dgenerate-ultralytics-headless 8.3.196__py3-none-any.whl → 8.3.248__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/METADATA +33 -34
- dgenerate_ultralytics_headless-8.3.248.dist-info/RECORD +298 -0
- tests/__init__.py +5 -7
- tests/conftest.py +8 -15
- tests/test_cli.py +8 -10
- tests/test_cuda.py +9 -10
- tests/test_engine.py +29 -2
- tests/test_exports.py +69 -21
- tests/test_integrations.py +8 -11
- tests/test_python.py +109 -71
- tests/test_solutions.py +170 -159
- ultralytics/__init__.py +27 -9
- ultralytics/cfg/__init__.py +57 -64
- ultralytics/cfg/datasets/Argoverse.yaml +7 -6
- ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/Objects365.yaml +19 -15
- ultralytics/cfg/datasets/SKU-110K.yaml +1 -1
- ultralytics/cfg/datasets/VOC.yaml +19 -21
- ultralytics/cfg/datasets/VisDrone.yaml +5 -5
- ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
- ultralytics/cfg/datasets/coco-pose.yaml +24 -2
- ultralytics/cfg/datasets/coco.yaml +2 -2
- ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/datasets/dog-pose.yaml +28 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/dota8.yaml +2 -2
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +7 -7
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
- ultralytics/cfg/datasets/xView.yaml +16 -16
- ultralytics/cfg/default.yaml +96 -94
- ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
- ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
- ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
- ultralytics/cfg/models/v6/yolov6.yaml +1 -1
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
- ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
- ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
- ultralytics/cfg/trackers/botsort.yaml +16 -17
- ultralytics/cfg/trackers/bytetrack.yaml +9 -11
- ultralytics/data/__init__.py +4 -4
- ultralytics/data/annotator.py +3 -4
- ultralytics/data/augment.py +286 -476
- ultralytics/data/base.py +18 -26
- ultralytics/data/build.py +151 -26
- ultralytics/data/converter.py +38 -50
- ultralytics/data/dataset.py +47 -75
- ultralytics/data/loaders.py +42 -49
- ultralytics/data/split.py +5 -6
- ultralytics/data/split_dota.py +8 -15
- ultralytics/data/utils.py +41 -45
- ultralytics/engine/exporter.py +462 -462
- ultralytics/engine/model.py +150 -191
- ultralytics/engine/predictor.py +30 -40
- ultralytics/engine/results.py +177 -311
- ultralytics/engine/trainer.py +193 -120
- ultralytics/engine/tuner.py +77 -63
- ultralytics/engine/validator.py +39 -22
- ultralytics/hub/__init__.py +16 -19
- ultralytics/hub/auth.py +6 -12
- ultralytics/hub/google/__init__.py +7 -10
- ultralytics/hub/session.py +15 -25
- ultralytics/hub/utils.py +5 -8
- ultralytics/models/__init__.py +1 -1
- ultralytics/models/fastsam/__init__.py +1 -1
- ultralytics/models/fastsam/model.py +8 -10
- ultralytics/models/fastsam/predict.py +19 -30
- ultralytics/models/fastsam/utils.py +1 -2
- ultralytics/models/fastsam/val.py +5 -7
- ultralytics/models/nas/__init__.py +1 -1
- ultralytics/models/nas/model.py +5 -8
- ultralytics/models/nas/predict.py +7 -9
- ultralytics/models/nas/val.py +1 -2
- ultralytics/models/rtdetr/__init__.py +1 -1
- ultralytics/models/rtdetr/model.py +7 -8
- ultralytics/models/rtdetr/predict.py +15 -19
- ultralytics/models/rtdetr/train.py +10 -13
- ultralytics/models/rtdetr/val.py +21 -23
- ultralytics/models/sam/__init__.py +15 -2
- ultralytics/models/sam/amg.py +14 -20
- ultralytics/models/sam/build.py +26 -19
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +29 -32
- ultralytics/models/sam/modules/blocks.py +83 -144
- ultralytics/models/sam/modules/decoders.py +22 -40
- ultralytics/models/sam/modules/encoders.py +44 -101
- ultralytics/models/sam/modules/memory_attention.py +16 -30
- ultralytics/models/sam/modules/sam.py +206 -79
- ultralytics/models/sam/modules/tiny_encoder.py +64 -83
- ultralytics/models/sam/modules/transformer.py +18 -28
- ultralytics/models/sam/modules/utils.py +174 -50
- ultralytics/models/sam/predict.py +2268 -366
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/loss.py +14 -26
- ultralytics/models/utils/ops.py +13 -17
- ultralytics/models/yolo/__init__.py +1 -1
- ultralytics/models/yolo/classify/predict.py +9 -12
- ultralytics/models/yolo/classify/train.py +15 -41
- ultralytics/models/yolo/classify/val.py +34 -32
- ultralytics/models/yolo/detect/predict.py +8 -11
- ultralytics/models/yolo/detect/train.py +13 -32
- ultralytics/models/yolo/detect/val.py +75 -63
- ultralytics/models/yolo/model.py +37 -53
- ultralytics/models/yolo/obb/predict.py +5 -14
- ultralytics/models/yolo/obb/train.py +11 -14
- ultralytics/models/yolo/obb/val.py +42 -39
- ultralytics/models/yolo/pose/__init__.py +1 -1
- ultralytics/models/yolo/pose/predict.py +7 -22
- ultralytics/models/yolo/pose/train.py +10 -22
- ultralytics/models/yolo/pose/val.py +40 -59
- ultralytics/models/yolo/segment/predict.py +16 -20
- ultralytics/models/yolo/segment/train.py +3 -12
- ultralytics/models/yolo/segment/val.py +106 -56
- ultralytics/models/yolo/world/train.py +12 -16
- ultralytics/models/yolo/world/train_world.py +11 -34
- ultralytics/models/yolo/yoloe/__init__.py +7 -7
- ultralytics/models/yolo/yoloe/predict.py +16 -23
- ultralytics/models/yolo/yoloe/train.py +31 -56
- ultralytics/models/yolo/yoloe/train_seg.py +5 -10
- ultralytics/models/yolo/yoloe/val.py +16 -21
- ultralytics/nn/__init__.py +7 -7
- ultralytics/nn/autobackend.py +152 -80
- ultralytics/nn/modules/__init__.py +60 -60
- ultralytics/nn/modules/activation.py +4 -6
- ultralytics/nn/modules/block.py +133 -217
- ultralytics/nn/modules/conv.py +52 -97
- ultralytics/nn/modules/head.py +64 -116
- ultralytics/nn/modules/transformer.py +79 -89
- ultralytics/nn/modules/utils.py +16 -21
- ultralytics/nn/tasks.py +111 -156
- ultralytics/nn/text_model.py +40 -67
- ultralytics/solutions/__init__.py +12 -12
- ultralytics/solutions/ai_gym.py +11 -17
- ultralytics/solutions/analytics.py +15 -16
- ultralytics/solutions/config.py +5 -6
- ultralytics/solutions/distance_calculation.py +10 -13
- ultralytics/solutions/heatmap.py +7 -13
- ultralytics/solutions/instance_segmentation.py +5 -8
- ultralytics/solutions/object_blurrer.py +7 -10
- ultralytics/solutions/object_counter.py +12 -19
- ultralytics/solutions/object_cropper.py +8 -14
- ultralytics/solutions/parking_management.py +33 -31
- ultralytics/solutions/queue_management.py +10 -12
- ultralytics/solutions/region_counter.py +9 -12
- ultralytics/solutions/security_alarm.py +15 -20
- ultralytics/solutions/similarity_search.py +13 -17
- ultralytics/solutions/solutions.py +75 -74
- ultralytics/solutions/speed_estimation.py +7 -10
- ultralytics/solutions/streamlit_inference.py +4 -7
- ultralytics/solutions/templates/similarity-search.html +7 -18
- ultralytics/solutions/trackzone.py +7 -10
- ultralytics/solutions/vision_eye.py +5 -8
- ultralytics/trackers/__init__.py +1 -1
- ultralytics/trackers/basetrack.py +3 -5
- ultralytics/trackers/bot_sort.py +10 -27
- ultralytics/trackers/byte_tracker.py +14 -30
- ultralytics/trackers/track.py +3 -6
- ultralytics/trackers/utils/gmc.py +11 -22
- ultralytics/trackers/utils/kalman_filter.py +37 -48
- ultralytics/trackers/utils/matching.py +12 -15
- ultralytics/utils/__init__.py +116 -116
- ultralytics/utils/autobatch.py +2 -4
- ultralytics/utils/autodevice.py +17 -18
- ultralytics/utils/benchmarks.py +70 -70
- ultralytics/utils/callbacks/base.py +8 -10
- ultralytics/utils/callbacks/clearml.py +5 -13
- ultralytics/utils/callbacks/comet.py +32 -46
- ultralytics/utils/callbacks/dvc.py +13 -18
- ultralytics/utils/callbacks/mlflow.py +4 -5
- ultralytics/utils/callbacks/neptune.py +7 -15
- ultralytics/utils/callbacks/platform.py +314 -38
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +23 -31
- ultralytics/utils/callbacks/wb.py +10 -13
- ultralytics/utils/checks.py +151 -87
- ultralytics/utils/cpu.py +3 -8
- ultralytics/utils/dist.py +19 -15
- ultralytics/utils/downloads.py +29 -41
- ultralytics/utils/errors.py +6 -14
- ultralytics/utils/events.py +2 -4
- ultralytics/utils/export/__init__.py +7 -0
- ultralytics/utils/{export.py → export/engine.py} +16 -16
- ultralytics/utils/export/imx.py +325 -0
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +24 -28
- ultralytics/utils/git.py +9 -11
- ultralytics/utils/instance.py +30 -51
- ultralytics/utils/logger.py +212 -114
- ultralytics/utils/loss.py +15 -24
- ultralytics/utils/metrics.py +131 -160
- ultralytics/utils/nms.py +21 -30
- ultralytics/utils/ops.py +107 -165
- ultralytics/utils/patches.py +33 -21
- ultralytics/utils/plotting.py +122 -119
- ultralytics/utils/tal.py +28 -44
- ultralytics/utils/torch_utils.py +70 -187
- ultralytics/utils/tqdm.py +20 -20
- ultralytics/utils/triton.py +13 -19
- ultralytics/utils/tuner.py +17 -5
- dgenerate_ultralytics_headless-8.3.196.dist-info/RECORD +0 -281
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/top_level.txt +0 -0
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
|
4
4
|
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
|
|
5
|
-
# Example usage: yolo train data=coco128.yaml
|
|
5
|
+
# Example usage: yolo train data=coco128-seg.yaml
|
|
6
6
|
# parent
|
|
7
7
|
# ├── ultralytics
|
|
8
8
|
# └── datasets
|
|
@@ -22,5 +22,26 @@ flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
|
|
22
22
|
names:
|
|
23
23
|
0: person
|
|
24
24
|
|
|
25
|
+
# Keypoint names per class
|
|
26
|
+
kpt_names:
|
|
27
|
+
0:
|
|
28
|
+
- nose
|
|
29
|
+
- left_eye
|
|
30
|
+
- right_eye
|
|
31
|
+
- left_ear
|
|
32
|
+
- right_ear
|
|
33
|
+
- left_shoulder
|
|
34
|
+
- right_shoulder
|
|
35
|
+
- left_elbow
|
|
36
|
+
- right_elbow
|
|
37
|
+
- left_wrist
|
|
38
|
+
- right_wrist
|
|
39
|
+
- left_hip
|
|
40
|
+
- right_hip
|
|
41
|
+
- left_knee
|
|
42
|
+
- right_knee
|
|
43
|
+
- left_ankle
|
|
44
|
+
- right_ankle
|
|
45
|
+
|
|
25
46
|
# Download script/URL (optional)
|
|
26
47
|
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Construction-PPE dataset by Ultralytics
|
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/construction-ppe/
|
|
5
|
+
# Example usage: yolo train data=construction-ppe.yaml
|
|
6
|
+
# parent
|
|
7
|
+
# ├── ultralytics
|
|
8
|
+
# └── datasets
|
|
9
|
+
# └── construction-ppe ← downloads here (178.4 MB)
|
|
10
|
+
|
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
12
|
+
path: construction-ppe # dataset root dir
|
|
13
|
+
train: images/train # train images (relative to 'path') 1132 images
|
|
14
|
+
val: images/val # val images (relative to 'path') 143 images
|
|
15
|
+
test: images/test # test images (relative to 'path') 141 images
|
|
16
|
+
|
|
17
|
+
# Classes
|
|
18
|
+
names:
|
|
19
|
+
0: helmet
|
|
20
|
+
1: gloves
|
|
21
|
+
2: vest
|
|
22
|
+
3: boots
|
|
23
|
+
4: goggles
|
|
24
|
+
5: none
|
|
25
|
+
6: Person
|
|
26
|
+
7: no_helmet
|
|
27
|
+
8: no_goggle
|
|
28
|
+
9: no_gloves
|
|
29
|
+
10: no_boots
|
|
30
|
+
|
|
31
|
+
# Download script/URL (optional)
|
|
32
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/construction-ppe.zip
|
|
@@ -20,5 +20,33 @@ kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y
|
|
|
20
20
|
names:
|
|
21
21
|
0: dog
|
|
22
22
|
|
|
23
|
+
# Keypoint names per class
|
|
24
|
+
kpt_names:
|
|
25
|
+
0:
|
|
26
|
+
- front_left_paw
|
|
27
|
+
- front_left_knee
|
|
28
|
+
- front_left_elbow
|
|
29
|
+
- rear_left_paw
|
|
30
|
+
- rear_left_knee
|
|
31
|
+
- rear_left_elbow
|
|
32
|
+
- front_right_paw
|
|
33
|
+
- front_right_knee
|
|
34
|
+
- front_right_elbow
|
|
35
|
+
- rear_right_paw
|
|
36
|
+
- rear_right_knee
|
|
37
|
+
- rear_right_elbow
|
|
38
|
+
- tail_start
|
|
39
|
+
- tail_end
|
|
40
|
+
- left_ear_base
|
|
41
|
+
- right_ear_base
|
|
42
|
+
- nose
|
|
43
|
+
- chin
|
|
44
|
+
- left_ear_tip
|
|
45
|
+
- right_ear_tip
|
|
46
|
+
- left_eye
|
|
47
|
+
- right_eye
|
|
48
|
+
- withers
|
|
49
|
+
- throat
|
|
50
|
+
|
|
23
51
|
# Download script/URL (optional)
|
|
24
52
|
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dog-pose.zip
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
# parent
|
|
7
7
|
# ├── ultralytics
|
|
8
8
|
# └── datasets
|
|
9
|
-
# └── dota8-multispectral ← downloads here (37.
|
|
9
|
+
# └── dota8-multispectral ← downloads here (37.3 MB)
|
|
10
10
|
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
12
12
|
path: dota8-multispectral # dataset root dir
|
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# DOTA8 dataset 8 images from
|
|
3
|
+
# DOTA8 dataset (8 images from the DOTAv1 split) by Ultralytics
|
|
4
4
|
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
|
|
5
5
|
# Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
|
|
6
6
|
# parent
|
|
7
7
|
# ├── ultralytics
|
|
8
8
|
# └── datasets
|
|
9
|
-
# └── dota8 ← downloads here (
|
|
9
|
+
# └── dota8 ← downloads here (1 MB)
|
|
10
10
|
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
12
12
|
path: dota8 # dataset root dir
|
|
@@ -15,12 +15,36 @@ val: images/val # val images (relative to 'path') 7992 images
|
|
|
15
15
|
|
|
16
16
|
# Keypoints
|
|
17
17
|
kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
|
18
|
-
flip_idx:
|
|
19
|
-
[0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
|
|
18
|
+
flip_idx: [0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
|
|
20
19
|
|
|
21
20
|
# Classes
|
|
22
21
|
names:
|
|
23
22
|
0: hand
|
|
24
23
|
|
|
24
|
+
# Keypoint names per class
|
|
25
|
+
kpt_names:
|
|
26
|
+
0:
|
|
27
|
+
- wrist
|
|
28
|
+
- thumb_cmc
|
|
29
|
+
- thumb_mcp
|
|
30
|
+
- thumb_ip
|
|
31
|
+
- thumb_tip
|
|
32
|
+
- index_mcp
|
|
33
|
+
- index_pip
|
|
34
|
+
- index_dip
|
|
35
|
+
- index_tip
|
|
36
|
+
- middle_mcp
|
|
37
|
+
- middle_pip
|
|
38
|
+
- middle_dip
|
|
39
|
+
- middle_tip
|
|
40
|
+
- ring_mcp
|
|
41
|
+
- ring_pip
|
|
42
|
+
- ring_dip
|
|
43
|
+
- ring_tip
|
|
44
|
+
- pinky_mcp
|
|
45
|
+
- pinky_pip
|
|
46
|
+
- pinky_dip
|
|
47
|
+
- pinky_tip
|
|
48
|
+
|
|
25
49
|
# Download script/URL (optional)
|
|
26
50
|
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/hand-keypoints.zip
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# KITTI dataset by Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago
|
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/kitti/
|
|
5
|
+
# Example usage: yolo train data=kitti.yaml
|
|
6
|
+
# parent
|
|
7
|
+
# ├── ultralytics
|
|
8
|
+
# └── datasets
|
|
9
|
+
# └── kitti ← downloads here (390.5 MB)
|
|
10
|
+
|
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
12
|
+
path: kitti # dataset root dir
|
|
13
|
+
train: images/train # train images (relative to 'path') 5985 images
|
|
14
|
+
val: images/val # val images (relative to 'path') 1496 images
|
|
15
|
+
|
|
16
|
+
names:
|
|
17
|
+
0: car
|
|
18
|
+
1: van
|
|
19
|
+
2: truck
|
|
20
|
+
3: pedestrian
|
|
21
|
+
4: person_sitting
|
|
22
|
+
5: cyclist
|
|
23
|
+
6: tram
|
|
24
|
+
7: misc
|
|
25
|
+
|
|
26
|
+
# Download script/URL (optional)
|
|
27
|
+
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/kitti.zip
|
|
@@ -35,7 +35,7 @@ names:
|
|
|
35
35
|
17: armband
|
|
36
36
|
18: armchair
|
|
37
37
|
19: armoire
|
|
38
|
-
20: armor
|
|
38
|
+
20: armor
|
|
39
39
|
21: artichoke
|
|
40
40
|
22: trash can/garbage can/wastebin/dustbin/trash barrel/trash bin
|
|
41
41
|
23: ashtray
|
|
@@ -245,7 +245,7 @@ names:
|
|
|
245
245
|
227: CD player
|
|
246
246
|
228: celery
|
|
247
247
|
229: cellular telephone/cellular phone/cellphone/mobile phone/smart phone
|
|
248
|
-
230: chain mail/ring mail/chain armor/
|
|
248
|
+
230: chain mail/ring mail/chain armor/ring armor
|
|
249
249
|
231: chair
|
|
250
250
|
232: chaise longue/chaise/daybed
|
|
251
251
|
233: chalice
|
|
@@ -305,7 +305,7 @@ names:
|
|
|
305
305
|
287: coin
|
|
306
306
|
288: colander/cullender
|
|
307
307
|
289: coleslaw/slaw
|
|
308
|
-
290: coloring material
|
|
308
|
+
290: coloring material
|
|
309
309
|
291: combination lock
|
|
310
310
|
292: pacifier/teething ring
|
|
311
311
|
293: comic book
|
|
@@ -401,7 +401,7 @@ names:
|
|
|
401
401
|
383: domestic ass/donkey
|
|
402
402
|
384: doorknob/doorhandle
|
|
403
403
|
385: doormat/welcome mat
|
|
404
|
-
386:
|
|
404
|
+
386: donut
|
|
405
405
|
387: dove
|
|
406
406
|
388: dragonfly
|
|
407
407
|
389: drawer
|
|
@@ -1072,7 +1072,7 @@ names:
|
|
|
1072
1072
|
1054: tag
|
|
1073
1073
|
1055: taillight/rear light
|
|
1074
1074
|
1056: tambourine
|
|
1075
|
-
1057: army tank/armored combat vehicle
|
|
1075
|
+
1057: army tank/armored combat vehicle
|
|
1076
1076
|
1058: tank/tank storage vessel/storage tank
|
|
1077
1077
|
1059: tank top/tank top clothing
|
|
1078
1078
|
1060: tape/tape sticky cloth or paper
|
|
@@ -1223,12 +1223,12 @@ names:
|
|
|
1223
1223
|
download: |
|
|
1224
1224
|
from pathlib import Path
|
|
1225
1225
|
|
|
1226
|
+
from ultralytics.utils import ASSETS_URL
|
|
1226
1227
|
from ultralytics.utils.downloads import download
|
|
1227
1228
|
|
|
1228
1229
|
# Download labels
|
|
1229
1230
|
dir = Path(yaml["path"]) # dataset root dir
|
|
1230
|
-
|
|
1231
|
-
urls = [f"{url}lvis-labels-segments.zip"]
|
|
1231
|
+
urls = [f"{ASSETS_URL}/lvis-labels-segments.zip"]
|
|
1232
1232
|
download(urls, dir=dir.parent)
|
|
1233
1233
|
|
|
1234
1234
|
# Download data
|
|
@@ -21,5 +21,21 @@ flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
|
|
21
21
|
names:
|
|
22
22
|
0: tiger
|
|
23
23
|
|
|
24
|
+
# Keypoint names per class
|
|
25
|
+
kpt_names:
|
|
26
|
+
0:
|
|
27
|
+
- nose
|
|
28
|
+
- head
|
|
29
|
+
- withers
|
|
30
|
+
- tail_base
|
|
31
|
+
- right_hind_hock
|
|
32
|
+
- right_hind_paw
|
|
33
|
+
- left_hind_paw
|
|
34
|
+
- left_hind_hock
|
|
35
|
+
- right_front_wrist
|
|
36
|
+
- right_front_paw
|
|
37
|
+
- left_front_wrist
|
|
38
|
+
- left_front_paw
|
|
39
|
+
|
|
24
40
|
# Download script/URL (optional)
|
|
25
41
|
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
|
4
|
-
# --------
|
|
3
|
+
# DIUx xView 2018 Challenge dataset https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
|
4
|
+
# -------- Download and extract data manually to `datasets/xView` before running the train command. --------
|
|
5
5
|
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/
|
|
6
6
|
# Example usage: yolo train data=xView.yaml
|
|
7
7
|
# parent
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
13
13
|
path: xView # dataset root dir
|
|
14
14
|
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
|
15
|
-
val: images/autosplit_val.txt #
|
|
15
|
+
val: images/autosplit_val.txt # val images (relative to 'path') 10% of 847 train images
|
|
16
16
|
|
|
17
17
|
# Classes
|
|
18
18
|
names:
|
|
@@ -80,8 +80,8 @@ names:
|
|
|
80
80
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
|
81
81
|
download: |
|
|
82
82
|
import json
|
|
83
|
-
import os
|
|
84
83
|
from pathlib import Path
|
|
84
|
+
import shutil
|
|
85
85
|
|
|
86
86
|
import numpy as np
|
|
87
87
|
from PIL import Image
|
|
@@ -92,15 +92,15 @@ download: |
|
|
|
92
92
|
|
|
93
93
|
|
|
94
94
|
def convert_labels(fname=Path("xView/xView_train.geojson")):
|
|
95
|
-
"""
|
|
95
|
+
"""Convert xView GeoJSON labels to YOLO format (classes 0-59) and save them as text files."""
|
|
96
96
|
path = fname.parent
|
|
97
97
|
with open(fname, encoding="utf-8") as f:
|
|
98
98
|
print(f"Loading {fname}...")
|
|
99
99
|
data = json.load(f)
|
|
100
100
|
|
|
101
101
|
# Make dirs
|
|
102
|
-
labels =
|
|
103
|
-
|
|
102
|
+
labels = path / "labels" / "train"
|
|
103
|
+
shutil.rmtree(labels, ignore_errors=True)
|
|
104
104
|
labels.mkdir(parents=True, exist_ok=True)
|
|
105
105
|
|
|
106
106
|
# xView classes 11-94 to 0-59
|
|
@@ -113,24 +113,24 @@ download: |
|
|
|
113
113
|
for feature in TQDM(data["features"], desc=f"Converting {fname}"):
|
|
114
114
|
p = feature["properties"]
|
|
115
115
|
if p["bounds_imcoords"]:
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
if
|
|
116
|
+
image_id = p["image_id"]
|
|
117
|
+
image_file = path / "train_images" / image_id
|
|
118
|
+
if image_file.exists(): # 1395.tif missing
|
|
119
119
|
try:
|
|
120
120
|
box = np.array([int(num) for num in p["bounds_imcoords"].split(",")])
|
|
121
121
|
assert box.shape[0] == 4, f"incorrect box shape {box.shape[0]}"
|
|
122
122
|
cls = p["type_id"]
|
|
123
|
-
cls = xview_class2index[int(cls)] # xView class to 0-
|
|
123
|
+
cls = xview_class2index[int(cls)] # xView class to 0-59
|
|
124
124
|
assert 59 >= cls >= 0, f"incorrect class index {cls}"
|
|
125
125
|
|
|
126
126
|
# Write YOLO label
|
|
127
|
-
if
|
|
128
|
-
shapes[
|
|
129
|
-
box = xyxy2xywhn(box[None].astype(
|
|
130
|
-
with open((labels /
|
|
127
|
+
if image_id not in shapes:
|
|
128
|
+
shapes[image_id] = Image.open(image_file).size
|
|
129
|
+
box = xyxy2xywhn(box[None].astype(float), w=shapes[image_id][0], h=shapes[image_id][1], clip=True)
|
|
130
|
+
with open((labels / image_id).with_suffix(".txt"), "a", encoding="utf-8") as f:
|
|
131
131
|
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
|
|
132
132
|
except Exception as e:
|
|
133
|
-
print(f"WARNING: skipping one label for {
|
|
133
|
+
print(f"WARNING: skipping one label for {image_file}: {e}")
|
|
134
134
|
|
|
135
135
|
|
|
136
136
|
# Download manually from https://challenge.xviewdataset.org
|
ultralytics/cfg/default.yaml
CHANGED
|
@@ -7,122 +7,124 @@ task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb
|
|
|
7
7
|
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
|
|
8
8
|
|
|
9
9
|
# Train settings -------------------------------------------------------------------------------------------------------
|
|
10
|
-
model: # (str, optional) path to model file, i.e. yolov8n.pt
|
|
10
|
+
model: # (str, optional) path to model file, i.e. yolov8n.pt or yolov8n.yaml
|
|
11
11
|
data: # (str, optional) path to data file, i.e. coco8.yaml
|
|
12
12
|
epochs: 100 # (int) number of epochs to train for
|
|
13
|
-
time: # (float, optional)
|
|
14
|
-
patience: 100 # (int)
|
|
15
|
-
batch: 16 # (int)
|
|
16
|
-
imgsz: 640 # (int | list)
|
|
13
|
+
time: # (float, optional) max hours to train; overrides epochs if set
|
|
14
|
+
patience: 100 # (int) early stop after N epochs without val improvement
|
|
15
|
+
batch: 16 # (int) batch size; use -1 for AutoBatch
|
|
16
|
+
imgsz: 640 # (int | list) train/val use int (square); predict/export may use [h,w]
|
|
17
17
|
save: True # (bool) save train checkpoints and predict results
|
|
18
|
-
save_period: -1 # (int)
|
|
19
|
-
cache: False # (bool) True/ram
|
|
20
|
-
device: # (int | str | list) device:
|
|
21
|
-
workers: 8 # (int)
|
|
22
|
-
project: # (str, optional) project name
|
|
23
|
-
name: # (str, optional) experiment name
|
|
24
|
-
exist_ok: False # (bool)
|
|
25
|
-
pretrained: True # (bool | str)
|
|
26
|
-
optimizer: auto # (str) optimizer
|
|
27
|
-
verbose: True # (bool)
|
|
18
|
+
save_period: -1 # (int) save checkpoint every N epochs; disabled if < 1
|
|
19
|
+
cache: False # (bool | str) cache images in RAM (True/'ram') or on 'disk' to speed dataloading; False disables
|
|
20
|
+
device: # (int | str | list) device: 0 or [0,1,2,3] for CUDA, 'cpu'/'mps', or -1/[-1,-1] to auto-select idle GPUs
|
|
21
|
+
workers: 8 # (int) dataloader workers (per RANK if DDP)
|
|
22
|
+
project: # (str, optional) project name for results root
|
|
23
|
+
name: # (str, optional) experiment name; results in 'project/name'
|
|
24
|
+
exist_ok: False # (bool) overwrite existing 'project/name' if True
|
|
25
|
+
pretrained: True # (bool | str) use pretrained weights (bool) or load weights from path (str)
|
|
26
|
+
optimizer: auto # (str) optimizer: SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, or auto
|
|
27
|
+
verbose: True # (bool) print verbose logs during training/val
|
|
28
28
|
seed: 0 # (int) random seed for reproducibility
|
|
29
|
-
deterministic: True # (bool)
|
|
30
|
-
single_cls: False # (bool)
|
|
31
|
-
rect: False # (bool) rectangular
|
|
32
|
-
cos_lr: False # (bool)
|
|
33
|
-
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to
|
|
34
|
-
resume: False # (bool) resume training from last checkpoint
|
|
35
|
-
amp: True # (bool) Automatic Mixed Precision (AMP) training
|
|
36
|
-
fraction: 1.0 # (float)
|
|
37
|
-
profile: False # (bool) profile ONNX
|
|
38
|
-
freeze: # (int | list, optional) freeze first
|
|
39
|
-
multi_scale: False # (bool)
|
|
40
|
-
compile: False # (bool)
|
|
29
|
+
deterministic: True # (bool) enable deterministic ops; reproducible but may be slower
|
|
30
|
+
single_cls: False # (bool) treat all classes as a single class
|
|
31
|
+
rect: False # (bool) rectangular batches for train; rectangular batching for val when mode='val'
|
|
32
|
+
cos_lr: False # (bool) cosine learning rate scheduler
|
|
33
|
+
close_mosaic: 10 # (int) disable mosaic augmentation for final N epochs (0 to keep enabled)
|
|
34
|
+
resume: False # (bool) resume training from last checkpoint in the run dir
|
|
35
|
+
amp: True # (bool) Automatic Mixed Precision (AMP) training; True runs AMP capability check
|
|
36
|
+
fraction: 1.0 # (float) fraction of training dataset to use (1.0 = all)
|
|
37
|
+
profile: False # (bool) profile ONNX/TensorRT speeds during training for loggers
|
|
38
|
+
freeze: # (int | list, optional) freeze first N layers (int) or specific layer indices (list)
|
|
39
|
+
multi_scale: False # (bool) multiscale training by varying image size
|
|
40
|
+
compile: False # (bool | str) enable torch.compile() backend='inductor'; True="default", False=off, or "default|reduce-overhead|max-autotune-no-cudagraphs"
|
|
41
|
+
|
|
41
42
|
# Segmentation
|
|
42
|
-
overlap_mask: True # (bool) merge
|
|
43
|
-
mask_ratio: 4 # (int) mask downsample ratio (segment
|
|
43
|
+
overlap_mask: True # (bool) merge instance masks into one mask during training (segment only)
|
|
44
|
+
mask_ratio: 4 # (int) mask downsample ratio (segment only)
|
|
45
|
+
|
|
44
46
|
# Classification
|
|
45
|
-
dropout: 0.0 # (float)
|
|
47
|
+
dropout: 0.0 # (float) dropout for classification head (classify only)
|
|
46
48
|
|
|
47
49
|
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
|
48
|
-
val: True # (bool)
|
|
49
|
-
split: val # (str) dataset split to
|
|
50
|
-
save_json: False # (bool) save results to JSON
|
|
51
|
-
conf: # (float, optional)
|
|
52
|
-
iou: 0.7 # (float)
|
|
50
|
+
val: True # (bool) run validation/testing during training
|
|
51
|
+
split: val # (str) dataset split to evaluate: 'val', 'test' or 'train'
|
|
52
|
+
save_json: False # (bool) save results to COCO JSON for external evaluation
|
|
53
|
+
conf: # (float, optional) confidence threshold; defaults: predict=0.25, val=0.001
|
|
54
|
+
iou: 0.7 # (float) IoU threshold used for NMS
|
|
53
55
|
max_det: 300 # (int) maximum number of detections per image
|
|
54
|
-
half: False # (bool) use half precision (FP16)
|
|
56
|
+
half: False # (bool) use half precision (FP16) if supported
|
|
55
57
|
dnn: False # (bool) use OpenCV DNN for ONNX inference
|
|
56
58
|
plots: True # (bool) save plots and images during train/val
|
|
57
59
|
|
|
58
60
|
# Predict settings -----------------------------------------------------------------------------------------------------
|
|
59
|
-
source: # (str, optional)
|
|
60
|
-
vid_stride: 1 # (int)
|
|
61
|
-
stream_buffer: False # (bool)
|
|
62
|
-
visualize: False # (bool) visualize model features (predict) or
|
|
63
|
-
augment: False # (bool) apply
|
|
61
|
+
source: # (str, optional) path/dir/URL/stream for images or videos; e.g. 'ultralytics/assets' or '0' for webcam
|
|
62
|
+
vid_stride: 1 # (int) read every Nth frame for video sources
|
|
63
|
+
stream_buffer: False # (bool) True buffers all frames; False keeps the most recent frame for low-latency streams
|
|
64
|
+
visualize: False # (bool) visualize model features (predict) or TP/FP/FN confusion (val)
|
|
65
|
+
augment: False # (bool) apply test-time augmentation during prediction
|
|
64
66
|
agnostic_nms: False # (bool) class-agnostic NMS
|
|
65
|
-
classes: # (int | list[int], optional) filter
|
|
66
|
-
retina_masks: False # (bool) use high-resolution segmentation masks
|
|
67
|
-
embed: # (list[int], optional) return feature
|
|
67
|
+
classes: # (int | list[int], optional) filter by class id(s), e.g. 0 or [0,2,3]
|
|
68
|
+
retina_masks: False # (bool) use high-resolution segmentation masks (segment)
|
|
69
|
+
embed: # (list[int], optional) return feature embeddings from given layer indices
|
|
68
70
|
|
|
69
71
|
# Visualize settings ---------------------------------------------------------------------------------------------------
|
|
70
|
-
show: False # (bool) show
|
|
71
|
-
save_frames: False # (bool) save
|
|
72
|
-
save_txt: False # (bool) save results as .txt
|
|
73
|
-
save_conf: False # (bool) save
|
|
74
|
-
save_crop: False # (bool) save cropped
|
|
75
|
-
show_labels: True # (bool)
|
|
76
|
-
show_conf: True # (bool)
|
|
77
|
-
show_boxes: True # (bool)
|
|
78
|
-
line_width: # (int, optional) line width of
|
|
72
|
+
show: False # (bool) show images/videos in a window if supported
|
|
73
|
+
save_frames: False # (bool) save individual frames from video predictions
|
|
74
|
+
save_txt: False # (bool) save results as .txt files (xywh format)
|
|
75
|
+
save_conf: False # (bool) save confidence scores with results
|
|
76
|
+
save_crop: False # (bool) save cropped prediction regions to files
|
|
77
|
+
show_labels: True # (bool) draw class labels on images, e.g. 'person'
|
|
78
|
+
show_conf: True # (bool) draw confidence values on images, e.g. '0.99'
|
|
79
|
+
show_boxes: True # (bool) draw bounding boxes on images
|
|
80
|
+
line_width: # (int, optional) line width of boxes; auto-scales with image size if not set
|
|
79
81
|
|
|
80
82
|
# Export settings ------------------------------------------------------------------------------------------------------
|
|
81
|
-
format: torchscript # (str) format
|
|
82
|
-
keras: False # (bool)
|
|
83
|
-
optimize: False # (bool) TorchScript
|
|
84
|
-
int8: False # (bool)
|
|
85
|
-
dynamic: False # (bool)
|
|
86
|
-
simplify: True # (bool) ONNX
|
|
87
|
-
opset: # (int, optional) ONNX
|
|
88
|
-
workspace: # (float, optional) TensorRT
|
|
89
|
-
nms: False # (bool)
|
|
83
|
+
format: torchscript # (str) target format, e.g. torchscript|onnx|openvino|engine|coreml|saved_model|pb|tflite|edgetpu|tfjs|paddle|mnn|ncnn|imx|rknn|executorch
|
|
84
|
+
keras: False # (bool) TF SavedModel only (format=saved_model); enable Keras layers during export
|
|
85
|
+
optimize: False # (bool) TorchScript only; apply mobile optimizations to the scripted model
|
|
86
|
+
int8: False # (bool) INT8/PTQ where supported (openvino, tflite, tfjs, engine, imx); needs calibration data/fraction
|
|
87
|
+
dynamic: False # (bool) dynamic shapes for torchscript, onnx, openvino, engine; enable variable image sizes
|
|
88
|
+
simplify: True # (bool) ONNX/engine only; run graph simplifier for cleaner ONNX before runtime conversion
|
|
89
|
+
opset: # (int, optional) ONNX/engine only; opset version for export; leave unset to use a tested default
|
|
90
|
+
workspace: # (float, optional) engine (TensorRT) only; workspace size in GiB, e.g. 4
|
|
91
|
+
nms: False # (bool) fuse NMS into exported model when backend supports; if True, conf/iou apply (agnostic_nms except coreml)
|
|
90
92
|
|
|
91
93
|
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
|
92
|
-
lr0: 0.01 # (float) initial learning rate (
|
|
93
|
-
lrf: 0.01 # (float) final
|
|
94
|
-
momentum: 0.937 # (float) SGD momentum
|
|
95
|
-
weight_decay: 0.0005 # (float)
|
|
96
|
-
warmup_epochs: 3.0 # (float) warmup epochs (fractions
|
|
97
|
-
warmup_momentum: 0.8 # (float)
|
|
98
|
-
warmup_bias_lr: 0.1 # (float)
|
|
94
|
+
lr0: 0.01 # (float) initial learning rate (SGD=1e-2, Adam/AdamW=1e-3)
|
|
95
|
+
lrf: 0.01 # (float) final LR fraction; final LR = lr0 * lrf
|
|
96
|
+
momentum: 0.937 # (float) SGD momentum or Adam beta1
|
|
97
|
+
weight_decay: 0.0005 # (float) weight decay (L2 regularization)
|
|
98
|
+
warmup_epochs: 3.0 # (float) warmup epochs (fractions allowed)
|
|
99
|
+
warmup_momentum: 0.8 # (float) initial momentum during warmup
|
|
100
|
+
warmup_bias_lr: 0.1 # (float) bias learning rate during warmup
|
|
99
101
|
box: 7.5 # (float) box loss gain
|
|
100
|
-
cls: 0.5 # (float)
|
|
101
|
-
dfl: 1.5 # (float)
|
|
102
|
-
pose: 12.0 # (float) pose loss gain
|
|
103
|
-
kobj: 1.0 # (float) keypoint
|
|
104
|
-
nbs: 64 # (int) nominal batch size
|
|
105
|
-
hsv_h: 0.015 # (float)
|
|
106
|
-
hsv_s: 0.7 # (float)
|
|
107
|
-
hsv_v: 0.4 # (float)
|
|
108
|
-
degrees: 0.0 # (float)
|
|
109
|
-
translate: 0.1 # (float)
|
|
110
|
-
scale: 0.5 # (float)
|
|
111
|
-
shear: 0.0 # (float)
|
|
112
|
-
perspective: 0.0 # (float)
|
|
113
|
-
flipud: 0.0 # (float)
|
|
114
|
-
fliplr: 0.5 # (float)
|
|
115
|
-
bgr: 0.0 # (float)
|
|
116
|
-
mosaic: 1.0 # (float)
|
|
117
|
-
mixup: 0.0 # (float)
|
|
118
|
-
cutmix: 0.0 # (float)
|
|
119
|
-
copy_paste: 0.0 # (float)
|
|
120
|
-
copy_paste_mode:
|
|
121
|
-
auto_augment: randaugment # (str) auto augmentation policy
|
|
122
|
-
erasing: 0.4 # (float)
|
|
102
|
+
cls: 0.5 # (float) classification loss gain
|
|
103
|
+
dfl: 1.5 # (float) distribution focal loss gain
|
|
104
|
+
pose: 12.0 # (float) pose loss gain (pose tasks)
|
|
105
|
+
kobj: 1.0 # (float) keypoint objectness loss gain (pose tasks)
|
|
106
|
+
nbs: 64 # (int) nominal batch size used for loss normalization
|
|
107
|
+
hsv_h: 0.015 # (float) HSV hue augmentation fraction
|
|
108
|
+
hsv_s: 0.7 # (float) HSV saturation augmentation fraction
|
|
109
|
+
hsv_v: 0.4 # (float) HSV value (brightness) augmentation fraction
|
|
110
|
+
degrees: 0.0 # (float) rotation degrees (+/-)
|
|
111
|
+
translate: 0.1 # (float) translation fraction (+/-)
|
|
112
|
+
scale: 0.5 # (float) scale gain (+/-)
|
|
113
|
+
shear: 0.0 # (float) shear degrees (+/-)
|
|
114
|
+
perspective: 0.0 # (float) perspective fraction (0–0.001 typical)
|
|
115
|
+
flipud: 0.0 # (float) vertical flip probability
|
|
116
|
+
fliplr: 0.5 # (float) horizontal flip probability
|
|
117
|
+
bgr: 0.0 # (float) RGB↔BGR channel swap probability
|
|
118
|
+
mosaic: 1.0 # (float) mosaic augmentation probability
|
|
119
|
+
mixup: 0.0 # (float) MixUp augmentation probability
|
|
120
|
+
cutmix: 0.0 # (float) CutMix augmentation probability
|
|
121
|
+
copy_paste: 0.0 # (float) segmentation copy-paste probability
|
|
122
|
+
copy_paste_mode: flip # (str) copy-paste strategy for segmentation: flip or mixup
|
|
123
|
+
auto_augment: randaugment # (str) classification auto augmentation policy: randaugment, autoaugment, augmix
|
|
124
|
+
erasing: 0.4 # (float) random erasing probability for classification (0–0.9), <1.0
|
|
123
125
|
|
|
124
126
|
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
|
125
|
-
cfg: # (str, optional)
|
|
127
|
+
cfg: # (str, optional) path to a config.yaml that overrides defaults
|
|
126
128
|
|
|
127
129
|
# Tracker settings ------------------------------------------------------------------------------------------------------
|
|
128
|
-
tracker: botsort.yaml # (str) tracker
|
|
130
|
+
tracker: botsort.yaml # (str) tracker config file: botsort.yaml or bytetrack.yaml
|
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
9
|
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
|
10
|
-
scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11.yaml with scale 'n'
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11-pose.yaml with scale 'n'
|
|
11
11
|
# [depth, width, max_channels]
|
|
12
12
|
n: [0.50, 0.25, 1024] # summary: 196 layers, 2908507 parameters, 2908491 gradients, 7.7 GFLOPs
|
|
13
13
|
s: [0.50, 0.50, 1024] # summary: 196 layers, 9948811 parameters, 9948795 gradients, 23.5 GFLOPs
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
#
|
|
3
|
+
# Ultralytics YOLOE-11-seg instance segmentation model. For usage examples, see https://docs.ultralytics.com/tasks/segment
|
|
4
4
|
|
|
5
5
|
# Parameters
|
|
6
6
|
nc: 80 # number of classes
|
|
7
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
7
|
+
scales: # model compound scaling constants, i.e. 'model=yoloe-11n-seg.yaml' will call yoloe-11-seg.yaml with scale 'n'
|
|
8
8
|
# [depth, width, max_channels]
|
|
9
9
|
n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
|
|
10
10
|
s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
#
|
|
3
|
+
# Ultralytics YOLOE-11 object detection model with P3/8 - P5/32 outputs. For usage examples, see https://docs.ultralytics.com/tasks/detect
|
|
4
4
|
|
|
5
5
|
# Parameters
|
|
6
6
|
nc: 80 # number of classes
|
|
7
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
7
|
+
scales: # model compound scaling constants, i.e. 'model=yoloe-11n.yaml' will call yoloe-11.yaml with scale 'n'
|
|
8
8
|
# [depth, width, max_channels]
|
|
9
9
|
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
|
|
10
10
|
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
|