diffusers 0.23.1__py3-none-any.whl → 0.24.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (176) hide show
  1. diffusers/__init__.py +16 -2
  2. diffusers/configuration_utils.py +1 -0
  3. diffusers/dependency_versions_check.py +0 -1
  4. diffusers/dependency_versions_table.py +4 -5
  5. diffusers/image_processor.py +186 -14
  6. diffusers/loaders/__init__.py +82 -0
  7. diffusers/loaders/ip_adapter.py +157 -0
  8. diffusers/loaders/lora.py +1415 -0
  9. diffusers/loaders/lora_conversion_utils.py +284 -0
  10. diffusers/loaders/single_file.py +631 -0
  11. diffusers/loaders/textual_inversion.py +459 -0
  12. diffusers/loaders/unet.py +735 -0
  13. diffusers/loaders/utils.py +59 -0
  14. diffusers/models/__init__.py +12 -1
  15. diffusers/models/attention.py +165 -14
  16. diffusers/models/attention_flax.py +9 -1
  17. diffusers/models/attention_processor.py +286 -1
  18. diffusers/models/autoencoder_asym_kl.py +14 -9
  19. diffusers/models/autoencoder_kl.py +3 -18
  20. diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
  21. diffusers/models/autoencoder_tiny.py +20 -24
  22. diffusers/models/consistency_decoder_vae.py +37 -30
  23. diffusers/models/controlnet.py +59 -39
  24. diffusers/models/controlnet_flax.py +19 -18
  25. diffusers/models/embeddings_flax.py +2 -0
  26. diffusers/models/lora.py +131 -1
  27. diffusers/models/modeling_flax_utils.py +2 -1
  28. diffusers/models/modeling_outputs.py +17 -0
  29. diffusers/models/modeling_utils.py +27 -19
  30. diffusers/models/normalization.py +2 -2
  31. diffusers/models/resnet.py +390 -59
  32. diffusers/models/transformer_2d.py +20 -3
  33. diffusers/models/transformer_temporal.py +183 -1
  34. diffusers/models/unet_2d_blocks_flax.py +5 -0
  35. diffusers/models/unet_2d_condition.py +9 -0
  36. diffusers/models/unet_2d_condition_flax.py +13 -13
  37. diffusers/models/unet_3d_blocks.py +957 -173
  38. diffusers/models/unet_3d_condition.py +16 -8
  39. diffusers/models/unet_kandi3.py +589 -0
  40. diffusers/models/unet_motion_model.py +48 -33
  41. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  42. diffusers/models/vae.py +63 -13
  43. diffusers/models/vae_flax.py +7 -0
  44. diffusers/models/vq_model.py +3 -1
  45. diffusers/optimization.py +16 -9
  46. diffusers/pipelines/__init__.py +65 -12
  47. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
  48. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
  49. diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
  50. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  51. diffusers/pipelines/auto_pipeline.py +6 -0
  52. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  53. diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
  54. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
  55. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
  56. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
  57. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
  58. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
  59. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  60. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  61. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  62. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  63. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  64. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  65. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  66. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  67. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  68. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  69. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  70. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  71. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  72. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  73. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  74. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  75. diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
  76. diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
  77. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
  78. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
  79. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  80. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  81. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  82. diffusers/pipelines/pipeline_flax_utils.py +4 -2
  83. diffusers/pipelines/pipeline_utils.py +33 -13
  84. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
  85. diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
  86. diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
  87. diffusers/pipelines/stable_diffusion/__init__.py +64 -21
  88. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
  89. diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
  90. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  91. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  92. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  93. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
  94. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
  95. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
  96. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  97. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
  98. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
  99. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
  100. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  101. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
  102. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
  103. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
  104. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
  105. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
  106. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
  107. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
  108. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
  109. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
  110. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
  111. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
  112. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
  113. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
  114. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
  115. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
  116. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
  117. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
  118. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  119. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
  120. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  121. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
  122. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  123. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
  124. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
  125. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
  126. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
  127. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
  128. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
  129. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
  130. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
  131. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  132. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  133. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  134. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  135. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
  136. diffusers/schedulers/__init__.py +2 -4
  137. diffusers/schedulers/deprecated/__init__.py +50 -0
  138. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  139. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  140. diffusers/schedulers/scheduling_ddim.py +1 -3
  141. diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
  142. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  143. diffusers/schedulers/scheduling_ddpm.py +1 -3
  144. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
  145. diffusers/schedulers/scheduling_deis_multistep.py +15 -5
  146. diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
  147. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
  148. diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
  149. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
  150. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
  151. diffusers/schedulers/scheduling_euler_discrete.py +40 -13
  152. diffusers/schedulers/scheduling_heun_discrete.py +15 -5
  153. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
  154. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
  155. diffusers/schedulers/scheduling_lcm.py +123 -29
  156. diffusers/schedulers/scheduling_lms_discrete.py +1 -3
  157. diffusers/schedulers/scheduling_pndm.py +1 -3
  158. diffusers/schedulers/scheduling_repaint.py +1 -3
  159. diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
  160. diffusers/utils/__init__.py +1 -0
  161. diffusers/utils/constants.py +8 -7
  162. diffusers/utils/dummy_pt_objects.py +45 -0
  163. diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
  164. diffusers/utils/dynamic_modules_utils.py +4 -4
  165. diffusers/utils/export_utils.py +8 -3
  166. diffusers/utils/logging.py +10 -10
  167. diffusers/utils/outputs.py +5 -5
  168. diffusers/utils/peft_utils.py +88 -44
  169. diffusers/utils/torch_utils.py +2 -2
  170. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/METADATA +38 -22
  171. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/RECORD +175 -157
  172. diffusers/loaders.py +0 -3336
  173. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
  174. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/WHEEL +0 -0
  175. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +0 -0
  176. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -214,6 +214,7 @@ class FlaxAttentionBlock(nn.Module):
214
214
  Parameters `dtype`
215
215
 
216
216
  """
217
+
217
218
  channels: int
218
219
  num_head_channels: int = None
219
220
  num_groups: int = 32
@@ -291,6 +292,7 @@ class FlaxDownEncoderBlock2D(nn.Module):
291
292
  dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
292
293
  Parameters `dtype`
293
294
  """
295
+
294
296
  in_channels: int
295
297
  out_channels: int
296
298
  dropout: float = 0.0
@@ -347,6 +349,7 @@ class FlaxUpDecoderBlock2D(nn.Module):
347
349
  dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
348
350
  Parameters `dtype`
349
351
  """
352
+
350
353
  in_channels: int
351
354
  out_channels: int
352
355
  dropout: float = 0.0
@@ -401,6 +404,7 @@ class FlaxUNetMidBlock2D(nn.Module):
401
404
  dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
402
405
  Parameters `dtype`
403
406
  """
407
+
404
408
  in_channels: int
405
409
  dropout: float = 0.0
406
410
  num_layers: int = 1
@@ -488,6 +492,7 @@ class FlaxEncoder(nn.Module):
488
492
  dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
489
493
  Parameters `dtype`
490
494
  """
495
+
491
496
  in_channels: int = 3
492
497
  out_channels: int = 3
493
498
  down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
@@ -600,6 +605,7 @@ class FlaxDecoder(nn.Module):
600
605
  dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
601
606
  parameters `dtype`
602
607
  """
608
+
603
609
  in_channels: int = 3
604
610
  out_channels: int = 3
605
611
  up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
@@ -767,6 +773,7 @@ class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin):
767
773
  dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
768
774
  The `dtype` of the parameters.
769
775
  """
776
+
770
777
  in_channels: int = 3
771
778
  out_channels: int = 3
772
779
  down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
@@ -148,7 +148,9 @@ class VQModel(ModelMixin, ConfigMixin):
148
148
 
149
149
  return DecoderOutput(sample=dec)
150
150
 
151
- def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
151
+ def forward(
152
+ self, sample: torch.FloatTensor, return_dict: bool = True
153
+ ) -> Union[DecoderOutput, Tuple[torch.FloatTensor, ...]]:
152
154
  r"""
153
155
  The [`VQModel`] forward method.
154
156
 
diffusers/optimization.py CHANGED
@@ -37,7 +37,7 @@ class SchedulerType(Enum):
37
37
  PIECEWISE_CONSTANT = "piecewise_constant"
38
38
 
39
39
 
40
- def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
40
+ def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1) -> LambdaLR:
41
41
  """
42
42
  Create a schedule with a constant learning rate, using the learning rate set in optimizer.
43
43
 
@@ -53,7 +53,7 @@ def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
53
53
  return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)
54
54
 
55
55
 
56
- def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
56
+ def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1) -> LambdaLR:
57
57
  """
58
58
  Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
59
59
  increases linearly between 0 and the initial lr set in the optimizer.
@@ -78,7 +78,7 @@ def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: in
78
78
  return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
79
79
 
80
80
 
81
- def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_epoch: int = -1):
81
+ def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_epoch: int = -1) -> LambdaLR:
82
82
  """
83
83
  Create a schedule with a constant learning rate, using the learning rate set in optimizer.
84
84
 
@@ -120,7 +120,9 @@ def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_
120
120
  return LambdaLR(optimizer, rules_func, last_epoch=last_epoch)
121
121
 
122
122
 
123
- def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
123
+ def get_linear_schedule_with_warmup(
124
+ optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, last_epoch: int = -1
125
+ ) -> LambdaLR:
124
126
  """
125
127
  Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
126
128
  a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
@@ -151,7 +153,7 @@ def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_st
151
153
 
152
154
  def get_cosine_schedule_with_warmup(
153
155
  optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
154
- ):
156
+ ) -> LambdaLR:
155
157
  """
156
158
  Create a schedule with a learning rate that decreases following the values of the cosine function between the
157
159
  initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
@@ -185,7 +187,7 @@ def get_cosine_schedule_with_warmup(
185
187
 
186
188
  def get_cosine_with_hard_restarts_schedule_with_warmup(
187
189
  optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
188
- ):
190
+ ) -> LambdaLR:
189
191
  """
190
192
  Create a schedule with a learning rate that decreases following the values of the cosine function between the
191
193
  initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
@@ -219,8 +221,13 @@ def get_cosine_with_hard_restarts_schedule_with_warmup(
219
221
 
220
222
 
221
223
  def get_polynomial_decay_schedule_with_warmup(
222
- optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1
223
- ):
224
+ optimizer: Optimizer,
225
+ num_warmup_steps: int,
226
+ num_training_steps: int,
227
+ lr_end: float = 1e-7,
228
+ power: float = 1.0,
229
+ last_epoch: int = -1,
230
+ ) -> LambdaLR:
224
231
  """
225
232
  Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
226
233
  optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
@@ -288,7 +295,7 @@ def get_scheduler(
288
295
  num_cycles: int = 1,
289
296
  power: float = 1.0,
290
297
  last_epoch: int = -1,
291
- ):
298
+ ) -> LambdaLR:
292
299
  """
293
300
  Unified API to get any scheduler from its name.
294
301
 
@@ -17,7 +17,12 @@ from ..utils import (
17
17
 
18
18
  # These modules contain pipelines from multiple libraries/frameworks
19
19
  _dummy_objects = {}
20
- _import_structure = {"stable_diffusion": [], "stable_diffusion_xl": [], "latent_diffusion": [], "controlnet": []}
20
+ _import_structure = {
21
+ "controlnet": [],
22
+ "latent_diffusion": [],
23
+ "stable_diffusion": [],
24
+ "stable_diffusion_xl": [],
25
+ }
21
26
 
22
27
  try:
23
28
  if not is_torch_available():
@@ -39,7 +44,11 @@ else:
39
44
  _import_structure["dit"] = ["DiTPipeline"]
40
45
  _import_structure["latent_diffusion"].extend(["LDMSuperResolutionPipeline"])
41
46
  _import_structure["latent_diffusion_uncond"] = ["LDMPipeline"]
42
- _import_structure["pipeline_utils"] = ["AudioPipelineOutput", "DiffusionPipeline", "ImagePipelineOutput"]
47
+ _import_structure["pipeline_utils"] = [
48
+ "AudioPipelineOutput",
49
+ "DiffusionPipeline",
50
+ "ImagePipelineOutput",
51
+ ]
43
52
  _import_structure["pndm"] = ["PNDMPipeline"]
44
53
  _import_structure["repaint"] = ["RePaintPipeline"]
45
54
  _import_structure["score_sde_ve"] = ["ScoreSdeVePipeline"]
@@ -61,7 +70,10 @@ except OptionalDependencyNotAvailable:
61
70
 
62
71
  _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
63
72
  else:
64
- _import_structure["alt_diffusion"] = ["AltDiffusionImg2ImgPipeline", "AltDiffusionPipeline"]
73
+ _import_structure["alt_diffusion"] = [
74
+ "AltDiffusionImg2ImgPipeline",
75
+ "AltDiffusionPipeline",
76
+ ]
65
77
  _import_structure["animatediff"] = ["AnimateDiffPipeline"]
66
78
  _import_structure["audioldm"] = ["AudioLDMPipeline"]
67
79
  _import_structure["audioldm2"] = [
@@ -110,6 +122,10 @@ else:
110
122
  "KandinskyV22PriorEmb2EmbPipeline",
111
123
  "KandinskyV22PriorPipeline",
112
124
  ]
125
+ _import_structure["kandinsky3"] = [
126
+ "Kandinsky3Img2ImgPipeline",
127
+ "Kandinsky3Pipeline",
128
+ ]
113
129
  _import_structure["latent_consistency_models"] = [
114
130
  "LatentConsistencyModelImg2ImgPipeline",
115
131
  "LatentConsistencyModelPipeline",
@@ -149,6 +165,7 @@ else:
149
165
  ]
150
166
  )
151
167
  _import_structure["stable_diffusion_safe"] = ["StableDiffusionPipelineSafe"]
168
+ _import_structure["stable_video_diffusion"] = ["StableVideoDiffusionPipeline"]
152
169
  _import_structure["stable_diffusion_xl"].extend(
153
170
  [
154
171
  "StableDiffusionXLImg2ImgPipeline",
@@ -157,10 +174,14 @@ else:
157
174
  "StableDiffusionXLPipeline",
158
175
  ]
159
176
  )
160
- _import_structure["t2i_adapter"] = ["StableDiffusionAdapterPipeline", "StableDiffusionXLAdapterPipeline"]
177
+ _import_structure["t2i_adapter"] = [
178
+ "StableDiffusionAdapterPipeline",
179
+ "StableDiffusionXLAdapterPipeline",
180
+ ]
161
181
  _import_structure["text_to_video_synthesis"] = [
162
182
  "TextToVideoSDPipeline",
163
183
  "TextToVideoZeroPipeline",
184
+ "TextToVideoZeroSDXLPipeline",
164
185
  "VideoToVideoSDPipeline",
165
186
  ]
166
187
  _import_structure["unclip"] = ["UnCLIPImageVariationPipeline", "UnCLIPPipeline"]
@@ -214,7 +235,9 @@ try:
214
235
  if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
215
236
  raise OptionalDependencyNotAvailable()
216
237
  except OptionalDependencyNotAvailable:
217
- from ..utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
238
+ from ..utils import (
239
+ dummy_torch_and_transformers_and_k_diffusion_objects,
240
+ )
218
241
 
219
242
  _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_k_diffusion_objects))
220
243
  else:
@@ -257,7 +280,10 @@ except OptionalDependencyNotAvailable:
257
280
 
258
281
  _dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects))
259
282
  else:
260
- _import_structure["spectrogram_diffusion"] = ["MidiProcessor", "SpectrogramDiffusionPipeline"]
283
+ _import_structure["spectrogram_diffusion"] = [
284
+ "MidiProcessor",
285
+ "SpectrogramDiffusionPipeline",
286
+ ]
261
287
 
262
288
  if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
263
289
  try:
@@ -267,7 +293,11 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
267
293
  from ..utils.dummy_pt_objects import * # noqa F403
268
294
 
269
295
  else:
270
- from .auto_pipeline import AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoPipelineForText2Image
296
+ from .auto_pipeline import (
297
+ AutoPipelineForImage2Image,
298
+ AutoPipelineForInpainting,
299
+ AutoPipelineForText2Image,
300
+ )
271
301
  from .consistency_models import ConsistencyModelPipeline
272
302
  from .dance_diffusion import DanceDiffusionPipeline
273
303
  from .ddim import DDIMPipeline
@@ -275,7 +305,11 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
275
305
  from .dit import DiTPipeline
276
306
  from .latent_diffusion import LDMSuperResolutionPipeline
277
307
  from .latent_diffusion_uncond import LDMPipeline
278
- from .pipeline_utils import AudioPipelineOutput, DiffusionPipeline, ImagePipelineOutput
308
+ from .pipeline_utils import (
309
+ AudioPipelineOutput,
310
+ DiffusionPipeline,
311
+ ImagePipelineOutput,
312
+ )
279
313
  from .pndm import PNDMPipeline
280
314
  from .repaint import RePaintPipeline
281
315
  from .score_sde_ve import ScoreSdeVePipeline
@@ -298,7 +332,11 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
298
332
  from .alt_diffusion import AltDiffusionImg2ImgPipeline, AltDiffusionPipeline
299
333
  from .animatediff import AnimateDiffPipeline
300
334
  from .audioldm import AudioLDMPipeline
301
- from .audioldm2 import AudioLDM2Pipeline, AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel
335
+ from .audioldm2 import (
336
+ AudioLDM2Pipeline,
337
+ AudioLDM2ProjectionModel,
338
+ AudioLDM2UNet2DConditionModel,
339
+ )
302
340
  from .blip_diffusion import BlipDiffusionPipeline
303
341
  from .controlnet import (
304
342
  BlipDiffusionControlNetPipeline,
@@ -338,7 +376,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
338
376
  KandinskyV22PriorEmb2EmbPipeline,
339
377
  KandinskyV22PriorPipeline,
340
378
  )
341
- from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
379
+ from .kandinsky3 import (
380
+ Kandinsky3Img2ImgPipeline,
381
+ Kandinsky3Pipeline,
382
+ )
383
+ from .latent_consistency_models import (
384
+ LatentConsistencyModelImg2ImgPipeline,
385
+ LatentConsistencyModelPipeline,
386
+ )
342
387
  from .latent_diffusion import LDMTextToImagePipeline
343
388
  from .musicldm import MusicLDMPipeline
344
389
  from .paint_by_example import PaintByExamplePipeline
@@ -377,10 +422,15 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
377
422
  StableDiffusionXLInstructPix2PixPipeline,
378
423
  StableDiffusionXLPipeline,
379
424
  )
380
- from .t2i_adapter import StableDiffusionAdapterPipeline, StableDiffusionXLAdapterPipeline
425
+ from .stable_video_diffusion import StableVideoDiffusionPipeline
426
+ from .t2i_adapter import (
427
+ StableDiffusionAdapterPipeline,
428
+ StableDiffusionXLAdapterPipeline,
429
+ )
381
430
  from .text_to_video_synthesis import (
382
431
  TextToVideoSDPipeline,
383
432
  TextToVideoZeroPipeline,
433
+ TextToVideoZeroSDXLPipeline,
384
434
  VideoToVideoSDPipeline,
385
435
  )
386
436
  from .unclip import UnCLIPImageVariationPipeline, UnCLIPPipeline
@@ -466,7 +516,10 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
466
516
  from ..utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
467
517
 
468
518
  else:
469
- from .spectrogram_diffusion import MidiProcessor, SpectrogramDiffusionPipeline
519
+ from .spectrogram_diffusion import (
520
+ MidiProcessor,
521
+ SpectrogramDiffusionPipeline,
522
+ )
470
523
 
471
524
  else:
472
525
  import sys
@@ -17,11 +17,11 @@ from typing import Any, Callable, Dict, List, Optional, Union
17
17
 
18
18
  import torch
19
19
  from packaging import version
20
- from transformers import CLIPImageProcessor, XLMRobertaTokenizer
20
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer
21
21
 
22
22
  from ...configuration_utils import FrozenDict
23
- from ...image_processor import VaeImageProcessor
24
- from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
23
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
24
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
25
25
  from ...models import AutoencoderKL, UNet2DConditionModel
26
26
  from ...models.lora import adjust_lora_scale_text_encoder
27
27
  from ...schedulers import KarrasDiffusionSchedulers
@@ -73,8 +73,55 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
73
73
  return noise_cfg
74
74
 
75
75
 
76
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
77
+ def retrieve_timesteps(
78
+ scheduler,
79
+ num_inference_steps: Optional[int] = None,
80
+ device: Optional[Union[str, torch.device]] = None,
81
+ timesteps: Optional[List[int]] = None,
82
+ **kwargs,
83
+ ):
84
+ """
85
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
86
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
87
+
88
+ Args:
89
+ scheduler (`SchedulerMixin`):
90
+ The scheduler to get timesteps from.
91
+ num_inference_steps (`int`):
92
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
93
+ `timesteps` must be `None`.
94
+ device (`str` or `torch.device`, *optional*):
95
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
96
+ timesteps (`List[int]`, *optional*):
97
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
98
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
99
+ must be `None`.
100
+
101
+ Returns:
102
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
103
+ second element is the number of inference steps.
104
+ """
105
+ if timesteps is not None:
106
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
107
+ if not accepts_timesteps:
108
+ raise ValueError(
109
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
110
+ f" timestep schedules. Please check whether you are using the correct scheduler."
111
+ )
112
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
113
+ timesteps = scheduler.timesteps
114
+ num_inference_steps = len(timesteps)
115
+ else:
116
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
117
+ timesteps = scheduler.timesteps
118
+ return timesteps, num_inference_steps
119
+
120
+
76
121
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline with Stable->Alt, CLIPTextModel->RobertaSeriesModelWithTransformation, CLIPTokenizer->XLMRobertaTokenizer, AltDiffusionSafetyChecker->StableDiffusionSafetyChecker
77
- class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
122
+ class AltDiffusionPipeline(
123
+ DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
124
+ ):
78
125
  r"""
79
126
  Pipeline for text-to-image generation using Alt Diffusion.
80
127
 
@@ -86,6 +133,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
86
133
  - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
87
134
  - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
88
135
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
136
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
89
137
 
90
138
  Args:
91
139
  vae ([`AutoencoderKL`]):
@@ -108,7 +156,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
108
156
  """
109
157
 
110
158
  model_cpu_offload_seq = "text_encoder->unet->vae"
111
- _optional_components = ["safety_checker", "feature_extractor"]
159
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
112
160
  _exclude_from_cpu_offload = ["safety_checker"]
113
161
  _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
114
162
 
@@ -121,6 +169,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
121
169
  scheduler: KarrasDiffusionSchedulers,
122
170
  safety_checker: StableDiffusionSafetyChecker,
123
171
  feature_extractor: CLIPImageProcessor,
172
+ image_encoder: CLIPVisionModelWithProjection = None,
124
173
  requires_safety_checker: bool = True,
125
174
  ):
126
175
  super().__init__()
@@ -197,6 +246,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
197
246
  scheduler=scheduler,
198
247
  safety_checker=safety_checker,
199
248
  feature_extractor=feature_extractor,
249
+ image_encoder=image_encoder,
200
250
  )
201
251
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
202
252
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
@@ -243,10 +293,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
243
293
  lora_scale: Optional[float] = None,
244
294
  **kwargs,
245
295
  ):
246
- deprecation_message = (
247
- "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()`"
248
- " instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
249
- )
296
+ deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
250
297
  deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
251
298
 
252
299
  prompt_embeds_tuple = self.encode_prompt(
@@ -447,6 +494,19 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
447
494
 
448
495
  return prompt_embeds, negative_prompt_embeds
449
496
 
497
+ def encode_image(self, image, device, num_images_per_prompt):
498
+ dtype = next(self.image_encoder.parameters()).dtype
499
+
500
+ if not isinstance(image, torch.Tensor):
501
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
502
+
503
+ image = image.to(device=device, dtype=dtype)
504
+ image_embeds = self.image_encoder(image).image_embeds
505
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
506
+
507
+ uncond_image_embeds = torch.zeros_like(image_embeds)
508
+ return image_embeds, uncond_image_embeds
509
+
450
510
  def run_safety_checker(self, image, device, dtype):
451
511
  if self.safety_checker is None:
452
512
  has_nsfw_concept = None
@@ -462,10 +522,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
462
522
  return image, has_nsfw_concept
463
523
 
464
524
  def decode_latents(self, latents):
465
- deprecation_message = (
466
- "The decode_latents method is deprecated and will be removed in 1.0.0. Please use"
467
- " VaeImageProcessor.postprocess(...) instead"
468
- )
525
+ deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
469
526
  deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
470
527
 
471
528
  latents = 1 / self.vae.config.scaling_factor * latents
@@ -515,8 +572,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
515
572
  k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
516
573
  ):
517
574
  raise ValueError(
518
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found"
519
- f" {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
575
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
520
576
  )
521
577
 
522
578
  if prompt is not None and prompt_embeds is not None:
@@ -651,6 +707,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
651
707
  height: Optional[int] = None,
652
708
  width: Optional[int] = None,
653
709
  num_inference_steps: int = 50,
710
+ timesteps: List[int] = None,
654
711
  guidance_scale: float = 7.5,
655
712
  negative_prompt: Optional[Union[str, List[str]]] = None,
656
713
  num_images_per_prompt: Optional[int] = 1,
@@ -659,6 +716,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
659
716
  latents: Optional[torch.FloatTensor] = None,
660
717
  prompt_embeds: Optional[torch.FloatTensor] = None,
661
718
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
719
+ ip_adapter_image: Optional[PipelineImageInput] = None,
662
720
  output_type: Optional[str] = "pil",
663
721
  return_dict: bool = True,
664
722
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -681,6 +739,10 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
681
739
  num_inference_steps (`int`, *optional*, defaults to 50):
682
740
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
683
741
  expense of slower inference.
742
+ timesteps (`List[int]`, *optional*):
743
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
744
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
745
+ passed will be used. Must be in descending order.
684
746
  guidance_scale (`float`, *optional*, defaults to 7.5):
685
747
  A higher guidance scale value encourages the model to generate images closely linked to the text
686
748
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -705,6 +767,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
705
767
  negative_prompt_embeds (`torch.FloatTensor`, *optional*):
706
768
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
707
769
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
770
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
708
771
  output_type (`str`, *optional*, defaults to `"pil"`):
709
772
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
710
773
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -728,7 +791,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
728
791
  callback_on_step_end_tensor_inputs (`List`, *optional*):
729
792
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
730
793
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
731
- `._callback_tensor_inputs` attribute of your pipeine class.
794
+ `._callback_tensor_inputs` attribute of your pipeline class.
732
795
 
733
796
  Examples:
734
797
 
@@ -747,15 +810,13 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
747
810
  deprecate(
748
811
  "callback",
749
812
  "1.0.0",
750
- "Passing `callback` as an input argument to `__call__` is deprecated, consider using"
751
- " `callback_on_step_end`",
813
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
752
814
  )
753
815
  if callback_steps is not None:
754
816
  deprecate(
755
817
  "callback_steps",
756
818
  "1.0.0",
757
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using"
758
- " `callback_on_step_end`",
819
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
759
820
  )
760
821
 
761
822
  # 0. Default height and width to unet
@@ -806,15 +867,20 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
806
867
  lora_scale=lora_scale,
807
868
  clip_skip=self.clip_skip,
808
869
  )
870
+
809
871
  # For classifier free guidance, we need to do two forward passes.
810
872
  # Here we concatenate the unconditional and text embeddings into a single batch
811
873
  # to avoid doing two forward passes
812
874
  if self.do_classifier_free_guidance:
813
875
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
814
876
 
877
+ if ip_adapter_image is not None:
878
+ image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
879
+ if self.do_classifier_free_guidance:
880
+ image_embeds = torch.cat([negative_image_embeds, image_embeds])
881
+
815
882
  # 4. Prepare timesteps
816
- self.scheduler.set_timesteps(num_inference_steps, device=device)
817
- timesteps = self.scheduler.timesteps
883
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
818
884
 
819
885
  # 5. Prepare latent variables
820
886
  num_channels_latents = self.unet.config.in_channels
@@ -832,7 +898,10 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
832
898
  # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
833
899
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
834
900
 
835
- # 6.5 Optionally get Guidance Scale Embedding
901
+ # 6.1 Add image embeds for IP-Adapter
902
+ added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
903
+
904
+ # 6.2 Optionally get Guidance Scale Embedding
836
905
  timestep_cond = None
837
906
  if self.unet.config.time_cond_proj_dim is not None:
838
907
  guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
@@ -856,6 +925,7 @@ class AltDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraL
856
925
  encoder_hidden_states=prompt_embeds,
857
926
  timestep_cond=timestep_cond,
858
927
  cross_attention_kwargs=self.cross_attention_kwargs,
928
+ added_cond_kwargs=added_cond_kwargs,
859
929
  return_dict=False,
860
930
  )[0]
861
931