diffusers 0.23.1__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +4 -5
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +8 -7
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/METADATA +38 -22
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/RECORD +175 -157
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/WHEEL +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -19,11 +19,11 @@ import numpy as np
|
|
19
19
|
import PIL.Image
|
20
20
|
import torch
|
21
21
|
from packaging import version
|
22
|
-
from transformers import CLIPImageProcessor, XLMRobertaTokenizer
|
22
|
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer
|
23
23
|
|
24
24
|
from ...configuration_utils import FrozenDict
|
25
25
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
26
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27
27
|
from ...models import AutoencoderKL, UNet2DConditionModel
|
28
28
|
from ...models.lora import adjust_lora_scale_text_encoder
|
29
29
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -76,9 +76,13 @@ EXAMPLE_DOC_STRING = """
|
|
76
76
|
|
77
77
|
|
78
78
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
79
|
-
def retrieve_latents(
|
80
|
-
|
79
|
+
def retrieve_latents(
|
80
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
81
|
+
):
|
82
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
81
83
|
return encoder_output.latent_dist.sample(generator)
|
84
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
85
|
+
return encoder_output.latent_dist.mode()
|
82
86
|
elif hasattr(encoder_output, "latents"):
|
83
87
|
return encoder_output.latents
|
84
88
|
else:
|
@@ -109,9 +113,54 @@ def preprocess(image):
|
|
109
113
|
return image
|
110
114
|
|
111
115
|
|
116
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
117
|
+
def retrieve_timesteps(
|
118
|
+
scheduler,
|
119
|
+
num_inference_steps: Optional[int] = None,
|
120
|
+
device: Optional[Union[str, torch.device]] = None,
|
121
|
+
timesteps: Optional[List[int]] = None,
|
122
|
+
**kwargs,
|
123
|
+
):
|
124
|
+
"""
|
125
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
126
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
127
|
+
|
128
|
+
Args:
|
129
|
+
scheduler (`SchedulerMixin`):
|
130
|
+
The scheduler to get timesteps from.
|
131
|
+
num_inference_steps (`int`):
|
132
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
133
|
+
`timesteps` must be `None`.
|
134
|
+
device (`str` or `torch.device`, *optional*):
|
135
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
136
|
+
timesteps (`List[int]`, *optional*):
|
137
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
138
|
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
139
|
+
must be `None`.
|
140
|
+
|
141
|
+
Returns:
|
142
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
143
|
+
second element is the number of inference steps.
|
144
|
+
"""
|
145
|
+
if timesteps is not None:
|
146
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
147
|
+
if not accepts_timesteps:
|
148
|
+
raise ValueError(
|
149
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
150
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
151
|
+
)
|
152
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
153
|
+
timesteps = scheduler.timesteps
|
154
|
+
num_inference_steps = len(timesteps)
|
155
|
+
else:
|
156
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
157
|
+
timesteps = scheduler.timesteps
|
158
|
+
return timesteps, num_inference_steps
|
159
|
+
|
160
|
+
|
112
161
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline with Stable->Alt, CLIPTextModel->RobertaSeriesModelWithTransformation, CLIPTokenizer->XLMRobertaTokenizer, AltDiffusionSafetyChecker->StableDiffusionSafetyChecker
|
113
162
|
class AltDiffusionImg2ImgPipeline(
|
114
|
-
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
163
|
+
DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
|
115
164
|
):
|
116
165
|
r"""
|
117
166
|
Pipeline for text-guided image-to-image generation using Alt Diffusion.
|
@@ -124,6 +173,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
124
173
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
125
174
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
126
175
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
176
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
127
177
|
|
128
178
|
Args:
|
129
179
|
vae ([`AutoencoderKL`]):
|
@@ -146,7 +196,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
146
196
|
"""
|
147
197
|
|
148
198
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
149
|
-
_optional_components = ["safety_checker", "feature_extractor"]
|
199
|
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
150
200
|
_exclude_from_cpu_offload = ["safety_checker"]
|
151
201
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
152
202
|
|
@@ -159,6 +209,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
159
209
|
scheduler: KarrasDiffusionSchedulers,
|
160
210
|
safety_checker: StableDiffusionSafetyChecker,
|
161
211
|
feature_extractor: CLIPImageProcessor,
|
212
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
162
213
|
requires_safety_checker: bool = True,
|
163
214
|
):
|
164
215
|
super().__init__()
|
@@ -235,6 +286,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
235
286
|
scheduler=scheduler,
|
236
287
|
safety_checker=safety_checker,
|
237
288
|
feature_extractor=feature_extractor,
|
289
|
+
image_encoder=image_encoder,
|
238
290
|
)
|
239
291
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
240
292
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
@@ -252,10 +304,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
252
304
|
lora_scale: Optional[float] = None,
|
253
305
|
**kwargs,
|
254
306
|
):
|
255
|
-
deprecation_message = (
|
256
|
-
"`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()`"
|
257
|
-
" instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
258
|
-
)
|
307
|
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
259
308
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
260
309
|
|
261
310
|
prompt_embeds_tuple = self.encode_prompt(
|
@@ -456,6 +505,19 @@ class AltDiffusionImg2ImgPipeline(
|
|
456
505
|
|
457
506
|
return prompt_embeds, negative_prompt_embeds
|
458
507
|
|
508
|
+
def encode_image(self, image, device, num_images_per_prompt):
|
509
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
510
|
+
|
511
|
+
if not isinstance(image, torch.Tensor):
|
512
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
513
|
+
|
514
|
+
image = image.to(device=device, dtype=dtype)
|
515
|
+
image_embeds = self.image_encoder(image).image_embeds
|
516
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
517
|
+
|
518
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
519
|
+
return image_embeds, uncond_image_embeds
|
520
|
+
|
459
521
|
def run_safety_checker(self, image, device, dtype):
|
460
522
|
if self.safety_checker is None:
|
461
523
|
has_nsfw_concept = None
|
@@ -471,10 +533,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
471
533
|
return image, has_nsfw_concept
|
472
534
|
|
473
535
|
def decode_latents(self, latents):
|
474
|
-
deprecation_message = (
|
475
|
-
"The decode_latents method is deprecated and will be removed in 1.0.0. Please use"
|
476
|
-
" VaeImageProcessor.postprocess(...) instead"
|
477
|
-
)
|
536
|
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
478
537
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
479
538
|
|
480
539
|
latents = 1 / self.vae.config.scaling_factor * latents
|
@@ -524,8 +583,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
524
583
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
525
584
|
):
|
526
585
|
raise ValueError(
|
527
|
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found"
|
528
|
-
f" {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
586
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
529
587
|
)
|
530
588
|
if prompt is not None and prompt_embeds is not None:
|
531
589
|
raise ValueError(
|
@@ -578,8 +636,8 @@ class AltDiffusionImg2ImgPipeline(
|
|
578
636
|
else:
|
579
637
|
if isinstance(generator, list) and len(generator) != batch_size:
|
580
638
|
raise ValueError(
|
581
|
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective"
|
582
|
-
f"
|
639
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
640
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
583
641
|
)
|
584
642
|
|
585
643
|
elif isinstance(generator, list):
|
@@ -705,6 +763,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
705
763
|
image: PipelineImageInput = None,
|
706
764
|
strength: float = 0.8,
|
707
765
|
num_inference_steps: Optional[int] = 50,
|
766
|
+
timesteps: List[int] = None,
|
708
767
|
guidance_scale: Optional[float] = 7.5,
|
709
768
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
710
769
|
num_images_per_prompt: Optional[int] = 1,
|
@@ -712,6 +771,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
712
771
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
713
772
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
714
773
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
774
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
715
775
|
output_type: Optional[str] = "pil",
|
716
776
|
return_dict: bool = True,
|
717
777
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -741,6 +801,10 @@ class AltDiffusionImg2ImgPipeline(
|
|
741
801
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
742
802
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
743
803
|
expense of slower inference. This parameter is modulated by `strength`.
|
804
|
+
timesteps (`List[int]`, *optional*):
|
805
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
806
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
807
|
+
passed will be used. Must be in descending order.
|
744
808
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
745
809
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
746
810
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
@@ -761,6 +825,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
761
825
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
762
826
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
763
827
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
828
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
764
829
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
765
830
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
766
831
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -780,7 +845,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
780
845
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
781
846
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
782
847
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
783
|
-
`._callback_tensor_inputs` attribute of your
|
848
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
784
849
|
Examples:
|
785
850
|
|
786
851
|
Returns:
|
@@ -798,15 +863,13 @@ class AltDiffusionImg2ImgPipeline(
|
|
798
863
|
deprecate(
|
799
864
|
"callback",
|
800
865
|
"1.0.0",
|
801
|
-
"Passing `callback` as an input argument to `__call__` is deprecated, consider use"
|
802
|
-
" `callback_on_step_end`",
|
866
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
803
867
|
)
|
804
868
|
if callback_steps is not None:
|
805
869
|
deprecate(
|
806
870
|
"callback_steps",
|
807
871
|
"1.0.0",
|
808
|
-
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use"
|
809
|
-
" `callback_on_step_end`",
|
872
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
810
873
|
)
|
811
874
|
|
812
875
|
# 1. Check inputs. Raise error if not correct
|
@@ -855,11 +918,16 @@ class AltDiffusionImg2ImgPipeline(
|
|
855
918
|
if self.do_classifier_free_guidance:
|
856
919
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
857
920
|
|
921
|
+
if ip_adapter_image is not None:
|
922
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
923
|
+
if self.do_classifier_free_guidance:
|
924
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
925
|
+
|
858
926
|
# 4. Preprocess image
|
859
927
|
image = self.image_processor.preprocess(image)
|
860
928
|
|
861
929
|
# 5. set timesteps
|
862
|
-
self.scheduler
|
930
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
863
931
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
864
932
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
865
933
|
|
@@ -877,7 +945,10 @@ class AltDiffusionImg2ImgPipeline(
|
|
877
945
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
878
946
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
879
947
|
|
880
|
-
# 7.
|
948
|
+
# 7.1 Add image embeds for IP-Adapter
|
949
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
950
|
+
|
951
|
+
# 7.2 Optionally get Guidance Scale Embedding
|
881
952
|
timestep_cond = None
|
882
953
|
if self.unet.config.time_cond_proj_dim is not None:
|
883
954
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
@@ -901,6 +972,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
901
972
|
encoder_hidden_states=prompt_embeds,
|
902
973
|
timestep_cond=timestep_cond,
|
903
974
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
975
|
+
added_cond_kwargs=added_cond_kwargs,
|
904
976
|
return_dict=False,
|
905
977
|
)[0]
|
906
978
|
|
@@ -18,10 +18,10 @@ from typing import Any, Callable, Dict, List, Optional, Union
|
|
18
18
|
|
19
19
|
import numpy as np
|
20
20
|
import torch
|
21
|
-
from transformers import CLIPTextModel, CLIPTokenizer
|
21
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
22
22
|
|
23
|
-
from ...image_processor import VaeImageProcessor
|
24
|
-
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
23
|
+
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
24
|
+
from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
25
25
|
from ...models import AutoencoderKL, UNet2DConditionModel, UNetMotionModel
|
26
26
|
from ...models.lora import adjust_lora_scale_text_encoder
|
27
27
|
from ...models.unet_motion_model import MotionAdapter
|
@@ -77,7 +77,7 @@ class AnimateDiffPipelineOutput(BaseOutput):
|
|
77
77
|
frames: Union[torch.Tensor, np.ndarray]
|
78
78
|
|
79
79
|
|
80
|
-
class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
80
|
+
class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin):
|
81
81
|
r"""
|
82
82
|
Pipeline for text-to-video generation.
|
83
83
|
|
@@ -99,7 +99,9 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
99
99
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
100
100
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
101
101
|
"""
|
102
|
+
|
102
103
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
104
|
+
_optional_components = ["feature_extractor", "image_encoder"]
|
103
105
|
|
104
106
|
def __init__(
|
105
107
|
self,
|
@@ -116,6 +118,8 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
116
118
|
EulerAncestralDiscreteScheduler,
|
117
119
|
DPMSolverMultistepScheduler,
|
118
120
|
],
|
121
|
+
feature_extractor: CLIPImageProcessor = None,
|
122
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
119
123
|
):
|
120
124
|
super().__init__()
|
121
125
|
unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
|
@@ -127,6 +131,8 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
127
131
|
unet=unet,
|
128
132
|
motion_adapter=motion_adapter,
|
129
133
|
scheduler=scheduler,
|
134
|
+
feature_extractor=feature_extractor,
|
135
|
+
image_encoder=image_encoder,
|
130
136
|
)
|
131
137
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
132
138
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
@@ -313,6 +319,20 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
313
319
|
|
314
320
|
return prompt_embeds, negative_prompt_embeds
|
315
321
|
|
322
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
323
|
+
def encode_image(self, image, device, num_images_per_prompt):
|
324
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
325
|
+
|
326
|
+
if not isinstance(image, torch.Tensor):
|
327
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
328
|
+
|
329
|
+
image = image.to(device=device, dtype=dtype)
|
330
|
+
image_embeds = self.image_encoder(image).image_embeds
|
331
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
332
|
+
|
333
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
334
|
+
return image_embeds, uncond_image_embeds
|
335
|
+
|
316
336
|
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
317
337
|
def decode_latents(self, latents):
|
318
338
|
latents = 1 / self.vae.config.scaling_factor * latents
|
@@ -511,6 +531,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
511
531
|
latents: Optional[torch.FloatTensor] = None,
|
512
532
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
513
533
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
534
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
514
535
|
output_type: Optional[str] = "pil",
|
515
536
|
return_dict: bool = True,
|
516
537
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
@@ -557,6 +578,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
557
578
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
558
579
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
559
580
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
581
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
560
582
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
561
583
|
The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
|
562
584
|
`np.array`.
|
@@ -628,6 +650,11 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
628
650
|
if do_classifier_free_guidance:
|
629
651
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
630
652
|
|
653
|
+
if ip_adapter_image is not None:
|
654
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_videos_per_prompt)
|
655
|
+
if do_classifier_free_guidance:
|
656
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
657
|
+
|
631
658
|
# 4. Prepare timesteps
|
632
659
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
633
660
|
timesteps = self.scheduler.timesteps
|
@@ -648,6 +675,8 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
648
675
|
|
649
676
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
650
677
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
678
|
+
# 7 Add image embeds for IP-Adapter
|
679
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
651
680
|
|
652
681
|
# Denoising loop
|
653
682
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
@@ -663,6 +692,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLo
|
|
663
692
|
t,
|
664
693
|
encoder_hidden_states=prompt_embeds,
|
665
694
|
cross_attention_kwargs=cross_attention_kwargs,
|
695
|
+
added_cond_kwargs=added_cond_kwargs,
|
666
696
|
).sample
|
667
697
|
|
668
698
|
# perform guidance
|
@@ -42,6 +42,7 @@ from .kandinsky2_2 import (
|
|
42
42
|
KandinskyV22InpaintPipeline,
|
43
43
|
KandinskyV22Pipeline,
|
44
44
|
)
|
45
|
+
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
|
45
46
|
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
|
46
47
|
from .pixart_alpha import PixArtAlphaPipeline
|
47
48
|
from .stable_diffusion import (
|
@@ -64,6 +65,7 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
|
64
65
|
("if", IFPipeline),
|
65
66
|
("kandinsky", KandinskyCombinedPipeline),
|
66
67
|
("kandinsky22", KandinskyV22CombinedPipeline),
|
68
|
+
("kandinsky3", Kandinsky3Pipeline),
|
67
69
|
("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
|
68
70
|
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
|
69
71
|
("wuerstchen", WuerstchenCombinedPipeline),
|
@@ -79,6 +81,7 @@ AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
|
79
81
|
("if", IFImg2ImgPipeline),
|
80
82
|
("kandinsky", KandinskyImg2ImgCombinedPipeline),
|
81
83
|
("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
|
84
|
+
("kandinsky3", Kandinsky3Img2ImgPipeline),
|
82
85
|
("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
|
83
86
|
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
|
84
87
|
("lcm", LatentConsistencyModelImg2ImgPipeline),
|
@@ -181,6 +184,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
|
181
184
|
diffusion pipeline's components.
|
182
185
|
|
183
186
|
"""
|
187
|
+
|
184
188
|
config_name = "model_index.json"
|
185
189
|
|
186
190
|
def __init__(self, *args, **kwargs):
|
@@ -451,6 +455,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
|
451
455
|
diffusion pipeline's components.
|
452
456
|
|
453
457
|
"""
|
458
|
+
|
454
459
|
config_name = "model_index.json"
|
455
460
|
|
456
461
|
def __init__(self, *args, **kwargs):
|
@@ -726,6 +731,7 @@ class AutoPipelineForInpainting(ConfigMixin):
|
|
726
731
|
diffusion pipeline's components.
|
727
732
|
|
728
733
|
"""
|
734
|
+
|
729
735
|
config_name = "model_index.json"
|
730
736
|
|
731
737
|
def __init__(self, *args, **kwargs):
|
@@ -74,6 +74,7 @@ class ConsistencyModelPipeline(DiffusionPipeline):
|
|
74
74
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only
|
75
75
|
compatible with [`CMStochasticIterativeScheduler`].
|
76
76
|
"""
|
77
|
+
|
77
78
|
model_cpu_offload_seq = "unet"
|
78
79
|
|
79
80
|
def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None:
|