diffusers 0.23.1__py3-none-any.whl → 0.24.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (176) hide show
  1. diffusers/__init__.py +16 -2
  2. diffusers/configuration_utils.py +1 -0
  3. diffusers/dependency_versions_check.py +0 -1
  4. diffusers/dependency_versions_table.py +4 -5
  5. diffusers/image_processor.py +186 -14
  6. diffusers/loaders/__init__.py +82 -0
  7. diffusers/loaders/ip_adapter.py +157 -0
  8. diffusers/loaders/lora.py +1415 -0
  9. diffusers/loaders/lora_conversion_utils.py +284 -0
  10. diffusers/loaders/single_file.py +631 -0
  11. diffusers/loaders/textual_inversion.py +459 -0
  12. diffusers/loaders/unet.py +735 -0
  13. diffusers/loaders/utils.py +59 -0
  14. diffusers/models/__init__.py +12 -1
  15. diffusers/models/attention.py +165 -14
  16. diffusers/models/attention_flax.py +9 -1
  17. diffusers/models/attention_processor.py +286 -1
  18. diffusers/models/autoencoder_asym_kl.py +14 -9
  19. diffusers/models/autoencoder_kl.py +3 -18
  20. diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
  21. diffusers/models/autoencoder_tiny.py +20 -24
  22. diffusers/models/consistency_decoder_vae.py +37 -30
  23. diffusers/models/controlnet.py +59 -39
  24. diffusers/models/controlnet_flax.py +19 -18
  25. diffusers/models/embeddings_flax.py +2 -0
  26. diffusers/models/lora.py +131 -1
  27. diffusers/models/modeling_flax_utils.py +2 -1
  28. diffusers/models/modeling_outputs.py +17 -0
  29. diffusers/models/modeling_utils.py +27 -19
  30. diffusers/models/normalization.py +2 -2
  31. diffusers/models/resnet.py +390 -59
  32. diffusers/models/transformer_2d.py +20 -3
  33. diffusers/models/transformer_temporal.py +183 -1
  34. diffusers/models/unet_2d_blocks_flax.py +5 -0
  35. diffusers/models/unet_2d_condition.py +9 -0
  36. diffusers/models/unet_2d_condition_flax.py +13 -13
  37. diffusers/models/unet_3d_blocks.py +957 -173
  38. diffusers/models/unet_3d_condition.py +16 -8
  39. diffusers/models/unet_kandi3.py +589 -0
  40. diffusers/models/unet_motion_model.py +48 -33
  41. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  42. diffusers/models/vae.py +63 -13
  43. diffusers/models/vae_flax.py +7 -0
  44. diffusers/models/vq_model.py +3 -1
  45. diffusers/optimization.py +16 -9
  46. diffusers/pipelines/__init__.py +65 -12
  47. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
  48. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
  49. diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
  50. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  51. diffusers/pipelines/auto_pipeline.py +6 -0
  52. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  53. diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
  54. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
  55. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
  56. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
  57. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
  58. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
  59. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  60. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  61. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  62. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  63. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  64. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  65. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  66. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  67. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  68. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  69. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  70. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  71. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  72. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  73. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  74. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  75. diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
  76. diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
  77. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
  78. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
  79. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  80. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  81. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  82. diffusers/pipelines/pipeline_flax_utils.py +4 -2
  83. diffusers/pipelines/pipeline_utils.py +33 -13
  84. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
  85. diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
  86. diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
  87. diffusers/pipelines/stable_diffusion/__init__.py +64 -21
  88. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
  89. diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
  90. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  91. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  92. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  93. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
  94. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
  95. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
  96. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  97. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
  98. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
  99. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
  100. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  101. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
  102. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
  103. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
  104. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
  105. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
  106. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
  107. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
  108. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
  109. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
  110. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
  111. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
  112. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
  113. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
  114. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
  115. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
  116. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
  117. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
  118. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  119. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
  120. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  121. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
  122. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  123. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
  124. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
  125. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
  126. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
  127. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
  128. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
  129. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
  130. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
  131. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  132. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  133. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  134. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  135. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
  136. diffusers/schedulers/__init__.py +2 -4
  137. diffusers/schedulers/deprecated/__init__.py +50 -0
  138. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  139. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  140. diffusers/schedulers/scheduling_ddim.py +1 -3
  141. diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
  142. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  143. diffusers/schedulers/scheduling_ddpm.py +1 -3
  144. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
  145. diffusers/schedulers/scheduling_deis_multistep.py +15 -5
  146. diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
  147. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
  148. diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
  149. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
  150. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
  151. diffusers/schedulers/scheduling_euler_discrete.py +40 -13
  152. diffusers/schedulers/scheduling_heun_discrete.py +15 -5
  153. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
  154. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
  155. diffusers/schedulers/scheduling_lcm.py +123 -29
  156. diffusers/schedulers/scheduling_lms_discrete.py +1 -3
  157. diffusers/schedulers/scheduling_pndm.py +1 -3
  158. diffusers/schedulers/scheduling_repaint.py +1 -3
  159. diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
  160. diffusers/utils/__init__.py +1 -0
  161. diffusers/utils/constants.py +8 -7
  162. diffusers/utils/dummy_pt_objects.py +45 -0
  163. diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
  164. diffusers/utils/dynamic_modules_utils.py +4 -4
  165. diffusers/utils/export_utils.py +8 -3
  166. diffusers/utils/logging.py +10 -10
  167. diffusers/utils/outputs.py +5 -5
  168. diffusers/utils/peft_utils.py +88 -44
  169. diffusers/utils/torch_utils.py +2 -2
  170. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/METADATA +38 -22
  171. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/RECORD +175 -157
  172. diffusers/loaders.py +0 -3336
  173. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
  174. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/WHEEL +0 -0
  175. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +0 -0
  176. {diffusers-0.23.1.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,460 @@
1
+ import inspect
2
+ from typing import Callable, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import PIL
6
+ import PIL.Image
7
+ import torch
8
+ from transformers import T5EncoderModel, T5Tokenizer
9
+
10
+ from ...loaders import LoraLoaderMixin
11
+ from ...models import Kandinsky3UNet, VQModel
12
+ from ...schedulers import DDPMScheduler
13
+ from ...utils import (
14
+ is_accelerate_available,
15
+ logging,
16
+ )
17
+ from ...utils.torch_utils import randn_tensor
18
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
19
+
20
+
21
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
22
+
23
+
24
+ def downscale_height_and_width(height, width, scale_factor=8):
25
+ new_height = height // scale_factor**2
26
+ if height % scale_factor**2 != 0:
27
+ new_height += 1
28
+ new_width = width // scale_factor**2
29
+ if width % scale_factor**2 != 0:
30
+ new_width += 1
31
+ return new_height * scale_factor, new_width * scale_factor
32
+
33
+
34
+ def prepare_image(pil_image):
35
+ arr = np.array(pil_image.convert("RGB"))
36
+ arr = arr.astype(np.float32) / 127.5 - 1
37
+ arr = np.transpose(arr, [2, 0, 1])
38
+ image = torch.from_numpy(arr).unsqueeze(0)
39
+ return image
40
+
41
+
42
+ class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
43
+ model_cpu_offload_seq = "text_encoder->unet->movq"
44
+
45
+ def __init__(
46
+ self,
47
+ tokenizer: T5Tokenizer,
48
+ text_encoder: T5EncoderModel,
49
+ unet: Kandinsky3UNet,
50
+ scheduler: DDPMScheduler,
51
+ movq: VQModel,
52
+ ):
53
+ super().__init__()
54
+
55
+ self.register_modules(
56
+ tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq
57
+ )
58
+
59
+ def get_timesteps(self, num_inference_steps, strength, device):
60
+ # get the original timestep using init_timestep
61
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
62
+
63
+ t_start = max(num_inference_steps - init_timestep, 0)
64
+ timesteps = self.scheduler.timesteps[t_start:]
65
+
66
+ return timesteps, num_inference_steps - t_start
67
+
68
+ def remove_all_hooks(self):
69
+ if is_accelerate_available():
70
+ from accelerate.hooks import remove_hook_from_module
71
+ else:
72
+ raise ImportError("Please install accelerate via `pip install accelerate`")
73
+
74
+ for model in [self.text_encoder, self.unet]:
75
+ if model is not None:
76
+ remove_hook_from_module(model, recurse=True)
77
+
78
+ self.unet_offload_hook = None
79
+ self.text_encoder_offload_hook = None
80
+ self.final_offload_hook = None
81
+
82
+ def _process_embeds(self, embeddings, attention_mask, cut_context):
83
+ # return embeddings, attention_mask
84
+ if cut_context:
85
+ embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0])
86
+ max_seq_length = attention_mask.sum(-1).max() + 1
87
+ embeddings = embeddings[:, :max_seq_length]
88
+ attention_mask = attention_mask[:, :max_seq_length]
89
+ return embeddings, attention_mask
90
+
91
+ @torch.no_grad()
92
+ def encode_prompt(
93
+ self,
94
+ prompt,
95
+ do_classifier_free_guidance=True,
96
+ num_images_per_prompt=1,
97
+ device=None,
98
+ negative_prompt=None,
99
+ prompt_embeds: Optional[torch.FloatTensor] = None,
100
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
101
+ _cut_context=False,
102
+ ):
103
+ r"""
104
+ Encodes the prompt into text encoder hidden states.
105
+
106
+ Args:
107
+ prompt (`str` or `List[str]`, *optional*):
108
+ prompt to be encoded
109
+ device: (`torch.device`, *optional*):
110
+ torch device to place the resulting embeddings on
111
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
112
+ number of images that should be generated per prompt
113
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
114
+ whether to use classifier free guidance or not
115
+ negative_prompt (`str` or `List[str]`, *optional*):
116
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
117
+ `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
118
+ Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
119
+ prompt_embeds (`torch.FloatTensor`, *optional*):
120
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
121
+ provided, text embeddings will be generated from `prompt` input argument.
122
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
123
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
124
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
125
+ argument.
126
+ """
127
+ if prompt is not None and negative_prompt is not None:
128
+ if type(prompt) is not type(negative_prompt):
129
+ raise TypeError(
130
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
131
+ f" {type(prompt)}."
132
+ )
133
+
134
+ if device is None:
135
+ device = self._execution_device
136
+
137
+ if prompt is not None and isinstance(prompt, str):
138
+ batch_size = 1
139
+ elif prompt is not None and isinstance(prompt, list):
140
+ batch_size = len(prompt)
141
+ else:
142
+ batch_size = prompt_embeds.shape[0]
143
+
144
+ max_length = 128
145
+
146
+ if prompt_embeds is None:
147
+ text_inputs = self.tokenizer(
148
+ prompt,
149
+ padding="max_length",
150
+ max_length=max_length,
151
+ truncation=True,
152
+ return_tensors="pt",
153
+ )
154
+ text_input_ids = text_inputs.input_ids.to(device)
155
+ attention_mask = text_inputs.attention_mask.to(device)
156
+ prompt_embeds = self.text_encoder(
157
+ text_input_ids,
158
+ attention_mask=attention_mask,
159
+ )
160
+ prompt_embeds = prompt_embeds[0]
161
+ prompt_embeds, attention_mask = self._process_embeds(prompt_embeds, attention_mask, _cut_context)
162
+ prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2)
163
+
164
+ if self.text_encoder is not None:
165
+ dtype = self.text_encoder.dtype
166
+ else:
167
+ dtype = None
168
+
169
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
170
+
171
+ bs_embed, seq_len, _ = prompt_embeds.shape
172
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
173
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
174
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
175
+ attention_mask = attention_mask.repeat(num_images_per_prompt, 1)
176
+ # get unconditional embeddings for classifier free guidance
177
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
178
+ uncond_tokens: List[str]
179
+
180
+ if negative_prompt is None:
181
+ uncond_tokens = [""] * batch_size
182
+ elif isinstance(negative_prompt, str):
183
+ uncond_tokens = [negative_prompt]
184
+ elif batch_size != len(negative_prompt):
185
+ raise ValueError(
186
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
187
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
188
+ " the batch size of `prompt`."
189
+ )
190
+ else:
191
+ uncond_tokens = negative_prompt
192
+ if negative_prompt is not None:
193
+ uncond_input = self.tokenizer(
194
+ uncond_tokens,
195
+ padding="max_length",
196
+ max_length=128,
197
+ truncation=True,
198
+ return_attention_mask=True,
199
+ return_tensors="pt",
200
+ )
201
+ text_input_ids = uncond_input.input_ids.to(device)
202
+ negative_attention_mask = uncond_input.attention_mask.to(device)
203
+
204
+ negative_prompt_embeds = self.text_encoder(
205
+ text_input_ids,
206
+ attention_mask=negative_attention_mask,
207
+ )
208
+ negative_prompt_embeds = negative_prompt_embeds[0]
209
+ negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]]
210
+ negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]]
211
+ negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2)
212
+
213
+ else:
214
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
215
+ negative_attention_mask = torch.zeros_like(attention_mask)
216
+
217
+ if do_classifier_free_guidance:
218
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
219
+ seq_len = negative_prompt_embeds.shape[1]
220
+
221
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
222
+ if negative_prompt_embeds.shape != prompt_embeds.shape:
223
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
224
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
225
+ negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1)
226
+
227
+ # For classifier free guidance, we need to do two forward passes.
228
+ # Here we concatenate the unconditional and text embeddings into a single batch
229
+ # to avoid doing two forward passes
230
+ else:
231
+ negative_prompt_embeds = None
232
+ negative_attention_mask = None
233
+ return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
234
+
235
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
236
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
237
+ raise ValueError(
238
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
239
+ )
240
+
241
+ image = image.to(device=device, dtype=dtype)
242
+
243
+ batch_size = batch_size * num_images_per_prompt
244
+
245
+ if image.shape[1] == 4:
246
+ init_latents = image
247
+
248
+ else:
249
+ if isinstance(generator, list) and len(generator) != batch_size:
250
+ raise ValueError(
251
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
252
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
253
+ )
254
+
255
+ elif isinstance(generator, list):
256
+ init_latents = [
257
+ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
258
+ ]
259
+ init_latents = torch.cat(init_latents, dim=0)
260
+ else:
261
+ init_latents = self.movq.encode(image).latent_dist.sample(generator)
262
+
263
+ init_latents = self.movq.config.scaling_factor * init_latents
264
+
265
+ init_latents = torch.cat([init_latents], dim=0)
266
+
267
+ shape = init_latents.shape
268
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
269
+
270
+ # get latents
271
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
272
+
273
+ latents = init_latents
274
+
275
+ return latents
276
+
277
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
278
+ def prepare_extra_step_kwargs(self, generator, eta):
279
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
280
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
281
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
282
+ # and should be between [0, 1]
283
+
284
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
285
+ extra_step_kwargs = {}
286
+ if accepts_eta:
287
+ extra_step_kwargs["eta"] = eta
288
+
289
+ # check if the scheduler accepts generator
290
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
291
+ if accepts_generator:
292
+ extra_step_kwargs["generator"] = generator
293
+ return extra_step_kwargs
294
+
295
+ def check_inputs(
296
+ self,
297
+ prompt,
298
+ callback_steps,
299
+ negative_prompt=None,
300
+ prompt_embeds=None,
301
+ negative_prompt_embeds=None,
302
+ ):
303
+ if (callback_steps is None) or (
304
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
305
+ ):
306
+ raise ValueError(
307
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
308
+ f" {type(callback_steps)}."
309
+ )
310
+
311
+ if prompt is not None and prompt_embeds is not None:
312
+ raise ValueError(
313
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
314
+ " only forward one of the two."
315
+ )
316
+ elif prompt is None and prompt_embeds is None:
317
+ raise ValueError(
318
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
319
+ )
320
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
321
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
322
+
323
+ if negative_prompt is not None and negative_prompt_embeds is not None:
324
+ raise ValueError(
325
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
326
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
327
+ )
328
+
329
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
330
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
331
+ raise ValueError(
332
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
333
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
334
+ f" {negative_prompt_embeds.shape}."
335
+ )
336
+
337
+ @torch.no_grad()
338
+ def __call__(
339
+ self,
340
+ prompt: Union[str, List[str]] = None,
341
+ image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,
342
+ strength: float = 0.3,
343
+ num_inference_steps: int = 25,
344
+ guidance_scale: float = 3.0,
345
+ negative_prompt: Optional[Union[str, List[str]]] = None,
346
+ num_images_per_prompt: Optional[int] = 1,
347
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
348
+ prompt_embeds: Optional[torch.FloatTensor] = None,
349
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
350
+ output_type: Optional[str] = "pil",
351
+ return_dict: bool = True,
352
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
353
+ callback_steps: int = 1,
354
+ latents=None,
355
+ ):
356
+ cut_context = True
357
+ # 1. Check inputs. Raise error if not correct
358
+ self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
359
+
360
+ if prompt is not None and isinstance(prompt, str):
361
+ batch_size = 1
362
+ elif prompt is not None and isinstance(prompt, list):
363
+ batch_size = len(prompt)
364
+ else:
365
+ batch_size = prompt_embeds.shape[0]
366
+
367
+ device = self._execution_device
368
+
369
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
370
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
371
+ # corresponds to doing no classifier free guidance.
372
+ do_classifier_free_guidance = guidance_scale > 1.0
373
+
374
+ # 3. Encode input prompt
375
+ prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
376
+ prompt,
377
+ do_classifier_free_guidance,
378
+ num_images_per_prompt=num_images_per_prompt,
379
+ device=device,
380
+ negative_prompt=negative_prompt,
381
+ prompt_embeds=prompt_embeds,
382
+ negative_prompt_embeds=negative_prompt_embeds,
383
+ _cut_context=cut_context,
384
+ )
385
+
386
+ if do_classifier_free_guidance:
387
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
388
+ attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
389
+ if not isinstance(image, list):
390
+ image = [image]
391
+ if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image):
392
+ raise ValueError(
393
+ f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor"
394
+ )
395
+
396
+ image = torch.cat([prepare_image(i) for i in image], dim=0)
397
+ image = image.to(dtype=prompt_embeds.dtype, device=device)
398
+ # 4. Prepare timesteps
399
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
400
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
401
+ # 5. Prepare latents
402
+ latents = self.movq.encode(image)["latents"]
403
+ latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
404
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
405
+ latents = self.prepare_latents(
406
+ latents, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
407
+ )
408
+ if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
409
+ self.text_encoder_offload_hook.offload()
410
+
411
+ # 7. Denoising loop
412
+ # TODO(Yiyi): Correct the following line and use correctly
413
+ # num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
414
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
415
+ for i, t in enumerate(timesteps):
416
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
417
+
418
+ # predict the noise residual
419
+ noise_pred = self.unet(
420
+ latent_model_input,
421
+ t,
422
+ encoder_hidden_states=prompt_embeds,
423
+ encoder_attention_mask=attention_mask,
424
+ )[0]
425
+ if do_classifier_free_guidance:
426
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
427
+
428
+ noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond
429
+
430
+ # compute the previous noisy sample x_t -> x_t-1
431
+ latents = self.scheduler.step(
432
+ noise_pred,
433
+ t,
434
+ latents,
435
+ generator=generator,
436
+ ).prev_sample
437
+ progress_bar.update()
438
+ if callback is not None and i % callback_steps == 0:
439
+ step_idx = i // getattr(self.scheduler, "order", 1)
440
+ callback(step_idx, t, latents)
441
+ # post-processing
442
+ image = self.movq.decode(latents, force_not_quantize=True)["sample"]
443
+
444
+ if output_type not in ["pt", "np", "pil"]:
445
+ raise ValueError(
446
+ f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}"
447
+ )
448
+
449
+ if output_type in ["np", "pil"]:
450
+ image = image * 0.5 + 0.5
451
+ image = image.clamp(0, 1)
452
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
453
+
454
+ if output_type == "pil":
455
+ image = self.numpy_to_pil(image)
456
+
457
+ if not return_dict:
458
+ return (image,)
459
+
460
+ return ImagePipelineOutput(images=image)
@@ -44,15 +44,64 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
44
 
45
45
 
46
46
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
47
- def retrieve_latents(encoder_output, generator):
48
- if hasattr(encoder_output, "latent_dist"):
47
+ def retrieve_latents(
48
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
49
+ ):
50
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
49
51
  return encoder_output.latent_dist.sample(generator)
52
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
53
+ return encoder_output.latent_dist.mode()
50
54
  elif hasattr(encoder_output, "latents"):
51
55
  return encoder_output.latents
52
56
  else:
53
57
  raise AttributeError("Could not access latents of provided encoder_output")
54
58
 
55
59
 
60
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
61
+ def retrieve_timesteps(
62
+ scheduler,
63
+ num_inference_steps: Optional[int] = None,
64
+ device: Optional[Union[str, torch.device]] = None,
65
+ timesteps: Optional[List[int]] = None,
66
+ **kwargs,
67
+ ):
68
+ """
69
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
70
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
71
+
72
+ Args:
73
+ scheduler (`SchedulerMixin`):
74
+ The scheduler to get timesteps from.
75
+ num_inference_steps (`int`):
76
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
77
+ `timesteps` must be `None`.
78
+ device (`str` or `torch.device`, *optional*):
79
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
80
+ timesteps (`List[int]`, *optional*):
81
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
82
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
83
+ must be `None`.
84
+
85
+ Returns:
86
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
87
+ second element is the number of inference steps.
88
+ """
89
+ if timesteps is not None:
90
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
91
+ if not accepts_timesteps:
92
+ raise ValueError(
93
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
94
+ f" timestep schedules. Please check whether you are using the correct scheduler."
95
+ )
96
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
97
+ timesteps = scheduler.timesteps
98
+ num_inference_steps = len(timesteps)
99
+ else:
100
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
101
+ timesteps = scheduler.timesteps
102
+ return timesteps, num_inference_steps
103
+
104
+
56
105
  EXAMPLE_DOC_STRING = """
57
106
  Examples:
58
107
  ```py
@@ -115,6 +164,7 @@ class LatentConsistencyModelImg2ImgPipeline(
115
164
  requires_safety_checker (`bool`, *optional*, defaults to `True`):
116
165
  Whether the pipeline requires a safety checker component.
117
166
  """
167
+
118
168
  model_cpu_offload_seq = "text_encoder->unet->vae"
119
169
  _optional_components = ["safety_checker", "feature_extractor"]
120
170
  _exclude_from_cpu_offload = ["safety_checker"]
@@ -591,6 +641,7 @@ class LatentConsistencyModelImg2ImgPipeline(
591
641
  num_inference_steps: int = 4,
592
642
  strength: float = 0.8,
593
643
  original_inference_steps: int = None,
644
+ timesteps: List[int] = None,
594
645
  guidance_scale: float = 8.5,
595
646
  num_images_per_prompt: Optional[int] = 1,
596
647
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
@@ -622,6 +673,10 @@ class LatentConsistencyModelImg2ImgPipeline(
622
673
  we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule,
623
674
  following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the
624
675
  scheduler's `original_inference_steps` attribute.
676
+ timesteps (`List[int]`, *optional*):
677
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
678
+ timesteps on the original LCM training/distillation timestep schedule are used. Must be in descending
679
+ order.
625
680
  guidance_scale (`float`, *optional*, defaults to 7.5):
626
681
  A higher guidance scale value encourages the model to generate images closely linked to the text
627
682
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -659,7 +714,7 @@ class LatentConsistencyModelImg2ImgPipeline(
659
714
  callback_on_step_end_tensor_inputs (`List`, *optional*):
660
715
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
661
716
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
662
- `._callback_tensor_inputs` attribute of your pipeine class.
717
+ `._callback_tensor_inputs` attribute of your pipeline class.
663
718
 
664
719
  Examples:
665
720
 
@@ -727,10 +782,14 @@ class LatentConsistencyModelImg2ImgPipeline(
727
782
  image = self.image_processor.preprocess(image)
728
783
 
729
784
  # 5. Prepare timesteps
730
- self.scheduler.set_timesteps(
731
- num_inference_steps, device, original_inference_steps=original_inference_steps, strength=strength
785
+ timesteps, num_inference_steps = retrieve_timesteps(
786
+ self.scheduler,
787
+ num_inference_steps,
788
+ device,
789
+ timesteps,
790
+ original_inference_steps=original_inference_steps,
791
+ strength=strength,
732
792
  )
733
- timesteps = self.scheduler.timesteps
734
793
 
735
794
  # 6. Prepare latent variables
736
795
  original_inference_steps = (
@@ -61,6 +61,51 @@ EXAMPLE_DOC_STRING = """
61
61
  """
62
62
 
63
63
 
64
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
65
+ def retrieve_timesteps(
66
+ scheduler,
67
+ num_inference_steps: Optional[int] = None,
68
+ device: Optional[Union[str, torch.device]] = None,
69
+ timesteps: Optional[List[int]] = None,
70
+ **kwargs,
71
+ ):
72
+ """
73
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
74
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
75
+
76
+ Args:
77
+ scheduler (`SchedulerMixin`):
78
+ The scheduler to get timesteps from.
79
+ num_inference_steps (`int`):
80
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
81
+ `timesteps` must be `None`.
82
+ device (`str` or `torch.device`, *optional*):
83
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
84
+ timesteps (`List[int]`, *optional*):
85
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
86
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
87
+ must be `None`.
88
+
89
+ Returns:
90
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
91
+ second element is the number of inference steps.
92
+ """
93
+ if timesteps is not None:
94
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
95
+ if not accepts_timesteps:
96
+ raise ValueError(
97
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
98
+ f" timestep schedules. Please check whether you are using the correct scheduler."
99
+ )
100
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
101
+ timesteps = scheduler.timesteps
102
+ num_inference_steps = len(timesteps)
103
+ else:
104
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
105
+ timesteps = scheduler.timesteps
106
+ return timesteps, num_inference_steps
107
+
108
+
64
109
  class LatentConsistencyModelPipeline(
65
110
  DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
66
111
  ):
@@ -97,6 +142,7 @@ class LatentConsistencyModelPipeline(
97
142
  requires_safety_checker (`bool`, *optional*, defaults to `True`):
98
143
  Whether the pipeline requires a safety checker component.
99
144
  """
145
+
100
146
  model_cpu_offload_seq = "text_encoder->unet->vae"
101
147
  _optional_components = ["safety_checker", "feature_extractor"]
102
148
  _exclude_from_cpu_offload = ["safety_checker"]
@@ -529,6 +575,7 @@ class LatentConsistencyModelPipeline(
529
575
  width: Optional[int] = None,
530
576
  num_inference_steps: int = 4,
531
577
  original_inference_steps: int = None,
578
+ timesteps: List[int] = None,
532
579
  guidance_scale: float = 8.5,
533
580
  num_images_per_prompt: Optional[int] = 1,
534
581
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
@@ -560,6 +607,10 @@ class LatentConsistencyModelPipeline(
560
607
  we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule,
561
608
  following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the
562
609
  scheduler's `original_inference_steps` attribute.
610
+ timesteps (`List[int]`, *optional*):
611
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
612
+ timesteps on the original LCM training/distillation timestep schedule are used. Must be in descending
613
+ order.
563
614
  guidance_scale (`float`, *optional*, defaults to 7.5):
564
615
  A higher guidance scale value encourages the model to generate images closely linked to the text
565
616
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -597,7 +648,7 @@ class LatentConsistencyModelPipeline(
597
648
  callback_on_step_end_tensor_inputs (`List`, *optional*):
598
649
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
599
650
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
600
- `._callback_tensor_inputs` attribute of your pipeine class.
651
+ `._callback_tensor_inputs` attribute of your pipeline class.
601
652
 
602
653
  Examples:
603
654
 
@@ -667,8 +718,9 @@ class LatentConsistencyModelPipeline(
667
718
  )
668
719
 
669
720
  # 4. Prepare timesteps
670
- self.scheduler.set_timesteps(num_inference_steps, device, original_inference_steps=original_inference_steps)
671
- timesteps = self.scheduler.timesteps
721
+ timesteps, num_inference_steps = retrieve_timesteps(
722
+ self.scheduler, num_inference_steps, device, timesteps, original_inference_steps=original_inference_steps
723
+ )
672
724
 
673
725
  # 5. Prepare latent variable
674
726
  num_channels_latents = self.unet.config.in_channels
@@ -49,6 +49,7 @@ class LDMTextToImagePipeline(DiffusionPipeline):
49
49
  A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
50
50
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
51
51
  """
52
+
52
53
  model_cpu_offload_seq = "bert->unet->vqvae"
53
54
 
54
55
  def __init__(