prompt}],
309
+ }
310
+ for _prompt in prompt
311
+ ]
312
+ text = [
313
+ self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
314
+ ]
315
+
316
+ text_inputs = self.tokenizer(
317
+ text=text,
318
+ padding="max_length",
319
+ max_length=max_sequence_length,
320
+ truncation=True,
321
+ return_attention_mask=True,
322
+ padding_side="right",
323
+ return_tensors="pt",
324
+ )
325
+ text_inputs = text_inputs.to(self.text_encoder.device)
326
+
327
+ text_input_ids = text_inputs.input_ids
328
+ prompt_attention_mask = text_inputs.attention_mask
329
+ if self.enable_text_attention_mask:
330
+ # Inference: Generation of the output
331
+ prompt_embeds = self.text_encoder(
332
+ input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
333
+ ).hidden_states[-2]
334
+ else:
335
+ raise ValueError("LLM needs attention_mask")
336
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
337
+
338
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
339
+
340
+ bs_embed, seq_len, _ = prompt_embeds.shape
341
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
342
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
343
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
344
+ prompt_attention_mask = prompt_attention_mask.to(device=device)
345
+
346
+ # get unconditional embeddings for classifier free guidance
347
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
348
+ if negative_prompt is not None and isinstance(negative_prompt, str):
349
+ messages = [
350
+ {
351
+ "role": "user",
352
+ "content": [{"type": "text", "text": negative_prompt}],
353
+ }
354
+ ]
355
+ else:
356
+ messages = [
357
+ {
358
+ "role": "user",
359
+ "content": [{"type": "text", "text": _negative_prompt}],
360
+ }
361
+ for _negative_prompt in negative_prompt
362
+ ]
363
+ text = [
364
+ self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
365
+ ]
366
+
367
+ text_inputs = self.tokenizer(
368
+ text=text,
369
+ padding="max_length",
370
+ max_length=max_sequence_length,
371
+ truncation=True,
372
+ return_attention_mask=True,
373
+ padding_side="right",
374
+ return_tensors="pt",
375
+ )
376
+ text_inputs = text_inputs.to(self.text_encoder.device)
377
+
378
+ text_input_ids = text_inputs.input_ids
379
+ negative_prompt_attention_mask = text_inputs.attention_mask
380
+ if self.enable_text_attention_mask:
381
+ # Inference: Generation of the output
382
+ negative_prompt_embeds = self.text_encoder(
383
+ input_ids=text_input_ids,
384
+ attention_mask=negative_prompt_attention_mask,
385
+ output_hidden_states=True,
386
+ ).hidden_states[-2]
387
+ else:
388
+ raise ValueError("LLM needs attention_mask")
389
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
390
+
391
+ if do_classifier_free_guidance:
392
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
393
+ seq_len = negative_prompt_embeds.shape[1]
394
+
395
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
396
+
397
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
398
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
399
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(device=device)
400
+
401
+ return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
402
+
403
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
404
+ def prepare_extra_step_kwargs(self, generator, eta):
405
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
406
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
407
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
408
+ # and should be between [0, 1]
409
+
410
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
411
+ extra_step_kwargs = {}
412
+ if accepts_eta:
413
+ extra_step_kwargs["eta"] = eta
414
+
415
+ # check if the scheduler accepts generator
416
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
417
+ if accepts_generator:
418
+ extra_step_kwargs["generator"] = generator
419
+ return extra_step_kwargs
420
+
421
+ def check_inputs(
422
+ self,
423
+ prompt,
424
+ height,
425
+ width,
426
+ negative_prompt=None,
427
+ prompt_embeds=None,
428
+ negative_prompt_embeds=None,
429
+ prompt_attention_mask=None,
430
+ negative_prompt_attention_mask=None,
431
+ callback_on_step_end_tensor_inputs=None,
432
+ ):
433
+ if height % 16 != 0 or width % 16 != 0:
434
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
435
+
436
+ if callback_on_step_end_tensor_inputs is not None and not all(
437
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
438
+ ):
439
+ raise ValueError(
440
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
441
+ )
442
+
443
+ if prompt is not None and prompt_embeds is not None:
444
+ raise ValueError(
445
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
446
+ " only forward one of the two."
447
+ )
448
+ elif prompt is None and prompt_embeds is None:
449
+ raise ValueError(
450
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
451
+ )
452
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
453
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
454
+
455
+ if prompt_embeds is not None and prompt_attention_mask is None:
456
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
457
+
458
+ if negative_prompt is not None and negative_prompt_embeds is not None:
459
+ raise ValueError(
460
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
461
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
462
+ )
463
+
464
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
465
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
466
+
467
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
468
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
469
+ raise ValueError(
470
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
471
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
472
+ f" {negative_prompt_embeds.shape}."
473
+ )
474
+
475
+ def prepare_latents(
476
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
477
+ ):
478
+ if latents is not None:
479
+ return latents.to(device=device, dtype=dtype)
480
+
481
+ shape = (
482
+ batch_size,
483
+ num_channels_latents,
484
+ (num_frames - 1) // self.vae_temporal_compression_ratio + 1,
485
+ height // self.vae_spatial_compression_ratio,
486
+ width // self.vae_spatial_compression_ratio,
487
+ )
488
+
489
+ if isinstance(generator, list) and len(generator) != batch_size:
490
+ raise ValueError(
491
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
492
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
493
+ )
494
+
495
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
496
+ # scale the initial noise by the standard deviation required by the scheduler
497
+ if hasattr(self.scheduler, "init_noise_sigma"):
498
+ latents = latents * self.scheduler.init_noise_sigma
499
+ return latents
500
+
501
+ @property
502
+ def guidance_scale(self):
503
+ return self._guidance_scale
504
+
505
+ @property
506
+ def guidance_rescale(self):
507
+ return self._guidance_rescale
508
+
509
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
510
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
511
+ # corresponds to doing no classifier free guidance.
512
+ @property
513
+ def do_classifier_free_guidance(self):
514
+ return self._guidance_scale > 1
515
+
516
+ @property
517
+ def num_timesteps(self):
518
+ return self._num_timesteps
519
+
520
+ @property
521
+ def interrupt(self):
522
+ return self._interrupt
523
+
524
+ @torch.no_grad()
525
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
526
+ def __call__(
527
+ self,
528
+ prompt: Union[str, List[str]] = None,
529
+ num_frames: Optional[int] = 49,
530
+ height: Optional[int] = 512,
531
+ width: Optional[int] = 512,
532
+ num_inference_steps: Optional[int] = 50,
533
+ guidance_scale: Optional[float] = 5.0,
534
+ negative_prompt: Optional[Union[str, List[str]]] = None,
535
+ num_images_per_prompt: Optional[int] = 1,
536
+ eta: Optional[float] = 0.0,
537
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
538
+ latents: Optional[torch.Tensor] = None,
539
+ prompt_embeds: Optional[torch.Tensor] = None,
540
+ timesteps: Optional[List[int]] = None,
541
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
542
+ prompt_attention_mask: Optional[torch.Tensor] = None,
543
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
544
+ output_type: Optional[str] = "pil",
545
+ return_dict: bool = True,
546
+ callback_on_step_end: Optional[
547
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
548
+ ] = None,
549
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
550
+ guidance_rescale: float = 0.0,
551
+ ):
552
+ r"""
553
+ Generates images or video using the EasyAnimate pipeline based on the provided prompts.
554
+
555
+ Examples:
556
+ prompt (`str` or `List[str]`, *optional*):
557
+ Text prompts to guide the image or video generation. If not provided, use `prompt_embeds` instead.
558
+ num_frames (`int`, *optional*):
559
+ Length of the generated video (in frames).
560
+ height (`int`, *optional*):
561
+ Height of the generated image in pixels.
562
+ width (`int`, *optional*):
563
+ Width of the generated image in pixels.
564
+ num_inference_steps (`int`, *optional*, defaults to 50):
565
+ Number of denoising steps during generation. More steps generally yield higher quality images but slow
566
+ down inference.
567
+ guidance_scale (`float`, *optional*, defaults to 5.0):
568
+ Encourages the model to align outputs with prompts. A higher value may decrease image quality.
569
+ negative_prompt (`str` or `List[str]`, *optional*):
570
+ Prompts indicating what to exclude in generation. If not specified, use `negative_prompt_embeds`.
571
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
572
+ Number of images to generate for each prompt.
573
+ eta (`float`, *optional*, defaults to 0.0):
574
+ Applies to DDIM scheduling. Controlled by the eta parameter from the related literature.
575
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
576
+ A generator to ensure reproducibility in image generation.
577
+ latents (`torch.Tensor`, *optional*):
578
+ Predefined latent tensors to condition generation.
579
+ prompt_embeds (`torch.Tensor`, *optional*):
580
+ Text embeddings for the prompts. Overrides prompt string inputs for more flexibility.
581
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
582
+ Embeddings for negative prompts. Overrides string inputs if defined.
583
+ prompt_attention_mask (`torch.Tensor`, *optional*):
584
+ Attention mask for the primary prompt embeddings.
585
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
586
+ Attention mask for negative prompt embeddings.
587
+ output_type (`str`, *optional*, defaults to "latent"):
588
+ Format of the generated output, either as a PIL image or as a NumPy array.
589
+ return_dict (`bool`, *optional*, defaults to `True`):
590
+ If `True`, returns a structured output. Otherwise returns a simple tuple.
591
+ callback_on_step_end (`Callable`, *optional*):
592
+ Functions called at the end of each denoising step.
593
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
594
+ Tensor names to be included in callback function calls.
595
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
596
+ Adjusts noise levels based on guidance scale.
597
+ original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
598
+ Original dimensions of the output.
599
+ target_size (`Tuple[int, int]`, *optional*):
600
+ Desired output dimensions for calculations.
601
+ crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
602
+ Coordinates for cropping.
603
+
604
+ Returns:
605
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
606
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
607
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
608
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
609
+ "not-safe-for-work" (nsfw) content.
610
+ """
611
+
612
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
613
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
614
+
615
+ # 0. default height and width
616
+ height = int((height // 16) * 16)
617
+ width = int((width // 16) * 16)
618
+
619
+ # 1. Check inputs. Raise error if not correct
620
+ self.check_inputs(
621
+ prompt,
622
+ height,
623
+ width,
624
+ negative_prompt,
625
+ prompt_embeds,
626
+ negative_prompt_embeds,
627
+ prompt_attention_mask,
628
+ negative_prompt_attention_mask,
629
+ callback_on_step_end_tensor_inputs,
630
+ )
631
+ self._guidance_scale = guidance_scale
632
+ self._guidance_rescale = guidance_rescale
633
+ self._interrupt = False
634
+
635
+ # 2. Define call parameters
636
+ if prompt is not None and isinstance(prompt, str):
637
+ batch_size = 1
638
+ elif prompt is not None and isinstance(prompt, list):
639
+ batch_size = len(prompt)
640
+ else:
641
+ batch_size = prompt_embeds.shape[0]
642
+
643
+ device = self._execution_device
644
+ if self.text_encoder is not None:
645
+ dtype = self.text_encoder.dtype
646
+ else:
647
+ dtype = self.transformer.dtype
648
+
649
+ # 3. Encode input prompt
650
+ (
651
+ prompt_embeds,
652
+ negative_prompt_embeds,
653
+ prompt_attention_mask,
654
+ negative_prompt_attention_mask,
655
+ ) = self.encode_prompt(
656
+ prompt=prompt,
657
+ device=device,
658
+ dtype=dtype,
659
+ num_images_per_prompt=num_images_per_prompt,
660
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
661
+ negative_prompt=negative_prompt,
662
+ prompt_embeds=prompt_embeds,
663
+ negative_prompt_embeds=negative_prompt_embeds,
664
+ prompt_attention_mask=prompt_attention_mask,
665
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
666
+ )
667
+
668
+ # 4. Prepare timesteps
669
+ if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
670
+ timesteps, num_inference_steps = retrieve_timesteps(
671
+ self.scheduler, num_inference_steps, device, timesteps, mu=1
672
+ )
673
+ else:
674
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
675
+
676
+ # 5. Prepare latent variables
677
+ num_channels_latents = self.transformer.config.in_channels
678
+ latents = self.prepare_latents(
679
+ batch_size * num_images_per_prompt,
680
+ num_channels_latents,
681
+ num_frames,
682
+ height,
683
+ width,
684
+ dtype,
685
+ device,
686
+ generator,
687
+ latents,
688
+ )
689
+
690
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
691
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
692
+
693
+ if self.do_classifier_free_guidance:
694
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
695
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
696
+
697
+ prompt_embeds = prompt_embeds.to(device=device)
698
+ prompt_attention_mask = prompt_attention_mask.to(device=device)
699
+
700
+ # 7. Denoising loop
701
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
702
+ self._num_timesteps = len(timesteps)
703
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
704
+ for i, t in enumerate(timesteps):
705
+ if self.interrupt:
706
+ continue
707
+
708
+ # expand the latents if we are doing classifier free guidance
709
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
710
+ if hasattr(self.scheduler, "scale_model_input"):
711
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
712
+
713
+ # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
714
+ t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
715
+ dtype=latent_model_input.dtype
716
+ )
717
+
718
+ # predict the noise residual
719
+ noise_pred = self.transformer(
720
+ latent_model_input,
721
+ t_expand,
722
+ encoder_hidden_states=prompt_embeds,
723
+ return_dict=False,
724
+ )[0]
725
+
726
+ if noise_pred.size()[1] != self.vae.config.latent_channels:
727
+ noise_pred, _ = noise_pred.chunk(2, dim=1)
728
+
729
+ # perform guidance
730
+ if self.do_classifier_free_guidance:
731
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
732
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
733
+
734
+ if self.do_classifier_free_guidance and guidance_rescale > 0.0:
735
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
736
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
737
+
738
+ # compute the previous noisy sample x_t -> x_t-1
739
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
740
+
741
+ if callback_on_step_end is not None:
742
+ callback_kwargs = {}
743
+ for k in callback_on_step_end_tensor_inputs:
744
+ callback_kwargs[k] = locals()[k]
745
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
746
+
747
+ latents = callback_outputs.pop("latents", latents)
748
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
749
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
750
+
751
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
752
+ progress_bar.update()
753
+
754
+ if XLA_AVAILABLE:
755
+ xm.mark_step()
756
+
757
+ if not output_type == "latent":
758
+ latents = 1 / self.vae.config.scaling_factor * latents
759
+ video = self.vae.decode(latents, return_dict=False)[0]
760
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
761
+ else:
762
+ video = latents
763
+
764
+ # Offload all models
765
+ self.maybe_free_model_hooks()
766
+
767
+ if not return_dict:
768
+ return (video,)
769
+
770
+ return EasyAnimatePipelineOutput(frames=video)