diffusers 0.23.1__py3-none-any.whl → 0.24.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (176) hide show
  1. diffusers/__init__.py +16 -2
  2. diffusers/configuration_utils.py +1 -0
  3. diffusers/dependency_versions_check.py +0 -1
  4. diffusers/dependency_versions_table.py +4 -5
  5. diffusers/image_processor.py +186 -14
  6. diffusers/loaders/__init__.py +82 -0
  7. diffusers/loaders/ip_adapter.py +157 -0
  8. diffusers/loaders/lora.py +1415 -0
  9. diffusers/loaders/lora_conversion_utils.py +284 -0
  10. diffusers/loaders/single_file.py +631 -0
  11. diffusers/loaders/textual_inversion.py +459 -0
  12. diffusers/loaders/unet.py +735 -0
  13. diffusers/loaders/utils.py +59 -0
  14. diffusers/models/__init__.py +12 -1
  15. diffusers/models/attention.py +165 -14
  16. diffusers/models/attention_flax.py +9 -1
  17. diffusers/models/attention_processor.py +286 -1
  18. diffusers/models/autoencoder_asym_kl.py +14 -9
  19. diffusers/models/autoencoder_kl.py +3 -18
  20. diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
  21. diffusers/models/autoencoder_tiny.py +20 -24
  22. diffusers/models/consistency_decoder_vae.py +37 -30
  23. diffusers/models/controlnet.py +59 -39
  24. diffusers/models/controlnet_flax.py +19 -18
  25. diffusers/models/embeddings_flax.py +2 -0
  26. diffusers/models/lora.py +131 -1
  27. diffusers/models/modeling_flax_utils.py +2 -1
  28. diffusers/models/modeling_outputs.py +17 -0
  29. diffusers/models/modeling_utils.py +27 -19
  30. diffusers/models/normalization.py +2 -2
  31. diffusers/models/resnet.py +390 -59
  32. diffusers/models/transformer_2d.py +20 -3
  33. diffusers/models/transformer_temporal.py +183 -1
  34. diffusers/models/unet_2d_blocks_flax.py +5 -0
  35. diffusers/models/unet_2d_condition.py +9 -0
  36. diffusers/models/unet_2d_condition_flax.py +13 -13
  37. diffusers/models/unet_3d_blocks.py +957 -173
  38. diffusers/models/unet_3d_condition.py +16 -8
  39. diffusers/models/unet_kandi3.py +589 -0
  40. diffusers/models/unet_motion_model.py +48 -33
  41. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  42. diffusers/models/vae.py +63 -13
  43. diffusers/models/vae_flax.py +7 -0
  44. diffusers/models/vq_model.py +3 -1
  45. diffusers/optimization.py +16 -9
  46. diffusers/pipelines/__init__.py +65 -12
  47. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
  48. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
  49. diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
  50. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  51. diffusers/pipelines/auto_pipeline.py +6 -0
  52. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  53. diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
  54. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
  55. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
  56. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
  57. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
  58. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
  59. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  60. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  61. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  62. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  63. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  64. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  65. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  66. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  67. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  68. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  69. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  70. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  71. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  72. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  73. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  74. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  75. diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
  76. diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
  77. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
  78. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
  79. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  80. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  81. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  82. diffusers/pipelines/pipeline_flax_utils.py +4 -2
  83. diffusers/pipelines/pipeline_utils.py +33 -13
  84. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
  85. diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
  86. diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
  87. diffusers/pipelines/stable_diffusion/__init__.py +64 -21
  88. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
  89. diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
  90. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  91. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  92. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  93. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
  94. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
  95. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
  96. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  97. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
  98. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
  99. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
  100. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  101. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
  102. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
  103. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
  104. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
  105. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
  106. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
  107. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
  108. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
  109. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
  110. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
  111. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
  112. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
  113. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
  114. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
  115. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
  116. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
  117. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
  118. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  119. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
  120. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  121. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
  122. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  123. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
  124. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
  125. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
  126. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
  127. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
  128. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
  129. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
  130. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
  131. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  132. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  133. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  134. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  135. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
  136. diffusers/schedulers/__init__.py +2 -4
  137. diffusers/schedulers/deprecated/__init__.py +50 -0
  138. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  139. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  140. diffusers/schedulers/scheduling_ddim.py +1 -3
  141. diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
  142. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  143. diffusers/schedulers/scheduling_ddpm.py +1 -3
  144. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
  145. diffusers/schedulers/scheduling_deis_multistep.py +15 -5
  146. diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
  147. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
  148. diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
  149. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
  150. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
  151. diffusers/schedulers/scheduling_euler_discrete.py +40 -13
  152. diffusers/schedulers/scheduling_heun_discrete.py +15 -5
  153. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
  154. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
  155. diffusers/schedulers/scheduling_lcm.py +123 -29
  156. diffusers/schedulers/scheduling_lms_discrete.py +1 -3
  157. diffusers/schedulers/scheduling_pndm.py +1 -3
  158. diffusers/schedulers/scheduling_repaint.py +1 -3
  159. diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
  160. diffusers/utils/__init__.py +1 -0
  161. diffusers/utils/constants.py +8 -7
  162. diffusers/utils/dummy_pt_objects.py +45 -0
  163. diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
  164. diffusers/utils/dynamic_modules_utils.py +4 -4
  165. diffusers/utils/export_utils.py +8 -3
  166. diffusers/utils/logging.py +10 -10
  167. diffusers/utils/outputs.py +5 -5
  168. diffusers/utils/peft_utils.py +88 -44
  169. diffusers/utils/torch_utils.py +2 -2
  170. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/METADATA +38 -22
  171. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/RECORD +175 -157
  172. diffusers/loaders.py +0 -3336
  173. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
  174. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/WHEEL +0 -0
  175. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +0 -0
  176. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -55,7 +55,9 @@ try:
55
55
  if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
56
56
  raise OptionalDependencyNotAvailable()
57
57
  except OptionalDependencyNotAvailable:
58
- from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
58
+ from ...utils.dummy_torch_and_transformers_objects import (
59
+ StableDiffusionImageVariationPipeline,
60
+ )
59
61
 
60
62
  _dummy_objects.update({"StableDiffusionImageVariationPipeline": StableDiffusionImageVariationPipeline})
61
63
  else:
@@ -90,7 +92,9 @@ try:
90
92
  ):
91
93
  raise OptionalDependencyNotAvailable()
92
94
  except OptionalDependencyNotAvailable:
93
- from ...utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
95
+ from ...utils import (
96
+ dummy_torch_and_transformers_and_k_diffusion_objects,
97
+ )
94
98
 
95
99
  _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_k_diffusion_objects))
96
100
  else:
@@ -137,18 +141,32 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
137
141
  StableDiffusionPipelineOutput,
138
142
  StableDiffusionSafetyChecker,
139
143
  )
140
- from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
144
+ from .pipeline_stable_diffusion_attend_and_excite import (
145
+ StableDiffusionAttendAndExcitePipeline,
146
+ )
141
147
  from .pipeline_stable_diffusion_gligen import StableDiffusionGLIGENPipeline
142
- from .pipeline_stable_diffusion_gligen_text_image import StableDiffusionGLIGENTextImagePipeline
148
+ from .pipeline_stable_diffusion_gligen_text_image import (
149
+ StableDiffusionGLIGENTextImagePipeline,
150
+ )
143
151
  from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
144
152
  from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
145
- from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
146
- from .pipeline_stable_diffusion_instruct_pix2pix import StableDiffusionInstructPix2PixPipeline
147
- from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline
153
+ from .pipeline_stable_diffusion_inpaint_legacy import (
154
+ StableDiffusionInpaintPipelineLegacy,
155
+ )
156
+ from .pipeline_stable_diffusion_instruct_pix2pix import (
157
+ StableDiffusionInstructPix2PixPipeline,
158
+ )
159
+ from .pipeline_stable_diffusion_latent_upscale import (
160
+ StableDiffusionLatentUpscalePipeline,
161
+ )
148
162
  from .pipeline_stable_diffusion_ldm3d import StableDiffusionLDM3DPipeline
149
- from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline
163
+ from .pipeline_stable_diffusion_model_editing import (
164
+ StableDiffusionModelEditingPipeline,
165
+ )
150
166
  from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
151
- from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline
167
+ from .pipeline_stable_diffusion_paradigms import (
168
+ StableDiffusionParadigmsPipeline,
169
+ )
152
170
  from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline
153
171
  from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
154
172
  from .pipeline_stable_unclip import StableUnCLIPPipeline
@@ -160,9 +178,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
160
178
  if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
161
179
  raise OptionalDependencyNotAvailable()
162
180
  except OptionalDependencyNotAvailable:
163
- from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
181
+ from ...utils.dummy_torch_and_transformers_objects import (
182
+ StableDiffusionImageVariationPipeline,
183
+ )
164
184
  else:
165
- from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline
185
+ from .pipeline_stable_diffusion_image_variation import (
186
+ StableDiffusionImageVariationPipeline,
187
+ )
166
188
 
167
189
  try:
168
190
  if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")):
@@ -174,9 +196,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
174
196
  StableDiffusionPix2PixZeroPipeline,
175
197
  )
176
198
  else:
177
- from .pipeline_stable_diffusion_depth2img import StableDiffusionDepth2ImgPipeline
199
+ from .pipeline_stable_diffusion_depth2img import (
200
+ StableDiffusionDepth2ImgPipeline,
201
+ )
178
202
  from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
179
- from .pipeline_stable_diffusion_pix2pix_zero import StableDiffusionPix2PixZeroPipeline
203
+ from .pipeline_stable_diffusion_pix2pix_zero import (
204
+ StableDiffusionPix2PixZeroPipeline,
205
+ )
180
206
 
181
207
  try:
182
208
  if not (
@@ -189,7 +215,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
189
215
  except OptionalDependencyNotAvailable:
190
216
  from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import *
191
217
  else:
192
- from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
218
+ from .pipeline_stable_diffusion_k_diffusion import (
219
+ StableDiffusionKDiffusionPipeline,
220
+ )
193
221
 
194
222
  try:
195
223
  if not (is_transformers_available() and is_onnx_available()):
@@ -197,11 +225,22 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
197
225
  except OptionalDependencyNotAvailable:
198
226
  from ...utils.dummy_onnx_objects import *
199
227
  else:
200
- from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
201
- from .pipeline_onnx_stable_diffusion_img2img import OnnxStableDiffusionImg2ImgPipeline
202
- from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
203
- from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy
204
- from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline
228
+ from .pipeline_onnx_stable_diffusion import (
229
+ OnnxStableDiffusionPipeline,
230
+ StableDiffusionOnnxPipeline,
231
+ )
232
+ from .pipeline_onnx_stable_diffusion_img2img import (
233
+ OnnxStableDiffusionImg2ImgPipeline,
234
+ )
235
+ from .pipeline_onnx_stable_diffusion_inpaint import (
236
+ OnnxStableDiffusionInpaintPipeline,
237
+ )
238
+ from .pipeline_onnx_stable_diffusion_inpaint_legacy import (
239
+ OnnxStableDiffusionInpaintPipelineLegacy,
240
+ )
241
+ from .pipeline_onnx_stable_diffusion_upscale import (
242
+ OnnxStableDiffusionUpscalePipeline,
243
+ )
205
244
 
206
245
  try:
207
246
  if not (is_transformers_available() and is_flax_available()):
@@ -210,8 +249,12 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
210
249
  from ...utils.dummy_flax_objects import *
211
250
  else:
212
251
  from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline
213
- from .pipeline_flax_stable_diffusion_img2img import FlaxStableDiffusionImg2ImgPipeline
214
- from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline
252
+ from .pipeline_flax_stable_diffusion_img2img import (
253
+ FlaxStableDiffusionImg2ImgPipeline,
254
+ )
255
+ from .pipeline_flax_stable_diffusion_inpaint import (
256
+ FlaxStableDiffusionInpaintPipeline,
257
+ )
215
258
  from .pipeline_output import FlaxStableDiffusionPipelineOutput
216
259
  from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
217
260
 
@@ -1232,13 +1232,11 @@ def download_from_original_stable_diffusion_ckpt(
1232
1232
  StableDiffusionPipeline,
1233
1233
  StableDiffusionUpscalePipeline,
1234
1234
  StableDiffusionXLImg2ImgPipeline,
1235
+ StableDiffusionXLPipeline,
1235
1236
  StableUnCLIPImg2ImgPipeline,
1236
1237
  StableUnCLIPPipeline,
1237
1238
  )
1238
1239
 
1239
- if pipeline_class is None:
1240
- pipeline_class = StableDiffusionPipeline if not controlnet else StableDiffusionControlNetPipeline
1241
-
1242
1240
  if prediction_type == "v-prediction":
1243
1241
  prediction_type = "v_prediction"
1244
1242
 
@@ -1333,6 +1331,13 @@ def download_from_original_stable_diffusion_ckpt(
1333
1331
  if image_size is None:
1334
1332
  image_size = 1024
1335
1333
 
1334
+ if pipeline_class is None:
1335
+ # Check if we have a SDXL or SD model and initialize default pipeline
1336
+ if model_type not in ["SDXL", "SDXL-Refiner"]:
1337
+ pipeline_class = StableDiffusionPipeline if not controlnet else StableDiffusionControlNetPipeline
1338
+ else:
1339
+ pipeline_class = StableDiffusionXLPipeline if model_type == "SDXL" else StableDiffusionXLImg2ImgPipeline
1340
+
1336
1341
  if num_in_channels is None and pipeline_class == StableDiffusionInpaintPipeline:
1337
1342
  num_in_channels = 9
1338
1343
  if num_in_channels is None and pipeline_class == StableDiffusionUpscalePipeline:
@@ -61,6 +61,20 @@ def preprocess(image):
61
61
  return image
62
62
 
63
63
 
64
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
65
+ def retrieve_latents(
66
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
67
+ ):
68
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
69
+ return encoder_output.latent_dist.sample(generator)
70
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
71
+ return encoder_output.latent_dist.mode()
72
+ elif hasattr(encoder_output, "latents"):
73
+ return encoder_output.latents
74
+ else:
75
+ raise AttributeError("Could not access latents of provided encoder_output")
76
+
77
+
64
78
  def posterior_sample(scheduler, latents, timestep, clean_latents, generator, eta):
65
79
  # 1. get previous step value (=t-1)
66
80
  prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
@@ -148,6 +162,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
148
162
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
149
163
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
150
164
  """
165
+
151
166
  model_cpu_offload_seq = "text_encoder->unet->vae"
152
167
  _optional_components = ["safety_checker", "feature_extractor"]
153
168
 
@@ -566,11 +581,12 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
566
581
 
567
582
  if isinstance(generator, list):
568
583
  init_latents = [
569
- self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
584
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
585
+ for i in range(image.shape[0])
570
586
  ]
571
587
  init_latents = torch.cat(init_latents, dim=0)
572
588
  else:
573
- init_latents = self.vae.encode(image).latent_dist.sample(generator)
589
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
574
590
 
575
591
  init_latents = self.vae.config.scaling_factor * init_latents
576
592
 
@@ -410,13 +410,13 @@ class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline):
410
410
 
411
411
  images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
412
412
  images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
413
- images = np.asarray(images)
413
+ images = np.asarray(images).copy()
414
414
 
415
415
  # block images
416
416
  if any(has_nsfw_concept):
417
417
  for i, is_nsfw in enumerate(has_nsfw_concept):
418
418
  if is_nsfw:
419
- images[i] = np.asarray(images_uint8_casted[i])
419
+ images[i, 0] = np.asarray(images_uint8_casted[i])
420
420
 
421
421
  images = images.reshape(num_devices, batch_size, height, width, 3)
422
422
  else:
@@ -33,10 +33,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
33
 
34
34
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess with 8->64
35
35
  def preprocess(image):
36
- deprecation_message = (
37
- "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use"
38
- " VaeImageProcessor.preprocess(...) instead"
39
- )
36
+ deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead"
40
37
  deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False)
41
38
  if isinstance(image, torch.Tensor):
42
39
  return image
@@ -85,6 +82,7 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline):
85
82
  feature_extractor ([`CLIPImageProcessor`]):
86
83
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
87
84
  """
85
+
88
86
  vae_encoder: OnnxRuntimeModel
89
87
  vae_decoder: OnnxRuntimeModel
90
88
  text_encoder: OnnxRuntimeModel
@@ -80,6 +80,7 @@ class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline):
80
80
  feature_extractor ([`CLIPImageProcessor`]):
81
81
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
82
82
  """
83
+
83
84
  vae_encoder: OnnxRuntimeModel
84
85
  vae_decoder: OnnxRuntimeModel
85
86
  text_encoder: OnnxRuntimeModel
@@ -66,6 +66,7 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
66
66
  feature_extractor ([`CLIPImageProcessor`]):
67
67
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
68
68
  """
69
+
69
70
  _optional_components = ["safety_checker", "feature_extractor"]
70
71
  _is_onnx = True
71
72
 
@@ -17,11 +17,11 @@ from typing import Any, Callable, Dict, List, Optional, Union
17
17
 
18
18
  import torch
19
19
  from packaging import version
20
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
20
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
21
21
 
22
22
  from ...configuration_utils import FrozenDict
23
- from ...image_processor import VaeImageProcessor
24
- from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
23
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
24
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
25
25
  from ...models import AutoencoderKL, UNet2DConditionModel
26
26
  from ...models.lora import adjust_lora_scale_text_encoder
27
27
  from ...schedulers import KarrasDiffusionSchedulers
@@ -70,7 +70,53 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
70
70
  return noise_cfg
71
71
 
72
72
 
73
- class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
73
+ def retrieve_timesteps(
74
+ scheduler,
75
+ num_inference_steps: Optional[int] = None,
76
+ device: Optional[Union[str, torch.device]] = None,
77
+ timesteps: Optional[List[int]] = None,
78
+ **kwargs,
79
+ ):
80
+ """
81
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
82
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
83
+
84
+ Args:
85
+ scheduler (`SchedulerMixin`):
86
+ The scheduler to get timesteps from.
87
+ num_inference_steps (`int`):
88
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
89
+ `timesteps` must be `None`.
90
+ device (`str` or `torch.device`, *optional*):
91
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
92
+ timesteps (`List[int]`, *optional*):
93
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
94
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
95
+ must be `None`.
96
+
97
+ Returns:
98
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
99
+ second element is the number of inference steps.
100
+ """
101
+ if timesteps is not None:
102
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
103
+ if not accepts_timesteps:
104
+ raise ValueError(
105
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
106
+ f" timestep schedules. Please check whether you are using the correct scheduler."
107
+ )
108
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
109
+ timesteps = scheduler.timesteps
110
+ num_inference_steps = len(timesteps)
111
+ else:
112
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
113
+ timesteps = scheduler.timesteps
114
+ return timesteps, num_inference_steps
115
+
116
+
117
+ class StableDiffusionPipeline(
118
+ DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
119
+ ):
74
120
  r"""
75
121
  Pipeline for text-to-image generation using Stable Diffusion.
76
122
 
@@ -82,6 +128,7 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
82
128
  - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
83
129
  - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
84
130
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
131
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
85
132
 
86
133
  Args:
87
134
  vae ([`AutoencoderKL`]):
@@ -102,8 +149,9 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
102
149
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
103
150
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
104
151
  """
152
+
105
153
  model_cpu_offload_seq = "text_encoder->unet->vae"
106
- _optional_components = ["safety_checker", "feature_extractor"]
154
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
107
155
  _exclude_from_cpu_offload = ["safety_checker"]
108
156
  _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
109
157
 
@@ -116,6 +164,7 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
116
164
  scheduler: KarrasDiffusionSchedulers,
117
165
  safety_checker: StableDiffusionSafetyChecker,
118
166
  feature_extractor: CLIPImageProcessor,
167
+ image_encoder: CLIPVisionModelWithProjection = None,
119
168
  requires_safety_checker: bool = True,
120
169
  ):
121
170
  super().__init__()
@@ -192,6 +241,7 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
192
241
  scheduler=scheduler,
193
242
  safety_checker=safety_checker,
194
243
  feature_extractor=feature_extractor,
244
+ image_encoder=image_encoder,
195
245
  )
196
246
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
197
247
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
@@ -439,6 +489,19 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
439
489
 
440
490
  return prompt_embeds, negative_prompt_embeds
441
491
 
492
+ def encode_image(self, image, device, num_images_per_prompt):
493
+ dtype = next(self.image_encoder.parameters()).dtype
494
+
495
+ if not isinstance(image, torch.Tensor):
496
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
497
+
498
+ image = image.to(device=device, dtype=dtype)
499
+ image_embeds = self.image_encoder(image).image_embeds
500
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
501
+
502
+ uncond_image_embeds = torch.zeros_like(image_embeds)
503
+ return image_embeds, uncond_image_embeds
504
+
442
505
  def run_safety_checker(self, image, device, dtype):
443
506
  if self.safety_checker is None:
444
507
  has_nsfw_concept = None
@@ -640,6 +703,7 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
640
703
  height: Optional[int] = None,
641
704
  width: Optional[int] = None,
642
705
  num_inference_steps: int = 50,
706
+ timesteps: List[int] = None,
643
707
  guidance_scale: float = 7.5,
644
708
  negative_prompt: Optional[Union[str, List[str]]] = None,
645
709
  num_images_per_prompt: Optional[int] = 1,
@@ -648,6 +712,7 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
648
712
  latents: Optional[torch.FloatTensor] = None,
649
713
  prompt_embeds: Optional[torch.FloatTensor] = None,
650
714
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
715
+ ip_adapter_image: Optional[PipelineImageInput] = None,
651
716
  output_type: Optional[str] = "pil",
652
717
  return_dict: bool = True,
653
718
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -670,6 +735,10 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
670
735
  num_inference_steps (`int`, *optional*, defaults to 50):
671
736
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
672
737
  expense of slower inference.
738
+ timesteps (`List[int]`, *optional*):
739
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
740
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
741
+ passed will be used. Must be in descending order.
673
742
  guidance_scale (`float`, *optional*, defaults to 7.5):
674
743
  A higher guidance scale value encourages the model to generate images closely linked to the text
675
744
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -694,6 +763,7 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
694
763
  negative_prompt_embeds (`torch.FloatTensor`, *optional*):
695
764
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
696
765
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
766
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
697
767
  output_type (`str`, *optional*, defaults to `"pil"`):
698
768
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
699
769
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -717,7 +787,7 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
717
787
  callback_on_step_end_tensor_inputs (`List`, *optional*):
718
788
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
719
789
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
720
- `._callback_tensor_inputs` attribute of your pipeine class.
790
+ `._callback_tensor_inputs` attribute of your pipeline class.
721
791
 
722
792
  Examples:
723
793
 
@@ -793,15 +863,20 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
793
863
  lora_scale=lora_scale,
794
864
  clip_skip=self.clip_skip,
795
865
  )
866
+
796
867
  # For classifier free guidance, we need to do two forward passes.
797
868
  # Here we concatenate the unconditional and text embeddings into a single batch
798
869
  # to avoid doing two forward passes
799
870
  if self.do_classifier_free_guidance:
800
871
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
801
872
 
873
+ if ip_adapter_image is not None:
874
+ image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
875
+ if self.do_classifier_free_guidance:
876
+ image_embeds = torch.cat([negative_image_embeds, image_embeds])
877
+
802
878
  # 4. Prepare timesteps
803
- self.scheduler.set_timesteps(num_inference_steps, device=device)
804
- timesteps = self.scheduler.timesteps
879
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
805
880
 
806
881
  # 5. Prepare latent variables
807
882
  num_channels_latents = self.unet.config.in_channels
@@ -819,7 +894,10 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
819
894
  # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
820
895
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
821
896
 
822
- # 6.5 Optionally get Guidance Scale Embedding
897
+ # 6.1 Add image embeds for IP-Adapter
898
+ added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
899
+
900
+ # 6.2 Optionally get Guidance Scale Embedding
823
901
  timestep_cond = None
824
902
  if self.unet.config.time_cond_proj_dim is not None:
825
903
  guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
@@ -843,6 +921,7 @@ class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lo
843
921
  encoder_hidden_states=prompt_embeds,
844
922
  timestep_cond=timestep_cond,
845
923
  cross_attention_kwargs=self.cross_attention_kwargs,
924
+ added_cond_kwargs=added_cond_kwargs,
846
925
  return_dict=False,
847
926
  )[0]
848
927
 
@@ -196,6 +196,7 @@ class StableDiffusionAttendAndExcitePipeline(DiffusionPipeline, TextualInversion
196
196
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
197
197
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
198
198
  """
199
+
199
200
  model_cpu_offload_seq = "text_encoder->unet->vae"
200
201
  _optional_components = ["safety_checker", "feature_extractor"]
201
202
  _exclude_from_cpu_offload = ["safety_checker"]
@@ -37,9 +37,13 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
37
37
 
38
38
 
39
39
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
40
- def retrieve_latents(encoder_output, generator):
41
- if hasattr(encoder_output, "latent_dist"):
40
+ def retrieve_latents(
41
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
42
+ ):
43
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
42
44
  return encoder_output.latent_dist.sample(generator)
45
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
46
+ return encoder_output.latent_dist.mode()
43
47
  elif hasattr(encoder_output, "latents"):
44
48
  return encoder_output.latents
45
49
  else:
@@ -95,6 +99,7 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
95
99
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
96
100
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
97
101
  """
102
+
98
103
  model_cpu_offload_seq = "text_encoder->unet->vae"
99
104
  _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "depth_mask"]
100
105
 
@@ -674,7 +679,7 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
674
679
  callback_on_step_end_tensor_inputs (`List`, *optional*):
675
680
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
676
681
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
677
- `._callback_tensor_inputs` attribute of your pipeine class.
682
+ `._callback_tensor_inputs` attribute of your pipeline class.
678
683
  Examples:
679
684
 
680
685
  ```py
@@ -273,6 +273,7 @@ class StableDiffusionDiffEditPipeline(DiffusionPipeline, TextualInversionLoaderM
273
273
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
274
274
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
275
275
  """
276
+
276
277
  model_cpu_offload_seq = "text_encoder->unet->vae"
277
278
  _optional_components = ["safety_checker", "feature_extractor", "inverse_scheduler"]
278
279
  _exclude_from_cpu_offload = ["safety_checker"]
@@ -125,6 +125,7 @@ class StableDiffusionGLIGENPipeline(DiffusionPipeline):
125
125
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
126
126
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
127
127
  """
128
+
128
129
  _optional_components = ["safety_checker", "feature_extractor"]
129
130
  model_cpu_offload_seq = "text_encoder->unet->vae"
130
131
  _exclude_from_cpu_offload = ["safety_checker"]
@@ -177,6 +177,7 @@ class StableDiffusionGLIGENTextImagePipeline(DiffusionPipeline):
177
177
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
178
178
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
179
179
  """
180
+
180
181
  model_cpu_offload_seq = "text_encoder->unet->vae"
181
182
  _optional_components = ["safety_checker", "feature_extractor"]
182
183
  _exclude_from_cpu_offload = ["safety_checker"]
@@ -62,6 +62,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline):
62
62
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
63
63
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
64
64
  """
65
+
65
66
  # TODO: feature_extractor is required to encode images (if they are in PIL format),
66
67
  # we should give a descriptive message if the pipeline doesn't have one.
67
68
  _optional_components = ["safety_checker"]