diffusers 0.23.1__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +0 -1
- diffusers/dependency_versions_table.py +4 -5
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +8 -7
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/METADATA +38 -22
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/RECORD +175 -157
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/WHEEL +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,7 @@ from ...models.lora import adjust_lora_scale_text_encoder
|
|
34
34
|
from ...schedulers import KarrasDiffusionSchedulers
|
35
35
|
from ...utils import (
|
36
36
|
USE_PEFT_BACKEND,
|
37
|
+
deprecate,
|
37
38
|
is_invisible_watermark_available,
|
38
39
|
logging,
|
39
40
|
replace_example_docstring,
|
@@ -53,6 +54,20 @@ if is_invisible_watermark_available():
|
|
53
54
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
54
55
|
|
55
56
|
|
57
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
58
|
+
def retrieve_latents(
|
59
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
60
|
+
):
|
61
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
62
|
+
return encoder_output.latent_dist.sample(generator)
|
63
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
64
|
+
return encoder_output.latent_dist.mode()
|
65
|
+
elif hasattr(encoder_output, "latents"):
|
66
|
+
return encoder_output.latents
|
67
|
+
else:
|
68
|
+
raise AttributeError("Could not access latents of provided encoder_output")
|
69
|
+
|
70
|
+
|
56
71
|
EXAMPLE_DOC_STRING = """
|
57
72
|
Examples:
|
58
73
|
```py
|
@@ -164,8 +179,10 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
164
179
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
165
180
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
166
181
|
"""
|
182
|
+
|
167
183
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
168
184
|
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
|
185
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
169
186
|
|
170
187
|
def __init__(
|
171
188
|
self,
|
@@ -554,6 +571,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
554
571
|
controlnet_conditioning_scale=1.0,
|
555
572
|
control_guidance_start=0.0,
|
556
573
|
control_guidance_end=1.0,
|
574
|
+
callback_on_step_end_tensor_inputs=None,
|
557
575
|
):
|
558
576
|
if strength < 0 or strength > 1:
|
559
577
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
@@ -564,14 +582,20 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
564
582
|
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
565
583
|
f" {type(num_inference_steps)}."
|
566
584
|
)
|
567
|
-
|
568
|
-
|
569
|
-
):
|
585
|
+
|
586
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
570
587
|
raise ValueError(
|
571
588
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
572
589
|
f" {type(callback_steps)}."
|
573
590
|
)
|
574
591
|
|
592
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
593
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
594
|
+
):
|
595
|
+
raise ValueError(
|
596
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
597
|
+
)
|
598
|
+
|
575
599
|
if prompt is not None and prompt_embeds is not None:
|
576
600
|
raise ValueError(
|
577
601
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
@@ -814,12 +838,12 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
814
838
|
|
815
839
|
if isinstance(generator, list):
|
816
840
|
image_latents = [
|
817
|
-
self.vae.encode(image[i : i + 1])
|
841
|
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
818
842
|
for i in range(image.shape[0])
|
819
843
|
]
|
820
844
|
image_latents = torch.cat(image_latents, dim=0)
|
821
845
|
else:
|
822
|
-
image_latents = self.vae.encode(image)
|
846
|
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
823
847
|
|
824
848
|
if self.vae.config.force_upcast:
|
825
849
|
self.vae.to(dtype)
|
@@ -1007,6 +1031,29 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1007
1031
|
"""Disables the FreeU mechanism if enabled."""
|
1008
1032
|
self.unet.disable_freeu()
|
1009
1033
|
|
1034
|
+
@property
|
1035
|
+
def guidance_scale(self):
|
1036
|
+
return self._guidance_scale
|
1037
|
+
|
1038
|
+
@property
|
1039
|
+
def clip_skip(self):
|
1040
|
+
return self._clip_skip
|
1041
|
+
|
1042
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1043
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1044
|
+
# corresponds to doing no classifier free guidance.
|
1045
|
+
@property
|
1046
|
+
def do_classifier_free_guidance(self):
|
1047
|
+
return self._guidance_scale > 1
|
1048
|
+
|
1049
|
+
@property
|
1050
|
+
def cross_attention_kwargs(self):
|
1051
|
+
return self._cross_attention_kwargs
|
1052
|
+
|
1053
|
+
@property
|
1054
|
+
def num_timesteps(self):
|
1055
|
+
return self._num_timesteps
|
1056
|
+
|
1010
1057
|
@torch.no_grad()
|
1011
1058
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1012
1059
|
def __call__(
|
@@ -1038,8 +1085,6 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1038
1085
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1039
1086
|
output_type: Optional[str] = "pil",
|
1040
1087
|
return_dict: bool = True,
|
1041
|
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
1042
|
-
callback_steps: int = 1,
|
1043
1088
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1044
1089
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
1045
1090
|
guess_mode: bool = False,
|
@@ -1052,6 +1097,9 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1052
1097
|
aesthetic_score: float = 6.0,
|
1053
1098
|
negative_aesthetic_score: float = 2.5,
|
1054
1099
|
clip_skip: Optional[int] = None,
|
1100
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1101
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1102
|
+
**kwargs,
|
1055
1103
|
):
|
1056
1104
|
r"""
|
1057
1105
|
Function invoked when calling the pipeline for generation.
|
@@ -1146,12 +1194,6 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1146
1194
|
return_dict (`bool`, *optional*, defaults to `True`):
|
1147
1195
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1148
1196
|
plain tuple.
|
1149
|
-
callback (`Callable`, *optional*):
|
1150
|
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
1151
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1152
|
-
callback_steps (`int`, *optional*, defaults to 1):
|
1153
|
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1154
|
-
called at every step.
|
1155
1197
|
cross_attention_kwargs (`dict`, *optional*):
|
1156
1198
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1157
1199
|
`self.processor` in
|
@@ -1181,6 +1223,15 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1181
1223
|
clip_skip (`int`, *optional*):
|
1182
1224
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1183
1225
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1226
|
+
callback_on_step_end (`Callable`, *optional*):
|
1227
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1228
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1229
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1230
|
+
`callback_on_step_end_tensor_inputs`.
|
1231
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1232
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1233
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1234
|
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
1184
1235
|
|
1185
1236
|
Examples:
|
1186
1237
|
|
@@ -1189,6 +1240,23 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1189
1240
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1190
1241
|
`tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
|
1191
1242
|
"""
|
1243
|
+
|
1244
|
+
callback = kwargs.pop("callback", None)
|
1245
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
1246
|
+
|
1247
|
+
if callback is not None:
|
1248
|
+
deprecate(
|
1249
|
+
"callback",
|
1250
|
+
"1.0.0",
|
1251
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1252
|
+
)
|
1253
|
+
if callback_steps is not None:
|
1254
|
+
deprecate(
|
1255
|
+
"callback_steps",
|
1256
|
+
"1.0.0",
|
1257
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1258
|
+
)
|
1259
|
+
|
1192
1260
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1193
1261
|
|
1194
1262
|
# align format for control guidance
|
@@ -1198,9 +1266,10 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1198
1266
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1199
1267
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1200
1268
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1201
|
-
control_guidance_start, control_guidance_end =
|
1202
|
-
|
1203
|
-
|
1269
|
+
control_guidance_start, control_guidance_end = (
|
1270
|
+
mult * [control_guidance_start],
|
1271
|
+
mult * [control_guidance_end],
|
1272
|
+
)
|
1204
1273
|
|
1205
1274
|
# # 0.0 Default height and width to unet
|
1206
1275
|
# height = height or self.unet.config.sample_size * self.vae_scale_factor
|
@@ -1213,9 +1282,10 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1213
1282
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1214
1283
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1215
1284
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1216
|
-
control_guidance_start, control_guidance_end =
|
1217
|
-
|
1218
|
-
|
1285
|
+
control_guidance_start, control_guidance_end = (
|
1286
|
+
mult * [control_guidance_start],
|
1287
|
+
mult * [control_guidance_end],
|
1288
|
+
)
|
1219
1289
|
|
1220
1290
|
# 1. Check inputs
|
1221
1291
|
self.check_inputs(
|
@@ -1234,8 +1304,13 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1234
1304
|
controlnet_conditioning_scale,
|
1235
1305
|
control_guidance_start,
|
1236
1306
|
control_guidance_end,
|
1307
|
+
callback_on_step_end_tensor_inputs,
|
1237
1308
|
)
|
1238
1309
|
|
1310
|
+
self._guidance_scale = guidance_scale
|
1311
|
+
self._clip_skip = clip_skip
|
1312
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1313
|
+
|
1239
1314
|
# 2. Define call parameters
|
1240
1315
|
if prompt is not None and isinstance(prompt, str):
|
1241
1316
|
batch_size = 1
|
@@ -1245,17 +1320,13 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1245
1320
|
batch_size = prompt_embeds.shape[0]
|
1246
1321
|
|
1247
1322
|
device = self._execution_device
|
1248
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1249
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1250
|
-
# corresponds to doing no classifier free guidance.
|
1251
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
1252
1323
|
|
1253
1324
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1254
1325
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1255
1326
|
|
1256
1327
|
# 3. Encode input prompt
|
1257
1328
|
text_encoder_lora_scale = (
|
1258
|
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1329
|
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1259
1330
|
)
|
1260
1331
|
|
1261
1332
|
(
|
@@ -1268,7 +1339,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1268
1339
|
prompt_2=prompt_2,
|
1269
1340
|
device=device,
|
1270
1341
|
num_images_per_prompt=num_images_per_prompt,
|
1271
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1342
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1272
1343
|
negative_prompt=negative_prompt,
|
1273
1344
|
negative_prompt_2=negative_prompt_2,
|
1274
1345
|
prompt_embeds=prompt_embeds,
|
@@ -1276,7 +1347,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1276
1347
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
1277
1348
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1278
1349
|
lora_scale=text_encoder_lora_scale,
|
1279
|
-
clip_skip=clip_skip,
|
1350
|
+
clip_skip=self.clip_skip,
|
1280
1351
|
)
|
1281
1352
|
|
1282
1353
|
# 4. set timesteps
|
@@ -1297,6 +1368,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1297
1368
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1298
1369
|
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1299
1370
|
is_strength_max = strength == 1.0
|
1371
|
+
self._num_timesteps = len(timesteps)
|
1300
1372
|
|
1301
1373
|
# 5. Preprocess mask and image - resizes image and mask w.r.t height and width
|
1302
1374
|
# 5.1 Prepare init image
|
@@ -1313,7 +1385,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1313
1385
|
num_images_per_prompt=num_images_per_prompt,
|
1314
1386
|
device=device,
|
1315
1387
|
dtype=controlnet.dtype,
|
1316
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1388
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1317
1389
|
guess_mode=guess_mode,
|
1318
1390
|
)
|
1319
1391
|
elif isinstance(controlnet, MultiControlNetModel):
|
@@ -1328,7 +1400,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1328
1400
|
num_images_per_prompt=num_images_per_prompt,
|
1329
1401
|
device=device,
|
1330
1402
|
dtype=controlnet.dtype,
|
1331
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1403
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1332
1404
|
guess_mode=guess_mode,
|
1333
1405
|
)
|
1334
1406
|
|
@@ -1382,7 +1454,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1382
1454
|
prompt_embeds.dtype,
|
1383
1455
|
device,
|
1384
1456
|
generator,
|
1385
|
-
do_classifier_free_guidance,
|
1457
|
+
self.do_classifier_free_guidance,
|
1386
1458
|
)
|
1387
1459
|
|
1388
1460
|
# 8. Check that sizes of mask, masked image and latents match
|
@@ -1443,7 +1515,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1443
1515
|
)
|
1444
1516
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1445
1517
|
|
1446
|
-
if do_classifier_free_guidance:
|
1518
|
+
if self.do_classifier_free_guidance:
|
1447
1519
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1448
1520
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1449
1521
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
@@ -1480,7 +1552,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1480
1552
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1481
1553
|
for i, t in enumerate(timesteps):
|
1482
1554
|
# expand the latents if we are doing classifier free guidance
|
1483
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1555
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1484
1556
|
|
1485
1557
|
# concat latents, mask, masked_image_latents in the channel dimension
|
1486
1558
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
@@ -1488,7 +1560,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1488
1560
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1489
1561
|
|
1490
1562
|
# controlnet(s) inference
|
1491
|
-
if guess_mode and do_classifier_free_guidance:
|
1563
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1492
1564
|
# Infer ControlNet only for the conditional batch.
|
1493
1565
|
control_model_input = latents
|
1494
1566
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
@@ -1525,7 +1597,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1525
1597
|
return_dict=False,
|
1526
1598
|
)
|
1527
1599
|
|
1528
|
-
if guess_mode and do_classifier_free_guidance:
|
1600
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1529
1601
|
# Infered ControlNet only for the conditional batch.
|
1530
1602
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1531
1603
|
# add 0 to the unconditional batch to keep it unchanged.
|
@@ -1540,7 +1612,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1540
1612
|
latent_model_input,
|
1541
1613
|
t,
|
1542
1614
|
encoder_hidden_states=prompt_embeds,
|
1543
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1615
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1544
1616
|
down_block_additional_residuals=down_block_res_samples,
|
1545
1617
|
mid_block_additional_residual=mid_block_res_sample,
|
1546
1618
|
added_cond_kwargs=added_cond_kwargs,
|
@@ -1548,11 +1620,11 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1548
1620
|
)[0]
|
1549
1621
|
|
1550
1622
|
# perform guidance
|
1551
|
-
if do_classifier_free_guidance:
|
1623
|
+
if self.do_classifier_free_guidance:
|
1552
1624
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1553
1625
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1554
1626
|
|
1555
|
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1627
|
+
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
1556
1628
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1557
1629
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1558
1630
|
|
@@ -1561,7 +1633,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1561
1633
|
|
1562
1634
|
if num_channels_unet == 4:
|
1563
1635
|
init_latents_proper = image_latents
|
1564
|
-
if do_classifier_free_guidance:
|
1636
|
+
if self.do_classifier_free_guidance:
|
1565
1637
|
init_mask, _ = mask.chunk(2)
|
1566
1638
|
else:
|
1567
1639
|
init_mask = mask
|
@@ -1574,6 +1646,16 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
1574
1646
|
|
1575
1647
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1576
1648
|
|
1649
|
+
if callback_on_step_end is not None:
|
1650
|
+
callback_kwargs = {}
|
1651
|
+
for k in callback_on_step_end_tensor_inputs:
|
1652
|
+
callback_kwargs[k] = locals()[k]
|
1653
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1654
|
+
|
1655
|
+
latents = callback_outputs.pop("latents", latents)
|
1656
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1657
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1658
|
+
|
1577
1659
|
# call the callback, if provided
|
1578
1660
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1579
1661
|
progress_bar.update()
|