dgenerate-ultralytics-headless 8.3.196__py3-none-any.whl → 8.3.248__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/METADATA +33 -34
- dgenerate_ultralytics_headless-8.3.248.dist-info/RECORD +298 -0
- tests/__init__.py +5 -7
- tests/conftest.py +8 -15
- tests/test_cli.py +8 -10
- tests/test_cuda.py +9 -10
- tests/test_engine.py +29 -2
- tests/test_exports.py +69 -21
- tests/test_integrations.py +8 -11
- tests/test_python.py +109 -71
- tests/test_solutions.py +170 -159
- ultralytics/__init__.py +27 -9
- ultralytics/cfg/__init__.py +57 -64
- ultralytics/cfg/datasets/Argoverse.yaml +7 -6
- ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/Objects365.yaml +19 -15
- ultralytics/cfg/datasets/SKU-110K.yaml +1 -1
- ultralytics/cfg/datasets/VOC.yaml +19 -21
- ultralytics/cfg/datasets/VisDrone.yaml +5 -5
- ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
- ultralytics/cfg/datasets/coco-pose.yaml +24 -2
- ultralytics/cfg/datasets/coco.yaml +2 -2
- ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/datasets/dog-pose.yaml +28 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/dota8.yaml +2 -2
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +7 -7
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
- ultralytics/cfg/datasets/xView.yaml +16 -16
- ultralytics/cfg/default.yaml +96 -94
- ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
- ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
- ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
- ultralytics/cfg/models/v6/yolov6.yaml +1 -1
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
- ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
- ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
- ultralytics/cfg/trackers/botsort.yaml +16 -17
- ultralytics/cfg/trackers/bytetrack.yaml +9 -11
- ultralytics/data/__init__.py +4 -4
- ultralytics/data/annotator.py +3 -4
- ultralytics/data/augment.py +286 -476
- ultralytics/data/base.py +18 -26
- ultralytics/data/build.py +151 -26
- ultralytics/data/converter.py +38 -50
- ultralytics/data/dataset.py +47 -75
- ultralytics/data/loaders.py +42 -49
- ultralytics/data/split.py +5 -6
- ultralytics/data/split_dota.py +8 -15
- ultralytics/data/utils.py +41 -45
- ultralytics/engine/exporter.py +462 -462
- ultralytics/engine/model.py +150 -191
- ultralytics/engine/predictor.py +30 -40
- ultralytics/engine/results.py +177 -311
- ultralytics/engine/trainer.py +193 -120
- ultralytics/engine/tuner.py +77 -63
- ultralytics/engine/validator.py +39 -22
- ultralytics/hub/__init__.py +16 -19
- ultralytics/hub/auth.py +6 -12
- ultralytics/hub/google/__init__.py +7 -10
- ultralytics/hub/session.py +15 -25
- ultralytics/hub/utils.py +5 -8
- ultralytics/models/__init__.py +1 -1
- ultralytics/models/fastsam/__init__.py +1 -1
- ultralytics/models/fastsam/model.py +8 -10
- ultralytics/models/fastsam/predict.py +19 -30
- ultralytics/models/fastsam/utils.py +1 -2
- ultralytics/models/fastsam/val.py +5 -7
- ultralytics/models/nas/__init__.py +1 -1
- ultralytics/models/nas/model.py +5 -8
- ultralytics/models/nas/predict.py +7 -9
- ultralytics/models/nas/val.py +1 -2
- ultralytics/models/rtdetr/__init__.py +1 -1
- ultralytics/models/rtdetr/model.py +7 -8
- ultralytics/models/rtdetr/predict.py +15 -19
- ultralytics/models/rtdetr/train.py +10 -13
- ultralytics/models/rtdetr/val.py +21 -23
- ultralytics/models/sam/__init__.py +15 -2
- ultralytics/models/sam/amg.py +14 -20
- ultralytics/models/sam/build.py +26 -19
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +29 -32
- ultralytics/models/sam/modules/blocks.py +83 -144
- ultralytics/models/sam/modules/decoders.py +22 -40
- ultralytics/models/sam/modules/encoders.py +44 -101
- ultralytics/models/sam/modules/memory_attention.py +16 -30
- ultralytics/models/sam/modules/sam.py +206 -79
- ultralytics/models/sam/modules/tiny_encoder.py +64 -83
- ultralytics/models/sam/modules/transformer.py +18 -28
- ultralytics/models/sam/modules/utils.py +174 -50
- ultralytics/models/sam/predict.py +2268 -366
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/loss.py +14 -26
- ultralytics/models/utils/ops.py +13 -17
- ultralytics/models/yolo/__init__.py +1 -1
- ultralytics/models/yolo/classify/predict.py +9 -12
- ultralytics/models/yolo/classify/train.py +15 -41
- ultralytics/models/yolo/classify/val.py +34 -32
- ultralytics/models/yolo/detect/predict.py +8 -11
- ultralytics/models/yolo/detect/train.py +13 -32
- ultralytics/models/yolo/detect/val.py +75 -63
- ultralytics/models/yolo/model.py +37 -53
- ultralytics/models/yolo/obb/predict.py +5 -14
- ultralytics/models/yolo/obb/train.py +11 -14
- ultralytics/models/yolo/obb/val.py +42 -39
- ultralytics/models/yolo/pose/__init__.py +1 -1
- ultralytics/models/yolo/pose/predict.py +7 -22
- ultralytics/models/yolo/pose/train.py +10 -22
- ultralytics/models/yolo/pose/val.py +40 -59
- ultralytics/models/yolo/segment/predict.py +16 -20
- ultralytics/models/yolo/segment/train.py +3 -12
- ultralytics/models/yolo/segment/val.py +106 -56
- ultralytics/models/yolo/world/train.py +12 -16
- ultralytics/models/yolo/world/train_world.py +11 -34
- ultralytics/models/yolo/yoloe/__init__.py +7 -7
- ultralytics/models/yolo/yoloe/predict.py +16 -23
- ultralytics/models/yolo/yoloe/train.py +31 -56
- ultralytics/models/yolo/yoloe/train_seg.py +5 -10
- ultralytics/models/yolo/yoloe/val.py +16 -21
- ultralytics/nn/__init__.py +7 -7
- ultralytics/nn/autobackend.py +152 -80
- ultralytics/nn/modules/__init__.py +60 -60
- ultralytics/nn/modules/activation.py +4 -6
- ultralytics/nn/modules/block.py +133 -217
- ultralytics/nn/modules/conv.py +52 -97
- ultralytics/nn/modules/head.py +64 -116
- ultralytics/nn/modules/transformer.py +79 -89
- ultralytics/nn/modules/utils.py +16 -21
- ultralytics/nn/tasks.py +111 -156
- ultralytics/nn/text_model.py +40 -67
- ultralytics/solutions/__init__.py +12 -12
- ultralytics/solutions/ai_gym.py +11 -17
- ultralytics/solutions/analytics.py +15 -16
- ultralytics/solutions/config.py +5 -6
- ultralytics/solutions/distance_calculation.py +10 -13
- ultralytics/solutions/heatmap.py +7 -13
- ultralytics/solutions/instance_segmentation.py +5 -8
- ultralytics/solutions/object_blurrer.py +7 -10
- ultralytics/solutions/object_counter.py +12 -19
- ultralytics/solutions/object_cropper.py +8 -14
- ultralytics/solutions/parking_management.py +33 -31
- ultralytics/solutions/queue_management.py +10 -12
- ultralytics/solutions/region_counter.py +9 -12
- ultralytics/solutions/security_alarm.py +15 -20
- ultralytics/solutions/similarity_search.py +13 -17
- ultralytics/solutions/solutions.py +75 -74
- ultralytics/solutions/speed_estimation.py +7 -10
- ultralytics/solutions/streamlit_inference.py +4 -7
- ultralytics/solutions/templates/similarity-search.html +7 -18
- ultralytics/solutions/trackzone.py +7 -10
- ultralytics/solutions/vision_eye.py +5 -8
- ultralytics/trackers/__init__.py +1 -1
- ultralytics/trackers/basetrack.py +3 -5
- ultralytics/trackers/bot_sort.py +10 -27
- ultralytics/trackers/byte_tracker.py +14 -30
- ultralytics/trackers/track.py +3 -6
- ultralytics/trackers/utils/gmc.py +11 -22
- ultralytics/trackers/utils/kalman_filter.py +37 -48
- ultralytics/trackers/utils/matching.py +12 -15
- ultralytics/utils/__init__.py +116 -116
- ultralytics/utils/autobatch.py +2 -4
- ultralytics/utils/autodevice.py +17 -18
- ultralytics/utils/benchmarks.py +70 -70
- ultralytics/utils/callbacks/base.py +8 -10
- ultralytics/utils/callbacks/clearml.py +5 -13
- ultralytics/utils/callbacks/comet.py +32 -46
- ultralytics/utils/callbacks/dvc.py +13 -18
- ultralytics/utils/callbacks/mlflow.py +4 -5
- ultralytics/utils/callbacks/neptune.py +7 -15
- ultralytics/utils/callbacks/platform.py +314 -38
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +23 -31
- ultralytics/utils/callbacks/wb.py +10 -13
- ultralytics/utils/checks.py +151 -87
- ultralytics/utils/cpu.py +3 -8
- ultralytics/utils/dist.py +19 -15
- ultralytics/utils/downloads.py +29 -41
- ultralytics/utils/errors.py +6 -14
- ultralytics/utils/events.py +2 -4
- ultralytics/utils/export/__init__.py +7 -0
- ultralytics/utils/{export.py → export/engine.py} +16 -16
- ultralytics/utils/export/imx.py +325 -0
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +24 -28
- ultralytics/utils/git.py +9 -11
- ultralytics/utils/instance.py +30 -51
- ultralytics/utils/logger.py +212 -114
- ultralytics/utils/loss.py +15 -24
- ultralytics/utils/metrics.py +131 -160
- ultralytics/utils/nms.py +21 -30
- ultralytics/utils/ops.py +107 -165
- ultralytics/utils/patches.py +33 -21
- ultralytics/utils/plotting.py +122 -119
- ultralytics/utils/tal.py +28 -44
- ultralytics/utils/torch_utils.py +70 -187
- ultralytics/utils/tqdm.py +20 -20
- ultralytics/utils/triton.py +13 -19
- ultralytics/utils/tuner.py +17 -5
- dgenerate_ultralytics_headless-8.3.196.dist-info/RECORD +0 -281
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/top_level.txt +0 -0
|
@@ -10,7 +10,8 @@ segmentation tasks.
|
|
|
10
10
|
|
|
11
11
|
from __future__ import annotations
|
|
12
12
|
|
|
13
|
-
from collections import OrderedDict
|
|
13
|
+
from collections import OrderedDict, defaultdict
|
|
14
|
+
from copy import deepcopy
|
|
14
15
|
from typing import Any
|
|
15
16
|
|
|
16
17
|
import cv2
|
|
@@ -21,7 +22,8 @@ import torch.nn.functional as F
|
|
|
21
22
|
from ultralytics.data.augment import LetterBox
|
|
22
23
|
from ultralytics.engine.predictor import BasePredictor
|
|
23
24
|
from ultralytics.engine.results import Results
|
|
24
|
-
from ultralytics.utils import DEFAULT_CFG, ops
|
|
25
|
+
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops
|
|
26
|
+
from ultralytics.utils.metrics import box_iou, mask_iou
|
|
25
27
|
from ultralytics.utils.torch_utils import select_device, smart_inference_mode
|
|
26
28
|
|
|
27
29
|
from .amg import (
|
|
@@ -35,15 +37,15 @@ from .amg import (
|
|
|
35
37
|
uncrop_boxes_xyxy,
|
|
36
38
|
uncrop_masks,
|
|
37
39
|
)
|
|
40
|
+
from .sam3.geometry_encoders import Prompt
|
|
38
41
|
|
|
39
42
|
|
|
40
43
|
class Predictor(BasePredictor):
|
|
41
|
-
"""
|
|
42
|
-
Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.
|
|
44
|
+
"""Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.
|
|
43
45
|
|
|
44
|
-
This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image
|
|
45
|
-
|
|
46
|
-
|
|
46
|
+
This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image segmentation
|
|
47
|
+
tasks. It supports various input prompts like points, bounding boxes, and masks for fine-grained control over
|
|
48
|
+
segmentation results.
|
|
47
49
|
|
|
48
50
|
Attributes:
|
|
49
51
|
args (SimpleNamespace): Configuration arguments for the predictor.
|
|
@@ -80,23 +82,19 @@ class Predictor(BasePredictor):
|
|
|
80
82
|
>>> results = predictor(bboxes=bboxes)
|
|
81
83
|
"""
|
|
82
84
|
|
|
85
|
+
stride = 16
|
|
86
|
+
|
|
83
87
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
84
|
-
"""
|
|
85
|
-
Initialize the Predictor with configuration, overrides, and callbacks.
|
|
88
|
+
"""Initialize the Predictor with configuration, overrides, and callbacks.
|
|
86
89
|
|
|
87
90
|
Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or
|
|
88
|
-
callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True
|
|
89
|
-
|
|
91
|
+
callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True for
|
|
92
|
+
optimal results.
|
|
90
93
|
|
|
91
94
|
Args:
|
|
92
95
|
cfg (dict): Configuration dictionary containing default settings.
|
|
93
96
|
overrides (dict | None): Dictionary of values to override default configuration.
|
|
94
97
|
_callbacks (dict | None): Dictionary of callback functions to customize behavior.
|
|
95
|
-
|
|
96
|
-
Examples:
|
|
97
|
-
>>> predictor_example = Predictor(cfg=DEFAULT_CFG)
|
|
98
|
-
>>> predictor_example_with_imgsz = Predictor(overrides={"imgsz": 640})
|
|
99
|
-
>>> predictor_example_with_callback = Predictor(_callbacks={"on_predict_start": custom_callback})
|
|
100
98
|
"""
|
|
101
99
|
if overrides is None:
|
|
102
100
|
overrides = {}
|
|
@@ -109,14 +107,15 @@ class Predictor(BasePredictor):
|
|
|
109
107
|
self.segment_all = False
|
|
110
108
|
|
|
111
109
|
def preprocess(self, im):
|
|
112
|
-
"""
|
|
113
|
-
Preprocess the input image for model inference.
|
|
110
|
+
"""Preprocess the input image for model inference.
|
|
114
111
|
|
|
115
112
|
This method prepares the input image by applying transformations and normalization. It supports both
|
|
116
|
-
torch.Tensor and list of np.ndarray as input formats.
|
|
113
|
+
torch.Tensor and list of np.ndarray as input formats. For OpenCV-loaded images, the input is typically BGR and
|
|
114
|
+
is converted to RGB during preprocessing.
|
|
117
115
|
|
|
118
116
|
Args:
|
|
119
|
-
im (torch.Tensor | list[np.ndarray]): Input image(s) in BCHW tensor format or list of HWC
|
|
117
|
+
im (torch.Tensor | list[np.ndarray]): Input image(s) in BCHW tensor format or a list of HWC NumPy arrays.
|
|
118
|
+
NumPy arrays are expected to be in BGR order (as returned by OpenCV) and will be converted to RGB.
|
|
120
119
|
|
|
121
120
|
Returns:
|
|
122
121
|
(torch.Tensor): The preprocessed image tensor, normalized and converted to the appropriate dtype.
|
|
@@ -142,11 +141,10 @@ class Predictor(BasePredictor):
|
|
|
142
141
|
return im
|
|
143
142
|
|
|
144
143
|
def pre_transform(self, im):
|
|
145
|
-
"""
|
|
146
|
-
Perform initial transformations on the input image for preprocessing.
|
|
144
|
+
"""Perform initial transformations on the input image for preprocessing.
|
|
147
145
|
|
|
148
|
-
This method applies transformations such as resizing to prepare the image for further preprocessing.
|
|
149
|
-
|
|
146
|
+
This method applies transformations such as resizing to prepare the image for further preprocessing. Currently,
|
|
147
|
+
batched inference is not supported; hence the list length should be 1.
|
|
150
148
|
|
|
151
149
|
Args:
|
|
152
150
|
im (list[np.ndarray]): List containing a single image in HWC numpy array format.
|
|
@@ -165,15 +163,14 @@ class Predictor(BasePredictor):
|
|
|
165
163
|
1
|
|
166
164
|
"""
|
|
167
165
|
assert len(im) == 1, "SAM model does not currently support batched inference"
|
|
168
|
-
letterbox = LetterBox(self.
|
|
166
|
+
letterbox = LetterBox(self.imgsz, auto=False, center=False)
|
|
169
167
|
return [letterbox(image=x) for x in im]
|
|
170
168
|
|
|
171
169
|
def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs):
|
|
172
|
-
"""
|
|
173
|
-
Perform image segmentation inference based on the given input cues, using the currently loaded image.
|
|
170
|
+
"""Perform image segmentation inference based on the given input cues, using the currently loaded image.
|
|
174
171
|
|
|
175
|
-
This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
|
|
176
|
-
|
|
172
|
+
This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder,
|
|
173
|
+
and mask decoder for real-time and promptable segmentation tasks.
|
|
177
174
|
|
|
178
175
|
Args:
|
|
179
176
|
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
|
|
@@ -187,7 +184,8 @@ class Predictor(BasePredictor):
|
|
|
187
184
|
|
|
188
185
|
Returns:
|
|
189
186
|
pred_masks (torch.Tensor): The output masks in shape (C, H, W), where C is the number of generated masks.
|
|
190
|
-
pred_scores (torch.Tensor): An array of length C containing quality scores predicted by the model for each
|
|
187
|
+
pred_scores (torch.Tensor): An array of length C containing quality scores predicted by the model for each
|
|
188
|
+
mask.
|
|
191
189
|
|
|
192
190
|
Examples:
|
|
193
191
|
>>> predictor = Predictor()
|
|
@@ -207,17 +205,18 @@ class Predictor(BasePredictor):
|
|
|
207
205
|
return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output)
|
|
208
206
|
|
|
209
207
|
def prompt_inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False):
|
|
210
|
-
"""
|
|
211
|
-
Perform image segmentation inference based on input cues using SAM's specialized architecture.
|
|
208
|
+
"""Perform image segmentation inference based on input cues using SAM's specialized architecture.
|
|
212
209
|
|
|
213
|
-
This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation.
|
|
214
|
-
|
|
210
|
+
This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation. It
|
|
211
|
+
processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks.
|
|
215
212
|
|
|
216
213
|
Args:
|
|
217
214
|
im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
|
|
218
215
|
bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
|
|
219
|
-
points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
|
|
220
|
-
|
|
216
|
+
points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
|
|
217
|
+
2), in pixels.
|
|
218
|
+
labels (np.ndarray | list | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground,
|
|
219
|
+
0 for background.
|
|
221
220
|
masks (np.ndarray | None): Low-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.
|
|
222
221
|
multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
|
|
223
222
|
|
|
@@ -245,8 +244,7 @@ class Predictor(BasePredictor):
|
|
|
245
244
|
masks=None,
|
|
246
245
|
multimask_output=False,
|
|
247
246
|
):
|
|
248
|
-
"""
|
|
249
|
-
Perform inference on image features using the SAM model.
|
|
247
|
+
"""Perform inference on image features using the SAM model.
|
|
250
248
|
|
|
251
249
|
Args:
|
|
252
250
|
features (torch.Tensor): Extracted image features with shape (B, C, H, W) from the SAM model image encoder.
|
|
@@ -278,16 +276,18 @@ class Predictor(BasePredictor):
|
|
|
278
276
|
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
|
|
279
277
|
|
|
280
278
|
def _prepare_prompts(self, dst_shape, src_shape, bboxes=None, points=None, labels=None, masks=None):
|
|
281
|
-
"""
|
|
282
|
-
Prepare and transform the input prompts for processing based on the destination shape.
|
|
279
|
+
"""Prepare and transform the input prompts for processing based on the destination shape.
|
|
283
280
|
|
|
284
281
|
Args:
|
|
285
282
|
dst_shape (tuple[int, int]): The target shape (height, width) for the prompts.
|
|
286
283
|
src_shape (tuple[int, int]): The source shape (height, width) of the input image.
|
|
287
284
|
bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
|
|
288
|
-
points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
|
|
289
|
-
|
|
290
|
-
|
|
285
|
+
points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
|
|
286
|
+
2), in pixels.
|
|
287
|
+
labels (np.ndarray | list | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground,
|
|
288
|
+
0 for background.
|
|
289
|
+
masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array with
|
|
290
|
+
shape (H, W).
|
|
291
291
|
|
|
292
292
|
Returns:
|
|
293
293
|
bboxes (torch.Tensor | None): Transformed bounding boxes.
|
|
@@ -340,11 +340,10 @@ class Predictor(BasePredictor):
|
|
|
340
340
|
stability_score_offset=0.95,
|
|
341
341
|
crop_nms_thresh=0.7,
|
|
342
342
|
):
|
|
343
|
-
"""
|
|
344
|
-
Perform image segmentation using the Segment Anything Model (SAM).
|
|
343
|
+
"""Perform image segmentation using the Segment Anything Model (SAM).
|
|
345
344
|
|
|
346
|
-
This method segments an entire image into constituent parts by leveraging SAM's advanced architecture
|
|
347
|
-
|
|
345
|
+
This method segments an entire image into constituent parts by leveraging SAM's advanced architecture and
|
|
346
|
+
real-time performance capabilities. It can optionally work on image crops for finer segmentation.
|
|
348
347
|
|
|
349
348
|
Args:
|
|
350
349
|
im (torch.Tensor): Input tensor representing the preprocessed image with shape (N, C, H, W).
|
|
@@ -423,7 +422,7 @@ class Predictor(BasePredictor):
|
|
|
423
422
|
pred_masks.append(crop_masks)
|
|
424
423
|
pred_bboxes.append(crop_bboxes)
|
|
425
424
|
pred_scores.append(crop_scores)
|
|
426
|
-
region_areas.append(area.expand(
|
|
425
|
+
region_areas.append(area.expand(crop_masks.shape[0]))
|
|
427
426
|
|
|
428
427
|
pred_masks = torch.cat(pred_masks)
|
|
429
428
|
pred_bboxes = torch.cat(pred_bboxes)
|
|
@@ -439,8 +438,7 @@ class Predictor(BasePredictor):
|
|
|
439
438
|
return pred_masks, pred_scores, pred_bboxes
|
|
440
439
|
|
|
441
440
|
def setup_model(self, model=None, verbose=True):
|
|
442
|
-
"""
|
|
443
|
-
Initialize the Segment Anything Model (SAM) for inference.
|
|
441
|
+
"""Initialize the Segment Anything Model (SAM) for inference.
|
|
444
442
|
|
|
445
443
|
This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary
|
|
446
444
|
parameters for image normalization and other Ultralytics compatibility settings.
|
|
@@ -478,8 +476,7 @@ class Predictor(BasePredictor):
|
|
|
478
476
|
return build_sam(self.args.model)
|
|
479
477
|
|
|
480
478
|
def postprocess(self, preds, img, orig_imgs):
|
|
481
|
-
"""
|
|
482
|
-
Post-process SAM's inference outputs to generate object detection masks and bounding boxes.
|
|
479
|
+
"""Post-process SAM's inference outputs to generate object detection masks and bounding boxes.
|
|
483
480
|
|
|
484
481
|
This method scales masks and boxes to the original image size and applies a threshold to the mask
|
|
485
482
|
predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks.
|
|
@@ -493,8 +490,8 @@ class Predictor(BasePredictor):
|
|
|
493
490
|
orig_imgs (list[np.ndarray] | torch.Tensor): The original, unprocessed images.
|
|
494
491
|
|
|
495
492
|
Returns:
|
|
496
|
-
(list[Results]): List of Results objects containing detection masks, bounding boxes, and other
|
|
497
|
-
|
|
493
|
+
(list[Results]): List of Results objects containing detection masks, bounding boxes, and other metadata for
|
|
494
|
+
each processed image.
|
|
498
495
|
|
|
499
496
|
Examples:
|
|
500
497
|
>>> predictor = Predictor()
|
|
@@ -504,14 +501,14 @@ class Predictor(BasePredictor):
|
|
|
504
501
|
# (N, 1, H, W), (N, 1)
|
|
505
502
|
pred_masks, pred_scores = preds[:2]
|
|
506
503
|
pred_bboxes = preds[2] if self.segment_all else None
|
|
507
|
-
names = dict(enumerate(str(i) for i in range(
|
|
504
|
+
names = dict(enumerate(str(i) for i in range(pred_masks.shape[0])))
|
|
508
505
|
|
|
509
506
|
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
|
510
|
-
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
|
507
|
+
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)[..., ::-1]
|
|
511
508
|
|
|
512
509
|
results = []
|
|
513
510
|
for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
|
|
514
|
-
if
|
|
511
|
+
if masks.shape[0] == 0:
|
|
515
512
|
masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
|
|
516
513
|
else:
|
|
517
514
|
masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
|
|
@@ -521,7 +518,7 @@ class Predictor(BasePredictor):
|
|
|
521
518
|
else:
|
|
522
519
|
pred_bboxes = batched_mask_to_box(masks)
|
|
523
520
|
# NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
|
|
524
|
-
cls = torch.arange(
|
|
521
|
+
cls = torch.arange(pred_masks.shape[0], dtype=torch.int32, device=pred_masks.device)
|
|
525
522
|
idx = pred_scores > self.args.conf
|
|
526
523
|
pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)[idx]
|
|
527
524
|
masks = masks[idx]
|
|
@@ -530,51 +527,25 @@ class Predictor(BasePredictor):
|
|
|
530
527
|
self.segment_all = False
|
|
531
528
|
return results
|
|
532
529
|
|
|
533
|
-
def setup_source(self, source):
|
|
534
|
-
"""
|
|
535
|
-
Set up the data source for inference.
|
|
536
|
-
|
|
537
|
-
This method configures the data source from which images will be fetched for inference. It supports
|
|
538
|
-
various input types such as image files, directories, video files, and other compatible data sources.
|
|
539
|
-
|
|
540
|
-
Args:
|
|
541
|
-
source (str | Path | None): The path or identifier for the image data source. Can be a file path,
|
|
542
|
-
directory path, URL, or other supported source types.
|
|
543
|
-
|
|
544
|
-
Examples:
|
|
545
|
-
>>> predictor = Predictor()
|
|
546
|
-
>>> predictor.setup_source("path/to/images")
|
|
547
|
-
>>> predictor.setup_source("video.mp4")
|
|
548
|
-
>>> predictor.setup_source(None) # Uses default source if available
|
|
549
|
-
|
|
550
|
-
Notes:
|
|
551
|
-
- If source is None, the method may use a default source if configured.
|
|
552
|
-
- The method adapts to different source types and prepares them for subsequent inference steps.
|
|
553
|
-
- Supported source types may include local files, directories, URLs, and video streams.
|
|
554
|
-
"""
|
|
555
|
-
if source is not None:
|
|
556
|
-
super().setup_source(source)
|
|
557
|
-
|
|
558
530
|
def set_image(self, image):
|
|
559
|
-
"""
|
|
560
|
-
Preprocess and set a single image for inference.
|
|
531
|
+
"""Preprocess and set a single image for inference.
|
|
561
532
|
|
|
562
533
|
This method prepares the model for inference on a single image by setting up the model if not already
|
|
563
|
-
initialized, configuring the data source, and preprocessing the image for feature extraction. It
|
|
564
|
-
|
|
534
|
+
initialized, configuring the data source, and preprocessing the image for feature extraction. It ensures that
|
|
535
|
+
only one image is set at a time and extracts image features for subsequent use.
|
|
565
536
|
|
|
566
537
|
Args:
|
|
567
|
-
image (str | np.ndarray): Path to the image file as a string, or a numpy array representing
|
|
568
|
-
|
|
538
|
+
image (str | np.ndarray): Path to the image file as a string, or a numpy array representing an image read by
|
|
539
|
+
cv2 (BGR channel order).
|
|
540
|
+
|
|
541
|
+
Raises:
|
|
542
|
+
AssertionError: If more than one image is attempted to be set.
|
|
569
543
|
|
|
570
544
|
Examples:
|
|
571
545
|
>>> predictor = Predictor()
|
|
572
546
|
>>> predictor.set_image("path/to/image.jpg")
|
|
573
547
|
>>> predictor.set_image(cv2.imread("path/to/image.jpg"))
|
|
574
548
|
|
|
575
|
-
Raises:
|
|
576
|
-
AssertionError: If more than one image is attempted to be set.
|
|
577
|
-
|
|
578
549
|
Notes:
|
|
579
550
|
- This method should be called before performing inference on a new image.
|
|
580
551
|
- The extracted features are stored in the `self.features` attribute for later use.
|
|
@@ -588,12 +559,18 @@ class Predictor(BasePredictor):
|
|
|
588
559
|
self.features = self.get_im_features(im)
|
|
589
560
|
break
|
|
590
561
|
|
|
591
|
-
def
|
|
592
|
-
"""
|
|
562
|
+
def setup_source(self, source):
|
|
563
|
+
"""Set up the data source for SAM inference."""
|
|
564
|
+
if source is None: # handle the situation when set_imgsz in advance
|
|
565
|
+
return
|
|
566
|
+
super().setup_source(source, self.stride)
|
|
593
567
|
assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
|
|
594
568
|
f"SAM models only support square image size, but got {self.imgsz}."
|
|
595
569
|
)
|
|
596
570
|
self.model.set_imgsz(self.imgsz)
|
|
571
|
+
|
|
572
|
+
def get_im_features(self, im):
|
|
573
|
+
"""Extract image features using the SAM model's image encoder for subsequent mask prediction."""
|
|
597
574
|
return self.model.image_encoder(im)
|
|
598
575
|
|
|
599
576
|
def set_prompts(self, prompts):
|
|
@@ -607,12 +584,11 @@ class Predictor(BasePredictor):
|
|
|
607
584
|
|
|
608
585
|
@staticmethod
|
|
609
586
|
def remove_small_regions(masks, min_area=0, nms_thresh=0.7):
|
|
610
|
-
"""
|
|
611
|
-
Remove small disconnected regions and holes from segmentation masks.
|
|
587
|
+
"""Remove small disconnected regions and holes from segmentation masks.
|
|
612
588
|
|
|
613
|
-
This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM).
|
|
614
|
-
|
|
615
|
-
|
|
589
|
+
This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM). It
|
|
590
|
+
removes small disconnected regions and holes from the input masks, and then performs Non-Maximum Suppression
|
|
591
|
+
(NMS) to eliminate any newly created duplicate boxes.
|
|
616
592
|
|
|
617
593
|
Args:
|
|
618
594
|
masks (torch.Tensor): Segmentation masks to be processed, with shape (N, H, W) where N is the number of
|
|
@@ -633,7 +609,7 @@ class Predictor(BasePredictor):
|
|
|
633
609
|
"""
|
|
634
610
|
import torchvision # scope for faster 'import ultralytics'
|
|
635
611
|
|
|
636
|
-
if
|
|
612
|
+
if masks.shape[0] == 0:
|
|
637
613
|
return masks
|
|
638
614
|
|
|
639
615
|
# Filter small disconnected regions and holes
|
|
@@ -669,15 +645,16 @@ class Predictor(BasePredictor):
|
|
|
669
645
|
masks=None,
|
|
670
646
|
multimask_output=False,
|
|
671
647
|
):
|
|
672
|
-
"""
|
|
673
|
-
Perform prompts preprocessing and inference on provided image features using the SAM model.
|
|
648
|
+
"""Perform prompts preprocessing and inference on provided image features using the SAM model.
|
|
674
649
|
|
|
675
650
|
Args:
|
|
676
651
|
features (torch.Tensor | dict[str, Any]): Extracted image features from the SAM/SAM2 model image encoder.
|
|
677
652
|
src_shape (tuple[int, int]): The source shape (height, width) of the input image.
|
|
678
|
-
dst_shape (tuple[int, int] | None): The target shape (height, width) for the prompts. If None, defaults to
|
|
653
|
+
dst_shape (tuple[int, int] | None): The target shape (height, width) for the prompts. If None, defaults to
|
|
654
|
+
(imgsz, imgsz).
|
|
679
655
|
bboxes (np.ndarray | list[list[float]] | None): Bounding boxes in xyxy format with shape (N, 4).
|
|
680
|
-
points (np.ndarray | list[list[float]] | None): Points indicating object locations with shape (N, 2), in
|
|
656
|
+
points (np.ndarray | list[list[float]] | None): Points indicating object locations with shape (N, 2), in
|
|
657
|
+
pixels.
|
|
681
658
|
labels (np.ndarray | list[int] | None): Point prompt labels with shape (N, ).
|
|
682
659
|
masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array.
|
|
683
660
|
multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
|
|
@@ -693,25 +670,23 @@ class Predictor(BasePredictor):
|
|
|
693
670
|
dst_shape = dst_shape or (self.args.imgsz, self.args.imgsz)
|
|
694
671
|
prompts = self._prepare_prompts(dst_shape, src_shape, bboxes, points, labels, masks)
|
|
695
672
|
pred_masks, pred_scores = self._inference_features(features, *prompts, multimask_output)
|
|
696
|
-
if
|
|
673
|
+
if pred_masks.shape[0] == 0:
|
|
697
674
|
pred_masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
|
|
698
675
|
else:
|
|
699
676
|
pred_masks = ops.scale_masks(pred_masks[None].float(), src_shape, padding=False)[0]
|
|
700
677
|
pred_masks = pred_masks > self.model.mask_threshold # to bool
|
|
701
678
|
pred_bboxes = batched_mask_to_box(pred_masks)
|
|
702
679
|
# NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
|
|
703
|
-
cls = torch.arange(
|
|
680
|
+
cls = torch.arange(pred_masks.shape[0], dtype=torch.int32, device=pred_masks.device)
|
|
704
681
|
pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
|
|
705
682
|
return pred_masks, pred_bboxes
|
|
706
683
|
|
|
707
684
|
|
|
708
685
|
class SAM2Predictor(Predictor):
|
|
709
|
-
"""
|
|
710
|
-
SAM2Predictor class for advanced image segmentation using Segment Anything Model 2 architecture.
|
|
686
|
+
"""SAM2Predictor class for advanced image segmentation using Segment Anything Model 2 architecture.
|
|
711
687
|
|
|
712
|
-
This class extends the base Predictor class to implement SAM2-specific functionality for image
|
|
713
|
-
|
|
714
|
-
prompt-based inference.
|
|
688
|
+
This class extends the base Predictor class to implement SAM2-specific functionality for image segmentation tasks.
|
|
689
|
+
It provides methods for model initialization, feature extraction, and prompt-based inference.
|
|
715
690
|
|
|
716
691
|
Attributes:
|
|
717
692
|
_bb_feat_sizes (list[tuple]): Feature sizes for different backbone levels.
|
|
@@ -740,6 +715,7 @@ class SAM2Predictor(Predictor):
|
|
|
740
715
|
(128, 128),
|
|
741
716
|
(64, 64),
|
|
742
717
|
]
|
|
718
|
+
stride = 16
|
|
743
719
|
|
|
744
720
|
def get_model(self):
|
|
745
721
|
"""Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
|
|
@@ -748,15 +724,16 @@ class SAM2Predictor(Predictor):
|
|
|
748
724
|
return build_sam(self.args.model)
|
|
749
725
|
|
|
750
726
|
def _prepare_prompts(self, dst_shape, src_shape, bboxes=None, points=None, labels=None, masks=None):
|
|
751
|
-
"""
|
|
752
|
-
Prepare and transform the input prompts for processing based on the destination shape.
|
|
727
|
+
"""Prepare and transform the input prompts for processing based on the destination shape.
|
|
753
728
|
|
|
754
729
|
Args:
|
|
755
730
|
dst_shape (tuple[int, int]): The target shape (height, width) for the prompts.
|
|
756
731
|
src_shape (tuple[int, int]): The source shape (height, width) of the input image.
|
|
757
732
|
bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
|
|
758
|
-
points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
|
|
759
|
-
|
|
733
|
+
points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
|
|
734
|
+
2), in pixels.
|
|
735
|
+
labels (np.ndarray | list | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground,
|
|
736
|
+
0 for background.
|
|
760
737
|
masks (list | np.ndarray | None): Masks for the objects, where each mask is a 2D array.
|
|
761
738
|
|
|
762
739
|
Returns:
|
|
@@ -770,7 +747,7 @@ class SAM2Predictor(Predictor):
|
|
|
770
747
|
bboxes, points, labels, masks = super()._prepare_prompts(dst_shape, src_shape, bboxes, points, labels, masks)
|
|
771
748
|
if bboxes is not None:
|
|
772
749
|
bboxes = bboxes.view(-1, 2, 2)
|
|
773
|
-
bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(
|
|
750
|
+
bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(bboxes.shape[0], -1)
|
|
774
751
|
# NOTE: merge "boxes" and "points" into a single "points" input
|
|
775
752
|
# (where boxes are added at the beginning) to model.sam_prompt_encoder
|
|
776
753
|
if points is not None:
|
|
@@ -780,46 +757,13 @@ class SAM2Predictor(Predictor):
|
|
|
780
757
|
points, labels = bboxes, bbox_labels
|
|
781
758
|
return points, labels, masks
|
|
782
759
|
|
|
783
|
-
def
|
|
784
|
-
"""
|
|
785
|
-
|
|
786
|
-
|
|
787
|
-
This method initializes the model if not already done, configures the data source to the specified image,
|
|
788
|
-
and preprocesses the image for feature extraction. It supports setting only one image at a time.
|
|
789
|
-
|
|
790
|
-
Args:
|
|
791
|
-
image (str | np.ndarray): Path to the image file as a string, or a numpy array representing the image.
|
|
792
|
-
|
|
793
|
-
Examples:
|
|
794
|
-
>>> predictor = SAM2Predictor()
|
|
795
|
-
>>> predictor.set_image("path/to/image.jpg")
|
|
796
|
-
>>> predictor.set_image(np.array([...])) # Using a numpy array
|
|
797
|
-
|
|
798
|
-
Raises:
|
|
799
|
-
AssertionError: If more than one image is attempted to be set.
|
|
800
|
-
|
|
801
|
-
Notes:
|
|
802
|
-
- This method must be called before performing any inference on a new image.
|
|
803
|
-
- The method caches the extracted features for efficient subsequent inferences on the same image.
|
|
804
|
-
- Only one image can be set at a time. To process multiple images, call this method for each new image.
|
|
805
|
-
"""
|
|
806
|
-
if self.model is None:
|
|
807
|
-
self.setup_model(model=None)
|
|
808
|
-
self.setup_source(image)
|
|
809
|
-
assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
|
|
810
|
-
for batch in self.dataset:
|
|
811
|
-
im = self.preprocess(batch[1])
|
|
812
|
-
self.features = self.get_im_features(im)
|
|
813
|
-
break
|
|
760
|
+
def setup_source(self, source):
|
|
761
|
+
"""Set up the data source and image size for SAM2 inference."""
|
|
762
|
+
super().setup_source(source)
|
|
763
|
+
self._bb_feat_sizes = [[int(x / (self.stride * i)) for x in self.imgsz] for i in [1 / 4, 1 / 2, 1]]
|
|
814
764
|
|
|
815
765
|
def get_im_features(self, im):
|
|
816
766
|
"""Extract image features from the SAM image encoder for subsequent processing."""
|
|
817
|
-
assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
|
|
818
|
-
f"SAM 2 models only support square image size, but got {self.imgsz}."
|
|
819
|
-
)
|
|
820
|
-
self.model.set_imgsz(self.imgsz)
|
|
821
|
-
self._bb_feat_sizes = [[x // (4 * i) for x in self.imgsz] for i in [1, 2, 4]]
|
|
822
|
-
|
|
823
767
|
backbone_out = self.model.forward_image(im)
|
|
824
768
|
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
|
825
769
|
if self.model.directly_add_no_mem_embed:
|
|
@@ -838,12 +782,11 @@ class SAM2Predictor(Predictor):
|
|
|
838
782
|
multimask_output=False,
|
|
839
783
|
img_idx=-1,
|
|
840
784
|
):
|
|
841
|
-
"""
|
|
842
|
-
Perform inference on image features using the SAM2 model.
|
|
785
|
+
"""Perform inference on image features using the SAM2 model.
|
|
843
786
|
|
|
844
787
|
Args:
|
|
845
|
-
features (torch.Tensor | dict[str, Any]): Extracted image features with shape (B, C, H, W) from the SAM2
|
|
846
|
-
|
|
788
|
+
features (torch.Tensor | dict[str, Any]): Extracted image features with shape (B, C, H, W) from the SAM2
|
|
789
|
+
model image encoder, it could also be a dictionary including:
|
|
847
790
|
- image_embed (torch.Tensor): Image embedding with shape (B, C, H, W).
|
|
848
791
|
- high_res_feats (list[torch.Tensor]): List of high-resolution feature maps from the backbone, each with shape (B, C, H, W).
|
|
849
792
|
points (np.ndarray | list[list[float]] | None): Object location points with shape (N, 2), in pixels.
|
|
@@ -883,18 +826,18 @@ class SAM2Predictor(Predictor):
|
|
|
883
826
|
|
|
884
827
|
|
|
885
828
|
class SAM2VideoPredictor(SAM2Predictor):
|
|
886
|
-
"""
|
|
887
|
-
SAM2VideoPredictor to handle user interactions with videos and manage inference states.
|
|
829
|
+
"""SAM2VideoPredictor to handle user interactions with videos and manage inference states.
|
|
888
830
|
|
|
889
|
-
This class extends the functionality of SAM2Predictor to support video processing and maintains
|
|
890
|
-
|
|
891
|
-
|
|
831
|
+
This class extends the functionality of SAM2Predictor to support video processing and maintains the state of
|
|
832
|
+
inference operations. It includes configurations for managing non-overlapping masks, clearing memory for
|
|
833
|
+
non-conditional inputs, and setting up callbacks for prediction events.
|
|
892
834
|
|
|
893
835
|
Attributes:
|
|
894
836
|
inference_state (dict): A dictionary to store the current state of inference operations.
|
|
895
837
|
non_overlap_masks (bool): A flag indicating whether masks should be non-overlapping.
|
|
896
838
|
clear_non_cond_mem_around_input (bool): A flag to control clearing non-conditional memory around inputs.
|
|
897
|
-
clear_non_cond_mem_for_multi_obj (bool): A flag to control clearing non-conditional memory for multi-object
|
|
839
|
+
clear_non_cond_mem_for_multi_obj (bool): A flag to control clearing non-conditional memory for multi-object
|
|
840
|
+
scenarios.
|
|
898
841
|
callbacks (dict): A dictionary of callbacks for various prediction lifecycle events.
|
|
899
842
|
|
|
900
843
|
Methods:
|
|
@@ -904,7 +847,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
904
847
|
add_new_prompts: Add new points or masks to a specific frame for a given object ID.
|
|
905
848
|
propagate_in_video_preflight: Prepare inference_state and consolidate temporary outputs before tracking.
|
|
906
849
|
init_state: Initialize an inference state for the predictor.
|
|
907
|
-
get_im_features: Extract
|
|
850
|
+
get_im_features: Extract image features using SAM2's image encoder for subsequent segmentation tasks.
|
|
908
851
|
|
|
909
852
|
Examples:
|
|
910
853
|
>>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG)
|
|
@@ -912,29 +855,22 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
912
855
|
>>> bboxes = [[100, 100, 200, 200]]
|
|
913
856
|
>>> results = predictor(bboxes=bboxes)
|
|
914
857
|
|
|
915
|
-
|
|
858
|
+
Notes:
|
|
916
859
|
The `fill_hole_area` attribute is defined but not used in the current implementation.
|
|
917
860
|
"""
|
|
918
861
|
|
|
919
862
|
# fill_hole_area = 8 # not used
|
|
920
863
|
|
|
921
864
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
922
|
-
"""
|
|
923
|
-
Initialize the predictor with configuration and optional overrides.
|
|
865
|
+
"""Initialize the predictor with configuration and optional overrides.
|
|
924
866
|
|
|
925
|
-
This constructor initializes the SAM2VideoPredictor with a given configuration, applies any
|
|
926
|
-
|
|
927
|
-
that control the behavior of the predictor.
|
|
867
|
+
This constructor initializes the SAM2VideoPredictor with a given configuration, applies any specified overrides,
|
|
868
|
+
and sets up the inference state along with certain flags that control the behavior of the predictor.
|
|
928
869
|
|
|
929
870
|
Args:
|
|
930
871
|
cfg (dict): Configuration dictionary containing default settings.
|
|
931
872
|
overrides (dict | None): Dictionary of values to override default configuration.
|
|
932
873
|
_callbacks (dict | None): Dictionary of callback functions to customize behavior.
|
|
933
|
-
|
|
934
|
-
Examples:
|
|
935
|
-
>>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG)
|
|
936
|
-
>>> predictor_example_with_imgsz = SAM2VideoPredictor(overrides={"imgsz": 640})
|
|
937
|
-
>>> predictor_example_with_callback = SAM2VideoPredictor(_callbacks={"on_predict_start": custom_callback})
|
|
938
874
|
"""
|
|
939
875
|
super().__init__(cfg, overrides, _callbacks)
|
|
940
876
|
self.inference_state = {}
|
|
@@ -942,12 +878,12 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
942
878
|
self.clear_non_cond_mem_around_input = False
|
|
943
879
|
self.clear_non_cond_mem_for_multi_obj = False
|
|
944
880
|
self.callbacks["on_predict_start"].append(self.init_state)
|
|
881
|
+
self.clear_non_cond_mem = True # Whether to clear non-conditioning memory periodically
|
|
945
882
|
|
|
946
883
|
def get_model(self):
|
|
947
|
-
"""
|
|
948
|
-
Retrieve and configure the model with binarization enabled.
|
|
884
|
+
"""Retrieve and configure the model with binarization enabled.
|
|
949
885
|
|
|
950
|
-
|
|
886
|
+
Notes:
|
|
951
887
|
This method overrides the base class implementation to set the binarize flag to True.
|
|
952
888
|
"""
|
|
953
889
|
model = super().get_model()
|
|
@@ -955,10 +891,9 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
955
891
|
return model
|
|
956
892
|
|
|
957
893
|
def inference(self, im, bboxes=None, points=None, labels=None, masks=None):
|
|
958
|
-
"""
|
|
959
|
-
|
|
960
|
-
|
|
961
|
-
mask decoder for real-time and promptable segmentation tasks.
|
|
894
|
+
"""Perform image segmentation inference based on the given input cues, using the currently loaded image. This
|
|
895
|
+
method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
|
|
896
|
+
encoder, and mask decoder for real-time and promptable segmentation tasks.
|
|
962
897
|
|
|
963
898
|
Args:
|
|
964
899
|
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
|
|
@@ -969,7 +904,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
969
904
|
|
|
970
905
|
Returns:
|
|
971
906
|
pred_masks (torch.Tensor): The output masks in shape CxHxW, where C is the number of generated masks.
|
|
972
|
-
pred_scores (torch.Tensor): An array of length C containing quality scores
|
|
907
|
+
pred_scores (torch.Tensor): An array of length C containing predicted quality scores for each mask.
|
|
973
908
|
"""
|
|
974
909
|
# Override prompts if any stored in self.prompts
|
|
975
910
|
bboxes = self.prompts.pop("bboxes", bboxes)
|
|
@@ -1018,6 +953,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1018
953
|
run_mem_encoder=True,
|
|
1019
954
|
)
|
|
1020
955
|
output_dict[storage_key][frame] = current_out
|
|
956
|
+
self._prune_non_cond_memory(frame)
|
|
1021
957
|
# Create slices of per-object outputs for subsequent interaction with each
|
|
1022
958
|
# individual object after tracking.
|
|
1023
959
|
self._add_output_per_object(frame, current_out, storage_key)
|
|
@@ -1025,15 +961,14 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1025
961
|
pred_masks = current_out["pred_masks"].flatten(0, 1)
|
|
1026
962
|
pred_masks = pred_masks[(pred_masks > self.model.mask_threshold).sum((1, 2)) > 0] # filter blank masks
|
|
1027
963
|
|
|
1028
|
-
return pred_masks, torch.ones(
|
|
964
|
+
return pred_masks, torch.ones(pred_masks.shape[0], dtype=pred_masks.dtype, device=pred_masks.device)
|
|
1029
965
|
|
|
1030
966
|
def postprocess(self, preds, img, orig_imgs):
|
|
1031
|
-
"""
|
|
1032
|
-
Post-process the predictions to apply non-overlapping constraints if required.
|
|
967
|
+
"""Post-process the predictions to apply non-overlapping constraints if required.
|
|
1033
968
|
|
|
1034
|
-
This method extends the post-processing functionality by applying non-overlapping constraints
|
|
1035
|
-
|
|
1036
|
-
|
|
969
|
+
This method extends the post-processing functionality by applying non-overlapping constraints to the predicted
|
|
970
|
+
masks if the `non_overlap_masks` flag is set to True. This ensures that the masks do not overlap, which can be
|
|
971
|
+
useful for certain applications.
|
|
1037
972
|
|
|
1038
973
|
Args:
|
|
1039
974
|
preds (tuple[torch.Tensor, torch.Tensor]): The predicted masks and scores from the model.
|
|
@@ -1043,7 +978,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1043
978
|
Returns:
|
|
1044
979
|
(list): The post-processed predictions.
|
|
1045
980
|
|
|
1046
|
-
|
|
981
|
+
Notes:
|
|
1047
982
|
If `non_overlap_masks` is True, the method applies constraints to ensure non-overlapping masks.
|
|
1048
983
|
"""
|
|
1049
984
|
results = super().postprocess(preds, img, orig_imgs)
|
|
@@ -1062,14 +997,14 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1062
997
|
labels=None,
|
|
1063
998
|
masks=None,
|
|
1064
999
|
frame_idx=0,
|
|
1000
|
+
inference_state: dict[str, Any] | None = None,
|
|
1065
1001
|
):
|
|
1066
|
-
"""
|
|
1067
|
-
Add new points or masks to a specific frame for a given object ID.
|
|
1002
|
+
"""Add new points or masks to a specific frame for a given object ID.
|
|
1068
1003
|
|
|
1069
|
-
This method updates the inference state with new prompts (points or masks) for a specified
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1004
|
+
This method updates the inference state with new prompts (points or masks) for a specified object and frame
|
|
1005
|
+
index. It ensures that the prompts are either points or masks, but not both, and updates the internal state
|
|
1006
|
+
accordingly. It also handles the generation of new segmentations based on the provided prompts and the existing
|
|
1007
|
+
state.
|
|
1073
1008
|
|
|
1074
1009
|
Args:
|
|
1075
1010
|
obj_id (int): The ID of the object to which the prompts are associated.
|
|
@@ -1077,6 +1012,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1077
1012
|
labels (torch.Tensor, optional): The labels corresponding to the points.
|
|
1078
1013
|
masks (torch.Tensor, optional): Binary masks for the object.
|
|
1079
1014
|
frame_idx (int, optional): The index of the frame to which the prompts are applied.
|
|
1015
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1016
|
+
inference state.
|
|
1080
1017
|
|
|
1081
1018
|
Returns:
|
|
1082
1019
|
pred_masks (torch.Tensor): The flattened predicted masks.
|
|
@@ -1085,29 +1022,30 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1085
1022
|
Raises:
|
|
1086
1023
|
AssertionError: If both `masks` and `points` are provided, or neither is provided.
|
|
1087
1024
|
|
|
1088
|
-
|
|
1025
|
+
Notes:
|
|
1089
1026
|
- Only one type of prompt (either points or masks) can be added per call.
|
|
1090
1027
|
- If the frame is being tracked for the first time, it is treated as an initial conditioning frame.
|
|
1091
1028
|
- The method handles the consolidation of outputs and resizing of masks to the original video resolution.
|
|
1092
1029
|
"""
|
|
1030
|
+
inference_state = inference_state or self.inference_state
|
|
1093
1031
|
assert (masks is None) ^ (points is None), "'masks' and 'points' prompts are not compatible with each other."
|
|
1094
|
-
obj_idx = self._obj_id_to_idx(obj_id)
|
|
1032
|
+
obj_idx = self._obj_id_to_idx(obj_id, inference_state)
|
|
1095
1033
|
|
|
1096
1034
|
point_inputs = None
|
|
1097
1035
|
pop_key = "point_inputs_per_obj"
|
|
1098
1036
|
if points is not None:
|
|
1099
1037
|
point_inputs = {"point_coords": points, "point_labels": labels}
|
|
1100
|
-
|
|
1038
|
+
inference_state["point_inputs_per_obj"][obj_idx][frame_idx] = point_inputs
|
|
1101
1039
|
pop_key = "mask_inputs_per_obj"
|
|
1102
|
-
|
|
1103
|
-
|
|
1040
|
+
inference_state["mask_inputs_per_obj"][obj_idx][frame_idx] = masks
|
|
1041
|
+
inference_state[pop_key][obj_idx].pop(frame_idx, None)
|
|
1104
1042
|
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
|
1105
1043
|
# frame, meaning that the inputs points are to generate segments on this frame without
|
|
1106
1044
|
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
|
1107
1045
|
# the input points will be used to correct the already tracked masks.
|
|
1108
|
-
is_init_cond_frame = frame_idx not in
|
|
1109
|
-
obj_output_dict =
|
|
1110
|
-
obj_temp_output_dict =
|
|
1046
|
+
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
|
|
1047
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
1048
|
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
1111
1049
|
# Add a frame to conditioning output if it's an initial conditioning frame or
|
|
1112
1050
|
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
|
1113
1051
|
is_cond = is_init_cond_frame or self.model.add_all_frames_to_correct_as_cond
|
|
@@ -1126,7 +1064,9 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1126
1064
|
)
|
|
1127
1065
|
|
|
1128
1066
|
if prev_out is not None and prev_out.get("pred_masks") is not None:
|
|
1129
|
-
prev_sam_mask_logits = prev_out["pred_masks"].to(
|
|
1067
|
+
prev_sam_mask_logits = prev_out["pred_masks"].to(
|
|
1068
|
+
device=self.device, non_blocking=self.device.type == "cuda"
|
|
1069
|
+
)
|
|
1130
1070
|
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
|
|
1131
1071
|
prev_sam_mask_logits.clamp_(-32.0, 32.0)
|
|
1132
1072
|
current_out = self._run_single_frame_inference(
|
|
@@ -1143,6 +1083,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1143
1083
|
# them into memory.
|
|
1144
1084
|
run_mem_encoder=False,
|
|
1145
1085
|
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
1086
|
+
inference_state=inference_state,
|
|
1146
1087
|
)
|
|
1147
1088
|
# Add the output to the output dict (to be used as future memory)
|
|
1148
1089
|
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
|
@@ -1152,32 +1093,37 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1152
1093
|
frame_idx,
|
|
1153
1094
|
is_cond=is_cond,
|
|
1154
1095
|
run_mem_encoder=False,
|
|
1096
|
+
inference_state=inference_state,
|
|
1155
1097
|
)
|
|
1156
1098
|
pred_masks = consolidated_out["pred_masks"].flatten(0, 1)
|
|
1157
1099
|
return pred_masks.flatten(0, 1), torch.ones(1, dtype=pred_masks.dtype, device=pred_masks.device)
|
|
1158
1100
|
|
|
1159
1101
|
@smart_inference_mode()
|
|
1160
|
-
def propagate_in_video_preflight(self):
|
|
1161
|
-
"""
|
|
1162
|
-
|
|
1102
|
+
def propagate_in_video_preflight(self, inference_state: dict[str, Any] | None = None):
|
|
1103
|
+
"""Prepare inference_state and consolidate temporary outputs before tracking.
|
|
1104
|
+
|
|
1105
|
+
This method marks the start of tracking, disallowing the addition of new objects until the session is reset. It
|
|
1106
|
+
consolidates temporary outputs from `temp_output_dict_per_obj` and merges them into `output_dict`. Additionally,
|
|
1107
|
+
it clears non-conditioning memory around input frames and ensures that the state is consistent with the provided
|
|
1108
|
+
inputs.
|
|
1163
1109
|
|
|
1164
|
-
|
|
1165
|
-
|
|
1166
|
-
|
|
1167
|
-
with the provided inputs.
|
|
1110
|
+
Args:
|
|
1111
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1112
|
+
inference state.
|
|
1168
1113
|
"""
|
|
1114
|
+
inference_state = inference_state or self.inference_state
|
|
1169
1115
|
# Tracking has started and we don't allow adding new objects until session is reset.
|
|
1170
|
-
|
|
1171
|
-
batch_size = len(
|
|
1116
|
+
inference_state["tracking_has_started"] = True
|
|
1117
|
+
batch_size = len(inference_state["obj_idx_to_id"])
|
|
1172
1118
|
|
|
1173
1119
|
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
|
|
1174
1120
|
# add them into "output_dict".
|
|
1175
|
-
temp_output_dict_per_obj =
|
|
1176
|
-
output_dict =
|
|
1121
|
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
1122
|
+
output_dict = inference_state["output_dict"]
|
|
1177
1123
|
# "consolidated_frame_inds" contains indices of those frames where consolidated
|
|
1178
1124
|
# temporary outputs have been added (either in this call or any previous calls
|
|
1179
1125
|
# to `propagate_in_video_preflight`).
|
|
1180
|
-
consolidated_frame_inds =
|
|
1126
|
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
|
1181
1127
|
for is_cond in {False, True}:
|
|
1182
1128
|
# Separately consolidate conditioning and non-conditioning temp outputs
|
|
1183
1129
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
@@ -1191,11 +1137,11 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1191
1137
|
# consolidate the temporary output across all objects on this frame
|
|
1192
1138
|
for frame_idx in temp_frame_inds:
|
|
1193
1139
|
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
1194
|
-
frame_idx, is_cond=is_cond, run_mem_encoder=True
|
|
1140
|
+
frame_idx, is_cond=is_cond, run_mem_encoder=True, inference_state=inference_state
|
|
1195
1141
|
)
|
|
1196
1142
|
# merge them into "output_dict" and also create per-object slices
|
|
1197
1143
|
output_dict[storage_key][frame_idx] = consolidated_out
|
|
1198
|
-
self._add_output_per_object(frame_idx, consolidated_out, storage_key)
|
|
1144
|
+
self._add_output_per_object(frame_idx, consolidated_out, storage_key, inference_state=inference_state)
|
|
1199
1145
|
if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
|
|
1200
1146
|
# clear non-conditioning memory of the surrounding frames
|
|
1201
1147
|
self._clear_non_cond_mem_around_input(frame_idx)
|
|
@@ -1208,7 +1154,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1208
1154
|
# output on the same frame in "non_cond_frame_outputs"
|
|
1209
1155
|
for frame_idx in output_dict["cond_frame_outputs"]:
|
|
1210
1156
|
output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
1211
|
-
for obj_output_dict in
|
|
1157
|
+
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
|
1212
1158
|
for frame_idx in obj_output_dict["cond_frame_outputs"]:
|
|
1213
1159
|
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
1214
1160
|
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
|
@@ -1221,20 +1167,19 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1221
1167
|
consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"]
|
|
1222
1168
|
)
|
|
1223
1169
|
input_frames_inds = set()
|
|
1224
|
-
for point_inputs_per_frame in
|
|
1170
|
+
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
|
|
1225
1171
|
input_frames_inds.update(point_inputs_per_frame.keys())
|
|
1226
|
-
for mask_inputs_per_frame in
|
|
1172
|
+
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
|
|
1227
1173
|
input_frames_inds.update(mask_inputs_per_frame.keys())
|
|
1228
1174
|
assert all_consolidated_frame_inds == input_frames_inds
|
|
1229
1175
|
|
|
1230
1176
|
@staticmethod
|
|
1231
1177
|
def init_state(predictor):
|
|
1232
|
-
"""
|
|
1233
|
-
Initialize an inference state for the predictor.
|
|
1178
|
+
"""Initialize an inference state for the predictor.
|
|
1234
1179
|
|
|
1235
|
-
This function sets up the initial state required for performing inference on video data.
|
|
1236
|
-
|
|
1237
|
-
|
|
1180
|
+
This function sets up the initial state required for performing inference on video data. It includes
|
|
1181
|
+
initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
|
|
1182
|
+
relevant to the tracking process.
|
|
1238
1183
|
|
|
1239
1184
|
Args:
|
|
1240
1185
|
predictor (SAM2VideoPredictor): The predictor object for which to initialize the state.
|
|
@@ -1243,9 +1188,21 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1243
1188
|
return
|
|
1244
1189
|
assert predictor.dataset is not None
|
|
1245
1190
|
assert predictor.dataset.mode == "video"
|
|
1191
|
+
predictor.inference_state = predictor._init_state(predictor.dataset.frames)
|
|
1192
|
+
|
|
1193
|
+
@staticmethod
|
|
1194
|
+
def _init_state(num_frames):
|
|
1195
|
+
"""Initialize an inference state.
|
|
1246
1196
|
|
|
1197
|
+
This function sets up the initial state required for performing inference on video data. It includes
|
|
1198
|
+
initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
|
|
1199
|
+
relevant to the tracking process.
|
|
1200
|
+
|
|
1201
|
+
Args:
|
|
1202
|
+
num_frames (int): The number of frames in the video.
|
|
1203
|
+
"""
|
|
1247
1204
|
inference_state = {
|
|
1248
|
-
"num_frames":
|
|
1205
|
+
"num_frames": num_frames, # TODO: see if there's any chance to remove it
|
|
1249
1206
|
"point_inputs_per_obj": {}, # inputs points on each frame
|
|
1250
1207
|
"mask_inputs_per_obj": {}, # inputs mask on each frame
|
|
1251
1208
|
"constants": {}, # values that don't change across frames (so we only need to hold one copy of them)
|
|
@@ -1273,11 +1230,10 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1273
1230
|
"tracking_has_started": False,
|
|
1274
1231
|
"frames_already_tracked": [],
|
|
1275
1232
|
}
|
|
1276
|
-
|
|
1233
|
+
return inference_state
|
|
1277
1234
|
|
|
1278
1235
|
def get_im_features(self, im, batch=1):
|
|
1279
|
-
"""
|
|
1280
|
-
Extract and process image features using SAM2's image encoder for subsequent segmentation tasks.
|
|
1236
|
+
"""Extract and process image features using SAM2's image encoder for subsequent segmentation tasks.
|
|
1281
1237
|
|
|
1282
1238
|
Args:
|
|
1283
1239
|
im (torch.Tensor): The input image tensor.
|
|
@@ -1288,27 +1244,24 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1288
1244
|
vis_pos_embed (torch.Tensor): The positional embeddings for the visual features.
|
|
1289
1245
|
feat_sizes (list[tuple]): A list containing the sizes of the extracted features.
|
|
1290
1246
|
|
|
1291
|
-
|
|
1247
|
+
Notes:
|
|
1292
1248
|
- If `batch` is greater than 1, the features are expanded to fit the batch size.
|
|
1293
1249
|
- The method leverages the model's `_prepare_backbone_features` method to prepare the backbone features.
|
|
1294
1250
|
"""
|
|
1295
|
-
|
|
1296
|
-
backbone_out = self
|
|
1297
|
-
if
|
|
1298
|
-
|
|
1299
|
-
|
|
1300
|
-
for i, pos in enumerate(backbone_out["vision_pos_enc"]):
|
|
1301
|
-
pos = pos.expand(batch, -1, -1, -1)
|
|
1302
|
-
backbone_out["vision_pos_enc"][i] = pos
|
|
1303
|
-
_, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out)
|
|
1251
|
+
# check if there's precomputed backbone output
|
|
1252
|
+
backbone_out = getattr(self, "backbone_out", None)
|
|
1253
|
+
if backbone_out is None:
|
|
1254
|
+
backbone_out = self.model.forward_image(im)
|
|
1255
|
+
_, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out, batch=batch)
|
|
1304
1256
|
return vis_feats, vis_pos_embed, feat_sizes
|
|
1305
1257
|
|
|
1306
|
-
def _obj_id_to_idx(self, obj_id):
|
|
1307
|
-
"""
|
|
1308
|
-
Map client-side object id to model-side object index.
|
|
1258
|
+
def _obj_id_to_idx(self, obj_id, inference_state: dict[str, Any] | None = None):
|
|
1259
|
+
"""Map client-side object id to model-side object index.
|
|
1309
1260
|
|
|
1310
1261
|
Args:
|
|
1311
1262
|
obj_id (int): The unique identifier of the object provided by the client side.
|
|
1263
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1264
|
+
inference state.
|
|
1312
1265
|
|
|
1313
1266
|
Returns:
|
|
1314
1267
|
(int): The index of the object on the model side.
|
|
@@ -1316,34 +1269,35 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1316
1269
|
Raises:
|
|
1317
1270
|
RuntimeError: If an attempt is made to add a new object after tracking has started.
|
|
1318
1271
|
|
|
1319
|
-
|
|
1272
|
+
Notes:
|
|
1320
1273
|
- The method updates or retrieves mappings between object IDs and indices stored in
|
|
1321
1274
|
`inference_state`.
|
|
1322
1275
|
- It ensures that new objects can only be added before tracking commences.
|
|
1323
1276
|
- It maintains two-way mappings between IDs and indices (`obj_id_to_idx` and `obj_idx_to_id`).
|
|
1324
1277
|
- Additional data structures are initialized for the new object to store inputs and outputs.
|
|
1325
1278
|
"""
|
|
1326
|
-
|
|
1279
|
+
inference_state = inference_state or self.inference_state
|
|
1280
|
+
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
1327
1281
|
if obj_idx is not None:
|
|
1328
1282
|
return obj_idx
|
|
1329
1283
|
|
|
1330
1284
|
# This is a new object id not sent to the server before. We only allow adding
|
|
1331
1285
|
# new objects *before* the tracking starts.
|
|
1332
|
-
allow_new_object = not
|
|
1286
|
+
allow_new_object = not inference_state["tracking_has_started"]
|
|
1333
1287
|
if allow_new_object:
|
|
1334
1288
|
# get the next object slot
|
|
1335
|
-
obj_idx = len(
|
|
1336
|
-
|
|
1337
|
-
|
|
1338
|
-
|
|
1289
|
+
obj_idx = len(inference_state["obj_id_to_idx"])
|
|
1290
|
+
inference_state["obj_id_to_idx"][obj_id] = obj_idx
|
|
1291
|
+
inference_state["obj_idx_to_id"][obj_idx] = obj_id
|
|
1292
|
+
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
|
|
1339
1293
|
# set up input and output structures for this object
|
|
1340
|
-
|
|
1341
|
-
|
|
1342
|
-
|
|
1294
|
+
inference_state["point_inputs_per_obj"][obj_idx] = {}
|
|
1295
|
+
inference_state["mask_inputs_per_obj"][obj_idx] = {}
|
|
1296
|
+
inference_state["output_dict_per_obj"][obj_idx] = {
|
|
1343
1297
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
1344
1298
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
1345
1299
|
}
|
|
1346
|
-
|
|
1300
|
+
inference_state["temp_output_dict_per_obj"][obj_idx] = {
|
|
1347
1301
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
1348
1302
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
1349
1303
|
}
|
|
@@ -1351,7 +1305,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1351
1305
|
else:
|
|
1352
1306
|
raise RuntimeError(
|
|
1353
1307
|
f"Cannot add new object id {obj_id} after tracking starts. "
|
|
1354
|
-
f"All existing object ids: {
|
|
1308
|
+
f"All existing object ids: {inference_state['obj_ids']}. "
|
|
1355
1309
|
f"Please call 'reset_state' to restart from scratch."
|
|
1356
1310
|
)
|
|
1357
1311
|
|
|
@@ -1366,9 +1320,9 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1366
1320
|
reverse,
|
|
1367
1321
|
run_mem_encoder,
|
|
1368
1322
|
prev_sam_mask_logits=None,
|
|
1323
|
+
inference_state: dict[str, Any] | None = None,
|
|
1369
1324
|
):
|
|
1370
|
-
"""
|
|
1371
|
-
Run tracking on a single frame based on current inputs and previous memory.
|
|
1325
|
+
"""Run tracking on a single frame based on current inputs and previous memory.
|
|
1372
1326
|
|
|
1373
1327
|
Args:
|
|
1374
1328
|
output_dict (dict): The dictionary containing the output states of the tracking process.
|
|
@@ -1380,6 +1334,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1380
1334
|
reverse (bool): Indicates if the tracking should be performed in reverse order.
|
|
1381
1335
|
run_mem_encoder (bool): Indicates if the memory encoder should be executed.
|
|
1382
1336
|
prev_sam_mask_logits (torch.Tensor | None): Previous mask logits for the current object.
|
|
1337
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1338
|
+
inference state.
|
|
1383
1339
|
|
|
1384
1340
|
Returns:
|
|
1385
1341
|
(dict): A dictionary containing the output of the tracking step, including updated features and predictions.
|
|
@@ -1387,15 +1343,16 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1387
1343
|
Raises:
|
|
1388
1344
|
AssertionError: If both `point_inputs` and `mask_inputs` are provided, or neither is provided.
|
|
1389
1345
|
|
|
1390
|
-
|
|
1346
|
+
Notes:
|
|
1391
1347
|
- The method assumes that `point_inputs` and `mask_inputs` are mutually exclusive.
|
|
1392
1348
|
- The method retrieves image features using the `get_im_features` method.
|
|
1393
1349
|
- The `maskmem_pos_enc` is assumed to be constant across frames, hence only one copy is stored.
|
|
1394
1350
|
- The `fill_holes_in_mask_scores` function is commented out and currently unsupported due to CUDA extension requirements.
|
|
1395
1351
|
"""
|
|
1352
|
+
inference_state = inference_state or self.inference_state
|
|
1396
1353
|
# Retrieve correct image features
|
|
1397
1354
|
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(
|
|
1398
|
-
|
|
1355
|
+
inference_state["im"], batch_size
|
|
1399
1356
|
)
|
|
1400
1357
|
|
|
1401
1358
|
# point and mask should not appear as input simultaneously on the same frame
|
|
@@ -1409,7 +1366,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1409
1366
|
point_inputs=point_inputs,
|
|
1410
1367
|
mask_inputs=mask_inputs,
|
|
1411
1368
|
output_dict=output_dict,
|
|
1412
|
-
num_frames=
|
|
1369
|
+
num_frames=inference_state["num_frames"],
|
|
1413
1370
|
track_in_reverse=reverse,
|
|
1414
1371
|
run_mem_encoder=run_mem_encoder,
|
|
1415
1372
|
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
@@ -1418,43 +1375,44 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1418
1375
|
maskmem_features = current_out["maskmem_features"]
|
|
1419
1376
|
if maskmem_features is not None:
|
|
1420
1377
|
current_out["maskmem_features"] = maskmem_features.to(
|
|
1421
|
-
dtype=torch.float16, device=self.device, non_blocking=
|
|
1378
|
+
dtype=torch.float16, device=self.device, non_blocking=self.device.type == "cuda"
|
|
1422
1379
|
)
|
|
1423
1380
|
# NOTE: Do not support the `fill_holes_in_mask_scores` function since it needs cuda extensions
|
|
1424
1381
|
# potentially fill holes in the predicted masks
|
|
1425
1382
|
# if self.fill_hole_area > 0:
|
|
1426
|
-
# pred_masks = current_out["pred_masks"].to(self.device, non_blocking=
|
|
1383
|
+
# pred_masks = current_out["pred_masks"].to(self.device, non_blocking=self.device.type == "cuda")
|
|
1427
1384
|
# pred_masks = fill_holes_in_mask_scores(pred_masks, self.fill_hole_area)
|
|
1428
1385
|
|
|
1429
1386
|
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
1430
|
-
current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"])
|
|
1387
|
+
current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"], inference_state)
|
|
1431
1388
|
return current_out
|
|
1432
1389
|
|
|
1433
|
-
def _get_maskmem_pos_enc(self, out_maskmem_pos_enc):
|
|
1434
|
-
"""
|
|
1435
|
-
Cache and manage the positional encoding for mask memory across frames and objects.
|
|
1390
|
+
def _get_maskmem_pos_enc(self, out_maskmem_pos_enc, inference_state: dict[str, Any] | None = None):
|
|
1391
|
+
"""Cache and manage the positional encoding for mask memory across frames and objects.
|
|
1436
1392
|
|
|
1437
|
-
This method optimizes storage by caching the positional encoding (`maskmem_pos_enc`) for
|
|
1438
|
-
|
|
1439
|
-
|
|
1440
|
-
encoding
|
|
1441
|
-
|
|
1442
|
-
the current batch size.
|
|
1393
|
+
This method optimizes storage by caching the positional encoding (`maskmem_pos_enc`) for mask memory, which is
|
|
1394
|
+
constant across frames and objects, thus reducing the amount of redundant information stored during an inference
|
|
1395
|
+
session. It checks if the positional encoding has already been cached; if not, it caches a slice of the provided
|
|
1396
|
+
encoding. If the batch size is greater than one, it expands the cached positional encoding to match the current
|
|
1397
|
+
batch size.
|
|
1443
1398
|
|
|
1444
1399
|
Args:
|
|
1445
|
-
out_maskmem_pos_enc (list[torch.Tensor] | None): The positional encoding for mask memory.
|
|
1446
|
-
|
|
1400
|
+
out_maskmem_pos_enc (list[torch.Tensor] | None): The positional encoding for mask memory. Should be a list
|
|
1401
|
+
of tensors or None.
|
|
1402
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1403
|
+
inference state.
|
|
1447
1404
|
|
|
1448
1405
|
Returns:
|
|
1449
1406
|
(list[torch.Tensor]): The positional encoding for mask memory, either cached or expanded.
|
|
1450
1407
|
|
|
1451
|
-
|
|
1408
|
+
Notes:
|
|
1452
1409
|
- The method assumes that `out_maskmem_pos_enc` is a list of tensors or None.
|
|
1453
1410
|
- Only a single object's slice is cached since the encoding is the same across objects.
|
|
1454
1411
|
- The method checks if the positional encoding has already been cached in the session's constants.
|
|
1455
1412
|
- If the batch size is greater than one, the cached encoding is expanded to fit the batch size.
|
|
1456
1413
|
"""
|
|
1457
|
-
|
|
1414
|
+
inference_state = inference_state or self.inference_state
|
|
1415
|
+
model_constants = inference_state["constants"]
|
|
1458
1416
|
# "out_maskmem_pos_enc" should be either a list of tensors or None
|
|
1459
1417
|
if out_maskmem_pos_enc is not None:
|
|
1460
1418
|
if "maskmem_pos_enc" not in model_constants:
|
|
@@ -1465,7 +1423,7 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1465
1423
|
else:
|
|
1466
1424
|
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
|
|
1467
1425
|
# expand the cached maskmem_pos_enc to the actual batch size
|
|
1468
|
-
batch_size = out_maskmem_pos_enc[0].
|
|
1426
|
+
batch_size = out_maskmem_pos_enc[0].shape[0]
|
|
1469
1427
|
if batch_size > 1:
|
|
1470
1428
|
out_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc]
|
|
1471
1429
|
return out_maskmem_pos_enc
|
|
@@ -1475,31 +1433,34 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1475
1433
|
frame_idx,
|
|
1476
1434
|
is_cond=False,
|
|
1477
1435
|
run_mem_encoder=False,
|
|
1436
|
+
inference_state: dict[str, Any] | None = None,
|
|
1478
1437
|
):
|
|
1479
|
-
"""
|
|
1480
|
-
Consolidate per-object temporary outputs into a single output for all objects.
|
|
1438
|
+
"""Consolidate per-object temporary outputs into a single output for all objects.
|
|
1481
1439
|
|
|
1482
1440
|
This method combines the temporary outputs for each object on a given frame into a unified
|
|
1483
1441
|
output. It fills in any missing objects either from the main output dictionary or leaves
|
|
1484
|
-
placeholders if they do not exist in the main output. Optionally, it can re-run the memory
|
|
1485
|
-
|
|
1442
|
+
placeholders if they do not exist in the main output. Optionally, it can re-run the memory encoder after
|
|
1443
|
+
applying non-overlapping constraints to the object scores.
|
|
1486
1444
|
|
|
1487
1445
|
Args:
|
|
1488
1446
|
frame_idx (int): The index of the frame for which to consolidate outputs.
|
|
1489
1447
|
is_cond (bool, optional): Indicates if the frame is considered a conditioning frame.
|
|
1490
|
-
run_mem_encoder (bool, optional): Specifies whether to run the memory encoder after
|
|
1491
|
-
|
|
1448
|
+
run_mem_encoder (bool, optional): Specifies whether to run the memory encoder after consolidating the
|
|
1449
|
+
outputs.
|
|
1450
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1451
|
+
inference state.
|
|
1492
1452
|
|
|
1493
1453
|
Returns:
|
|
1494
1454
|
(dict): A consolidated output dictionary containing the combined results for all objects.
|
|
1495
1455
|
|
|
1496
|
-
|
|
1456
|
+
Notes:
|
|
1497
1457
|
- The method initializes the consolidated output with placeholder values for missing objects.
|
|
1498
1458
|
- It searches for outputs in both the temporary and main output dictionaries.
|
|
1499
1459
|
- If `run_mem_encoder` is True, it applies non-overlapping constraints and re-runs the memory encoder.
|
|
1500
1460
|
- The `maskmem_features` and `maskmem_pos_enc` are only populated when `run_mem_encoder` is True.
|
|
1501
1461
|
"""
|
|
1502
|
-
|
|
1462
|
+
inference_state = inference_state or self.inference_state
|
|
1463
|
+
batch_size = len(inference_state["obj_idx_to_id"])
|
|
1503
1464
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
1504
1465
|
|
|
1505
1466
|
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
|
|
@@ -1510,7 +1471,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1510
1471
|
"maskmem_features": None,
|
|
1511
1472
|
"maskmem_pos_enc": None,
|
|
1512
1473
|
"pred_masks": torch.full(
|
|
1513
|
-
size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
|
|
1474
|
+
# size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
|
|
1475
|
+
size=(batch_size, 1, *self._bb_feat_sizes[0]),
|
|
1514
1476
|
fill_value=-1024.0,
|
|
1515
1477
|
dtype=self.torch_dtype,
|
|
1516
1478
|
device=self.device,
|
|
@@ -1531,8 +1493,8 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1531
1493
|
),
|
|
1532
1494
|
}
|
|
1533
1495
|
for obj_idx in range(batch_size):
|
|
1534
|
-
obj_temp_output_dict =
|
|
1535
|
-
obj_output_dict =
|
|
1496
|
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
1497
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
1536
1498
|
out = (
|
|
1537
1499
|
obj_temp_output_dict[storage_key].get(frame_idx)
|
|
1538
1500
|
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
|
|
@@ -1572,22 +1534,25 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1572
1534
|
high_res_masks=high_res_masks,
|
|
1573
1535
|
is_mask_from_pts=True, # these frames are what the user interacted with
|
|
1574
1536
|
object_score_logits=consolidated_out["object_score_logits"],
|
|
1537
|
+
inference_state=inference_state,
|
|
1575
1538
|
)
|
|
1576
1539
|
|
|
1577
1540
|
return consolidated_out
|
|
1578
1541
|
|
|
1579
|
-
def _get_empty_mask_ptr(self, frame_idx):
|
|
1580
|
-
"""
|
|
1581
|
-
Get a dummy object pointer based on an empty mask on the current frame.
|
|
1542
|
+
def _get_empty_mask_ptr(self, frame_idx, inference_state: dict[str, Any] | None = None):
|
|
1543
|
+
"""Get a dummy object pointer based on an empty mask on the current frame.
|
|
1582
1544
|
|
|
1583
1545
|
Args:
|
|
1584
1546
|
frame_idx (int): The index of the current frame for which to generate the dummy object pointer.
|
|
1547
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1548
|
+
inference state.
|
|
1585
1549
|
|
|
1586
1550
|
Returns:
|
|
1587
1551
|
(torch.Tensor): A tensor representing the dummy object pointer generated from the empty mask.
|
|
1588
1552
|
"""
|
|
1553
|
+
inference_state = inference_state or self.inference_state
|
|
1589
1554
|
# Retrieve correct image features
|
|
1590
|
-
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(
|
|
1555
|
+
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(inference_state["im"])
|
|
1591
1556
|
|
|
1592
1557
|
# Feed the empty mask and image feature above to get a dummy object pointer
|
|
1593
1558
|
current_out = self.model.track_step(
|
|
@@ -1600,16 +1565,22 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1600
1565
|
# A dummy (empty) mask with a single object
|
|
1601
1566
|
mask_inputs=torch.zeros((1, 1, *self.imgsz), dtype=self.torch_dtype, device=self.device),
|
|
1602
1567
|
output_dict={},
|
|
1603
|
-
num_frames=
|
|
1568
|
+
num_frames=inference_state["num_frames"],
|
|
1604
1569
|
track_in_reverse=False,
|
|
1605
1570
|
run_mem_encoder=False,
|
|
1606
1571
|
prev_sam_mask_logits=None,
|
|
1607
1572
|
)
|
|
1608
1573
|
return current_out["obj_ptr"]
|
|
1609
1574
|
|
|
1610
|
-
def _run_memory_encoder(
|
|
1611
|
-
|
|
1612
|
-
|
|
1575
|
+
def _run_memory_encoder(
|
|
1576
|
+
self,
|
|
1577
|
+
batch_size,
|
|
1578
|
+
high_res_masks,
|
|
1579
|
+
object_score_logits,
|
|
1580
|
+
is_mask_from_pts,
|
|
1581
|
+
inference_state: dict[str, Any] | None = None,
|
|
1582
|
+
):
|
|
1583
|
+
"""Run the memory encoder on masks.
|
|
1613
1584
|
|
|
1614
1585
|
This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their
|
|
1615
1586
|
memory also needs to be computed again with the memory encoder.
|
|
@@ -1619,13 +1590,16 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1619
1590
|
high_res_masks (torch.Tensor): High-resolution masks for which to compute the memory.
|
|
1620
1591
|
object_score_logits (torch.Tensor): Logits representing the object scores.
|
|
1621
1592
|
is_mask_from_pts (bool): Indicates if the mask is derived from point interactions.
|
|
1593
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1594
|
+
inference state.
|
|
1622
1595
|
|
|
1623
1596
|
Returns:
|
|
1624
1597
|
maskmem_features (torch.Tensor): The encoded mask features.
|
|
1625
1598
|
maskmem_pos_enc (torch.Tensor): The positional encoding.
|
|
1626
1599
|
"""
|
|
1600
|
+
inference_state = inference_state or self.inference_state
|
|
1627
1601
|
# Retrieve correct image features
|
|
1628
|
-
current_vision_feats, _, feat_sizes = self.get_im_features(
|
|
1602
|
+
current_vision_feats, _, feat_sizes = self.get_im_features(inference_state["im"], batch_size)
|
|
1629
1603
|
maskmem_features, maskmem_pos_enc = self.model._encode_new_memory(
|
|
1630
1604
|
current_vision_feats=current_vision_feats,
|
|
1631
1605
|
feat_sizes=feat_sizes,
|
|
@@ -1635,12 +1609,15 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1635
1609
|
)
|
|
1636
1610
|
|
|
1637
1611
|
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
1638
|
-
maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc)
|
|
1639
|
-
return maskmem_features.to(
|
|
1612
|
+
maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc, inference_state)
|
|
1613
|
+
return maskmem_features.to(
|
|
1614
|
+
dtype=torch.float16, device=self.device, non_blocking=self.device.type == "cuda"
|
|
1615
|
+
), maskmem_pos_enc
|
|
1640
1616
|
|
|
1641
|
-
def _add_output_per_object(
|
|
1642
|
-
|
|
1643
|
-
|
|
1617
|
+
def _add_output_per_object(
|
|
1618
|
+
self, frame_idx, current_out, storage_key, inference_state: dict[str, Any] | None = None
|
|
1619
|
+
):
|
|
1620
|
+
"""Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.
|
|
1644
1621
|
|
|
1645
1622
|
The resulting slices share the same tensor storage.
|
|
1646
1623
|
|
|
@@ -1648,14 +1625,17 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1648
1625
|
frame_idx (int): The index of the current frame.
|
|
1649
1626
|
current_out (dict): The current output dictionary containing multi-object outputs.
|
|
1650
1627
|
storage_key (str): The key used to store the output in the per-object output dictionary.
|
|
1628
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1629
|
+
inference state.
|
|
1651
1630
|
"""
|
|
1631
|
+
inference_state = inference_state or self.inference_state
|
|
1652
1632
|
maskmem_features = current_out["maskmem_features"]
|
|
1653
1633
|
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
|
|
1654
1634
|
|
|
1655
1635
|
maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
|
1656
1636
|
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
|
|
1657
1637
|
|
|
1658
|
-
for obj_idx, obj_output_dict in
|
|
1638
|
+
for obj_idx, obj_output_dict in inference_state["output_dict_per_obj"].items():
|
|
1659
1639
|
obj_slice = slice(obj_idx, obj_idx + 1)
|
|
1660
1640
|
obj_out = {
|
|
1661
1641
|
"maskmem_features": None,
|
|
@@ -1669,29 +1649,212 @@ class SAM2VideoPredictor(SAM2Predictor):
|
|
|
1669
1649
|
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
|
|
1670
1650
|
obj_output_dict[storage_key][frame_idx] = obj_out
|
|
1671
1651
|
|
|
1672
|
-
def _clear_non_cond_mem_around_input(self, frame_idx):
|
|
1673
|
-
"""
|
|
1674
|
-
Remove the non-conditioning memory around the input frame.
|
|
1652
|
+
def _clear_non_cond_mem_around_input(self, frame_idx, inference_state: dict[str, Any] | None = None):
|
|
1653
|
+
"""Remove the non-conditioning memory around the input frame.
|
|
1675
1654
|
|
|
1676
|
-
When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain
|
|
1677
|
-
object appearance information and could confuse the model. This method clears those non-conditioning
|
|
1678
|
-
surrounding the interacted frame to avoid giving the model both old and new information about the
|
|
1655
|
+
When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain
|
|
1656
|
+
outdated object appearance information and could confuse the model. This method clears those non-conditioning
|
|
1657
|
+
memories surrounding the interacted frame to avoid giving the model both old and new information about the
|
|
1658
|
+
object.
|
|
1679
1659
|
|
|
1680
1660
|
Args:
|
|
1681
1661
|
frame_idx (int): The index of the current frame where user interaction occurred.
|
|
1662
|
+
inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
|
|
1663
|
+
inference state.
|
|
1682
1664
|
"""
|
|
1665
|
+
inference_state = inference_state or self.inference_state
|
|
1683
1666
|
r = self.model.memory_temporal_stride_for_eval
|
|
1684
1667
|
frame_idx_begin = frame_idx - r * self.model.num_maskmem
|
|
1685
1668
|
frame_idx_end = frame_idx + r * self.model.num_maskmem
|
|
1686
1669
|
for t in range(frame_idx_begin, frame_idx_end + 1):
|
|
1687
|
-
|
|
1688
|
-
for obj_output_dict in
|
|
1670
|
+
inference_state["output_dict"]["non_cond_frame_outputs"].pop(t, None)
|
|
1671
|
+
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
|
1689
1672
|
obj_output_dict["non_cond_frame_outputs"].pop(t, None)
|
|
1690
1673
|
|
|
1674
|
+
@smart_inference_mode()
|
|
1675
|
+
def remove_object(self, inference_state, obj_id, strict=False):
|
|
1676
|
+
"""Remove an object id from the tracking state. If strict is True, we check whether the object id actually
|
|
1677
|
+
exists and raise an error if it doesn't exist.
|
|
1678
|
+
"""
|
|
1679
|
+
old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
1680
|
+
# Check whether this object_id to remove actually exists and possibly raise an error.
|
|
1681
|
+
if old_obj_idx_to_rm is None:
|
|
1682
|
+
if not strict:
|
|
1683
|
+
return inference_state["obj_ids"]
|
|
1684
|
+
raise RuntimeError(
|
|
1685
|
+
f"Cannot remove object id {obj_id} as it doesn't exist. "
|
|
1686
|
+
f"All existing object ids: {inference_state['obj_ids']}."
|
|
1687
|
+
)
|
|
1688
|
+
|
|
1689
|
+
# If this is the only remaining object id, we simply reset the state.
|
|
1690
|
+
if len(inference_state["obj_id_to_idx"]) == 1:
|
|
1691
|
+
self.clear_all_points_in_video(inference_state)
|
|
1692
|
+
return inference_state["obj_ids"]
|
|
1693
|
+
|
|
1694
|
+
# There are still remaining objects after removing this object id. In this case,
|
|
1695
|
+
# we need to delete the object storage from inference state tensors.
|
|
1696
|
+
# Step 0: clear the input on those frames where this object id has point or mask input
|
|
1697
|
+
# (note that this step is required as it might downgrade conditioning frames to
|
|
1698
|
+
# non-conditioning ones)
|
|
1699
|
+
obj_input_frames_inds = set()
|
|
1700
|
+
obj_input_frames_inds.update(inference_state["point_inputs_per_obj"][old_obj_idx_to_rm])
|
|
1701
|
+
obj_input_frames_inds.update(inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm])
|
|
1702
|
+
for frame_idx in obj_input_frames_inds:
|
|
1703
|
+
self.clear_all_points_in_frame(inference_state, frame_idx, obj_id)
|
|
1704
|
+
|
|
1705
|
+
# Step 1: Update the object id mapping (note that it must be done after Step 0,
|
|
1706
|
+
# since Step 0 still requires the old object id mappings in inference_state)
|
|
1707
|
+
old_obj_ids = inference_state["obj_ids"]
|
|
1708
|
+
old_obj_inds = list(range(len(old_obj_ids)))
|
|
1709
|
+
remain_old_obj_inds = old_obj_inds.copy()
|
|
1710
|
+
remain_old_obj_inds.remove(old_obj_idx_to_rm)
|
|
1711
|
+
new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
|
|
1712
|
+
new_obj_inds = list(range(len(new_obj_ids)))
|
|
1713
|
+
# build new mappings
|
|
1714
|
+
old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
|
|
1715
|
+
inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
|
|
1716
|
+
inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
|
|
1717
|
+
inference_state["obj_ids"] = new_obj_ids
|
|
1718
|
+
|
|
1719
|
+
# Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
|
|
1720
|
+
# (note that "consolidated_frame_inds" doesn't need to be updated in this step as
|
|
1721
|
+
# it's already handled in Step 0)
|
|
1722
|
+
def _map_keys(container):
|
|
1723
|
+
new_kvs = []
|
|
1724
|
+
for k in old_obj_inds:
|
|
1725
|
+
v = container.pop(k)
|
|
1726
|
+
if k in old_idx_to_new_idx:
|
|
1727
|
+
new_kvs.append((old_idx_to_new_idx[k], v))
|
|
1728
|
+
container.update(new_kvs)
|
|
1729
|
+
|
|
1730
|
+
_map_keys(inference_state["point_inputs_per_obj"])
|
|
1731
|
+
_map_keys(inference_state["mask_inputs_per_obj"])
|
|
1732
|
+
_map_keys(inference_state["output_dict_per_obj"])
|
|
1733
|
+
_map_keys(inference_state["temp_output_dict_per_obj"])
|
|
1734
|
+
|
|
1735
|
+
# Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
|
|
1736
|
+
def _slice_state(output_dict, storage_key):
|
|
1737
|
+
for frame_idx, out in output_dict[storage_key].items():
|
|
1738
|
+
out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
|
|
1739
|
+
out["maskmem_pos_enc"] = [x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]]
|
|
1740
|
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
1741
|
+
out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(out["maskmem_pos_enc"], inference_state)
|
|
1742
|
+
out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
|
|
1743
|
+
out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
|
|
1744
|
+
out["object_score_logits"] = out["object_score_logits"][remain_old_obj_inds]
|
|
1745
|
+
# also update the per-object slices
|
|
1746
|
+
self._add_output_per_object(frame_idx, out, storage_key, inference_state=inference_state)
|
|
1747
|
+
|
|
1748
|
+
_slice_state(inference_state["output_dict"], "cond_frame_outputs")
|
|
1749
|
+
_slice_state(inference_state["output_dict"], "non_cond_frame_outputs")
|
|
1750
|
+
|
|
1751
|
+
return inference_state["obj_ids"]
|
|
1752
|
+
|
|
1753
|
+
@smart_inference_mode()
|
|
1754
|
+
def clear_all_points_in_frame(self, inference_state, frame_idx, obj_id):
|
|
1755
|
+
"""Remove all input points or mask in a specific frame for a given object."""
|
|
1756
|
+
obj_idx = self._obj_id_to_idx(obj_id, inference_state)
|
|
1757
|
+
|
|
1758
|
+
# Clear the conditioning information on the given frame
|
|
1759
|
+
inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
|
1760
|
+
inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
|
1761
|
+
|
|
1762
|
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
1763
|
+
temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
|
|
1764
|
+
temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
1765
|
+
|
|
1766
|
+
# Check and see if there are still any inputs left on this frame
|
|
1767
|
+
batch_size = len(inference_state["obj_idx_to_id"])
|
|
1768
|
+
frame_has_input = False
|
|
1769
|
+
for obj_idx2 in range(batch_size):
|
|
1770
|
+
if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
|
|
1771
|
+
frame_has_input = True
|
|
1772
|
+
break
|
|
1773
|
+
if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
|
|
1774
|
+
frame_has_input = True
|
|
1775
|
+
break
|
|
1776
|
+
|
|
1777
|
+
# If this frame has no remaining inputs for any objects, we further clear its
|
|
1778
|
+
# conditioning frame status
|
|
1779
|
+
if not frame_has_input:
|
|
1780
|
+
output_dict = inference_state["output_dict"]
|
|
1781
|
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
|
1782
|
+
consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
|
|
1783
|
+
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
|
|
1784
|
+
# Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
|
|
1785
|
+
out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
|
1786
|
+
if out is not None:
|
|
1787
|
+
# The frame is not a conditioning frame anymore since it's not receiving inputs,
|
|
1788
|
+
# so we "downgrade" its output (if exists) to a non-conditioning frame output.
|
|
1789
|
+
output_dict["non_cond_frame_outputs"][frame_idx] = out
|
|
1790
|
+
inference_state["frames_already_tracked"].pop(frame_idx, None)
|
|
1791
|
+
# Similarly, do it for the sliced output on each object.
|
|
1792
|
+
for obj_idx2 in range(batch_size):
|
|
1793
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
|
|
1794
|
+
obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
|
1795
|
+
if obj_out is not None:
|
|
1796
|
+
obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out
|
|
1797
|
+
|
|
1798
|
+
# If all the conditioning frames have been removed, we also clear the tracking outputs
|
|
1799
|
+
if len(output_dict["cond_frame_outputs"]) == 0:
|
|
1800
|
+
self._reset_tracking_results(inference_state)
|
|
1801
|
+
|
|
1802
|
+
@smart_inference_mode()
|
|
1803
|
+
def clear_all_points_in_video(self, inference_state):
|
|
1804
|
+
"""Remove all input points or mask in all frames throughout the video."""
|
|
1805
|
+
self._reset_tracking_results(inference_state)
|
|
1806
|
+
# Remove all object ids
|
|
1807
|
+
inference_state["obj_id_to_idx"].clear()
|
|
1808
|
+
inference_state["obj_idx_to_id"].clear()
|
|
1809
|
+
inference_state["obj_ids"].clear()
|
|
1810
|
+
inference_state["point_inputs_per_obj"].clear()
|
|
1811
|
+
inference_state["mask_inputs_per_obj"].clear()
|
|
1812
|
+
inference_state["output_dict_per_obj"].clear()
|
|
1813
|
+
inference_state["temp_output_dict_per_obj"].clear()
|
|
1814
|
+
|
|
1815
|
+
@staticmethod
|
|
1816
|
+
def _reset_tracking_results(inference_state):
|
|
1817
|
+
"""Reset all tracking inputs and results across the videos."""
|
|
1818
|
+
for v in inference_state["point_inputs_per_obj"].values():
|
|
1819
|
+
v.clear()
|
|
1820
|
+
for v in inference_state["mask_inputs_per_obj"].values():
|
|
1821
|
+
v.clear()
|
|
1822
|
+
for v in inference_state["output_dict_per_obj"].values():
|
|
1823
|
+
v["cond_frame_outputs"].clear()
|
|
1824
|
+
v["non_cond_frame_outputs"].clear()
|
|
1825
|
+
for v in inference_state["temp_output_dict_per_obj"].values():
|
|
1826
|
+
v["cond_frame_outputs"].clear()
|
|
1827
|
+
v["non_cond_frame_outputs"].clear()
|
|
1828
|
+
inference_state["output_dict"]["cond_frame_outputs"].clear()
|
|
1829
|
+
inference_state["output_dict"]["non_cond_frame_outputs"].clear()
|
|
1830
|
+
inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
|
|
1831
|
+
inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
|
|
1832
|
+
inference_state["tracking_has_started"] = False
|
|
1833
|
+
inference_state["frames_already_tracked"].clear()
|
|
1834
|
+
inference_state["first_ann_frame_idx"] = None
|
|
1835
|
+
|
|
1836
|
+
def _prune_non_cond_memory(self, frame_idx, inference_state=None):
|
|
1837
|
+
"""Prune old non-conditioning frames to bound memory usage."""
|
|
1838
|
+
if not self.clear_non_cond_mem:
|
|
1839
|
+
return
|
|
1840
|
+
inference_state = inference_state or self.inference_state
|
|
1841
|
+
|
|
1842
|
+
# Determine window size
|
|
1843
|
+
min_frame = frame_idx - self.model.num_maskmem * self.model.memory_temporal_stride_for_eval
|
|
1844
|
+
output_dict = inference_state["output_dict"]
|
|
1845
|
+
|
|
1846
|
+
# Prune global non_cond_frame_outputs
|
|
1847
|
+
for f in [k for k in output_dict["non_cond_frame_outputs"] if k < min_frame]:
|
|
1848
|
+
output_dict["non_cond_frame_outputs"].pop(f, None)
|
|
1849
|
+
|
|
1850
|
+
# Prune per-object non_cond_frame_outputs
|
|
1851
|
+
for obj_output_dict in inference_state.get("output_dict_per_obj", {}).values():
|
|
1852
|
+
for f in [k for k in obj_output_dict["non_cond_frame_outputs"] if k < min_frame]:
|
|
1853
|
+
obj_output_dict["non_cond_frame_outputs"].pop(f, None)
|
|
1854
|
+
|
|
1691
1855
|
|
|
1692
1856
|
class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
1693
|
-
"""
|
|
1694
|
-
SAM2DynamicInteractivePredictor extends SAM2Predictor to support dynamic interactions with video frames or a
|
|
1857
|
+
"""SAM2DynamicInteractivePredictor extends SAM2Predictor to support dynamic interactions with video frames or a
|
|
1695
1858
|
sequence of images.
|
|
1696
1859
|
|
|
1697
1860
|
Attributes:
|
|
@@ -1723,8 +1886,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1723
1886
|
max_obj_num: int = 3,
|
|
1724
1887
|
_callbacks: dict[str, Any] | None = None,
|
|
1725
1888
|
) -> None:
|
|
1726
|
-
"""
|
|
1727
|
-
Initialize the predictor with configuration and optional overrides.
|
|
1889
|
+
"""Initialize the predictor with configuration and optional overrides.
|
|
1728
1890
|
|
|
1729
1891
|
This constructor initializes the SAM2DynamicInteractivePredictor with a given configuration, applies any
|
|
1730
1892
|
specified overrides
|
|
@@ -1732,15 +1894,9 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1732
1894
|
Args:
|
|
1733
1895
|
cfg (dict[str, Any]): Configuration dictionary containing default settings.
|
|
1734
1896
|
overrides (dict[str, Any] | None): Dictionary of values to override default configuration.
|
|
1735
|
-
max_obj_num (int): Maximum number of objects to track. Default is 3. this is set to keep fix feature size
|
|
1897
|
+
max_obj_num (int): Maximum number of objects to track. Default is 3. this is set to keep fix feature size
|
|
1898
|
+
for the model.
|
|
1736
1899
|
_callbacks (dict[str, Any] | None): Dictionary of callback functions to customize behavior.
|
|
1737
|
-
|
|
1738
|
-
Examples:
|
|
1739
|
-
>>> predictor = SAM2DynamicInteractivePredictor(cfg=DEFAULT_CFG)
|
|
1740
|
-
>>> predictor_example_with_imgsz = SAM2DynamicInteractivePredictor(overrides={"imgsz": 640})
|
|
1741
|
-
>>> predictor_example_with_callback = SAM2DynamicInteractivePredictor(
|
|
1742
|
-
... _callbacks={"on_predict_start": custom_callback}
|
|
1743
|
-
... )
|
|
1744
1900
|
"""
|
|
1745
1901
|
super().__init__(cfg, overrides, _callbacks)
|
|
1746
1902
|
self.non_overlap_masks = True
|
|
@@ -1751,12 +1907,8 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1751
1907
|
|
|
1752
1908
|
# Initialize the object index set and mappings
|
|
1753
1909
|
self.obj_idx_set = set()
|
|
1754
|
-
self.obj_id_to_idx = OrderedDict()
|
|
1755
|
-
self.obj_idx_to_id = OrderedDict()
|
|
1910
|
+
self.obj_id_to_idx = self.obj_idx_to_id = OrderedDict(enumerate(range(max_obj_num)))
|
|
1756
1911
|
self._max_obj_num = max_obj_num
|
|
1757
|
-
for i in range(self._max_obj_num):
|
|
1758
|
-
self.obj_id_to_idx[i + 1] = i
|
|
1759
|
-
self.obj_idx_to_id[i] = i + 1
|
|
1760
1912
|
|
|
1761
1913
|
@smart_inference_mode()
|
|
1762
1914
|
def inference(
|
|
@@ -1769,19 +1921,19 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1769
1921
|
obj_ids: list[int] | None = None,
|
|
1770
1922
|
update_memory: bool = False,
|
|
1771
1923
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1772
|
-
"""
|
|
1773
|
-
|
|
1774
|
-
|
|
1775
|
-
|
|
1776
|
-
|
|
1777
|
-
When update_memory is False, it will only run inference on the provided image without updating the memory.
|
|
1924
|
+
"""Perform inference on a single image with optional bounding boxes, masks, points and object IDs. It has two
|
|
1925
|
+
modes: one is to run inference on a single image without updating the memory, and the other is to update
|
|
1926
|
+
the memory with the provided prompts and object IDs. When update_memory is True, it will update the
|
|
1927
|
+
memory with the provided prompts and obj_ids. When update_memory is False, it will only run inference on
|
|
1928
|
+
the provided image without updating the memory.
|
|
1778
1929
|
|
|
1779
1930
|
Args:
|
|
1780
1931
|
im (torch.Tensor | np.ndarray): The input image tensor or numpy array.
|
|
1781
1932
|
bboxes (list[list[float]] | None): Optional list of bounding boxes to update the memory.
|
|
1782
1933
|
masks (list[torch.Tensor | np.ndarray] | None): Optional masks to update the memory.
|
|
1783
1934
|
points (list[list[float]] | None): Optional list of points to update the memory, each point is [x, y].
|
|
1784
|
-
labels (list[int] | None): Optional list of object IDs corresponding to the points (>0 for positive, 0 for
|
|
1935
|
+
labels (list[int] | None): Optional list of object IDs corresponding to the points (>0 for positive, 0 for
|
|
1936
|
+
negative).
|
|
1785
1937
|
obj_ids (list[int] | None): Optional list of object IDs corresponding to the prompts.
|
|
1786
1938
|
update_memory (bool): Flag to indicate whether to update the memory with new objects.
|
|
1787
1939
|
|
|
@@ -1827,8 +1979,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1827
1979
|
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
|
|
1828
1980
|
|
|
1829
1981
|
def get_im_features(self, img: torch.Tensor | np.ndarray) -> None:
|
|
1830
|
-
"""
|
|
1831
|
-
Initialize the image state by processing the input image and extracting features.
|
|
1982
|
+
"""Initialize the image state by processing the input image and extracting features.
|
|
1832
1983
|
|
|
1833
1984
|
Args:
|
|
1834
1985
|
img (torch.Tensor | np.ndarray): The input image tensor or numpy array.
|
|
@@ -1846,13 +1997,12 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1846
1997
|
@smart_inference_mode()
|
|
1847
1998
|
def update_memory(
|
|
1848
1999
|
self,
|
|
1849
|
-
obj_ids: list[int] = None,
|
|
2000
|
+
obj_ids: list[int] | None = None,
|
|
1850
2001
|
points: torch.Tensor | None = None,
|
|
1851
2002
|
labels: torch.Tensor | None = None,
|
|
1852
2003
|
masks: torch.Tensor | None = None,
|
|
1853
2004
|
) -> None:
|
|
1854
|
-
"""
|
|
1855
|
-
Append the imgState to the memory_bank and update the memory for the model.
|
|
2005
|
+
"""Append the imgState to the memory_bank and update the memory for the model.
|
|
1856
2006
|
|
|
1857
2007
|
Args:
|
|
1858
2008
|
obj_ids (list[int]): List of object IDs corresponding to the prompts.
|
|
@@ -1906,7 +2056,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1906
2056
|
consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out["object_score_logits"]
|
|
1907
2057
|
|
|
1908
2058
|
high_res_masks = F.interpolate(
|
|
1909
|
-
consolidated_out["pred_masks"].to(self.device, non_blocking=
|
|
2059
|
+
consolidated_out["pred_masks"].to(self.device, non_blocking=self.device.type == "cuda"),
|
|
1910
2060
|
size=self.imgsz,
|
|
1911
2061
|
mode="bilinear",
|
|
1912
2062
|
align_corners=False,
|
|
@@ -1926,12 +2076,12 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1926
2076
|
self.memory_bank.append(consolidated_out)
|
|
1927
2077
|
|
|
1928
2078
|
def _prepare_memory_conditioned_features(self, obj_idx: int | None) -> torch.Tensor:
|
|
1929
|
-
"""
|
|
1930
|
-
|
|
1931
|
-
|
|
1932
|
-
|
|
1933
|
-
features.
|
|
1934
|
-
|
|
2079
|
+
"""Prepare memory-conditioned features for the current image state.
|
|
2080
|
+
|
|
2081
|
+
If ``obj_idx`` is provided, features are prepared for a specific prompted object in the image. If ``obj_idx`` is
|
|
2082
|
+
None, features are prepared for all objects. If no memory is available, a no-memory embedding is added to the
|
|
2083
|
+
current vision features. Otherwise, memory from previous frames is used to condition the current vision features
|
|
2084
|
+
via a transformer attention mechanism.
|
|
1935
2085
|
|
|
1936
2086
|
Args:
|
|
1937
2087
|
obj_idx (int | None): The index of the object for which to prepare the features.
|
|
@@ -1940,8 +2090,8 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1940
2090
|
pix_feat_with_mem (torch.Tensor): The memory-conditioned pixel features.
|
|
1941
2091
|
"""
|
|
1942
2092
|
if len(self.memory_bank) == 0 or isinstance(obj_idx, int):
|
|
1943
|
-
#
|
|
1944
|
-
#
|
|
2093
|
+
# For initial conditioning frames, encode without using any previous memory.
|
|
2094
|
+
# Directly add the no-memory embedding (instead of using the transformer encoder).
|
|
1945
2095
|
pix_feat_with_mem = self.vision_feats[-1] + self.model.no_mem_embed
|
|
1946
2096
|
else:
|
|
1947
2097
|
# for inference frames, use the memory features from previous frames
|
|
@@ -1953,7 +2103,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1953
2103
|
memory_pos=memory_pos_embed,
|
|
1954
2104
|
num_obj_ptr_tokens=0, # num_obj_ptr_tokens
|
|
1955
2105
|
)
|
|
1956
|
-
#
|
|
2106
|
+
# Reshape output (HW)BC => BCHW
|
|
1957
2107
|
return pix_feat_with_mem.permute(1, 2, 0).view(
|
|
1958
2108
|
self._max_obj_num,
|
|
1959
2109
|
self.model.memory_attention.d_model,
|
|
@@ -1961,9 +2111,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1961
2111
|
)
|
|
1962
2112
|
|
|
1963
2113
|
def get_maskmem_enc(self) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1964
|
-
"""Get
|
|
1965
|
-
features.
|
|
1966
|
-
"""
|
|
2114
|
+
"""Get memory and positional encoding from memory, which is used to condition the current image features."""
|
|
1967
2115
|
to_cat_memory, to_cat_memory_pos_embed = [], []
|
|
1968
2116
|
for consolidated_out in self.memory_bank:
|
|
1969
2117
|
to_cat_memory.append(consolidated_out["maskmem_features"].flatten(2).permute(2, 0, 1)) # (H*W, B, C)
|
|
@@ -1976,8 +2124,7 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1976
2124
|
return memory, memory_pos_embed
|
|
1977
2125
|
|
|
1978
2126
|
def _obj_id_to_idx(self, obj_id: int) -> int | None:
|
|
1979
|
-
"""
|
|
1980
|
-
Map client-side object id to model-side object index.
|
|
2127
|
+
"""Map client-side object id to model-side object index.
|
|
1981
2128
|
|
|
1982
2129
|
Args:
|
|
1983
2130
|
obj_id (int): The client-side object ID.
|
|
@@ -1994,23 +2141,24 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
1994
2141
|
label: torch.Tensor | None = None,
|
|
1995
2142
|
mask: torch.Tensor | None = None,
|
|
1996
2143
|
) -> dict[str, Any]:
|
|
1997
|
-
"""
|
|
1998
|
-
Tracking step for the current image state to predict masks.
|
|
2144
|
+
"""Tracking step for the current image state to predict masks.
|
|
1999
2145
|
|
|
2000
2146
|
This method processes the image features and runs the SAM heads to predict masks. If obj_idx is provided, it
|
|
2001
2147
|
processes the features for a specific prompted object in the image. If obj_idx is None, it processes the
|
|
2002
|
-
features for all objects in the image. The method supports both mask-based output without SAM and full
|
|
2003
|
-
|
|
2148
|
+
features for all objects in the image. The method supports both mask-based output without SAM and full SAM
|
|
2149
|
+
processing with memory-conditioned features.
|
|
2004
2150
|
|
|
2005
2151
|
Args:
|
|
2006
2152
|
obj_idx (int | None): The index of the object for which to predict masks. If None, it processes all objects.
|
|
2007
2153
|
point (torch.Tensor | None): The coordinates of the points of interest with shape (N, 2).
|
|
2008
|
-
label (torch.Tensor | None): The labels corresponding to the points where 1 means positive clicks, 0 means
|
|
2154
|
+
label (torch.Tensor | None): The labels corresponding to the points where 1 means positive clicks, 0 means
|
|
2155
|
+
negative clicks.
|
|
2009
2156
|
mask (torch.Tensor | None): The mask input for the object with shape (H, W).
|
|
2010
2157
|
|
|
2011
2158
|
Returns:
|
|
2012
|
-
current_out (dict[str, Any]): A dictionary containing the current output with mask predictions and object
|
|
2013
|
-
Keys include 'point_inputs', 'mask_inputs', 'pred_masks', 'pred_masks_high_res',
|
|
2159
|
+
current_out (dict[str, Any]): A dictionary containing the current output with mask predictions and object
|
|
2160
|
+
pointers. Keys include 'point_inputs', 'mask_inputs', 'pred_masks', 'pred_masks_high_res',
|
|
2161
|
+
'obj_ptr', 'object_score_logits'.
|
|
2014
2162
|
"""
|
|
2015
2163
|
if mask is not None and self.model.use_mask_input_as_output_without_sam:
|
|
2016
2164
|
# When use_mask_input_as_output_without_sam=True, we directly output the mask input
|
|
@@ -2019,16 +2167,16 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
2019
2167
|
pix_feat = pix_feat.view(-1, self.model.memory_attention.d_model, *self.feat_sizes[-1])
|
|
2020
2168
|
_, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = self.model._use_mask_as_output(mask)
|
|
2021
2169
|
else:
|
|
2022
|
-
#
|
|
2170
|
+
# Fuse visual features with previous memory features in the memory bank.
|
|
2023
2171
|
pix_feat_with_mem = self._prepare_memory_conditioned_features(obj_idx)
|
|
2024
|
-
#
|
|
2172
|
+
# If ``obj_idx`` is provided (i.e., prompts are being added), keep only the first feature map.
|
|
2025
2173
|
pix_feat_with_mem = pix_feat_with_mem[:1] if obj_idx is not None else pix_feat_with_mem
|
|
2026
2174
|
_, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = self.model._forward_sam_heads(
|
|
2027
2175
|
backbone_features=pix_feat_with_mem,
|
|
2028
2176
|
point_inputs={"point_coords": point, "point_labels": label} if obj_idx is not None else None,
|
|
2029
2177
|
mask_inputs=mask,
|
|
2030
2178
|
multimask_output=False,
|
|
2031
|
-
high_res_features=[feat[: pix_feat_with_mem.
|
|
2179
|
+
high_res_features=[feat[: pix_feat_with_mem.shape[0]] for feat in self.high_res_features],
|
|
2032
2180
|
)
|
|
2033
2181
|
return {
|
|
2034
2182
|
"pred_masks": low_res_masks,
|
|
@@ -2036,3 +2184,1757 @@ class SAM2DynamicInteractivePredictor(SAM2Predictor):
|
|
|
2036
2184
|
"obj_ptr": obj_ptr,
|
|
2037
2185
|
"object_score_logits": object_score_logits,
|
|
2038
2186
|
}
|
|
2187
|
+
|
|
2188
|
+
|
|
2189
|
+
class SAM3Predictor(SAM2Predictor):
|
|
2190
|
+
"""Segment Anything Model 3 (SAM3) Interactive Predictor for image segmentation tasks."""
|
|
2191
|
+
|
|
2192
|
+
_bb_feat_sizes = [
|
|
2193
|
+
(288, 288),
|
|
2194
|
+
(144, 144),
|
|
2195
|
+
(72, 72),
|
|
2196
|
+
]
|
|
2197
|
+
stride = 14
|
|
2198
|
+
|
|
2199
|
+
def setup_model(self, model=None, verbose=True):
|
|
2200
|
+
"""Setup the SAM3 model with appropriate mean and standard deviation for preprocessing."""
|
|
2201
|
+
super().setup_model(model, verbose)
|
|
2202
|
+
# update mean and std
|
|
2203
|
+
self.mean = torch.tensor([127.5, 127.5, 127.5]).view(-1, 1, 1).to(self.device)
|
|
2204
|
+
self.std = torch.tensor([127.5, 127.5, 127.5]).view(-1, 1, 1).to(self.device)
|
|
2205
|
+
|
|
2206
|
+
def get_model(self):
|
|
2207
|
+
"""Retrieve and initialize the Segment Anything Model 3 (SAM3) for image segmentation tasks."""
|
|
2208
|
+
from .build_sam3 import build_interactive_sam3 # slow import
|
|
2209
|
+
|
|
2210
|
+
return build_interactive_sam3(self.args.model, compile=self.args.compile)
|
|
2211
|
+
|
|
2212
|
+
|
|
2213
|
+
class SAM3SemanticPredictor(SAM3Predictor):
|
|
2214
|
+
"""Segment Anything Model 3 (SAM3) Predictor for image segmentation tasks."""
|
|
2215
|
+
|
|
2216
|
+
def get_model(self):
|
|
2217
|
+
"""Retrieve and initialize the Segment Anything Model 3 (SAM3) for image segmentation tasks."""
|
|
2218
|
+
from .build_sam3 import build_sam3_image_model # slow import
|
|
2219
|
+
|
|
2220
|
+
return build_sam3_image_model(self.args.model, compile=self.args.compile)
|
|
2221
|
+
|
|
2222
|
+
@smart_inference_mode()
|
|
2223
|
+
def get_im_features(self, im):
|
|
2224
|
+
"""Extract image features using the model's backbone."""
|
|
2225
|
+
return self.model.backbone.forward_image(im)
|
|
2226
|
+
|
|
2227
|
+
def pre_transform(self, im):
|
|
2228
|
+
"""Perform initial transformations on the input image for preprocessing.
|
|
2229
|
+
|
|
2230
|
+
This method applies transformations such as resizing to prepare the image for further preprocessing. Currently,
|
|
2231
|
+
batched inference is not supported; hence the list length should be 1.
|
|
2232
|
+
|
|
2233
|
+
Args:
|
|
2234
|
+
im (list[np.ndarray]): List containing a single image in HWC numpy array format.
|
|
2235
|
+
|
|
2236
|
+
Returns:
|
|
2237
|
+
(list[np.ndarray]): List containing the transformed image.
|
|
2238
|
+
|
|
2239
|
+
Raises:
|
|
2240
|
+
AssertionError: If the input list contains more than one image.
|
|
2241
|
+
|
|
2242
|
+
Examples:
|
|
2243
|
+
>>> predictor = Predictor()
|
|
2244
|
+
>>> image = np.random.rand(480, 640, 3) # Single HWC image
|
|
2245
|
+
>>> transformed = predictor.pre_transform([image])
|
|
2246
|
+
>>> print(len(transformed))
|
|
2247
|
+
1
|
|
2248
|
+
"""
|
|
2249
|
+
assert len(im) == 1, "SAM model does not currently support batched inference"
|
|
2250
|
+
letterbox = LetterBox(self.imgsz, auto=False, center=False, scale_fill=True) # hardcode here for sam3
|
|
2251
|
+
return [letterbox(image=x) for x in im]
|
|
2252
|
+
|
|
2253
|
+
def _prepare_geometric_prompts(self, src_shape, bboxes=None, labels=None):
|
|
2254
|
+
"""Prepare prompts by normalizing bounding boxes and points to the destination shape."""
|
|
2255
|
+
if bboxes is not None:
|
|
2256
|
+
bboxes = torch.as_tensor(bboxes, dtype=self.torch_dtype, device=self.device)
|
|
2257
|
+
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
|
|
2258
|
+
# needs xywh as input
|
|
2259
|
+
bboxes = ops.xyxy2xywh(bboxes)
|
|
2260
|
+
bboxes[:, 0::2] /= src_shape[1]
|
|
2261
|
+
bboxes[:, 1::2] /= src_shape[0]
|
|
2262
|
+
# Assuming labels are all positive if users don't pass labels.
|
|
2263
|
+
if labels is None:
|
|
2264
|
+
labels = np.ones(bboxes.shape[:-1])
|
|
2265
|
+
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
|
|
2266
|
+
assert bboxes.shape[-2] == labels.shape[-1], (
|
|
2267
|
+
f"Number of points {bboxes.shape[-2]} should match number of labels {labels.shape[-1]}."
|
|
2268
|
+
)
|
|
2269
|
+
bboxes = bboxes.view(-1, 1, 4) # (N, 1, 4)
|
|
2270
|
+
labels = labels.view(-1, 1) # (N, 1)
|
|
2271
|
+
return bboxes, labels
|
|
2272
|
+
|
|
2273
|
+
def _inference_features(self, features, bboxes=None, labels=None, text: list[str] | None = None):
|
|
2274
|
+
"""Run inference on the extracted features with optional bounding boxes and labels."""
|
|
2275
|
+
# NOTE: priority: bboxes > text > pre-set classes
|
|
2276
|
+
nc = 1 if bboxes is not None else len(text) if text is not None else len(self.model.names)
|
|
2277
|
+
geometric_prompt = self._get_dummy_prompt(nc)
|
|
2278
|
+
if bboxes is not None:
|
|
2279
|
+
for i in range(len(bboxes)):
|
|
2280
|
+
geometric_prompt.append_boxes(bboxes[[i]], labels[[i]])
|
|
2281
|
+
if text is None:
|
|
2282
|
+
text = ["visual"] # bboxes needs this `visual` text prompt if no text passed
|
|
2283
|
+
if text is not None and self.model.names != text:
|
|
2284
|
+
self.model.set_classes(text=text)
|
|
2285
|
+
outputs = self.model.forward_grounding(
|
|
2286
|
+
backbone_out=features,
|
|
2287
|
+
text_ids=torch.arange(nc, device=self.device, dtype=torch.long),
|
|
2288
|
+
geometric_prompt=geometric_prompt,
|
|
2289
|
+
)
|
|
2290
|
+
return outputs
|
|
2291
|
+
|
|
2292
|
+
def postprocess(self, preds, img, orig_imgs):
|
|
2293
|
+
"""Post-process the predictions to apply non-overlapping constraints if required."""
|
|
2294
|
+
pred_boxes = preds["pred_boxes"] # (nc, num_query, 4)
|
|
2295
|
+
pred_logits = preds["pred_logits"]
|
|
2296
|
+
pred_masks = preds["pred_masks"]
|
|
2297
|
+
pred_scores = pred_logits.sigmoid()
|
|
2298
|
+
presence_score = preds["presence_logit_dec"].sigmoid().unsqueeze(1)
|
|
2299
|
+
pred_scores = (pred_scores * presence_score).squeeze(-1)
|
|
2300
|
+
pred_cls = torch.tensor(
|
|
2301
|
+
list(range(pred_scores.shape[0])),
|
|
2302
|
+
dtype=pred_scores.dtype,
|
|
2303
|
+
device=pred_scores.device,
|
|
2304
|
+
)[:, None].expand_as(pred_scores)
|
|
2305
|
+
pred_boxes = torch.cat([pred_boxes, pred_scores[..., None], pred_cls[..., None]], dim=-1)
|
|
2306
|
+
|
|
2307
|
+
keep = pred_scores > self.args.conf
|
|
2308
|
+
pred_masks = pred_masks[keep]
|
|
2309
|
+
pred_boxes = pred_boxes[keep]
|
|
2310
|
+
pred_boxes[:, :4] = ops.xywh2xyxy(pred_boxes[:, :4])
|
|
2311
|
+
|
|
2312
|
+
names = getattr(self.model, "names", [str(i) for i in range(pred_scores.shape[0])])
|
|
2313
|
+
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
|
2314
|
+
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
|
2315
|
+
results = []
|
|
2316
|
+
for masks, boxes, orig_img, img_path in zip([pred_masks], [pred_boxes], orig_imgs, self.batch[0]):
|
|
2317
|
+
if masks.shape[0] == 0:
|
|
2318
|
+
masks, boxes = None, torch.zeros((0, 6), device=pred_masks.device)
|
|
2319
|
+
else:
|
|
2320
|
+
masks = F.interpolate(masks.float()[None], orig_img.shape[:2], mode="bilinear")[0] > 0.5
|
|
2321
|
+
boxes[..., [0, 2]] *= orig_img.shape[1]
|
|
2322
|
+
boxes[..., [1, 3]] *= orig_img.shape[0]
|
|
2323
|
+
results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=boxes))
|
|
2324
|
+
return results
|
|
2325
|
+
|
|
2326
|
+
def inference(self, im, bboxes=None, labels=None, text: list[str] | None = None, *args, **kwargs):
|
|
2327
|
+
"""Perform inference on a single image with optional prompts."""
|
|
2328
|
+
bboxes = self.prompts.pop("bboxes", bboxes)
|
|
2329
|
+
labels = self.prompts.pop("labels", labels)
|
|
2330
|
+
text = self.prompts.pop("text", text)
|
|
2331
|
+
features = self.get_im_features(im) if self.features is None else self.features
|
|
2332
|
+
prompts = self._prepare_geometric_prompts(self.batch[1][0].shape[:2], bboxes, labels)
|
|
2333
|
+
return self._inference_features(features, *prompts, text=text)
|
|
2334
|
+
|
|
2335
|
+
@smart_inference_mode()
|
|
2336
|
+
def inference_features(
|
|
2337
|
+
self,
|
|
2338
|
+
features,
|
|
2339
|
+
src_shape,
|
|
2340
|
+
bboxes=None,
|
|
2341
|
+
labels=None,
|
|
2342
|
+
text: list[str] | None = None,
|
|
2343
|
+
):
|
|
2344
|
+
"""Perform prompts preprocessing and inference on provided image features using the SAM model.
|
|
2345
|
+
|
|
2346
|
+
Args:
|
|
2347
|
+
features (dict[str, Any]): Extracted image features from the SAM3 model image encoder.
|
|
2348
|
+
src_shape (tuple[int, int]): The source shape (height, width) of the input image.
|
|
2349
|
+
bboxes (np.ndarray | list[list[float]] | None): Bounding boxes in xyxy format with shape (N, 4). pixels.
|
|
2350
|
+
labels (np.ndarray | list[int] | None): Point prompt labels with shape (N, ).
|
|
2351
|
+
text (list[str] | None): List of text prompts corresponding to the classes.
|
|
2352
|
+
|
|
2353
|
+
Returns:
|
|
2354
|
+
pred_masks (torch.Tensor): The output masks in shape (C, H, W), where C is the number of generated masks.
|
|
2355
|
+
pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 6), where N is the number of boxes.
|
|
2356
|
+
Each box is in xyxy format with additional columns for score and class.
|
|
2357
|
+
|
|
2358
|
+
Notes:
|
|
2359
|
+
- The input features is a torch.Tensor of shape (B, C, H, W) if performing on SAM, or a dict[str, Any] if performing on SAM2.
|
|
2360
|
+
"""
|
|
2361
|
+
prompts = self._prepare_geometric_prompts(src_shape[:2], bboxes, labels)
|
|
2362
|
+
preds = self._inference_features(features, *prompts, text=text)
|
|
2363
|
+
pred_boxes = preds["pred_boxes"] # (nc, num_query, 4)
|
|
2364
|
+
pred_logits = preds["pred_logits"]
|
|
2365
|
+
pred_masks = preds["pred_masks"]
|
|
2366
|
+
pred_scores = pred_logits.sigmoid()
|
|
2367
|
+
presence_score = preds["presence_logit_dec"].sigmoid().unsqueeze(1)
|
|
2368
|
+
pred_scores = (pred_scores * presence_score).squeeze(-1)
|
|
2369
|
+
pred_cls = torch.tensor(
|
|
2370
|
+
list(range(pred_scores.shape[0])),
|
|
2371
|
+
dtype=pred_scores.dtype,
|
|
2372
|
+
device=pred_scores.device,
|
|
2373
|
+
)[:, None].expand_as(pred_scores)
|
|
2374
|
+
pred_boxes = torch.cat([pred_boxes, pred_scores[..., None], pred_cls[..., None]], dim=-1)
|
|
2375
|
+
|
|
2376
|
+
keep = pred_scores > self.args.conf
|
|
2377
|
+
pred_masks = pred_masks[keep]
|
|
2378
|
+
pred_boxes = pred_boxes[keep]
|
|
2379
|
+
pred_boxes[:, :4] = ops.xywh2xyxy(pred_boxes[:, :4])
|
|
2380
|
+
|
|
2381
|
+
if pred_masks.shape[0] == 0:
|
|
2382
|
+
pred_masks, pred_boxes = None, torch.zeros((0, 6), device=pred_masks.device)
|
|
2383
|
+
else:
|
|
2384
|
+
pred_masks = F.interpolate(pred_masks.float()[None], src_shape[:2], mode="bilinear")[0] > 0.5
|
|
2385
|
+
pred_boxes[..., 0] *= src_shape[1]
|
|
2386
|
+
pred_boxes[..., 1] *= src_shape[0]
|
|
2387
|
+
pred_boxes[..., 2] *= src_shape[1]
|
|
2388
|
+
pred_boxes[..., 3] *= src_shape[0]
|
|
2389
|
+
return pred_masks, pred_boxes
|
|
2390
|
+
|
|
2391
|
+
def reset_prompts(self):
|
|
2392
|
+
"""Reset the prompts for the predictor."""
|
|
2393
|
+
self.prompts = {}
|
|
2394
|
+
self.model.text_embeddings = {}
|
|
2395
|
+
|
|
2396
|
+
def _get_dummy_prompt(self, num_prompts=1):
|
|
2397
|
+
"""Get a dummy geometric prompt with zero boxes."""
|
|
2398
|
+
geometric_prompt = Prompt(
|
|
2399
|
+
box_embeddings=torch.zeros(0, num_prompts, 4, device=self.device),
|
|
2400
|
+
box_mask=torch.zeros(num_prompts, 0, device=self.device, dtype=torch.bool),
|
|
2401
|
+
)
|
|
2402
|
+
return geometric_prompt
|
|
2403
|
+
|
|
2404
|
+
|
|
2405
|
+
class SAM3VideoPredictor(SAM2VideoPredictor, SAM3Predictor):
|
|
2406
|
+
"""Segment Anything Model 3 (SAM3) Video Predictor for video segmentation tasks."""
|
|
2407
|
+
|
|
2408
|
+
def propagate_in_video(self, inference_state, frame_idx):
|
|
2409
|
+
"""Perform image segmentation inference based on the given input cues, using the currently loaded image. This
|
|
2410
|
+
method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
|
|
2411
|
+
encoder, and mask decoder for real-time and promptable segmentation tasks.
|
|
2412
|
+
|
|
2413
|
+
Args:
|
|
2414
|
+
inference_state (dict): The current state of inference, including input cues and previous outputs.
|
|
2415
|
+
frame_idx (int): The index of the current frame in the video sequence.
|
|
2416
|
+
"""
|
|
2417
|
+
frame = frame_idx
|
|
2418
|
+
output_dict = inference_state["output_dict"]
|
|
2419
|
+
obj_ids = inference_state["obj_ids"]
|
|
2420
|
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
|
2421
|
+
batch_size = len(inference_state["obj_idx_to_id"])
|
|
2422
|
+
if len(output_dict["cond_frame_outputs"]) == 0:
|
|
2423
|
+
raise RuntimeError("No points are provided; please add points first")
|
|
2424
|
+
|
|
2425
|
+
if frame in consolidated_frame_inds["cond_frame_outputs"]:
|
|
2426
|
+
storage_key = "cond_frame_outputs"
|
|
2427
|
+
current_out = output_dict[storage_key][frame]
|
|
2428
|
+
if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
|
|
2429
|
+
# clear non-conditioning memory of the surrounding frames
|
|
2430
|
+
self._clear_non_cond_mem_around_input(frame)
|
|
2431
|
+
elif frame in consolidated_frame_inds["non_cond_frame_outputs"]:
|
|
2432
|
+
storage_key = "non_cond_frame_outputs"
|
|
2433
|
+
current_out = output_dict[storage_key][frame]
|
|
2434
|
+
else:
|
|
2435
|
+
storage_key = "non_cond_frame_outputs"
|
|
2436
|
+
current_out = self._run_single_frame_inference(
|
|
2437
|
+
output_dict=output_dict,
|
|
2438
|
+
frame_idx=frame,
|
|
2439
|
+
batch_size=batch_size,
|
|
2440
|
+
is_init_cond_frame=False,
|
|
2441
|
+
point_inputs=None,
|
|
2442
|
+
mask_inputs=None,
|
|
2443
|
+
reverse=False,
|
|
2444
|
+
run_mem_encoder=True,
|
|
2445
|
+
inference_state=inference_state,
|
|
2446
|
+
)
|
|
2447
|
+
output_dict[storage_key][frame] = current_out
|
|
2448
|
+
self._prune_non_cond_memory(frame, inference_state=inference_state)
|
|
2449
|
+
# Create slices of per-object outputs for subsequent interaction with each
|
|
2450
|
+
# individual object after tracking.
|
|
2451
|
+
self._add_output_per_object(frame, current_out, storage_key, inference_state=inference_state)
|
|
2452
|
+
inference_state["frames_already_tracked"].append(frame)
|
|
2453
|
+
pred_masks = current_out["pred_masks"].flatten(0, 1)
|
|
2454
|
+
obj_scores = current_out["object_score_logits"]
|
|
2455
|
+
|
|
2456
|
+
return obj_ids, pred_masks, obj_scores
|
|
2457
|
+
|
|
2458
|
+
|
|
2459
|
+
class SAM3VideoSemanticPredictor(SAM3SemanticPredictor):
|
|
2460
|
+
"""Segment Anything Model 3 (SAM3) Video Semantic Predictor."""
|
|
2461
|
+
|
|
2462
|
+
HIGH_CONF_THRESH = 0.8
|
|
2463
|
+
HIGH_IOU_THRESH = 0.8
|
|
2464
|
+
NO_OBJ_LOGIT = -10.0
|
|
2465
|
+
NEVER_OCCLUDED = -1
|
|
2466
|
+
ALWAYS_OCCLUDED = 100000
|
|
2467
|
+
|
|
2468
|
+
UNCONFIRMED = 1 # newly added masklet, not confirmed by any detection yet
|
|
2469
|
+
CONFIRMED = 2 # confirmed by at least one detection
|
|
2470
|
+
_bb_feat_sizes = [
|
|
2471
|
+
(288, 288),
|
|
2472
|
+
(144, 144),
|
|
2473
|
+
(72, 72),
|
|
2474
|
+
]
|
|
2475
|
+
stride = 14
|
|
2476
|
+
|
|
2477
|
+
def __init__(
|
|
2478
|
+
self,
|
|
2479
|
+
cfg=DEFAULT_CFG,
|
|
2480
|
+
overrides=None,
|
|
2481
|
+
_callbacks=None,
|
|
2482
|
+
# prob threshold for detection outputs -- only keep detections above this threshold
|
|
2483
|
+
# enters NMS and det-to-track matching
|
|
2484
|
+
score_threshold_detection=0.5,
|
|
2485
|
+
# IoU threshold for detection NMS
|
|
2486
|
+
det_nms_thresh=0.0,
|
|
2487
|
+
# IoU threshold for det-to-track matching -- a detection is considered "matched" to a tracklet it
|
|
2488
|
+
# overlaps with a tracklet above this threshold -- it is often a loose threshold like 0.1
|
|
2489
|
+
assoc_iou_thresh=0.5,
|
|
2490
|
+
# IoU threshold for det-to-track matching, which is used to determine whether a masklet is "unmatched"
|
|
2491
|
+
# by any detections -- it is often a stricter threshold like 0.5
|
|
2492
|
+
trk_assoc_iou_thresh=0.5,
|
|
2493
|
+
# prob threshold for a detection to be added as a new object
|
|
2494
|
+
new_det_thresh=0.0,
|
|
2495
|
+
# hotstart parameters: we hold off the outputs for `hotstart_delay` frames and
|
|
2496
|
+
# 1) remove those tracklets unmatched by any detections based on `hotstart_unmatch_thresh`
|
|
2497
|
+
# 2) remove those tracklets overlapping with one another based on `hotstart_dup_thresh`
|
|
2498
|
+
hotstart_delay=0,
|
|
2499
|
+
hotstart_unmatch_thresh=3,
|
|
2500
|
+
hotstart_dup_thresh=3,
|
|
2501
|
+
init_trk_keep_alive=30,
|
|
2502
|
+
max_trk_keep_alive=30,
|
|
2503
|
+
min_trk_keep_alive=-4,
|
|
2504
|
+
# Threshold for suppressing overlapping objects based on recent occlusion
|
|
2505
|
+
suppress_overlapping_based_on_recent_occlusion_threshold=0.0,
|
|
2506
|
+
decrease_trk_keep_alive_for_empty_masklets=True,
|
|
2507
|
+
o2o_matching_masklets_enable=False, # Enable hungarian matching to match existing masklets
|
|
2508
|
+
suppress_det_close_to_boundary=False,
|
|
2509
|
+
fill_hole_area=16,
|
|
2510
|
+
# The maximum number of objects (masklets) to track across all GPUs (for no limit, set it to -1)
|
|
2511
|
+
max_num_objects=-1,
|
|
2512
|
+
recondition_every_nth_frame=-1,
|
|
2513
|
+
# masket confirmation status (to suppress unconfirmed masklets)
|
|
2514
|
+
masklet_confirmation_enable=False,
|
|
2515
|
+
# a masklet is confirmed after being consecutively detected and matched for
|
|
2516
|
+
# `masklet_confirmation_consecutive_det_thresh`
|
|
2517
|
+
masklet_confirmation_consecutive_det_thresh=3,
|
|
2518
|
+
# bbox heuristic parameters
|
|
2519
|
+
reconstruction_bbox_iou_thresh=0.0,
|
|
2520
|
+
reconstruction_bbox_det_score=0.0,
|
|
2521
|
+
):
|
|
2522
|
+
"""Initialize the SAM3VideoSemanticPredictor with configuration and optional overrides."""
|
|
2523
|
+
super().__init__(cfg, overrides, _callbacks)
|
|
2524
|
+
self.score_threshold_detection = score_threshold_detection
|
|
2525
|
+
self.det_nms_thresh = det_nms_thresh
|
|
2526
|
+
self.assoc_iou_thresh = assoc_iou_thresh
|
|
2527
|
+
self.trk_assoc_iou_thresh = trk_assoc_iou_thresh
|
|
2528
|
+
self.new_det_thresh = new_det_thresh
|
|
2529
|
+
|
|
2530
|
+
# hotstart parameters
|
|
2531
|
+
if hotstart_delay > 0:
|
|
2532
|
+
assert hotstart_unmatch_thresh <= hotstart_delay
|
|
2533
|
+
assert hotstart_dup_thresh <= hotstart_delay
|
|
2534
|
+
self.hotstart_delay = hotstart_delay
|
|
2535
|
+
self.hotstart_unmatch_thresh = hotstart_unmatch_thresh
|
|
2536
|
+
self.hotstart_dup_thresh = hotstart_dup_thresh
|
|
2537
|
+
self.init_trk_keep_alive = init_trk_keep_alive
|
|
2538
|
+
self.max_trk_keep_alive = max_trk_keep_alive
|
|
2539
|
+
self.min_trk_keep_alive = min_trk_keep_alive
|
|
2540
|
+
self.suppress_overlapping_based_on_recent_occlusion_threshold = (
|
|
2541
|
+
suppress_overlapping_based_on_recent_occlusion_threshold
|
|
2542
|
+
)
|
|
2543
|
+
self.suppress_det_close_to_boundary = suppress_det_close_to_boundary
|
|
2544
|
+
self.decrease_trk_keep_alive_for_empty_masklets = decrease_trk_keep_alive_for_empty_masklets
|
|
2545
|
+
self.o2o_matching_masklets_enable = o2o_matching_masklets_enable
|
|
2546
|
+
self.fill_hole_area = fill_hole_area
|
|
2547
|
+
self._dist_pg_cpu = None # CPU process group (lazy-initialized on first use)
|
|
2548
|
+
|
|
2549
|
+
max_num_objects = 10000 # no limit
|
|
2550
|
+
num_obj_for_compile = 16
|
|
2551
|
+
self.max_num_objects = max_num_objects
|
|
2552
|
+
self.num_obj_for_compile = num_obj_for_compile
|
|
2553
|
+
self.recondition_every_nth_frame = recondition_every_nth_frame
|
|
2554
|
+
self.masklet_confirmation_enable = masklet_confirmation_enable
|
|
2555
|
+
self.masklet_confirmation_consecutive_det_thresh = masklet_confirmation_consecutive_det_thresh
|
|
2556
|
+
self.reconstruction_bbox_iou_thresh = reconstruction_bbox_iou_thresh
|
|
2557
|
+
self.reconstruction_bbox_det_score = reconstruction_bbox_det_score
|
|
2558
|
+
|
|
2559
|
+
# build SAM3 tracker
|
|
2560
|
+
self.tracker = SAM3VideoPredictor(overrides=overrides)
|
|
2561
|
+
|
|
2562
|
+
self.inference_state = {}
|
|
2563
|
+
self.callbacks["on_predict_start"].append(self.init_state)
|
|
2564
|
+
|
|
2565
|
+
def setup_model(self, model=None, verbose=True):
|
|
2566
|
+
"""Setup the SAM3VideoSemanticPredictor model."""
|
|
2567
|
+
super().setup_model(model, verbose)
|
|
2568
|
+
from .build_sam3 import build_interactive_sam3
|
|
2569
|
+
|
|
2570
|
+
# Initialize the SAM3 tracker model without backbone (backbone is handled in the detector)
|
|
2571
|
+
model = build_interactive_sam3(self.args.model, with_backbone=False)
|
|
2572
|
+
self.tracker.setup_model(model=model, verbose=False)
|
|
2573
|
+
|
|
2574
|
+
def setup_source(self, source):
|
|
2575
|
+
"""Setup the source for the SAM3VideoSemanticPredictor model."""
|
|
2576
|
+
super().setup_source(source)
|
|
2577
|
+
self.tracker.imgsz = self.imgsz
|
|
2578
|
+
self.tracker.model.set_imgsz(self.imgsz)
|
|
2579
|
+
self.tracker._bb_feat_sizes = [[int(x / (self.stride * i)) for x in self.imgsz] for i in [1 / 4, 1 / 2, 1]]
|
|
2580
|
+
self.interpol_size = self.tracker.model.memory_encoder.mask_downsampler.interpol_size
|
|
2581
|
+
|
|
2582
|
+
@staticmethod
|
|
2583
|
+
def init_state(predictor):
|
|
2584
|
+
"""Initialize an inference state for the predictor.
|
|
2585
|
+
|
|
2586
|
+
This function sets up the initial state required for performing inference on video data. It includes
|
|
2587
|
+
initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
|
|
2588
|
+
relevant to the tracking process.
|
|
2589
|
+
|
|
2590
|
+
Args:
|
|
2591
|
+
predictor (SAM3VideoSemanticPredictor): The predictor object for which to initialize the state.
|
|
2592
|
+
"""
|
|
2593
|
+
if len(predictor.inference_state) > 0: # means initialized
|
|
2594
|
+
return
|
|
2595
|
+
assert predictor.dataset is not None
|
|
2596
|
+
assert predictor.dataset.mode == "video"
|
|
2597
|
+
num_frames = predictor.dataset.frames
|
|
2598
|
+
inference_state = {
|
|
2599
|
+
"num_frames": num_frames,
|
|
2600
|
+
"tracker_inference_states": [],
|
|
2601
|
+
"tracker_metadata": {},
|
|
2602
|
+
"text_prompt": None,
|
|
2603
|
+
"per_frame_geometric_prompt": [None] * num_frames,
|
|
2604
|
+
}
|
|
2605
|
+
predictor.inference_state = inference_state
|
|
2606
|
+
|
|
2607
|
+
def inference(self, im, bboxes=None, labels=None, text: list[str] | None = None, *args, **kwargs):
|
|
2608
|
+
"""Perform inference on a video sequence with optional prompts."""
|
|
2609
|
+
frame = self.dataset.frame - 1 # align frame index to be 0-based
|
|
2610
|
+
self.inference_state["im"] = im # only pass image for subsequent frames
|
|
2611
|
+
if "text_ids" not in self.inference_state: # first frame processing
|
|
2612
|
+
self.add_prompt(frame_idx=frame, text=text, bboxes=bboxes, labels=labels)
|
|
2613
|
+
return self._run_single_frame_inference(frame, reverse=False)
|
|
2614
|
+
|
|
2615
|
+
def postprocess(self, preds, img, orig_imgs):
|
|
2616
|
+
"""Post-process the predictions to apply non-overlapping constraints if required."""
|
|
2617
|
+
obj_id_to_mask = preds["obj_id_to_mask"] # low res masks
|
|
2618
|
+
curr_obj_ids = sorted(obj_id_to_mask.keys())
|
|
2619
|
+
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
|
2620
|
+
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
|
2621
|
+
|
|
2622
|
+
if len(curr_obj_ids) == 0:
|
|
2623
|
+
pred_masks, pred_boxes = None, torch.zeros((0, 7), device=self.device)
|
|
2624
|
+
else:
|
|
2625
|
+
pred_masks = torch.cat([obj_id_to_mask[obj_id] for obj_id in curr_obj_ids], dim=0)
|
|
2626
|
+
pred_masks = F.interpolate(pred_masks.float()[None], orig_imgs[0].shape[:2], mode="bilinear")[0] > 0.5
|
|
2627
|
+
pred_ids = torch.tensor(curr_obj_ids, dtype=torch.int32, device=pred_masks.device)
|
|
2628
|
+
pred_scores = torch.tensor(
|
|
2629
|
+
[preds["obj_id_to_score"][obj_id] for obj_id in curr_obj_ids], device=pred_masks.device
|
|
2630
|
+
)
|
|
2631
|
+
pred_cls = torch.tensor(
|
|
2632
|
+
[preds["obj_id_to_cls"][obj_id] for obj_id in curr_obj_ids], device=pred_masks.device
|
|
2633
|
+
)
|
|
2634
|
+
keep = (pred_scores > self.args.conf) & pred_masks.any(dim=(1, 2))
|
|
2635
|
+
pred_masks = pred_masks[keep]
|
|
2636
|
+
pred_boxes = batched_mask_to_box(pred_masks)
|
|
2637
|
+
pred_boxes = torch.cat(
|
|
2638
|
+
[pred_boxes, pred_ids[keep][:, None], pred_scores[keep][..., None], pred_cls[keep][..., None]], dim=-1
|
|
2639
|
+
)
|
|
2640
|
+
if pred_masks.shape[0] > 1:
|
|
2641
|
+
tracker_scores = torch.tensor(
|
|
2642
|
+
[
|
|
2643
|
+
(
|
|
2644
|
+
preds["obj_id_to_tracker_score"][obj_id]
|
|
2645
|
+
if obj_id in preds["obj_id_to_tracker_score"]
|
|
2646
|
+
else 0.0
|
|
2647
|
+
)
|
|
2648
|
+
for obj_id in curr_obj_ids
|
|
2649
|
+
],
|
|
2650
|
+
device=pred_masks.device,
|
|
2651
|
+
)[keep]
|
|
2652
|
+
pred_masks = (
|
|
2653
|
+
self._apply_object_wise_non_overlapping_constraints(
|
|
2654
|
+
pred_masks.unsqueeze(1),
|
|
2655
|
+
tracker_scores.unsqueeze(1),
|
|
2656
|
+
background_value=0,
|
|
2657
|
+
).squeeze(1)
|
|
2658
|
+
) > 0
|
|
2659
|
+
|
|
2660
|
+
# names = getattr(self.model, "names", [str(i) for i in range(pred_scores.shape[0])])
|
|
2661
|
+
names = dict(enumerate(str(i) for i in range(pred_boxes.shape[0])))
|
|
2662
|
+
results = []
|
|
2663
|
+
for masks, boxes, orig_img, img_path in zip([pred_masks], [pred_boxes], orig_imgs, self.batch[0]):
|
|
2664
|
+
results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=boxes))
|
|
2665
|
+
return results
|
|
2666
|
+
|
|
2667
|
+
def _run_single_frame_inference(self, frame_idx, reverse=False, inference_state=None):
|
|
2668
|
+
"""Perform inference on a single frame and get its inference results."""
|
|
2669
|
+
inference_state = inference_state or self.inference_state
|
|
2670
|
+
# prepare inputs
|
|
2671
|
+
tracker_states_local = inference_state["tracker_inference_states"]
|
|
2672
|
+
has_text_prompt = inference_state["text_prompt"] is not None
|
|
2673
|
+
has_geometric_prompt = inference_state["per_frame_geometric_prompt"][frame_idx] is not None
|
|
2674
|
+
# run inference for the current frame
|
|
2675
|
+
(
|
|
2676
|
+
obj_id_to_mask,
|
|
2677
|
+
obj_id_to_score,
|
|
2678
|
+
obj_id_to_cls,
|
|
2679
|
+
tracker_states_local_new,
|
|
2680
|
+
tracker_metadata_new,
|
|
2681
|
+
frame_stats,
|
|
2682
|
+
_,
|
|
2683
|
+
) = self._det_track_one_frame(
|
|
2684
|
+
frame_idx=frame_idx,
|
|
2685
|
+
num_frames=inference_state["num_frames"],
|
|
2686
|
+
reverse=reverse,
|
|
2687
|
+
im=inference_state["im"],
|
|
2688
|
+
text_ids=inference_state["text_ids"],
|
|
2689
|
+
geometric_prompt=(
|
|
2690
|
+
self._get_dummy_prompt(num_prompts=len(inference_state["text_ids"]))
|
|
2691
|
+
if not has_geometric_prompt
|
|
2692
|
+
else inference_state["per_frame_geometric_prompt"][frame_idx]
|
|
2693
|
+
),
|
|
2694
|
+
tracker_states_local=tracker_states_local,
|
|
2695
|
+
tracker_metadata_prev=inference_state["tracker_metadata"],
|
|
2696
|
+
allow_new_detections=has_text_prompt or has_geometric_prompt,
|
|
2697
|
+
)
|
|
2698
|
+
# update inference state
|
|
2699
|
+
inference_state["tracker_inference_states"] = tracker_states_local_new
|
|
2700
|
+
inference_state["tracker_metadata"] = tracker_metadata_new
|
|
2701
|
+
|
|
2702
|
+
out = {
|
|
2703
|
+
"obj_id_to_mask": obj_id_to_mask,
|
|
2704
|
+
"obj_id_to_score": obj_id_to_score, # first frame detection score
|
|
2705
|
+
"obj_id_to_cls": obj_id_to_cls, # first frame detection score
|
|
2706
|
+
"obj_id_to_tracker_score": tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx],
|
|
2707
|
+
}
|
|
2708
|
+
# removed_obj_ids is only needed on rank 0 to handle hotstart delay buffer
|
|
2709
|
+
metadata = tracker_metadata_new["metadata"]
|
|
2710
|
+
removed_obj_ids = metadata["removed_obj_ids"]
|
|
2711
|
+
out["removed_obj_ids"] = removed_obj_ids
|
|
2712
|
+
out["frame_stats"] = frame_stats
|
|
2713
|
+
if self.masklet_confirmation_enable:
|
|
2714
|
+
status = metadata["masklet_confirmation"]["status"]
|
|
2715
|
+
is_unconfirmed = status == self.UNCONFIRMED
|
|
2716
|
+
out["unconfirmed_obj_ids"] = tracker_metadata_new["obj_ids_all_gpu"][is_unconfirmed].tolist()
|
|
2717
|
+
else:
|
|
2718
|
+
out["unconfirmed_obj_ids"] = []
|
|
2719
|
+
return out
|
|
2720
|
+
|
|
2721
|
+
@smart_inference_mode()
|
|
2722
|
+
def add_prompt(
|
|
2723
|
+
self,
|
|
2724
|
+
frame_idx,
|
|
2725
|
+
text=None,
|
|
2726
|
+
bboxes=None,
|
|
2727
|
+
labels=None,
|
|
2728
|
+
inference_state=None,
|
|
2729
|
+
):
|
|
2730
|
+
"""Add text, point or box prompts on a single frame. This method returns the inference outputs only on the
|
|
2731
|
+
prompted frame.
|
|
2732
|
+
|
|
2733
|
+
Note that text prompts are NOT associated with a particular frame (i.e. they apply
|
|
2734
|
+
to all frames). However, we only run inference on the frame specified in `frame_idx`.
|
|
2735
|
+
"""
|
|
2736
|
+
inference_state = inference_state or self.inference_state
|
|
2737
|
+
assert text is not None or bboxes is not None, "at least one type of prompt (text, boxes) must be provided"
|
|
2738
|
+
|
|
2739
|
+
# 1) handle text prompt
|
|
2740
|
+
use_text = text is not None
|
|
2741
|
+
text = text if use_text else "visual"
|
|
2742
|
+
text_batch = [text] if isinstance(text, str) else text
|
|
2743
|
+
inference_state["text_prompt"] = text if use_text else None
|
|
2744
|
+
n = len(text_batch)
|
|
2745
|
+
text_ids = torch.arange(n, device=self.device, dtype=torch.long)
|
|
2746
|
+
inference_state["text_ids"] = text_ids
|
|
2747
|
+
if text is not None and self.model.names != text:
|
|
2748
|
+
self.model.set_classes(text=text)
|
|
2749
|
+
|
|
2750
|
+
# 2) handle box prompt
|
|
2751
|
+
bboxes, labels = self._prepare_geometric_prompts(self.batch[1][0].shape[:2], bboxes, labels)
|
|
2752
|
+
assert (bboxes is not None) == (labels is not None)
|
|
2753
|
+
geometric_prompt = self._get_dummy_prompt(num_prompts=n)
|
|
2754
|
+
if bboxes is not None:
|
|
2755
|
+
for i in range(len(bboxes)):
|
|
2756
|
+
geometric_prompt.append_boxes(bboxes[[i]], labels[[i]])
|
|
2757
|
+
inference_state["per_frame_geometric_prompt"][frame_idx] = geometric_prompt
|
|
2758
|
+
out = self._run_single_frame_inference(frame_idx, reverse=False, inference_state=inference_state)
|
|
2759
|
+
return frame_idx, out
|
|
2760
|
+
|
|
2761
|
+
def _apply_object_wise_non_overlapping_constraints(self, pred_masks, obj_scores, background_value=-10.0):
|
|
2762
|
+
"""Applies non-overlapping constraints object wise (i.e. only one object can claim the overlapping region)."""
|
|
2763
|
+
# Replace pixel scores with object scores
|
|
2764
|
+
pred_masks_single_score = torch.where(pred_masks > 0, obj_scores[..., None, None], background_value)
|
|
2765
|
+
# Apply pixel-wise non-overlapping constraint based on mask scores
|
|
2766
|
+
pixel_level_non_overlapping_masks = self.tracker.model._apply_non_overlapping_constraints(
|
|
2767
|
+
pred_masks_single_score
|
|
2768
|
+
)
|
|
2769
|
+
# Replace object scores with pixel scores. Note, that now only one object can claim the overlapping region
|
|
2770
|
+
pred_masks = torch.where(
|
|
2771
|
+
pixel_level_non_overlapping_masks > 0,
|
|
2772
|
+
pred_masks,
|
|
2773
|
+
torch.clamp(pred_masks, max=background_value),
|
|
2774
|
+
)
|
|
2775
|
+
return pred_masks
|
|
2776
|
+
|
|
2777
|
+
def _det_track_one_frame(
|
|
2778
|
+
self,
|
|
2779
|
+
im: torch.Tensor,
|
|
2780
|
+
text_ids: torch.Tensor,
|
|
2781
|
+
frame_idx: int,
|
|
2782
|
+
num_frames: int,
|
|
2783
|
+
reverse: bool,
|
|
2784
|
+
geometric_prompt: Prompt,
|
|
2785
|
+
tracker_states_local: list[Any],
|
|
2786
|
+
tracker_metadata_prev: dict[str, Any],
|
|
2787
|
+
allow_new_detections: bool = True,
|
|
2788
|
+
):
|
|
2789
|
+
"""This function handles one-step inference for the DenseTracking model in an SPMD manner. At a high-level, all
|
|
2790
|
+
GPUs execute the same function calls as if it's done on a single GPU, while under the hood, some
|
|
2791
|
+
function calls involve distributed computation based on sharded SAM2 states.
|
|
2792
|
+
|
|
2793
|
+
- `input_batch` contains image and other inputs on the entire video; it should be identical across GPUs
|
|
2794
|
+
- `tracker_states_local` holds the local masklet information in this GPU shard
|
|
2795
|
+
- `tracker_metadata_prev` manages the metadata for SAM2 objects, such as which masklet is hold on which GPUs
|
|
2796
|
+
it contains both global and local masklet information
|
|
2797
|
+
"""
|
|
2798
|
+
# Step 1: run backbone and detector in a distributed manner -- this is done via Sam3ImageOnVideoMultiGPU,
|
|
2799
|
+
# a MultiGPU model (assigned to `self.detector`) that shards frames in a round-robin manner.
|
|
2800
|
+
det_out = self.run_backbone_and_detection(
|
|
2801
|
+
im=im,
|
|
2802
|
+
text_ids=text_ids,
|
|
2803
|
+
geometric_prompt=geometric_prompt,
|
|
2804
|
+
allow_new_detections=allow_new_detections,
|
|
2805
|
+
)
|
|
2806
|
+
|
|
2807
|
+
# Step 2: each GPU propagates its local SAM2 states to get the SAM2 prediction masks.
|
|
2808
|
+
# the returned `tracker_low_res_masks_global` contains the concatenated masklet predictions
|
|
2809
|
+
# gathered from all GPUs (as if they are propagated on a single GPU). Note that this step only
|
|
2810
|
+
# runs the SAM2 propagation step, but doesn't encode new memory for the predicted masks;
|
|
2811
|
+
# we defer memory encoding to `run_tracker_update_execution_phase` after resolving all heuristics.
|
|
2812
|
+
if tracker_metadata_prev == {}:
|
|
2813
|
+
# initialize masklet metadata if it's uninitialized (empty dict)
|
|
2814
|
+
tracker_metadata_prev.update(self._initialize_metadata())
|
|
2815
|
+
tracker_low_res_masks_global, tracker_obj_scores_global = self.run_tracker_propagation(
|
|
2816
|
+
frame_idx=frame_idx,
|
|
2817
|
+
tracker_states_local=tracker_states_local,
|
|
2818
|
+
tracker_metadata_prev=tracker_metadata_prev,
|
|
2819
|
+
)
|
|
2820
|
+
|
|
2821
|
+
# Step 3: based on detection outputs and the propagated SAM2 prediction masks, we make plans
|
|
2822
|
+
# for SAM2 masklet updates (i.e. which objects to add and remove, how to load-balance them, etc).
|
|
2823
|
+
# We also run SAM2 memory encoder globally in this step to resolve non-overlapping constraints.
|
|
2824
|
+
# **This step should involve all the heuristics needed for any updates.** Most of the update
|
|
2825
|
+
# planning will be done on the master rank (GPU 0) and the resulting plan `tracker_update_plan` is
|
|
2826
|
+
# broadcasted to other GPUs (to be executed in a distributed manner). This step also generates the
|
|
2827
|
+
# new masklet metadata `tracker_metadata_new` (based on its previous version `tracker_metadata_prev`).
|
|
2828
|
+
tracker_update_plan, tracker_metadata_new = self.run_tracker_update_planning_phase(
|
|
2829
|
+
frame_idx=frame_idx,
|
|
2830
|
+
reverse=reverse,
|
|
2831
|
+
det_out=det_out,
|
|
2832
|
+
tracker_low_res_masks_global=tracker_low_res_masks_global,
|
|
2833
|
+
tracker_obj_scores_global=tracker_obj_scores_global,
|
|
2834
|
+
tracker_metadata_prev=tracker_metadata_prev,
|
|
2835
|
+
tracker_states_local=tracker_states_local,
|
|
2836
|
+
)
|
|
2837
|
+
|
|
2838
|
+
# Get reconditioning info from the update plan
|
|
2839
|
+
reconditioned_obj_ids = tracker_update_plan.get("reconditioned_obj_ids", set())
|
|
2840
|
+
|
|
2841
|
+
# Step 4: based on `tracker_update_plan`, each GPU executes the update w.r.t. its local SAM2 inference states
|
|
2842
|
+
tracker_states_local_new = self.run_tracker_update_execution_phase(
|
|
2843
|
+
frame_idx=frame_idx,
|
|
2844
|
+
num_frames=num_frames,
|
|
2845
|
+
det_out=det_out,
|
|
2846
|
+
tracker_states_local=tracker_states_local,
|
|
2847
|
+
tracker_update_plan=tracker_update_plan,
|
|
2848
|
+
)
|
|
2849
|
+
|
|
2850
|
+
# Step 5: finally, build the outputs for this frame (it only needs to be done on GPU 0 since
|
|
2851
|
+
# only GPU 0 will send outputs to the server).
|
|
2852
|
+
obj_id_to_mask = self.build_outputs(
|
|
2853
|
+
det_out=det_out,
|
|
2854
|
+
tracker_low_res_masks_global=tracker_low_res_masks_global,
|
|
2855
|
+
tracker_metadata_prev=tracker_metadata_prev,
|
|
2856
|
+
tracker_update_plan=tracker_update_plan,
|
|
2857
|
+
reconditioned_obj_ids=reconditioned_obj_ids,
|
|
2858
|
+
)
|
|
2859
|
+
obj_id_to_score = tracker_metadata_new["obj_id_to_score"]
|
|
2860
|
+
obj_id_to_cls = tracker_metadata_new["obj_id_to_cls"]
|
|
2861
|
+
# a few statistics for the current frame as a part of the output
|
|
2862
|
+
frame_stats = {
|
|
2863
|
+
"num_obj_tracked": np.sum(tracker_metadata_new["num_obj"]),
|
|
2864
|
+
"num_obj_dropped": tracker_update_plan["num_obj_dropped_due_to_limit"],
|
|
2865
|
+
}
|
|
2866
|
+
# add tracker scores to metadata, it should be fired for frames except the first frame
|
|
2867
|
+
if tracker_obj_scores_global.shape[0] > 0:
|
|
2868
|
+
# Convert tracker_obj_scores_global to sigmoid scores before updating
|
|
2869
|
+
tracker_obj_scores_global = tracker_obj_scores_global.sigmoid().tolist()
|
|
2870
|
+
tracker_obj_ids = tracker_metadata_prev["obj_ids"]
|
|
2871
|
+
tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx].update(
|
|
2872
|
+
dict(zip(tracker_obj_ids, tracker_obj_scores_global))
|
|
2873
|
+
)
|
|
2874
|
+
return (
|
|
2875
|
+
obj_id_to_mask, # a dict: obj_id --> output mask
|
|
2876
|
+
obj_id_to_score, # a dict: obj_id --> output score (prob)
|
|
2877
|
+
obj_id_to_cls, # a dict: obj_id --> output cls (int)
|
|
2878
|
+
tracker_states_local_new,
|
|
2879
|
+
tracker_metadata_new,
|
|
2880
|
+
frame_stats,
|
|
2881
|
+
tracker_obj_scores_global, # a dict: obj_id --> tracker frame-level scores
|
|
2882
|
+
)
|
|
2883
|
+
|
|
2884
|
+
@staticmethod
|
|
2885
|
+
def _suppress_detections_close_to_boundary(boxes, margin=0.025):
|
|
2886
|
+
"""Suppress detections too close to image edges (for normalized boxes).
|
|
2887
|
+
|
|
2888
|
+
boxes: (N, 4) in xyxy format, normalized [0,1]
|
|
2889
|
+
margin: fraction of image
|
|
2890
|
+
"""
|
|
2891
|
+
x_min, y_min, x_max, y_max = boxes.unbind(-1)
|
|
2892
|
+
x_c = (x_min + x_max) / 2
|
|
2893
|
+
y_c = (y_min + y_max) / 2
|
|
2894
|
+
keep = (x_c > margin) & (x_c < 1.0 - margin) & (y_c > margin) & (y_c < 1.0 - margin)
|
|
2895
|
+
|
|
2896
|
+
return keep
|
|
2897
|
+
|
|
2898
|
+
def run_backbone_and_detection(
|
|
2899
|
+
self, im: torch.Tensor, text_ids: torch.Tensor, geometric_prompt: Prompt, allow_new_detections: bool
|
|
2900
|
+
):
|
|
2901
|
+
"""Run backbone and detection for a single frame."""
|
|
2902
|
+
features = self.get_im_features(im)
|
|
2903
|
+
sam3_image_out = self.model.forward_grounding(
|
|
2904
|
+
backbone_out=features, text_ids=text_ids, geometric_prompt=geometric_prompt
|
|
2905
|
+
)
|
|
2906
|
+
det_out = self._extract_detection_outputs(sam3_image_out, allow_new_detections)
|
|
2907
|
+
self._cache_backbone_features(sam3_image_out)
|
|
2908
|
+
return det_out
|
|
2909
|
+
|
|
2910
|
+
def _extract_detection_outputs(self, sam3_image_out, allow_new_detections):
|
|
2911
|
+
"""Extract and filter detection outputs."""
|
|
2912
|
+
pred_probs = sam3_image_out["pred_logits"].squeeze(-1).sigmoid()
|
|
2913
|
+
if not allow_new_detections:
|
|
2914
|
+
pred_probs = pred_probs - 1e8
|
|
2915
|
+
|
|
2916
|
+
pred_cls = torch.tensor(
|
|
2917
|
+
list(range(pred_probs.shape[0])),
|
|
2918
|
+
dtype=pred_probs.dtype,
|
|
2919
|
+
device=pred_probs.device,
|
|
2920
|
+
)[:, None].expand_as(pred_probs)
|
|
2921
|
+
|
|
2922
|
+
pred_boxes_xyxy = sam3_image_out["pred_boxes_xyxy"]
|
|
2923
|
+
pred_masks = sam3_image_out["pred_masks"]
|
|
2924
|
+
|
|
2925
|
+
keep = pred_probs > self.score_threshold_detection
|
|
2926
|
+
return {
|
|
2927
|
+
"bbox": pred_boxes_xyxy[keep],
|
|
2928
|
+
"mask": pred_masks[keep],
|
|
2929
|
+
"scores": pred_probs[keep],
|
|
2930
|
+
"cls": pred_cls[keep],
|
|
2931
|
+
}
|
|
2932
|
+
|
|
2933
|
+
def _cache_backbone_features(self, sam3_image_out):
|
|
2934
|
+
"""Build and cache SAM2 backbone features."""
|
|
2935
|
+
sam_mask_decoder = self.tracker.model.sam_mask_decoder
|
|
2936
|
+
feats = sam3_image_out["backbone_out"]["sam2_backbone_out"]
|
|
2937
|
+
tracker_backbone_fpn = [
|
|
2938
|
+
sam_mask_decoder.conv_s0(feats["backbone_fpn"][0]),
|
|
2939
|
+
sam_mask_decoder.conv_s1(feats["backbone_fpn"][1]),
|
|
2940
|
+
feats["backbone_fpn"][2],
|
|
2941
|
+
]
|
|
2942
|
+
tracker_backbone_out = {
|
|
2943
|
+
"vision_features": tracker_backbone_fpn[-1],
|
|
2944
|
+
"vision_pos_enc": feats["vision_pos_enc"],
|
|
2945
|
+
"backbone_fpn": tracker_backbone_fpn,
|
|
2946
|
+
}
|
|
2947
|
+
# cache the SAM2 backbone features for `frame_idx` in the tracker
|
|
2948
|
+
self.tracker.backbone_out = tracker_backbone_out
|
|
2949
|
+
|
|
2950
|
+
def run_tracker_propagation(
|
|
2951
|
+
self, frame_idx: int, tracker_states_local: list[Any], tracker_metadata_prev: dict[str, np.ndarray]
|
|
2952
|
+
):
|
|
2953
|
+
"""Run the tracker propagation phase for a single frame in an SPMD manner."""
|
|
2954
|
+
# Step 1: propagate the local SAM2 states to get the current frame's prediction
|
|
2955
|
+
# `low_res_masks_local` of the existing masklets on this GPU
|
|
2956
|
+
# - obj_ids_local: list[int] -- list of object IDs
|
|
2957
|
+
# - low_res_masks_local: Tensor -- (num_local_obj, H_mask, W_mask)
|
|
2958
|
+
obj_ids_local, low_res_masks_local, obj_scores_local = self._propogate_tracker_one_frame_local_gpu(
|
|
2959
|
+
tracker_states_local, frame_idx=frame_idx
|
|
2960
|
+
)
|
|
2961
|
+
|
|
2962
|
+
assert np.all(obj_ids_local == tracker_metadata_prev["obj_ids"]), "{} != {}".format(
|
|
2963
|
+
obj_ids_local, tracker_metadata_prev["obj_ids"]
|
|
2964
|
+
)
|
|
2965
|
+
|
|
2966
|
+
# Step 2: all-gather `low_res_masks_local` into `low_res_masks_global`
|
|
2967
|
+
# - low_res_masks_global: Tensor -- (num_global_obj, H_mask, W_mask)
|
|
2968
|
+
low_res_masks_global = low_res_masks_local
|
|
2969
|
+
obj_scores_global = obj_scores_local
|
|
2970
|
+
return low_res_masks_global, obj_scores_global
|
|
2971
|
+
|
|
2972
|
+
def _recondition_masklets(
|
|
2973
|
+
self,
|
|
2974
|
+
frame_idx,
|
|
2975
|
+
det_out: dict[str, torch.Tensor],
|
|
2976
|
+
trk_id_to_max_iou_high_conf_det: list[int],
|
|
2977
|
+
tracker_states_local: list[Any],
|
|
2978
|
+
tracker_metadata: dict[str, np.ndarray],
|
|
2979
|
+
tracker_obj_scores_global: torch.Tensor,
|
|
2980
|
+
):
|
|
2981
|
+
"""Recondition masklets based on new high-confidence detections."""
|
|
2982
|
+
# Recondition the masklets based on the new detections
|
|
2983
|
+
for trk_obj_id, det_idx in trk_id_to_max_iou_high_conf_det.items():
|
|
2984
|
+
new_mask = det_out["mask"][det_idx : det_idx + 1]
|
|
2985
|
+
new_mask_binary = (
|
|
2986
|
+
F.interpolate(new_mask.unsqueeze(1), size=self.interpol_size, mode="bilinear", align_corners=False) > 0
|
|
2987
|
+
)
|
|
2988
|
+
HIGH_CONF_THRESH = 0.8
|
|
2989
|
+
reconditioned_states_idx = set()
|
|
2990
|
+
obj_idx = np.where(tracker_metadata["obj_ids"] == trk_obj_id)[0].item()
|
|
2991
|
+
obj_score = tracker_obj_scores_global[obj_idx]
|
|
2992
|
+
for state_idx, inference_state in enumerate(tracker_states_local):
|
|
2993
|
+
if (
|
|
2994
|
+
trk_obj_id in inference_state["obj_ids"]
|
|
2995
|
+
# NOTE: Goal of this condition is to avoid reconditioning masks that are occluded/low qualiy.
|
|
2996
|
+
# Unfortunately, these can get reconditioned anyway due to batching. We should consider removing these heuristics.
|
|
2997
|
+
and obj_score > HIGH_CONF_THRESH
|
|
2998
|
+
):
|
|
2999
|
+
LOGGER.debug(
|
|
3000
|
+
f"Adding new mask for track {trk_obj_id} at frame {frame_idx}. Objects {inference_state['obj_ids']} are all reconditioned."
|
|
3001
|
+
)
|
|
3002
|
+
self.tracker.add_new_prompts(
|
|
3003
|
+
inference_state=inference_state,
|
|
3004
|
+
frame_idx=frame_idx,
|
|
3005
|
+
obj_id=trk_obj_id,
|
|
3006
|
+
masks=new_mask_binary,
|
|
3007
|
+
)
|
|
3008
|
+
reconditioned_states_idx.add(state_idx)
|
|
3009
|
+
|
|
3010
|
+
for idx in reconditioned_states_idx:
|
|
3011
|
+
self.tracker.propagate_in_video_preflight(tracker_states_local[idx])
|
|
3012
|
+
return tracker_states_local
|
|
3013
|
+
|
|
3014
|
+
def run_tracker_update_planning_phase(
|
|
3015
|
+
self,
|
|
3016
|
+
frame_idx: int,
|
|
3017
|
+
reverse: bool,
|
|
3018
|
+
det_out: dict[str, torch.Tensor],
|
|
3019
|
+
tracker_low_res_masks_global: torch.Tensor,
|
|
3020
|
+
tracker_obj_scores_global: torch.Tensor,
|
|
3021
|
+
tracker_metadata_prev: dict[str, np.ndarray],
|
|
3022
|
+
tracker_states_local: list[Any],
|
|
3023
|
+
):
|
|
3024
|
+
"""Run the tracker update planning phase for a single frame in an SPMD manner."""
|
|
3025
|
+
# initialize new metadata from previous metadata (its values will be updated later)
|
|
3026
|
+
tracker_metadata_new = {
|
|
3027
|
+
"obj_ids": deepcopy(tracker_metadata_prev["obj_ids"]),
|
|
3028
|
+
"num_obj": deepcopy(tracker_metadata_prev["num_obj"]),
|
|
3029
|
+
"obj_id_to_score": deepcopy(tracker_metadata_prev["obj_id_to_score"]),
|
|
3030
|
+
"obj_id_to_cls": deepcopy(tracker_metadata_prev["obj_id_to_cls"]),
|
|
3031
|
+
"obj_id_to_tracker_score_frame_wise": deepcopy(tracker_metadata_prev["obj_id_to_tracker_score_frame_wise"]),
|
|
3032
|
+
"obj_id_to_last_occluded": {}, # will be filled later
|
|
3033
|
+
"max_obj_id": deepcopy(tracker_metadata_prev["max_obj_id"]),
|
|
3034
|
+
}
|
|
3035
|
+
|
|
3036
|
+
# Initialize reconditioned_obj_ids early to avoid UnboundLocalError
|
|
3037
|
+
reconditioned_obj_ids = set()
|
|
3038
|
+
|
|
3039
|
+
# Step 1: make the update plan and resolve heuristics on GPU 0
|
|
3040
|
+
det_mask_preds: torch.Tensor = det_out["mask"] # low-res mask logits
|
|
3041
|
+
det_scores_np: np.ndarray = det_out["scores"].float().cpu().numpy()
|
|
3042
|
+
det_cls_np: np.ndarray = det_out["cls"].float().cpu().numpy()
|
|
3043
|
+
det_bbox_xyxy: torch.Tensor = det_out["bbox"]
|
|
3044
|
+
# a) match detector and tracker masks and find new objects
|
|
3045
|
+
(
|
|
3046
|
+
new_det_fa_inds,
|
|
3047
|
+
unmatched_trk_obj_ids,
|
|
3048
|
+
det_to_matched_trk_obj_ids,
|
|
3049
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3050
|
+
empty_trk_obj_ids,
|
|
3051
|
+
) = self._associate_det_trk(
|
|
3052
|
+
det_masks=det_mask_preds,
|
|
3053
|
+
det_scores_np=det_scores_np,
|
|
3054
|
+
trk_masks=tracker_low_res_masks_global,
|
|
3055
|
+
trk_obj_ids=tracker_metadata_prev["obj_ids"],
|
|
3056
|
+
)
|
|
3057
|
+
if self.suppress_det_close_to_boundary:
|
|
3058
|
+
keep = self._suppress_detections_close_to_boundary(det_bbox_xyxy[new_det_fa_inds])
|
|
3059
|
+
new_det_fa_inds = new_det_fa_inds[keep.cpu().numpy()]
|
|
3060
|
+
|
|
3061
|
+
# check whether we've hit the maximum number of objects we can track (and if so, drop some detections)
|
|
3062
|
+
prev_obj_num = np.sum(tracker_metadata_prev["num_obj"])
|
|
3063
|
+
new_det_num = len(new_det_fa_inds)
|
|
3064
|
+
num_obj_dropped_due_to_limit = 0
|
|
3065
|
+
if prev_obj_num + new_det_num > self.max_num_objects:
|
|
3066
|
+
LOGGER.warning(f"hitting {self.max_num_objects=} with {new_det_num=} and {prev_obj_num=}")
|
|
3067
|
+
new_det_num_to_keep = self.max_num_objects - prev_obj_num
|
|
3068
|
+
num_obj_dropped_due_to_limit = new_det_num - new_det_num_to_keep
|
|
3069
|
+
new_det_fa_inds = self._drop_new_det_with_obj_limit(new_det_fa_inds, det_scores_np, new_det_num_to_keep)
|
|
3070
|
+
assert len(new_det_fa_inds) == new_det_num_to_keep
|
|
3071
|
+
new_det_num = len(new_det_fa_inds)
|
|
3072
|
+
|
|
3073
|
+
# assign object IDs to new detections and decide which GPU to place them
|
|
3074
|
+
new_det_obj_ids = tracker_metadata_prev["max_obj_id"] + 1 + np.arange(new_det_num)
|
|
3075
|
+
|
|
3076
|
+
# b) handle hotstart heuristics to remove objects
|
|
3077
|
+
# here `metadata` contains metadata stored on (and only accessible to) GPU 0;
|
|
3078
|
+
# we avoid broadcasting them to other GPUs to save communication cost, assuming
|
|
3079
|
+
# that `metadata` is not needed by other GPUs
|
|
3080
|
+
metadata_new = deepcopy(tracker_metadata_prev["metadata"])
|
|
3081
|
+
if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
|
|
3082
|
+
obj_ids_newly_removed, metadata_new = self._process_hotstart(
|
|
3083
|
+
frame_idx=frame_idx,
|
|
3084
|
+
reverse=reverse,
|
|
3085
|
+
det_to_matched_trk_obj_ids=det_to_matched_trk_obj_ids,
|
|
3086
|
+
new_det_obj_ids=new_det_obj_ids,
|
|
3087
|
+
empty_trk_obj_ids=empty_trk_obj_ids,
|
|
3088
|
+
unmatched_trk_obj_ids=unmatched_trk_obj_ids,
|
|
3089
|
+
metadata=metadata_new,
|
|
3090
|
+
)
|
|
3091
|
+
else:
|
|
3092
|
+
# if warm-up is not complete, we don't remove any objects
|
|
3093
|
+
obj_ids_newly_removed = set()
|
|
3094
|
+
tracker_metadata_new["metadata"] = metadata_new
|
|
3095
|
+
|
|
3096
|
+
# `tracker_update_plan` should be identical on all GPUs after broadcasting
|
|
3097
|
+
tracker_update_plan = {
|
|
3098
|
+
"new_det_fa_inds": new_det_fa_inds, # np.ndarray
|
|
3099
|
+
"new_det_obj_ids": new_det_obj_ids, # np.ndarray
|
|
3100
|
+
# "new_det_gpu_ids": new_det_gpu_ids, # np.ndarray
|
|
3101
|
+
"unmatched_trk_obj_ids": unmatched_trk_obj_ids, # np.ndarray
|
|
3102
|
+
"det_to_matched_trk_obj_ids": det_to_matched_trk_obj_ids, # dict
|
|
3103
|
+
"obj_ids_newly_removed": obj_ids_newly_removed, # set
|
|
3104
|
+
"num_obj_dropped_due_to_limit": num_obj_dropped_due_to_limit, # int
|
|
3105
|
+
"trk_id_to_max_iou_high_conf_det": trk_id_to_max_iou_high_conf_det, # dict
|
|
3106
|
+
"reconditioned_obj_ids": reconditioned_obj_ids, # set
|
|
3107
|
+
}
|
|
3108
|
+
|
|
3109
|
+
# Step 3 (optional): recondition masklets based on high-confidence detections before memory encoding
|
|
3110
|
+
# NOTE: Running this in execution phase (after memory encoding) can lead to suboptimal results
|
|
3111
|
+
should_recondition_iou = False
|
|
3112
|
+
|
|
3113
|
+
# Evaluate tracklets for reconditioning based on bbox IoU mismatch with detections
|
|
3114
|
+
if self.reconstruction_bbox_iou_thresh > 0 and len(trk_id_to_max_iou_high_conf_det) > 0:
|
|
3115
|
+
for trk_obj_id, det_idx in trk_id_to_max_iou_high_conf_det.items():
|
|
3116
|
+
det_box = det_out["bbox"][det_idx]
|
|
3117
|
+
det_score = det_out["scores"][det_idx]
|
|
3118
|
+
|
|
3119
|
+
try:
|
|
3120
|
+
trk_idx = list(tracker_metadata_prev["obj_ids"]).index(trk_obj_id)
|
|
3121
|
+
except ValueError:
|
|
3122
|
+
continue # Skip if tracklet not found
|
|
3123
|
+
|
|
3124
|
+
tracker_mask = tracker_low_res_masks_global[trk_idx]
|
|
3125
|
+
mask_binary = tracker_mask > 0
|
|
3126
|
+
mask_area = mask_binary.sum().item()
|
|
3127
|
+
|
|
3128
|
+
if mask_area == 0:
|
|
3129
|
+
continue # Skip tracklets with zero mask area
|
|
3130
|
+
|
|
3131
|
+
# Get bounding box from SAM2 mask and convert to normalized coordinates
|
|
3132
|
+
tracker_box_pixels = batched_mask_to_box(mask_binary.unsqueeze(0)).squeeze(0)
|
|
3133
|
+
mask_height, mask_width = tracker_mask.shape[-2:]
|
|
3134
|
+
tracker_box_normalized = torch.tensor(
|
|
3135
|
+
[
|
|
3136
|
+
tracker_box_pixels[0] / mask_width,
|
|
3137
|
+
tracker_box_pixels[1] / mask_height,
|
|
3138
|
+
tracker_box_pixels[2] / mask_width,
|
|
3139
|
+
tracker_box_pixels[3] / mask_height,
|
|
3140
|
+
],
|
|
3141
|
+
device=tracker_box_pixels.device,
|
|
3142
|
+
)
|
|
3143
|
+
|
|
3144
|
+
# Compute IoU between detection and SAM2 tracklet bounding boxes
|
|
3145
|
+
det_box_batch = det_box.unsqueeze(0)
|
|
3146
|
+
tracker_box_batch = tracker_box_normalized.unsqueeze(0)
|
|
3147
|
+
iou = box_iou(det_box_batch, tracker_box_batch)[0]
|
|
3148
|
+
|
|
3149
|
+
if iou < self.reconstruction_bbox_iou_thresh and det_score >= self.reconstruction_bbox_det_score:
|
|
3150
|
+
should_recondition_iou = True
|
|
3151
|
+
reconditioned_obj_ids.add(trk_obj_id)
|
|
3152
|
+
|
|
3153
|
+
should_recondition_periodic = (
|
|
3154
|
+
self.recondition_every_nth_frame > 0
|
|
3155
|
+
and frame_idx % self.recondition_every_nth_frame == 0
|
|
3156
|
+
and len(trk_id_to_max_iou_high_conf_det) > 0
|
|
3157
|
+
)
|
|
3158
|
+
|
|
3159
|
+
# Recondition if periodic or IoU condition met
|
|
3160
|
+
if should_recondition_periodic or should_recondition_iou:
|
|
3161
|
+
self._recondition_masklets(
|
|
3162
|
+
frame_idx,
|
|
3163
|
+
det_out,
|
|
3164
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3165
|
+
tracker_states_local,
|
|
3166
|
+
tracker_metadata_prev,
|
|
3167
|
+
tracker_obj_scores_global,
|
|
3168
|
+
)
|
|
3169
|
+
|
|
3170
|
+
# Step 4: Run SAM2 memory encoder on the current frame's prediction masks
|
|
3171
|
+
# This is done on all GPUs
|
|
3172
|
+
batch_size = tracker_low_res_masks_global.size(0)
|
|
3173
|
+
if batch_size > 0:
|
|
3174
|
+
if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
|
|
3175
|
+
if self.suppress_overlapping_based_on_recent_occlusion_threshold > 0.0:
|
|
3176
|
+
# NOTE: tracker_low_res_masks_global is updated in-place then returned
|
|
3177
|
+
tracker_low_res_masks_global = self._suppress_overlapping_based_on_recent_occlusion(
|
|
3178
|
+
frame_idx,
|
|
3179
|
+
tracker_low_res_masks_global,
|
|
3180
|
+
tracker_metadata_prev,
|
|
3181
|
+
tracker_metadata_new,
|
|
3182
|
+
obj_ids_newly_removed,
|
|
3183
|
+
reverse,
|
|
3184
|
+
)
|
|
3185
|
+
|
|
3186
|
+
self._tracker_update_memories(tracker_states_local, frame_idx, low_res_masks=tracker_low_res_masks_global)
|
|
3187
|
+
|
|
3188
|
+
# Step 4: update the SAM2 metadata based on the update plan
|
|
3189
|
+
updated_obj_ids_this_gpu = tracker_metadata_new["obj_ids"]
|
|
3190
|
+
if len(new_det_obj_ids) > 0:
|
|
3191
|
+
updated_obj_ids_this_gpu = np.concatenate([updated_obj_ids_this_gpu, new_det_obj_ids])
|
|
3192
|
+
if len(obj_ids_newly_removed) > 0:
|
|
3193
|
+
is_removed = np.isin(updated_obj_ids_this_gpu, list(obj_ids_newly_removed))
|
|
3194
|
+
updated_obj_ids_this_gpu = updated_obj_ids_this_gpu[~is_removed]
|
|
3195
|
+
tracker_metadata_new["obj_ids"] = updated_obj_ids_this_gpu
|
|
3196
|
+
tracker_metadata_new["num_obj"] = len(updated_obj_ids_this_gpu)
|
|
3197
|
+
# update object scores and the maximum object ID assigned so far
|
|
3198
|
+
if len(new_det_obj_ids) > 0:
|
|
3199
|
+
tracker_metadata_new["obj_id_to_score"].update(zip(new_det_obj_ids, det_scores_np[new_det_fa_inds]))
|
|
3200
|
+
tracker_metadata_new["obj_id_to_cls"].update(zip(new_det_obj_ids, det_cls_np[new_det_fa_inds]))
|
|
3201
|
+
# tracker scores are not available for new objects, use det score instead.
|
|
3202
|
+
tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx].update(
|
|
3203
|
+
zip(new_det_obj_ids, det_scores_np[new_det_fa_inds])
|
|
3204
|
+
)
|
|
3205
|
+
tracker_metadata_new["max_obj_id"] = max(tracker_metadata_new["max_obj_id"], np.max(new_det_obj_ids))
|
|
3206
|
+
# for removed objects, we set their scores to a very low value (-1e4) but still
|
|
3207
|
+
# keep them in "obj_id_to_score" (it's easier to handle outputs this way)
|
|
3208
|
+
for obj_id in obj_ids_newly_removed:
|
|
3209
|
+
tracker_metadata_new["obj_id_to_score"][obj_id] = -1e4
|
|
3210
|
+
tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx][obj_id] = -1e4
|
|
3211
|
+
tracker_metadata_new["obj_id_to_last_occluded"].pop(obj_id, None)
|
|
3212
|
+
# check that "metadata" is in tracker_metadata_new if and only if it's GPU 0
|
|
3213
|
+
assert "metadata" in tracker_metadata_new
|
|
3214
|
+
if self.masklet_confirmation_enable:
|
|
3215
|
+
metadata = self.update_masklet_confirmation_status(
|
|
3216
|
+
metadata=tracker_metadata_new["metadata"],
|
|
3217
|
+
obj_ids_all_gpu_prev=tracker_metadata_prev["obj_ids"],
|
|
3218
|
+
obj_ids_all_gpu_updated=tracker_metadata_new["obj_ids"],
|
|
3219
|
+
det_to_matched_trk_obj_ids=det_to_matched_trk_obj_ids,
|
|
3220
|
+
new_det_obj_ids=new_det_obj_ids,
|
|
3221
|
+
)
|
|
3222
|
+
tracker_metadata_new["metadata"] = metadata
|
|
3223
|
+
|
|
3224
|
+
return tracker_update_plan, tracker_metadata_new
|
|
3225
|
+
|
|
3226
|
+
def _suppress_overlapping_based_on_recent_occlusion(
|
|
3227
|
+
self,
|
|
3228
|
+
frame_idx: int,
|
|
3229
|
+
tracker_low_res_masks_global: torch.Tensor,
|
|
3230
|
+
tracker_metadata_prev: dict[str, Any],
|
|
3231
|
+
tracker_metadata_new: dict[str, Any],
|
|
3232
|
+
obj_ids_newly_removed: set[int],
|
|
3233
|
+
reverse: bool = False,
|
|
3234
|
+
):
|
|
3235
|
+
"""Suppress overlapping masks based on the most recent occlusion information. If an object is removed by
|
|
3236
|
+
hotstart, we always suppress it if it overlaps with any other object.
|
|
3237
|
+
|
|
3238
|
+
Args:
|
|
3239
|
+
frame_idx (int): The current frame index.
|
|
3240
|
+
tracker_low_res_masks_global (torch.Tensor): The low-resolution masks for the current frame.
|
|
3241
|
+
tracker_metadata_prev (dict[str, Any]): The metadata from the previous frame.
|
|
3242
|
+
tracker_metadata_new (dict[str, Any]): The metadata for the current frame.
|
|
3243
|
+
obj_ids_newly_removed (set[int]): The object IDs that have been removed.
|
|
3244
|
+
reverse (bool): Whether the tracking is in reverse order.
|
|
3245
|
+
|
|
3246
|
+
Returns:
|
|
3247
|
+
(torch.Tensor): The updated low-resolution masks with some objects suppressed.
|
|
3248
|
+
"""
|
|
3249
|
+
obj_ids_global = tracker_metadata_prev["obj_ids"]
|
|
3250
|
+
binary_tracker_low_res_masks_global = tracker_low_res_masks_global > 0
|
|
3251
|
+
batch_size = tracker_low_res_masks_global.size(0)
|
|
3252
|
+
if batch_size > 0:
|
|
3253
|
+
assert len(obj_ids_global) == batch_size, (
|
|
3254
|
+
f"Mismatch in number of objects: {len(obj_ids_global)} vs {batch_size}"
|
|
3255
|
+
)
|
|
3256
|
+
last_occluded_prev = torch.cat(
|
|
3257
|
+
[
|
|
3258
|
+
tracker_metadata_prev["obj_id_to_last_occluded"].get(
|
|
3259
|
+
obj_id,
|
|
3260
|
+
torch.full(
|
|
3261
|
+
(1,),
|
|
3262
|
+
fill_value=(
|
|
3263
|
+
self.NEVER_OCCLUDED if obj_id not in obj_ids_newly_removed else self.ALWAYS_OCCLUDED
|
|
3264
|
+
),
|
|
3265
|
+
device=binary_tracker_low_res_masks_global.device,
|
|
3266
|
+
dtype=torch.long,
|
|
3267
|
+
),
|
|
3268
|
+
)
|
|
3269
|
+
for obj_id in obj_ids_global
|
|
3270
|
+
],
|
|
3271
|
+
dim=0,
|
|
3272
|
+
)
|
|
3273
|
+
to_suppress = self._get_objects_to_suppress_based_on_most_recently_occluded(
|
|
3274
|
+
binary_tracker_low_res_masks_global,
|
|
3275
|
+
last_occluded_prev,
|
|
3276
|
+
obj_ids_global,
|
|
3277
|
+
frame_idx,
|
|
3278
|
+
reverse,
|
|
3279
|
+
)
|
|
3280
|
+
|
|
3281
|
+
# Update metadata with occlusion information
|
|
3282
|
+
is_obj_occluded = ~(binary_tracker_low_res_masks_global.any(dim=(-1, -2)))
|
|
3283
|
+
is_obj_occluded_or_suppressed = is_obj_occluded | to_suppress
|
|
3284
|
+
last_occluded_new = last_occluded_prev.clone()
|
|
3285
|
+
last_occluded_new[is_obj_occluded_or_suppressed] = frame_idx
|
|
3286
|
+
# Slice out the last occluded frame for each object
|
|
3287
|
+
tracker_metadata_new["obj_id_to_last_occluded"] = {
|
|
3288
|
+
obj_id: last_occluded_new[obj_idx : obj_idx + 1] for obj_idx, obj_id in enumerate(obj_ids_global)
|
|
3289
|
+
}
|
|
3290
|
+
|
|
3291
|
+
# Zero out suppressed masks before memory encoding
|
|
3292
|
+
tracker_low_res_masks_global[to_suppress] = self.NO_OBJ_LOGIT
|
|
3293
|
+
|
|
3294
|
+
return tracker_low_res_masks_global
|
|
3295
|
+
|
|
3296
|
+
def run_tracker_update_execution_phase(
|
|
3297
|
+
self,
|
|
3298
|
+
frame_idx: int,
|
|
3299
|
+
num_frames: int,
|
|
3300
|
+
det_out: dict[str, torch.Tensor],
|
|
3301
|
+
tracker_states_local: list[Any],
|
|
3302
|
+
tracker_update_plan: dict[str, np.ndarray],
|
|
3303
|
+
):
|
|
3304
|
+
"""Execute the tracker update plan for a single frame in an SPMD manner."""
|
|
3305
|
+
# initialize tracking scores with detection scores
|
|
3306
|
+
new_det_fa_inds: np.ndarray = tracker_update_plan["new_det_fa_inds"]
|
|
3307
|
+
new_det_obj_ids: np.ndarray = tracker_update_plan["new_det_obj_ids"]
|
|
3308
|
+
# new_det_gpu_ids: np.ndarray = tracker_update_plan["new_det_gpu_ids"]
|
|
3309
|
+
new_det_obj_ids_local: np.ndarray = new_det_obj_ids
|
|
3310
|
+
new_det_fa_inds_local: np.ndarray = new_det_fa_inds
|
|
3311
|
+
obj_ids_newly_removed: set[int] = tracker_update_plan["obj_ids_newly_removed"]
|
|
3312
|
+
|
|
3313
|
+
# Step 1: add new objects from the detector to SAM2 inference states
|
|
3314
|
+
if len(new_det_fa_inds_local) > 0:
|
|
3315
|
+
new_det_fa_inds_local_t = torch.from_numpy(new_det_fa_inds_local)
|
|
3316
|
+
new_det_masks: torch.Tensor = det_out["mask"][new_det_fa_inds_local_t]
|
|
3317
|
+
# initialize SAM2 with new object masks
|
|
3318
|
+
tracker_states_local = self._tracker_add_new_objects(
|
|
3319
|
+
frame_idx=frame_idx,
|
|
3320
|
+
num_frames=num_frames,
|
|
3321
|
+
new_obj_ids=new_det_obj_ids_local,
|
|
3322
|
+
new_obj_masks=new_det_masks,
|
|
3323
|
+
tracker_states_local=tracker_states_local,
|
|
3324
|
+
)
|
|
3325
|
+
|
|
3326
|
+
# Step 2: remove from SAM2 inference states those objects removed by heuristics
|
|
3327
|
+
if len(obj_ids_newly_removed) > 0:
|
|
3328
|
+
self._tracker_remove_objects(tracker_states_local, obj_ids_newly_removed)
|
|
3329
|
+
|
|
3330
|
+
return tracker_states_local
|
|
3331
|
+
|
|
3332
|
+
@staticmethod
|
|
3333
|
+
def build_outputs(
|
|
3334
|
+
det_out: dict[str, torch.Tensor],
|
|
3335
|
+
tracker_low_res_masks_global: torch.Tensor,
|
|
3336
|
+
tracker_metadata_prev: dict[str, np.ndarray],
|
|
3337
|
+
tracker_update_plan: dict[str, np.ndarray],
|
|
3338
|
+
reconditioned_obj_ids: set | None = None,
|
|
3339
|
+
):
|
|
3340
|
+
"""Build the output masks for the current frame."""
|
|
3341
|
+
new_det_fa_inds: np.ndarray = tracker_update_plan["new_det_fa_inds"]
|
|
3342
|
+
new_det_obj_ids: np.ndarray = tracker_update_plan["new_det_obj_ids"]
|
|
3343
|
+
obj_id_to_mask = {} # obj_id --> output mask tensor
|
|
3344
|
+
|
|
3345
|
+
# Part 1: masks from previous SAM2 propagation
|
|
3346
|
+
existing_masklet_obj_ids = tracker_metadata_prev["obj_ids"]
|
|
3347
|
+
existing_masklet_binary = tracker_low_res_masks_global.unsqueeze(1)
|
|
3348
|
+
assert len(existing_masklet_obj_ids) == len(existing_masklet_binary)
|
|
3349
|
+
for obj_id, mask in zip(existing_masklet_obj_ids, existing_masklet_binary):
|
|
3350
|
+
obj_id_to_mask[obj_id] = mask # (1, H_video, W_video)
|
|
3351
|
+
|
|
3352
|
+
# Part 2: masks from new detections
|
|
3353
|
+
new_det_fa_inds_t = torch.from_numpy(new_det_fa_inds)
|
|
3354
|
+
new_det_low_res_masks = det_out["mask"][new_det_fa_inds_t].unsqueeze(1)
|
|
3355
|
+
assert len(new_det_obj_ids) == len(new_det_low_res_masks)
|
|
3356
|
+
for obj_id, mask in zip(new_det_obj_ids, new_det_low_res_masks):
|
|
3357
|
+
obj_id_to_mask[obj_id] = mask # (1, H_video, W_video)
|
|
3358
|
+
|
|
3359
|
+
# Part 3: Override masks for reconditioned objects using detection masks
|
|
3360
|
+
if reconditioned_obj_ids is not None and len(reconditioned_obj_ids) > 0:
|
|
3361
|
+
trk_id_to_max_iou_high_conf_det = tracker_update_plan.get("trk_id_to_max_iou_high_conf_det", {})
|
|
3362
|
+
|
|
3363
|
+
for obj_id in reconditioned_obj_ids:
|
|
3364
|
+
det_idx = trk_id_to_max_iou_high_conf_det.get(obj_id)
|
|
3365
|
+
|
|
3366
|
+
if det_idx is not None:
|
|
3367
|
+
obj_id_to_mask[obj_id] = det_out["mask"][det_idx].unsqueeze(0)
|
|
3368
|
+
|
|
3369
|
+
return obj_id_to_mask
|
|
3370
|
+
|
|
3371
|
+
def _get_objects_to_suppress_based_on_most_recently_occluded(
|
|
3372
|
+
self,
|
|
3373
|
+
binary_low_res_masks: torch.Tensor,
|
|
3374
|
+
last_occluded: list[int],
|
|
3375
|
+
obj_ids: list[int],
|
|
3376
|
+
frame_idx: int | None = None,
|
|
3377
|
+
reverse: bool = False,
|
|
3378
|
+
):
|
|
3379
|
+
# Suppress overlapping masks for objects that were most recently occluded
|
|
3380
|
+
assert binary_low_res_masks.dtype == torch.bool, f"Expected boolean tensor, got {binary_low_res_masks.dtype}"
|
|
3381
|
+
to_suppress = torch.zeros(
|
|
3382
|
+
binary_low_res_masks.size(0),
|
|
3383
|
+
device=binary_low_res_masks.device,
|
|
3384
|
+
dtype=torch.bool,
|
|
3385
|
+
)
|
|
3386
|
+
if len(obj_ids) <= 1:
|
|
3387
|
+
return to_suppress
|
|
3388
|
+
|
|
3389
|
+
iou = mask_iou(binary_low_res_masks.flatten(1), binary_low_res_masks.flatten(1)) # [N,N]
|
|
3390
|
+
|
|
3391
|
+
# Create masks for upper triangular matrix (i < j) and IoU threshold
|
|
3392
|
+
mask_iou_thresh = iou >= self.suppress_overlapping_based_on_recent_occlusion_threshold
|
|
3393
|
+
overlapping_pairs = torch.triu(mask_iou_thresh, diagonal=1) # [N,N]
|
|
3394
|
+
|
|
3395
|
+
last_occ_expanded_i = last_occluded.unsqueeze(1) # (N, 1)
|
|
3396
|
+
last_occ_expanded_j = last_occluded.unsqueeze(0) # (1, N)
|
|
3397
|
+
# Suppress most recently occluded
|
|
3398
|
+
cmp_op = torch.gt if not reverse else torch.lt
|
|
3399
|
+
suppress_i_mask = (
|
|
3400
|
+
overlapping_pairs
|
|
3401
|
+
& cmp_op(last_occ_expanded_i, last_occ_expanded_j) # (last_occ_expanded_i > last_occ_expanded_j)
|
|
3402
|
+
& (last_occ_expanded_j > -1) # j can suppress i only if i was previously occluded
|
|
3403
|
+
)
|
|
3404
|
+
suppress_j_mask = (
|
|
3405
|
+
overlapping_pairs
|
|
3406
|
+
& cmp_op(last_occ_expanded_j, last_occ_expanded_i)
|
|
3407
|
+
& (last_occ_expanded_i > -1) # i can suppress j only if j was previously occluded
|
|
3408
|
+
)
|
|
3409
|
+
# Apply suppression
|
|
3410
|
+
to_suppress = suppress_i_mask.any(dim=1) | suppress_j_mask.any(dim=0)
|
|
3411
|
+
|
|
3412
|
+
# Log for debugging
|
|
3413
|
+
if LOGGER.isEnabledFor(10) and frame_idx is not None:
|
|
3414
|
+
suppress_i_mask = suppress_i_mask.cpu().numpy()
|
|
3415
|
+
suppress_j_mask = suppress_j_mask.cpu().numpy()
|
|
3416
|
+
last_occluded = last_occluded.cpu().numpy()
|
|
3417
|
+
|
|
3418
|
+
# Find all suppression pairs without using torch.where
|
|
3419
|
+
batch_size = suppress_i_mask.shape[0]
|
|
3420
|
+
|
|
3421
|
+
# Log i-suppression cases (where i gets suppressed in favor of j)
|
|
3422
|
+
for i in range(batch_size):
|
|
3423
|
+
for j in range(batch_size):
|
|
3424
|
+
if suppress_i_mask[i, j]:
|
|
3425
|
+
LOGGER.debug(
|
|
3426
|
+
f"{frame_idx=}: Suppressing obj {obj_ids[i]} last occluded {last_occluded[i]} in favor of {obj_ids[j]} last occluded {last_occluded[j]}"
|
|
3427
|
+
)
|
|
3428
|
+
|
|
3429
|
+
# Log j-suppression cases (where j gets suppressed in favor of i)
|
|
3430
|
+
for i in range(batch_size):
|
|
3431
|
+
for j in range(batch_size):
|
|
3432
|
+
if suppress_j_mask[i, j]:
|
|
3433
|
+
LOGGER.debug(
|
|
3434
|
+
f"{frame_idx=}: Suppressing obj {obj_ids[j]} last occluded {last_occluded[j]} in favor of {obj_ids[i]} last occluded {last_occluded[i]}"
|
|
3435
|
+
)
|
|
3436
|
+
|
|
3437
|
+
return to_suppress
|
|
3438
|
+
|
|
3439
|
+
def _propogate_tracker_one_frame_local_gpu(self, inference_states: list[Any], frame_idx: int):
|
|
3440
|
+
"""Inference_states: list of inference states, each state corresponds to a different set of objects."""
|
|
3441
|
+
obj_ids_local = []
|
|
3442
|
+
low_res_masks_list = []
|
|
3443
|
+
obj_scores_list = []
|
|
3444
|
+
for inference_state in inference_states:
|
|
3445
|
+
if len(inference_state["obj_ids"]) == 0:
|
|
3446
|
+
continue # skip propagation on empty inference states
|
|
3447
|
+
|
|
3448
|
+
out_obj_ids, out_low_res_masks, out_obj_scores = self.tracker.propagate_in_video(
|
|
3449
|
+
inference_state, frame_idx=frame_idx
|
|
3450
|
+
)
|
|
3451
|
+
assert isinstance(out_obj_ids, list)
|
|
3452
|
+
obj_ids_local.extend(out_obj_ids)
|
|
3453
|
+
low_res_masks_list.append(out_low_res_masks.squeeze(1))
|
|
3454
|
+
obj_scores_list.append(out_obj_scores.squeeze(1))
|
|
3455
|
+
|
|
3456
|
+
# concatenate the output masklets from all local inference states
|
|
3457
|
+
if len(low_res_masks_list) > 0:
|
|
3458
|
+
low_res_masks_local = torch.cat(low_res_masks_list, dim=0)
|
|
3459
|
+
obj_scores_local = torch.cat(obj_scores_list, dim=0)
|
|
3460
|
+
low_res_masks_local = low_res_masks_local.squeeze(1)
|
|
3461
|
+
else:
|
|
3462
|
+
low_res_masks_local = torch.zeros(0, *self._bb_feat_sizes[0], device=self.device)
|
|
3463
|
+
obj_scores_local = torch.zeros(0, device=self.device)
|
|
3464
|
+
|
|
3465
|
+
return obj_ids_local, low_res_masks_local, obj_scores_local
|
|
3466
|
+
|
|
3467
|
+
def _associate_det_trk(
|
|
3468
|
+
self,
|
|
3469
|
+
det_masks: torch.Tensor,
|
|
3470
|
+
det_scores_np: np.ndarray,
|
|
3471
|
+
trk_masks: torch.Tensor,
|
|
3472
|
+
trk_obj_ids: np.ndarray,
|
|
3473
|
+
):
|
|
3474
|
+
"""Match detections on the current frame with the existing masklets.
|
|
3475
|
+
|
|
3476
|
+
Args:
|
|
3477
|
+
det_masks: (N, H, W) tensor of predicted masks
|
|
3478
|
+
det_scores_np: (N,) array of detection scores
|
|
3479
|
+
trk_masks: (M, H, W) tensor of track masks
|
|
3480
|
+
trk_obj_ids: (M,) array of object IDs corresponding to trk_masks
|
|
3481
|
+
|
|
3482
|
+
Returns:
|
|
3483
|
+
new_det_fa_inds: array of new object indices.
|
|
3484
|
+
unmatched_trk_obj_ids: array of existing masklet object IDs that are not matched to any detections on this
|
|
3485
|
+
frame (for unmatched, we only count masklets with >0 area)
|
|
3486
|
+
det_to_matched_trk_obj_ids: dict[int, np.ndarray]: mapping from detector's detection indices to the list of
|
|
3487
|
+
matched tracklet object IDs
|
|
3488
|
+
empty_trk_obj_ids: array of existing masklet object IDs with zero area in SAM2 prediction
|
|
3489
|
+
"""
|
|
3490
|
+
iou_threshold = self.assoc_iou_thresh
|
|
3491
|
+
iou_threshold_trk = self.trk_assoc_iou_thresh
|
|
3492
|
+
new_det_thresh = self.new_det_thresh
|
|
3493
|
+
|
|
3494
|
+
assert det_masks.is_floating_point(), "float tensor expected (do not binarize)"
|
|
3495
|
+
assert trk_masks.is_floating_point(), "float tensor expected (do not binarize)"
|
|
3496
|
+
assert trk_masks.size(0) == len(trk_obj_ids), (
|
|
3497
|
+
f"trk_masks and trk_obj_ids should have the same length, {trk_masks.size(0)} vs {len(trk_obj_ids)}"
|
|
3498
|
+
)
|
|
3499
|
+
if trk_masks.size(0) == 0:
|
|
3500
|
+
# all detections are new
|
|
3501
|
+
new_det_fa_inds = np.arange(det_masks.size(0))
|
|
3502
|
+
unmatched_trk_obj_ids = np.array([], np.int64)
|
|
3503
|
+
empty_trk_obj_ids = np.array([], np.int64)
|
|
3504
|
+
det_to_matched_trk_obj_ids = {}
|
|
3505
|
+
trk_id_to_max_iou_high_conf_det = {}
|
|
3506
|
+
return (
|
|
3507
|
+
new_det_fa_inds,
|
|
3508
|
+
unmatched_trk_obj_ids,
|
|
3509
|
+
det_to_matched_trk_obj_ids,
|
|
3510
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3511
|
+
empty_trk_obj_ids,
|
|
3512
|
+
)
|
|
3513
|
+
elif det_masks.size(0) == 0:
|
|
3514
|
+
# all previous tracklets are unmatched if they have a non-zero area
|
|
3515
|
+
new_det_fa_inds = np.array([], np.int64)
|
|
3516
|
+
trk_is_nonempty = (trk_masks > 0).any(dim=(1, 2)).cpu().numpy()
|
|
3517
|
+
unmatched_trk_obj_ids = trk_obj_ids[trk_is_nonempty]
|
|
3518
|
+
empty_trk_obj_ids = trk_obj_ids[~trk_is_nonempty]
|
|
3519
|
+
det_to_matched_trk_obj_ids = {}
|
|
3520
|
+
trk_id_to_max_iou_high_conf_det = {}
|
|
3521
|
+
return (
|
|
3522
|
+
new_det_fa_inds,
|
|
3523
|
+
unmatched_trk_obj_ids,
|
|
3524
|
+
det_to_matched_trk_obj_ids,
|
|
3525
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3526
|
+
empty_trk_obj_ids,
|
|
3527
|
+
)
|
|
3528
|
+
|
|
3529
|
+
if det_masks.shape[-2:] != trk_masks.shape[-2:]:
|
|
3530
|
+
# resize to the smaller size to save GPU memory
|
|
3531
|
+
if np.prod(det_masks.shape[-2:]) < np.prod(trk_masks.shape[-2:]):
|
|
3532
|
+
trk_masks = F.interpolate(
|
|
3533
|
+
trk_masks.unsqueeze(1),
|
|
3534
|
+
size=det_masks.shape[-2:],
|
|
3535
|
+
mode="bilinear",
|
|
3536
|
+
align_corners=False,
|
|
3537
|
+
).squeeze(1)
|
|
3538
|
+
else:
|
|
3539
|
+
# resize detections to track size
|
|
3540
|
+
det_masks = F.interpolate(
|
|
3541
|
+
det_masks.unsqueeze(1),
|
|
3542
|
+
size=trk_masks.shape[-2:],
|
|
3543
|
+
mode="bilinear",
|
|
3544
|
+
align_corners=False,
|
|
3545
|
+
).squeeze(1)
|
|
3546
|
+
|
|
3547
|
+
det_masks_binary = det_masks > 0
|
|
3548
|
+
trk_masks_binary = trk_masks > 0
|
|
3549
|
+
ious = mask_iou(det_masks_binary.flatten(1).float(), trk_masks_binary.flatten(1).float()) # (N, M)
|
|
3550
|
+
|
|
3551
|
+
ious_np = ious.cpu().numpy()
|
|
3552
|
+
if self.o2o_matching_masklets_enable:
|
|
3553
|
+
from scipy.optimize import linear_sum_assignment
|
|
3554
|
+
|
|
3555
|
+
# Hungarian matching for tracks (one-to-one: each track matches at most one detection)
|
|
3556
|
+
cost_matrix = 1 - ious_np # Hungarian solves for minimum cost
|
|
3557
|
+
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
|
3558
|
+
trk_is_matched = np.zeros(trk_masks.size(0), dtype=bool)
|
|
3559
|
+
for d, t in zip(row_ind, col_ind):
|
|
3560
|
+
if ious_np[d, t] >= iou_threshold_trk:
|
|
3561
|
+
trk_is_matched[t] = True
|
|
3562
|
+
else:
|
|
3563
|
+
trk_is_matched = (ious_np >= iou_threshold_trk).any(axis=0)
|
|
3564
|
+
# Non-empty tracks not matched by Hungarian assignment above threshold are unmatched
|
|
3565
|
+
trk_is_nonempty = trk_masks_binary.any(dim=(1, 2)).cpu().numpy()
|
|
3566
|
+
trk_is_unmatched = np.logical_and(trk_is_nonempty, ~trk_is_matched)
|
|
3567
|
+
unmatched_trk_obj_ids = trk_obj_ids[trk_is_unmatched]
|
|
3568
|
+
# also record masklets that have zero area in SAM 2 prediction
|
|
3569
|
+
empty_trk_obj_ids = trk_obj_ids[~trk_is_nonempty]
|
|
3570
|
+
|
|
3571
|
+
# For detections: allow many tracks to match to the same detection (many-to-one)
|
|
3572
|
+
# So, a detection is 'new' if it does not match any track above threshold
|
|
3573
|
+
is_new_det = np.logical_and(
|
|
3574
|
+
det_scores_np >= new_det_thresh,
|
|
3575
|
+
np.logical_not(np.any(ious_np >= iou_threshold, axis=1)),
|
|
3576
|
+
)
|
|
3577
|
+
new_det_fa_inds = np.nonzero(is_new_det)[0]
|
|
3578
|
+
|
|
3579
|
+
# for each detection, which tracks it matched to (above threshold)
|
|
3580
|
+
det_to_matched_trk_obj_ids = {}
|
|
3581
|
+
trk_id_to_max_iou_high_conf_det = {} # trk id --> exactly one detection idx
|
|
3582
|
+
det_to_max_iou_trk_idx = np.argmax(ious_np, axis=1)
|
|
3583
|
+
det_is_high_conf = (det_scores_np >= self.HIGH_CONF_THRESH) & ~is_new_det
|
|
3584
|
+
det_is_high_iou = np.max(ious_np, axis=1) >= self.HIGH_IOU_THRESH
|
|
3585
|
+
det_is_high_conf_and_iou = set(np.nonzero(det_is_high_conf & det_is_high_iou)[0])
|
|
3586
|
+
for d in range(det_masks.size(0)):
|
|
3587
|
+
det_to_matched_trk_obj_ids[d] = trk_obj_ids[ious_np[d, :] >= iou_threshold]
|
|
3588
|
+
if d in det_is_high_conf_and_iou:
|
|
3589
|
+
trk_obj_id = trk_obj_ids[det_to_max_iou_trk_idx[d]].item()
|
|
3590
|
+
trk_id_to_max_iou_high_conf_det[trk_obj_id] = d
|
|
3591
|
+
|
|
3592
|
+
return (
|
|
3593
|
+
new_det_fa_inds,
|
|
3594
|
+
unmatched_trk_obj_ids,
|
|
3595
|
+
det_to_matched_trk_obj_ids,
|
|
3596
|
+
trk_id_to_max_iou_high_conf_det,
|
|
3597
|
+
empty_trk_obj_ids,
|
|
3598
|
+
)
|
|
3599
|
+
|
|
3600
|
+
def _process_hotstart(
|
|
3601
|
+
self,
|
|
3602
|
+
frame_idx: int,
|
|
3603
|
+
reverse: bool,
|
|
3604
|
+
det_to_matched_trk_obj_ids: dict[int, np.ndarray],
|
|
3605
|
+
new_det_obj_ids: np.ndarray,
|
|
3606
|
+
empty_trk_obj_ids: np.ndarray,
|
|
3607
|
+
unmatched_trk_obj_ids: np.ndarray,
|
|
3608
|
+
metadata: dict[str, Any],
|
|
3609
|
+
):
|
|
3610
|
+
"""Handle hotstart heuristics to remove unmatched or duplicated objects."""
|
|
3611
|
+
# obj_id --> first frame index where the object was detected
|
|
3612
|
+
obj_first_frame_idx = metadata["obj_first_frame_idx"]
|
|
3613
|
+
# obj_id --> [mismatched frame indices]
|
|
3614
|
+
unmatched_frame_inds = metadata["unmatched_frame_inds"]
|
|
3615
|
+
trk_keep_alive = metadata["trk_keep_alive"]
|
|
3616
|
+
# (first_appear_obj_id, obj_id) --> [overlap frame indices]
|
|
3617
|
+
overlap_pair_to_frame_inds = metadata["overlap_pair_to_frame_inds"]
|
|
3618
|
+
# removed_obj_ids: object IDs that are suppressed via hot-start
|
|
3619
|
+
removed_obj_ids = metadata["removed_obj_ids"]
|
|
3620
|
+
|
|
3621
|
+
obj_ids_newly_removed = set() # object IDs to be newly removed on this frame
|
|
3622
|
+
hotstart_diff = frame_idx - self.hotstart_delay if not reverse else frame_idx + self.hotstart_delay
|
|
3623
|
+
|
|
3624
|
+
# Step 1: log the frame index where each object ID first appears
|
|
3625
|
+
for obj_id in new_det_obj_ids:
|
|
3626
|
+
if obj_id not in obj_first_frame_idx:
|
|
3627
|
+
obj_first_frame_idx[obj_id] = frame_idx
|
|
3628
|
+
assert obj_id not in trk_keep_alive
|
|
3629
|
+
trk_keep_alive[obj_id] = self.init_trk_keep_alive
|
|
3630
|
+
|
|
3631
|
+
matched_trks = set()
|
|
3632
|
+
# We use the det-->tracks list to check for matched objects. Otherwise, we need to compute areas to decide whether they're occluded
|
|
3633
|
+
for matched_trks_per_det in det_to_matched_trk_obj_ids.values():
|
|
3634
|
+
matched_trks.update(matched_trks_per_det)
|
|
3635
|
+
for obj_id in matched_trks:
|
|
3636
|
+
# NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the max value of trk_keep_alive
|
|
3637
|
+
trk_keep_alive[obj_id] = min(self.max_trk_keep_alive, trk_keep_alive[obj_id] + 1)
|
|
3638
|
+
for obj_id in unmatched_trk_obj_ids:
|
|
3639
|
+
unmatched_frame_inds[obj_id].append(frame_idx)
|
|
3640
|
+
# NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the min value of trk_keep_alive
|
|
3641
|
+
# The max keep alive is 2x the min, means the model prefers to keep the prediction rather than suppress it if it was matched long enough.
|
|
3642
|
+
trk_keep_alive[obj_id] = max(self.min_trk_keep_alive, trk_keep_alive[obj_id] - 1)
|
|
3643
|
+
if self.decrease_trk_keep_alive_for_empty_masklets:
|
|
3644
|
+
for obj_id in empty_trk_obj_ids:
|
|
3645
|
+
# NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the min value of trk_keep_alive
|
|
3646
|
+
trk_keep_alive[obj_id] = max(self.min_trk_keep_alive, trk_keep_alive[obj_id] - 1)
|
|
3647
|
+
|
|
3648
|
+
# Step 2: removed tracks that has not matched with detections for `hotstart_unmatch_thresh` frames with hotstart period
|
|
3649
|
+
# a) add unmatched frame indices for each existing object ID
|
|
3650
|
+
# note that `unmatched_trk_obj_ids` contains those frames where the SAM2 output mask
|
|
3651
|
+
# doesn't match any detection; it excludes those frames where SAM2 gives an empty mask
|
|
3652
|
+
# b) remove a masklet if it first appears after `hotstart_diff` and is unmatched for more
|
|
3653
|
+
# than `self.hotstart_unmatch_thresh` frames
|
|
3654
|
+
for obj_id, frame_indices in unmatched_frame_inds.items():
|
|
3655
|
+
if obj_id in removed_obj_ids or obj_id in obj_ids_newly_removed:
|
|
3656
|
+
continue # skip if the object is already removed
|
|
3657
|
+
if len(frame_indices) >= self.hotstart_unmatch_thresh:
|
|
3658
|
+
is_within_hotstart = (obj_first_frame_idx[obj_id] > hotstart_diff and not reverse) or (
|
|
3659
|
+
obj_first_frame_idx[obj_id] < hotstart_diff and reverse
|
|
3660
|
+
)
|
|
3661
|
+
if is_within_hotstart:
|
|
3662
|
+
obj_ids_newly_removed.add(obj_id)
|
|
3663
|
+
LOGGER.debug(
|
|
3664
|
+
f"Removing object {obj_id} at frame {frame_idx} "
|
|
3665
|
+
f"since it is unmatched for frames: {frame_indices}"
|
|
3666
|
+
)
|
|
3667
|
+
if (
|
|
3668
|
+
trk_keep_alive[obj_id] <= 0 # Object has not been matched for too long
|
|
3669
|
+
and obj_id not in removed_obj_ids
|
|
3670
|
+
and obj_id not in obj_ids_newly_removed
|
|
3671
|
+
):
|
|
3672
|
+
LOGGER.debug(f"Removing object {obj_id} at frame {frame_idx}, due to being unmatched")
|
|
3673
|
+
# directly removed the object instead of suppressing it
|
|
3674
|
+
obj_ids_newly_removed.add(obj_id)
|
|
3675
|
+
|
|
3676
|
+
# Step 3: removed tracks that overlaps with another track for `hotstart_dup_thresh` frames
|
|
3677
|
+
# a) find overlaps tracks -- we consider overlap if they match to the same detection
|
|
3678
|
+
for _, matched_trk_obj_ids in det_to_matched_trk_obj_ids.items():
|
|
3679
|
+
if len(matched_trk_obj_ids) < 2:
|
|
3680
|
+
continue # only count detections that are matched to multiple (>=2) masklets
|
|
3681
|
+
# if there are multiple matched track ids, we need to find the one that appeared first;
|
|
3682
|
+
# these later appearing ids may be removed since they may be considered as duplicates
|
|
3683
|
+
first_appear_obj_id = (
|
|
3684
|
+
min(matched_trk_obj_ids, key=lambda x: obj_first_frame_idx[x])
|
|
3685
|
+
if not reverse
|
|
3686
|
+
else max(matched_trk_obj_ids, key=lambda x: obj_first_frame_idx[x])
|
|
3687
|
+
)
|
|
3688
|
+
for obj_id in matched_trk_obj_ids:
|
|
3689
|
+
if obj_id != first_appear_obj_id:
|
|
3690
|
+
key = (first_appear_obj_id, obj_id)
|
|
3691
|
+
overlap_pair_to_frame_inds[key].append(frame_idx)
|
|
3692
|
+
|
|
3693
|
+
# b) remove a masklet if it first appears after `hotstart_diff` and it overlaps with another
|
|
3694
|
+
# masklet (that appears earlier) for more than `self.hotstart_dup_thresh` frames
|
|
3695
|
+
for (first_obj_id, obj_id), frame_indices in overlap_pair_to_frame_inds.items():
|
|
3696
|
+
if obj_id in removed_obj_ids or obj_id in obj_ids_newly_removed:
|
|
3697
|
+
continue # skip if the object is already removed
|
|
3698
|
+
if (obj_first_frame_idx[obj_id] > hotstart_diff and not reverse) or (
|
|
3699
|
+
obj_first_frame_idx[obj_id] < hotstart_diff and reverse
|
|
3700
|
+
):
|
|
3701
|
+
if len(frame_indices) >= self.hotstart_dup_thresh:
|
|
3702
|
+
obj_ids_newly_removed.add(obj_id)
|
|
3703
|
+
LOGGER.debug(
|
|
3704
|
+
f"Removing object {obj_id} at frame {frame_idx} "
|
|
3705
|
+
f"since it overlaps with another track {first_obj_id} at frames: {frame_indices}"
|
|
3706
|
+
)
|
|
3707
|
+
|
|
3708
|
+
removed_obj_ids.update(obj_ids_newly_removed)
|
|
3709
|
+
return obj_ids_newly_removed, metadata
|
|
3710
|
+
|
|
3711
|
+
def _tracker_update_memories(
|
|
3712
|
+
self, tracker_inference_states: list[Any], frame_idx: int, low_res_masks: torch.Tensor
|
|
3713
|
+
):
|
|
3714
|
+
"""Run Sam2 memory encoder, enforcing non-overlapping constraints globally."""
|
|
3715
|
+
if len(tracker_inference_states) == 0:
|
|
3716
|
+
return
|
|
3717
|
+
# NOTE: inspect this part if we observe OOMs in the demo
|
|
3718
|
+
high_res_masks = F.interpolate(
|
|
3719
|
+
low_res_masks.unsqueeze(1),
|
|
3720
|
+
size=self.interpol_size,
|
|
3721
|
+
mode="bilinear",
|
|
3722
|
+
align_corners=False,
|
|
3723
|
+
)
|
|
3724
|
+
# We first apply non-overlapping constraints before memory encoding. This may include some suppression heuristics.
|
|
3725
|
+
if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
|
|
3726
|
+
high_res_masks = self.tracker.model._suppress_object_pw_area_shrinkage(high_res_masks)
|
|
3727
|
+
# Instead of gathering the predicted object scores, we use mask areas as a proxy.
|
|
3728
|
+
object_score_logits = torch.where((high_res_masks > 0).any(dim=(-1, -2)), 10.0, -10.0)
|
|
3729
|
+
|
|
3730
|
+
# Run the memory encoder on local slices for each GPU
|
|
3731
|
+
start_idx_gpu = 0
|
|
3732
|
+
start_idx_state = start_idx_gpu
|
|
3733
|
+
for tracker_state in tracker_inference_states:
|
|
3734
|
+
num_obj_per_state = len(tracker_state["obj_ids"])
|
|
3735
|
+
if num_obj_per_state == 0:
|
|
3736
|
+
continue
|
|
3737
|
+
# Get the local high-res masks and object score logits for this inference state
|
|
3738
|
+
end_idx_state = start_idx_state + num_obj_per_state
|
|
3739
|
+
local_high_res_masks = high_res_masks[start_idx_state:end_idx_state]
|
|
3740
|
+
local_object_score_logits = object_score_logits[start_idx_state:end_idx_state]
|
|
3741
|
+
local_batch_size = local_high_res_masks.size(0)
|
|
3742
|
+
# Run Sam2 memory encoder. Note that we do not re-enforce the non-overlapping constraint as it is turned off by default
|
|
3743
|
+
|
|
3744
|
+
encoded_mem = self.tracker._run_memory_encoder(
|
|
3745
|
+
local_batch_size,
|
|
3746
|
+
local_high_res_masks,
|
|
3747
|
+
local_object_score_logits,
|
|
3748
|
+
is_mask_from_pts=False,
|
|
3749
|
+
inference_state=tracker_state,
|
|
3750
|
+
)
|
|
3751
|
+
local_maskmem_features, local_maskmem_pos_enc = encoded_mem
|
|
3752
|
+
# Store encoded memories in the local inference state
|
|
3753
|
+
output_dict = tracker_state["output_dict"]
|
|
3754
|
+
for storage_key in ["cond_frame_outputs", "non_cond_frame_outputs"]:
|
|
3755
|
+
if frame_idx not in output_dict[storage_key]:
|
|
3756
|
+
continue
|
|
3757
|
+
output_dict[storage_key][frame_idx]["maskmem_features"] = local_maskmem_features
|
|
3758
|
+
output_dict[storage_key][frame_idx]["maskmem_pos_enc"] = [pos for pos in local_maskmem_pos_enc]
|
|
3759
|
+
# for batched inference state, we also need to add per-object
|
|
3760
|
+
# memory slides to support instance interactivity
|
|
3761
|
+
self.tracker._add_output_per_object(
|
|
3762
|
+
inference_state=tracker_state,
|
|
3763
|
+
frame_idx=frame_idx,
|
|
3764
|
+
current_out=output_dict[storage_key][frame_idx],
|
|
3765
|
+
storage_key=storage_key,
|
|
3766
|
+
)
|
|
3767
|
+
start_idx_state += num_obj_per_state
|
|
3768
|
+
|
|
3769
|
+
def _tracker_add_new_objects(
|
|
3770
|
+
self,
|
|
3771
|
+
frame_idx: int,
|
|
3772
|
+
num_frames: int,
|
|
3773
|
+
new_obj_ids: list[int],
|
|
3774
|
+
new_obj_masks: torch.Tensor,
|
|
3775
|
+
tracker_states_local: list[Any],
|
|
3776
|
+
):
|
|
3777
|
+
"""Add a new object to SAM2 inference states."""
|
|
3778
|
+
prev_tracker_state = tracker_states_local[0] if len(tracker_states_local) > 0 else None
|
|
3779
|
+
|
|
3780
|
+
# prepare inference_state
|
|
3781
|
+
# batch objects that first appear on the same frame together
|
|
3782
|
+
# Clear inference state. Keep the cached image features if available.
|
|
3783
|
+
new_tracker_state = self.tracker._init_state(num_frames=num_frames)
|
|
3784
|
+
# NOTE: adding image placeholder
|
|
3785
|
+
new_tracker_state["im"] = None
|
|
3786
|
+
new_tracker_state["backbone_out"] = (
|
|
3787
|
+
prev_tracker_state.get("backbone_out", None) if prev_tracker_state is not None else None
|
|
3788
|
+
)
|
|
3789
|
+
|
|
3790
|
+
assert len(new_obj_ids) == new_obj_masks.size(0)
|
|
3791
|
+
assert new_obj_masks.is_floating_point()
|
|
3792
|
+
new_obj_masks = F.interpolate(
|
|
3793
|
+
new_obj_masks.unsqueeze(0),
|
|
3794
|
+
size=self.interpol_size,
|
|
3795
|
+
mode="bilinear",
|
|
3796
|
+
align_corners=False,
|
|
3797
|
+
).squeeze(0)
|
|
3798
|
+
new_obj_masks = new_obj_masks > 0
|
|
3799
|
+
|
|
3800
|
+
# add object one by one
|
|
3801
|
+
for new_obj_id, new_mask in zip(new_obj_ids, new_obj_masks):
|
|
3802
|
+
self.tracker.add_new_prompts(
|
|
3803
|
+
inference_state=new_tracker_state,
|
|
3804
|
+
frame_idx=frame_idx,
|
|
3805
|
+
obj_id=new_obj_id,
|
|
3806
|
+
masks=new_mask[None, None], # add bs, channel
|
|
3807
|
+
)
|
|
3808
|
+
# NOTE: we skip enforcing the non-overlapping constraint **globally** when adding new objects.
|
|
3809
|
+
self.tracker.propagate_in_video_preflight(new_tracker_state)
|
|
3810
|
+
tracker_states_local.append(new_tracker_state)
|
|
3811
|
+
return tracker_states_local
|
|
3812
|
+
|
|
3813
|
+
def _tracker_remove_objects(self, tracker_states_local: list[Any], obj_ids: list[int]):
|
|
3814
|
+
"""Remove an object from SAM2 inference states. This would remove the object from all frames in the video."""
|
|
3815
|
+
if not obj_ids:
|
|
3816
|
+
return
|
|
3817
|
+
# Filter out states that become empty after removal
|
|
3818
|
+
active_states = []
|
|
3819
|
+
for state in tracker_states_local:
|
|
3820
|
+
for obj_id in obj_ids:
|
|
3821
|
+
# we try to remove `obj_id` on every inference state with `strict=False`
|
|
3822
|
+
# it will not do anything if an inference state doesn't contain `obj_id`
|
|
3823
|
+
self.tracker.remove_object(state, obj_id, strict=False)
|
|
3824
|
+
|
|
3825
|
+
if len(state["obj_ids"]) > 0:
|
|
3826
|
+
active_states.append(state)
|
|
3827
|
+
|
|
3828
|
+
# Update the list in-place
|
|
3829
|
+
tracker_states_local[:] = active_states
|
|
3830
|
+
|
|
3831
|
+
def _initialize_metadata(self):
|
|
3832
|
+
"""Initialize metadata for the masklets."""
|
|
3833
|
+
tracker_metadata = {
|
|
3834
|
+
"obj_ids": np.array([], np.int32),
|
|
3835
|
+
"num_obj": np.zeros(1, np.int32),
|
|
3836
|
+
"max_obj_id": -1,
|
|
3837
|
+
"obj_id_to_score": {},
|
|
3838
|
+
"obj_id_to_cls": {},
|
|
3839
|
+
"obj_id_to_tracker_score_frame_wise": defaultdict(dict),
|
|
3840
|
+
"obj_id_to_last_occluded": {},
|
|
3841
|
+
}
|
|
3842
|
+
# "metadata" contains metadata that is only stored on (and accessible to) GPU 0
|
|
3843
|
+
# - obj_first_frame_idx: obj_id --> first frame index where the object was detected
|
|
3844
|
+
# - unmatched_frame_inds: obj_id --> [mismatched frame indices]
|
|
3845
|
+
# - overlap_pair_to_frame_inds: (first_appear_obj_id, obj_id) --> [overlap frame indices]
|
|
3846
|
+
# - removed_obj_ids: object IDs that are suppressed via hot-start
|
|
3847
|
+
metadata = {
|
|
3848
|
+
"obj_first_frame_idx": {},
|
|
3849
|
+
"unmatched_frame_inds": defaultdict(list),
|
|
3850
|
+
"trk_keep_alive": defaultdict(int), # This is used only for object suppression not for removal
|
|
3851
|
+
"overlap_pair_to_frame_inds": defaultdict(list),
|
|
3852
|
+
"removed_obj_ids": set(),
|
|
3853
|
+
}
|
|
3854
|
+
if self.masklet_confirmation_enable:
|
|
3855
|
+
# all the following are np.ndarray with the same shape as `obj_ids_all_gpu`
|
|
3856
|
+
metadata["masklet_confirmation"] = {
|
|
3857
|
+
# "status" is the confirmation status of each masklet
|
|
3858
|
+
"status": np.array([], np.int64),
|
|
3859
|
+
# "consecutive_det_num" is the number of consecutive frames where the masklet is
|
|
3860
|
+
# detected by the detector (with a matched detection)
|
|
3861
|
+
"consecutive_det_num": np.array([], np.int64),
|
|
3862
|
+
}
|
|
3863
|
+
tracker_metadata["metadata"] = metadata
|
|
3864
|
+
|
|
3865
|
+
return tracker_metadata
|
|
3866
|
+
|
|
3867
|
+
def update_masklet_confirmation_status(
|
|
3868
|
+
self,
|
|
3869
|
+
metadata: dict[str, Any],
|
|
3870
|
+
obj_ids_all_gpu_prev: np.ndarray,
|
|
3871
|
+
obj_ids_all_gpu_updated: np.ndarray,
|
|
3872
|
+
det_to_matched_trk_obj_ids: dict[int, np.ndarray],
|
|
3873
|
+
new_det_obj_ids: np.ndarray,
|
|
3874
|
+
):
|
|
3875
|
+
"""Update the confirmation status of masklets based on the current frame's detection results."""
|
|
3876
|
+
confirmation_data = metadata["masklet_confirmation"]
|
|
3877
|
+
|
|
3878
|
+
# a) first, expand "confirmation_data" to include new masklets added in this frame
|
|
3879
|
+
status_prev = confirmation_data["status"]
|
|
3880
|
+
consecutive_det_num_prev = confirmation_data["consecutive_det_num"]
|
|
3881
|
+
assert status_prev.shape == obj_ids_all_gpu_prev.shape, (
|
|
3882
|
+
f"Got {status_prev.shape} vs {obj_ids_all_gpu_prev.shape}"
|
|
3883
|
+
)
|
|
3884
|
+
|
|
3885
|
+
obj_id_to_updated_idx = {obj_id: idx for idx, obj_id in enumerate(obj_ids_all_gpu_updated)}
|
|
3886
|
+
prev_elem_is_in_updated = np.isin(obj_ids_all_gpu_prev, obj_ids_all_gpu_updated)
|
|
3887
|
+
prev_elem_obj_ids_in_updated = obj_ids_all_gpu_prev[prev_elem_is_in_updated]
|
|
3888
|
+
prev_elem_inds_in_updated = np.array(
|
|
3889
|
+
[obj_id_to_updated_idx[obj_id] for obj_id in prev_elem_obj_ids_in_updated],
|
|
3890
|
+
dtype=np.int64,
|
|
3891
|
+
)
|
|
3892
|
+
# newly added masklets are initialized to "UNCONFIRMED" status
|
|
3893
|
+
unconfirmed_val = self.UNCONFIRMED
|
|
3894
|
+
status = np.full_like(obj_ids_all_gpu_updated, fill_value=unconfirmed_val)
|
|
3895
|
+
status[prev_elem_inds_in_updated] = status_prev[prev_elem_is_in_updated]
|
|
3896
|
+
consecutive_det_num = np.zeros_like(obj_ids_all_gpu_updated)
|
|
3897
|
+
consecutive_det_num[prev_elem_inds_in_updated] = consecutive_det_num_prev[prev_elem_is_in_updated]
|
|
3898
|
+
|
|
3899
|
+
# b) update the confirmation status of all masklets based on the current frame
|
|
3900
|
+
# b.1) update "consecutive_det_num"
|
|
3901
|
+
# "is_matched": whether a masklet is matched to a detection on this frame
|
|
3902
|
+
is_matched = np.isin(obj_ids_all_gpu_updated, new_det_obj_ids)
|
|
3903
|
+
for matched_trk_obj_ids in det_to_matched_trk_obj_ids.values():
|
|
3904
|
+
is_matched |= np.isin(obj_ids_all_gpu_updated, matched_trk_obj_ids)
|
|
3905
|
+
consecutive_det_num = np.where(is_matched, consecutive_det_num + 1, 0)
|
|
3906
|
+
|
|
3907
|
+
# b.2) update "status"
|
|
3908
|
+
change_to_confirmed = consecutive_det_num >= self.masklet_confirmation_consecutive_det_thresh
|
|
3909
|
+
status[change_to_confirmed] = self.CONFIRMED
|
|
3910
|
+
|
|
3911
|
+
confirmation_data["status"] = status
|
|
3912
|
+
confirmation_data["consecutive_det_num"] = consecutive_det_num
|
|
3913
|
+
return metadata
|
|
3914
|
+
|
|
3915
|
+
def _load_checkpoint(self, ckpt_path: str, strict: bool = True):
|
|
3916
|
+
sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
|
|
3917
|
+
missing_keys, unexpected_keys = self.load_state_dict(sd, strict=strict)
|
|
3918
|
+
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
|
|
3919
|
+
LOGGER.warning(f"Loaded ckpt with {missing_keys=}, {unexpected_keys=}")
|
|
3920
|
+
else:
|
|
3921
|
+
LOGGER.info("Loaded ckpt successfully without missing or unexpected keys")
|
|
3922
|
+
|
|
3923
|
+
def _encode_prompt(self, **kwargs):
|
|
3924
|
+
return self.model._encode_prompt(**kwargs)
|
|
3925
|
+
|
|
3926
|
+
@staticmethod
|
|
3927
|
+
def _drop_new_det_with_obj_limit(new_det_fa_inds, det_scores_np, num_to_keep):
|
|
3928
|
+
"""Drop a few new detections based on the maximum number of objects. We drop new objects based on their
|
|
3929
|
+
detection scores, keeping the high-scoring ones and dropping the low-scoring ones.
|
|
3930
|
+
"""
|
|
3931
|
+
assert 0 <= num_to_keep <= len(new_det_fa_inds)
|
|
3932
|
+
if num_to_keep == 0:
|
|
3933
|
+
return np.array([], np.int64) # keep none
|
|
3934
|
+
if num_to_keep == len(new_det_fa_inds):
|
|
3935
|
+
return new_det_fa_inds # keep all
|
|
3936
|
+
|
|
3937
|
+
# keep the top-scoring detections
|
|
3938
|
+
score_order = np.argsort(det_scores_np[new_det_fa_inds])[::-1]
|
|
3939
|
+
new_det_fa_inds = new_det_fa_inds[score_order[:num_to_keep]]
|
|
3940
|
+
return new_det_fa_inds
|