dgenerate-ultralytics-headless 8.3.196__py3-none-any.whl → 8.3.248__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (243) hide show
  1. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/METADATA +33 -34
  2. dgenerate_ultralytics_headless-8.3.248.dist-info/RECORD +298 -0
  3. tests/__init__.py +5 -7
  4. tests/conftest.py +8 -15
  5. tests/test_cli.py +8 -10
  6. tests/test_cuda.py +9 -10
  7. tests/test_engine.py +29 -2
  8. tests/test_exports.py +69 -21
  9. tests/test_integrations.py +8 -11
  10. tests/test_python.py +109 -71
  11. tests/test_solutions.py +170 -159
  12. ultralytics/__init__.py +27 -9
  13. ultralytics/cfg/__init__.py +57 -64
  14. ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  15. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  16. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  17. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  18. ultralytics/cfg/datasets/Objects365.yaml +19 -15
  19. ultralytics/cfg/datasets/SKU-110K.yaml +1 -1
  20. ultralytics/cfg/datasets/VOC.yaml +19 -21
  21. ultralytics/cfg/datasets/VisDrone.yaml +5 -5
  22. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  23. ultralytics/cfg/datasets/coco-pose.yaml +24 -2
  24. ultralytics/cfg/datasets/coco.yaml +2 -2
  25. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  26. ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
  27. ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
  28. ultralytics/cfg/datasets/dog-pose.yaml +28 -0
  29. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  30. ultralytics/cfg/datasets/dota8.yaml +2 -2
  31. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
  32. ultralytics/cfg/datasets/kitti.yaml +27 -0
  33. ultralytics/cfg/datasets/lvis.yaml +7 -7
  34. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  35. ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
  36. ultralytics/cfg/datasets/xView.yaml +16 -16
  37. ultralytics/cfg/default.yaml +96 -94
  38. ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  39. ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  40. ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  41. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
  42. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
  43. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
  44. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
  45. ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
  46. ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
  47. ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
  48. ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
  49. ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
  50. ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
  51. ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
  52. ultralytics/cfg/models/v6/yolov6.yaml +1 -1
  53. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  54. ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  55. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  56. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  57. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  58. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  59. ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  60. ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  61. ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  62. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  63. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  64. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
  65. ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  66. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  67. ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
  68. ultralytics/cfg/trackers/botsort.yaml +16 -17
  69. ultralytics/cfg/trackers/bytetrack.yaml +9 -11
  70. ultralytics/data/__init__.py +4 -4
  71. ultralytics/data/annotator.py +3 -4
  72. ultralytics/data/augment.py +286 -476
  73. ultralytics/data/base.py +18 -26
  74. ultralytics/data/build.py +151 -26
  75. ultralytics/data/converter.py +38 -50
  76. ultralytics/data/dataset.py +47 -75
  77. ultralytics/data/loaders.py +42 -49
  78. ultralytics/data/split.py +5 -6
  79. ultralytics/data/split_dota.py +8 -15
  80. ultralytics/data/utils.py +41 -45
  81. ultralytics/engine/exporter.py +462 -462
  82. ultralytics/engine/model.py +150 -191
  83. ultralytics/engine/predictor.py +30 -40
  84. ultralytics/engine/results.py +177 -311
  85. ultralytics/engine/trainer.py +193 -120
  86. ultralytics/engine/tuner.py +77 -63
  87. ultralytics/engine/validator.py +39 -22
  88. ultralytics/hub/__init__.py +16 -19
  89. ultralytics/hub/auth.py +6 -12
  90. ultralytics/hub/google/__init__.py +7 -10
  91. ultralytics/hub/session.py +15 -25
  92. ultralytics/hub/utils.py +5 -8
  93. ultralytics/models/__init__.py +1 -1
  94. ultralytics/models/fastsam/__init__.py +1 -1
  95. ultralytics/models/fastsam/model.py +8 -10
  96. ultralytics/models/fastsam/predict.py +19 -30
  97. ultralytics/models/fastsam/utils.py +1 -2
  98. ultralytics/models/fastsam/val.py +5 -7
  99. ultralytics/models/nas/__init__.py +1 -1
  100. ultralytics/models/nas/model.py +5 -8
  101. ultralytics/models/nas/predict.py +7 -9
  102. ultralytics/models/nas/val.py +1 -2
  103. ultralytics/models/rtdetr/__init__.py +1 -1
  104. ultralytics/models/rtdetr/model.py +7 -8
  105. ultralytics/models/rtdetr/predict.py +15 -19
  106. ultralytics/models/rtdetr/train.py +10 -13
  107. ultralytics/models/rtdetr/val.py +21 -23
  108. ultralytics/models/sam/__init__.py +15 -2
  109. ultralytics/models/sam/amg.py +14 -20
  110. ultralytics/models/sam/build.py +26 -19
  111. ultralytics/models/sam/build_sam3.py +377 -0
  112. ultralytics/models/sam/model.py +29 -32
  113. ultralytics/models/sam/modules/blocks.py +83 -144
  114. ultralytics/models/sam/modules/decoders.py +22 -40
  115. ultralytics/models/sam/modules/encoders.py +44 -101
  116. ultralytics/models/sam/modules/memory_attention.py +16 -30
  117. ultralytics/models/sam/modules/sam.py +206 -79
  118. ultralytics/models/sam/modules/tiny_encoder.py +64 -83
  119. ultralytics/models/sam/modules/transformer.py +18 -28
  120. ultralytics/models/sam/modules/utils.py +174 -50
  121. ultralytics/models/sam/predict.py +2268 -366
  122. ultralytics/models/sam/sam3/__init__.py +3 -0
  123. ultralytics/models/sam/sam3/decoder.py +546 -0
  124. ultralytics/models/sam/sam3/encoder.py +529 -0
  125. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  126. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  127. ultralytics/models/sam/sam3/model_misc.py +199 -0
  128. ultralytics/models/sam/sam3/necks.py +129 -0
  129. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  130. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  131. ultralytics/models/sam/sam3/vitdet.py +547 -0
  132. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  133. ultralytics/models/utils/loss.py +14 -26
  134. ultralytics/models/utils/ops.py +13 -17
  135. ultralytics/models/yolo/__init__.py +1 -1
  136. ultralytics/models/yolo/classify/predict.py +9 -12
  137. ultralytics/models/yolo/classify/train.py +15 -41
  138. ultralytics/models/yolo/classify/val.py +34 -32
  139. ultralytics/models/yolo/detect/predict.py +8 -11
  140. ultralytics/models/yolo/detect/train.py +13 -32
  141. ultralytics/models/yolo/detect/val.py +75 -63
  142. ultralytics/models/yolo/model.py +37 -53
  143. ultralytics/models/yolo/obb/predict.py +5 -14
  144. ultralytics/models/yolo/obb/train.py +11 -14
  145. ultralytics/models/yolo/obb/val.py +42 -39
  146. ultralytics/models/yolo/pose/__init__.py +1 -1
  147. ultralytics/models/yolo/pose/predict.py +7 -22
  148. ultralytics/models/yolo/pose/train.py +10 -22
  149. ultralytics/models/yolo/pose/val.py +40 -59
  150. ultralytics/models/yolo/segment/predict.py +16 -20
  151. ultralytics/models/yolo/segment/train.py +3 -12
  152. ultralytics/models/yolo/segment/val.py +106 -56
  153. ultralytics/models/yolo/world/train.py +12 -16
  154. ultralytics/models/yolo/world/train_world.py +11 -34
  155. ultralytics/models/yolo/yoloe/__init__.py +7 -7
  156. ultralytics/models/yolo/yoloe/predict.py +16 -23
  157. ultralytics/models/yolo/yoloe/train.py +31 -56
  158. ultralytics/models/yolo/yoloe/train_seg.py +5 -10
  159. ultralytics/models/yolo/yoloe/val.py +16 -21
  160. ultralytics/nn/__init__.py +7 -7
  161. ultralytics/nn/autobackend.py +152 -80
  162. ultralytics/nn/modules/__init__.py +60 -60
  163. ultralytics/nn/modules/activation.py +4 -6
  164. ultralytics/nn/modules/block.py +133 -217
  165. ultralytics/nn/modules/conv.py +52 -97
  166. ultralytics/nn/modules/head.py +64 -116
  167. ultralytics/nn/modules/transformer.py +79 -89
  168. ultralytics/nn/modules/utils.py +16 -21
  169. ultralytics/nn/tasks.py +111 -156
  170. ultralytics/nn/text_model.py +40 -67
  171. ultralytics/solutions/__init__.py +12 -12
  172. ultralytics/solutions/ai_gym.py +11 -17
  173. ultralytics/solutions/analytics.py +15 -16
  174. ultralytics/solutions/config.py +5 -6
  175. ultralytics/solutions/distance_calculation.py +10 -13
  176. ultralytics/solutions/heatmap.py +7 -13
  177. ultralytics/solutions/instance_segmentation.py +5 -8
  178. ultralytics/solutions/object_blurrer.py +7 -10
  179. ultralytics/solutions/object_counter.py +12 -19
  180. ultralytics/solutions/object_cropper.py +8 -14
  181. ultralytics/solutions/parking_management.py +33 -31
  182. ultralytics/solutions/queue_management.py +10 -12
  183. ultralytics/solutions/region_counter.py +9 -12
  184. ultralytics/solutions/security_alarm.py +15 -20
  185. ultralytics/solutions/similarity_search.py +13 -17
  186. ultralytics/solutions/solutions.py +75 -74
  187. ultralytics/solutions/speed_estimation.py +7 -10
  188. ultralytics/solutions/streamlit_inference.py +4 -7
  189. ultralytics/solutions/templates/similarity-search.html +7 -18
  190. ultralytics/solutions/trackzone.py +7 -10
  191. ultralytics/solutions/vision_eye.py +5 -8
  192. ultralytics/trackers/__init__.py +1 -1
  193. ultralytics/trackers/basetrack.py +3 -5
  194. ultralytics/trackers/bot_sort.py +10 -27
  195. ultralytics/trackers/byte_tracker.py +14 -30
  196. ultralytics/trackers/track.py +3 -6
  197. ultralytics/trackers/utils/gmc.py +11 -22
  198. ultralytics/trackers/utils/kalman_filter.py +37 -48
  199. ultralytics/trackers/utils/matching.py +12 -15
  200. ultralytics/utils/__init__.py +116 -116
  201. ultralytics/utils/autobatch.py +2 -4
  202. ultralytics/utils/autodevice.py +17 -18
  203. ultralytics/utils/benchmarks.py +70 -70
  204. ultralytics/utils/callbacks/base.py +8 -10
  205. ultralytics/utils/callbacks/clearml.py +5 -13
  206. ultralytics/utils/callbacks/comet.py +32 -46
  207. ultralytics/utils/callbacks/dvc.py +13 -18
  208. ultralytics/utils/callbacks/mlflow.py +4 -5
  209. ultralytics/utils/callbacks/neptune.py +7 -15
  210. ultralytics/utils/callbacks/platform.py +314 -38
  211. ultralytics/utils/callbacks/raytune.py +3 -4
  212. ultralytics/utils/callbacks/tensorboard.py +23 -31
  213. ultralytics/utils/callbacks/wb.py +10 -13
  214. ultralytics/utils/checks.py +151 -87
  215. ultralytics/utils/cpu.py +3 -8
  216. ultralytics/utils/dist.py +19 -15
  217. ultralytics/utils/downloads.py +29 -41
  218. ultralytics/utils/errors.py +6 -14
  219. ultralytics/utils/events.py +2 -4
  220. ultralytics/utils/export/__init__.py +7 -0
  221. ultralytics/utils/{export.py → export/engine.py} +16 -16
  222. ultralytics/utils/export/imx.py +325 -0
  223. ultralytics/utils/export/tensorflow.py +231 -0
  224. ultralytics/utils/files.py +24 -28
  225. ultralytics/utils/git.py +9 -11
  226. ultralytics/utils/instance.py +30 -51
  227. ultralytics/utils/logger.py +212 -114
  228. ultralytics/utils/loss.py +15 -24
  229. ultralytics/utils/metrics.py +131 -160
  230. ultralytics/utils/nms.py +21 -30
  231. ultralytics/utils/ops.py +107 -165
  232. ultralytics/utils/patches.py +33 -21
  233. ultralytics/utils/plotting.py +122 -119
  234. ultralytics/utils/tal.py +28 -44
  235. ultralytics/utils/torch_utils.py +70 -187
  236. ultralytics/utils/tqdm.py +20 -20
  237. ultralytics/utils/triton.py +13 -19
  238. ultralytics/utils/tuner.py +17 -5
  239. dgenerate_ultralytics_headless-8.3.196.dist-info/RECORD +0 -281
  240. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/WHEEL +0 -0
  241. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/entry_points.txt +0 -0
  242. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/licenses/LICENSE +0 -0
  243. {dgenerate_ultralytics_headless-8.3.196.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.196
3
+ Version: 8.3.248
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -42,24 +42,23 @@ Requires-Dist: scipy>=1.4.1
42
42
  Requires-Dist: torch>=1.8.0
43
43
  Requires-Dist: torch!=2.4.0,>=1.8.0; sys_platform == "win32"
44
44
  Requires-Dist: torchvision>=0.9.0
45
- Requires-Dist: psutil
46
- Requires-Dist: polars
47
- Requires-Dist: ultralytics-thop>=2.0.0
45
+ Requires-Dist: psutil>=5.8.0
46
+ Requires-Dist: polars>=0.20.0
47
+ Requires-Dist: ultralytics-thop>=2.0.18
48
48
  Provides-Extra: dev
49
49
  Requires-Dist: ipython; extra == "dev"
50
50
  Requires-Dist: pytest; extra == "dev"
51
51
  Requires-Dist: pytest-cov; extra == "dev"
52
52
  Requires-Dist: coverage[toml]; extra == "dev"
53
- Requires-Dist: mkdocs>=1.6.0; extra == "dev"
54
- Requires-Dist: mkdocs-material>=9.5.9; extra == "dev"
55
- Requires-Dist: mkdocstrings[python]; extra == "dev"
56
- Requires-Dist: mkdocs-ultralytics-plugin>=0.1.29; extra == "dev"
57
- Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
53
+ Requires-Dist: zensical>=0.0.15; python_version >= "3.10" and extra == "dev"
54
+ Requires-Dist: mkdocs-ultralytics-plugin>=0.2.4; extra == "dev"
55
+ Requires-Dist: minijinja>=2.0.0; extra == "dev"
58
56
  Provides-Extra: export
59
57
  Requires-Dist: numpy<2.0.0; extra == "export"
60
58
  Requires-Dist: onnx>=1.12.0; platform_system != "Darwin" and extra == "export"
61
59
  Requires-Dist: onnx<1.18.0,>=1.12.0; platform_system == "Darwin" and extra == "export"
62
- Requires-Dist: coremltools>=8.0; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
60
+ Requires-Dist: onnxslim>=0.1.82; extra == "export"
61
+ Requires-Dist: coremltools>=9.0; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
63
62
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
64
63
  Requires-Dist: openvino>=2024.0.0; extra == "export"
65
64
  Requires-Dist: tensorflow<=2.19.0,>=2.0.0; extra == "export"
@@ -80,7 +79,7 @@ Requires-Dist: ipython; extra == "extra"
80
79
  Requires-Dist: albumentations>=1.4.6; extra == "extra"
81
80
  Requires-Dist: faster-coco-eval>=1.6.7; extra == "extra"
82
81
  Provides-Extra: typing
83
- Requires-Dist: scipy-stubs; extra == "typing"
82
+ Requires-Dist: scipy-stubs>=1.14.1.4; python_version >= "3.10" and extra == "typing"
84
83
  Requires-Dist: types-pillow; extra == "typing"
85
84
  Requires-Dist: types-psutil; extra == "typing"
86
85
  Requires-Dist: types-pyyaml; extra == "typing"
@@ -160,7 +159,7 @@ Request an Enterprise License for commercial use at [Ultralytics Licensing](http
160
159
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
161
160
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
162
161
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
163
- <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
162
+ <a href="https://www.youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
164
163
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
165
164
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
166
165
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
@@ -270,11 +269,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
270
269
 
271
270
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
272
271
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
273
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
274
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
275
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
276
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
277
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
272
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 9.7 |
273
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 33.0 |
274
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 113.2 |
275
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 132.2 |
276
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 296.4 |
278
277
 
279
278
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
280
279
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -287,11 +286,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
287
286
 
288
287
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
289
288
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
290
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 0.5 |
291
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 1.6 |
292
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 5.0 |
293
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 6.2 |
294
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 13.7 |
289
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
290
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
291
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
292
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
293
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
295
294
 
296
295
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
297
296
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -304,11 +303,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
304
303
 
305
304
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
306
305
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
307
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
308
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
309
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
310
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
311
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
306
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.4 |
307
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.1 |
308
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.4 |
309
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.1 | 90.3 |
310
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 202.8 |
312
311
 
313
312
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
314
313
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -321,11 +320,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
321
320
 
322
321
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
323
322
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
324
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
325
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
326
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
327
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
328
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
323
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 16.8 |
324
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.1 |
325
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 182.8 |
326
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.1 | 231.2 |
327
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 519.1 |
329
328
 
330
329
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
331
330
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -381,7 +380,7 @@ We look forward to your contributions to help make the Ultralytics ecosystem eve
381
380
 
382
381
  Ultralytics offers two licensing options to suit different needs:
383
382
 
384
- - **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license) open-source license is perfect for students, researchers, and enthusiasts. It encourages open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for full details.
383
+ - **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license/agpl-v3) open-source license is perfect for students, researchers, and enthusiasts. It encourages open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for full details.
385
384
  - **Ultralytics Enterprise License**: Designed for commercial use, this license allows for the seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. If your use case involves commercial deployment, please contact us via [Ultralytics Licensing](https://www.ultralytics.com/license).
386
385
 
387
386
  ## 📞 Contact
@@ -396,7 +395,7 @@ For bug reports and feature requests related to Ultralytics software, please vis
396
395
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
397
396
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
398
397
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
399
- <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
398
+ <a href="https://www.youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
400
399
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
401
400
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
402
401
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
@@ -0,0 +1,298 @@
1
+ dgenerate_ultralytics_headless-8.3.248.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
+ tests/__init__.py,sha256=bCox_hLdGRFYGLb2kd722VdNP2zEXNYNuLLYtqZSrbw,804
3
+ tests/conftest.py,sha256=mOy9lGpNp7lk1hHl6_pVE0f9cU-72gnkoSm4TO-CNZU,2318
4
+ tests/test_cli.py,sha256=GhIFHi-_WIJpDgoGNRi0DnjbfwP1wHbklBMnkCM-P_4,5464
5
+ tests/test_cuda.py,sha256=eQew1rNwU3VViQCG6HZj5SWcYmWYop9gJ0jv9U1bGDE,8203
6
+ tests/test_engine.py,sha256=0SWVHTs-feV07spjRMJ078Ipdg6m3uymNHwgTIZjZtc,5732
7
+ tests/test_exports.py,sha256=5G5EgDmars6d-N7TVnJdDFWId0IJs-yw03DvdQIjrNU,14246
8
+ tests/test_integrations.py,sha256=6QgSh9n0J04RdUYz08VeVOnKmf4S5MDEQ0chzS7jo_c,6220
9
+ tests/test_python.py,sha256=viMvRajIbDZdm64hRRg9i8qZ1sU9frwB69e56mxwEXk,29266
10
+ tests/test_solutions.py,sha256=CIaphpmOXgz9AE9xcm1RWODKrwGfZLCc84IggGXArNM,14122
11
+ ultralytics/__init__.py,sha256=3s1nuBps-pxOoh0FBkRcxTAWjSIgHPexA-U-3STiLm8,1302
12
+ ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
13
+ ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
14
+ ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
15
+ ultralytics/cfg/__init__.py,sha256=msy7NE7le831rv5-eRdLFkHRkf8o7m07HRkY4810n9s,40208
16
+ ultralytics/cfg/default.yaml,sha256=KKENSHolDSto1HJVGjBvTXvz9ae-XMcYRzKrjU3QfZc,8912
17
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
18
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
19
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=DUmBEfvdlCRH2t9aqhc3uk55sOXWWsY9v6RVYaELeTA,1182
20
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=dnr_loeYSE6Eo_f7V1yubILsMRBMRm1ozyC5r7uT-iY,2144
21
+ ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=xEtSqEad-rtfGuIrERjjhdISggmPlvaX-315ZzKz50I,934
22
+ ultralytics/cfg/datasets/ImageNet.yaml,sha256=N9NHhIgnlNIBqZZbzQZAW3aCnz6RSXQABnopaDs5BmE,42529
23
+ ultralytics/cfg/datasets/Objects365.yaml,sha256=8Bl-NAm0mlMW8EfMsz39JZo-HCvmp0ejJXaMeoHTpqw,9649
24
+ ultralytics/cfg/datasets/SKU-110K.yaml,sha256=xvRkq3SdDOwBA91U85bln7HTXkod5MvFX6pt1PxTjJE,2609
25
+ ultralytics/cfg/datasets/VOC.yaml,sha256=XpaegRHjp7xZnenOuA9zgg2lQURSL-o7mLQwzIKKuqM,3803
26
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=PfudojW5av_5q-dC9VsG_xhvuv9cTGEpRp4loXCJ4Ng,3397
27
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=6UfO_gnwJEDVq05p72IMJfkTIKZlXKNLSeKru-JyTrQ,915
28
+ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=qrxPO_t9wxbn2kHFwP3vGTzSWj2ELTLelUwYL3_b6nc,800
29
+ ultralytics/cfg/datasets/carparts-seg.yaml,sha256=A4e9hM1unTY2jjZIXGiKSarF6R-Ad9R99t57OgRJ37w,1253
30
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=rl1Pcnn8Hmst-Ian0-HvP6WQ2PKZxr1AjBEA406vwWw,1928
31
+ ultralytics/cfg/datasets/coco.yaml,sha256=woUMk6L3G3DMQDcThIKouZMcjTI5vP9XUdEVrzYGL50,2584
32
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=JsXu197vJX1YRuFvbEjsXyv4LUWIET-ruWZ9KqX6hYk,1986
33
+ ultralytics/cfg/datasets/coco128.yaml,sha256=ok_dzaBUzSd0DWfe531GT_uYTEoF5mIQcgoMHZyIVIA,1965
34
+ ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=8v6G6mOzZHQNdQM1YwdTBW_lsWWkLRnAimwZBHKtJg8,1961
35
+ ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=nlU4W0d8rl1cVChthOk0NImhVDCm0voY3FrZs2D0lY0,2063
36
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=3cbd8JqzkpW1M42jtQdhh66Nh3jtJNiy-u3bMgSyLUo,1336
37
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=Ez42ZE6xHlj8lcjtMBJJP2Y460q2BuiwRfk090XnBgE,1913
38
+ ultralytics/cfg/datasets/coco8.yaml,sha256=tzrDY1KW82AHsgpCxte_yPkgMIIpNY6Pb4F46TDPxkk,1888
39
+ ultralytics/cfg/datasets/construction-ppe.yaml,sha256=pSU9yaAXV369EYQJymNtFQbS_XH4V369gPKKjDrb4ho,1008
40
+ ultralytics/cfg/datasets/crack-seg.yaml,sha256=fqvSIq1fRXO55V_g2T92hcYAVoKBHZsSZQR7CokoPUI,837
41
+ ultralytics/cfg/datasets/dog-pose.yaml,sha256=BI-2S3_cSVyV2Gfzbs_3GzvivRlikT0ANjlEJQ6QUp4,1408
42
+ ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=jSj22-S3qxWcW4RVvZIdnFrUt4uM50D0PglpzIC45Rg,1217
43
+ ultralytics/cfg/datasets/dota8.yaml,sha256=emS-orevDZd5L4KvbMejNPCUqFdD_iM-TewqQ9H-wp0,1059
44
+ ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=5mPwZcWeEwlxMrZG68SvLFnuMo6kS7yp4IAeyA854fk,1363
45
+ ultralytics/cfg/datasets/kitti.yaml,sha256=pp4odyfarT8ZSjvBZ8qjv5RfjH4V3bL4gaBiejAqZ-k,895
46
+ ultralytics/cfg/datasets/lvis.yaml,sha256=RescdwAJ8EU1o7Sm0YlxYsGbQFNU1p-LFbFKYEt5MhE,29596
47
+ ultralytics/cfg/datasets/medical-pills.yaml,sha256=RK7iQFpDDkUS6EsEGqlbFjoohi3cgSsUIbsk7UItyds,792
48
+ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=2fVFmb8UEYH-LkX0z5GlYp__U0_GDqVgVqzmnfFerm8,12116
49
+ ultralytics/cfg/datasets/package-seg.yaml,sha256=V4uyTDWWzgft24y9HJWuELKuZ5AndAHXbanxMI6T8GU,849
50
+ ultralytics/cfg/datasets/signature.yaml,sha256=gBvU3715gVxVAafI_yaYczGX3kfEfA4BttbiMkgOXNk,774
51
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=bJ7nBTDQwXRHtlg3xmo4C2bOpPn_r4l8-DezSWMYNcU,1196
52
+ ultralytics/cfg/datasets/xView.yaml,sha256=RNf5p5HJRu80ofUuM6gHByyCZJ1-KQrFP685fa59o9A,5406
53
+ ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
54
+ ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
55
+ ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
56
+ ultralytics/cfg/models/11/yolo11-pose.yaml,sha256=uLQjzoNPP1oiWOSUdDdrZWhke3Sq-VblhgW8wQMcCPI,2133
57
+ ultralytics/cfg/models/11/yolo11-seg.yaml,sha256=dGKO-8TZTYHudPqQIdp11MBztQEvjCh_T1WCFUxEz_s,2045
58
+ ultralytics/cfg/models/11/yolo11.yaml,sha256=Q9inyGrMdygt30lm1lJuCR5bBkwUDtSm5MC2jsvDeEw,2012
59
+ ultralytics/cfg/models/11/yoloe-11-seg.yaml,sha256=2qnNOOVmECI-d-PMts5LUFLlIVZUfSVvmFZI3V3Xbhg,1996
60
+ ultralytics/cfg/models/11/yoloe-11.yaml,sha256=EgU4TJZOesKi7F_rCE0XeP8dF_nHbZtHIbPR1TfXvq8,1989
61
+ ultralytics/cfg/models/12/yolo12-cls.yaml,sha256=BLv578ZuU-QKx6GTNWX6lXdutzf_0rGhRrC3HrpxaNM,1405
62
+ ultralytics/cfg/models/12/yolo12-obb.yaml,sha256=JMviFAOmDbW0aMNzZNqispP0wxWw3mtKn2iUwedf4WM,1975
63
+ ultralytics/cfg/models/12/yolo12-pose.yaml,sha256=Mr9xjYclLQzxYhMqjIKQTdiTvtqZvEXBtclADFggaMA,2074
64
+ ultralytics/cfg/models/12/yolo12-seg.yaml,sha256=RBFFz4b95Dupfg0fmqCkZ4i1Zzai_QyJrI6Y2oLsocM,1984
65
+ ultralytics/cfg/models/12/yolo12.yaml,sha256=ZeA8LuymJXPNjZ5xkxkZHkcktDaKDzUBb2Kc3gCLC1w,1953
66
+ ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=hAZti6u7lYIeYERsRrsdU9wekNFHURH_mq6Ow4XfhB4,2036
67
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=Rtj3KCpxsvvFmYTJ2NKqoc0fk7-I5gaZiDsdgXFZ_6g,1689
68
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=QLhmuMS9OEuLFbMuaDrjtzCizpYzddQcM6QyBL6rhPg,1685
69
+ ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=-9qiCz89szx5vU0-xbOjQq9ftdyMOGDIaTrnpUCbBYc,2243
70
+ ultralytics/cfg/models/v10/yolov10b.yaml,sha256=q4H9pBITGoFY4vOankdFnkVkU3N6BZ775P-xKpVvmN8,1485
71
+ ultralytics/cfg/models/v10/yolov10l.yaml,sha256=UE9-7Qeknk6pFTxwzQoJGeMHOMq5RQTeyZHpIX5kDZM,1485
72
+ ultralytics/cfg/models/v10/yolov10m.yaml,sha256=ThA9xzFTPv-i7ftcZQBz7ZpMqiMkal9kh5JvtnDJsu4,1476
73
+ ultralytics/cfg/models/v10/yolov10n.yaml,sha256=4DBR_6P-Qwx5F1-1oljB6_1wDbi4D8l8Zix7Y001o2w,1471
74
+ ultralytics/cfg/models/v10/yolov10s.yaml,sha256=Wp5yUdalRje0j3D0By9hn9SqbkZuYUFOGPgUK5FDpjo,1480
75
+ ultralytics/cfg/models/v10/yolov10x.yaml,sha256=DI6SOhXQrRrLf3-pkLaG6lzhGOVbkpHBtHvl_MSvYz8,1488
76
+ ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=hsM-yhdWv-8XlWuaSOVqFJcHUVZ-FmjH4QjkA9CHJZU,1625
77
+ ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=SYrSg0m1A6ErUapdrJDI5E-edLaH0oF-NRb558DZgmQ,1330
78
+ ultralytics/cfg/models/v3/yolov3.yaml,sha256=Fvt4_PTwLBpRw3R4v4VQ-1PIiojpoFZD1uuTZySUYSw,1612
79
+ ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=VKEWykksykSlzvuy7if4yFo9WlblC3hdqcNxJ9bwHek,1994
80
+ ultralytics/cfg/models/v5/yolov5.yaml,sha256=QD8dRe5e5ys52wXPKvNJn622H_3iX0jPzE_2--2dZx0,1626
81
+ ultralytics/cfg/models/v6/yolov6.yaml,sha256=tl04iHe4dVg_78jgupVul5gbqOn5hBhtLKfP3xYxcWA,1813
82
+ ultralytics/cfg/models/v8/yoloe-v8-seg.yaml,sha256=cgl2mHps6g9RImm8KbegjEL6lO1elK5OnpDRNjqU2m4,2003
83
+ ultralytics/cfg/models/v8/yoloe-v8.yaml,sha256=0K_3-xecoPp6YWwAf2pmInWtkeH6R3Vp_hfgEPjzw-A,1954
84
+ ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml,sha256=TAiAkZwUckzjWdY6yn_ulGzM-lnHaY7Yx9v8rI-2WoA,1014
85
+ ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml,sha256=gbIttNMvj02Rk3eKjq45qgjdmdCo5n_mV9R5xt65OdU,1010
86
+ ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=G50mnw-C0SWrZpZl5wzov1dugdjZMM6zT30t5cQrcJQ,1019
87
+ ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=5MX8D3_8lkj9aKVwpAIC1PZAaMoTFs_Wq-XZUTVn9PU,2505
88
+ ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=c7YYnEPx2vrwHjbgr4o_Q9f_NI2X1dx2MrLo9xeOvXc,2575
89
+ ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=nxzIlvntFajHbu4DN8ujEx65PREgn7o0Dd6cHp8pHSM,2198
90
+ ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=Owlncx5peKBTNo3xhkbVxz_1qlzVJR4Z2zNeoR_NDxg,2016
91
+ ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=ulQ2Pp8oPo9gsPoIQ-s3EVCTM41vknPM1PdPYGOXVPQ,1831
92
+ ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=TqIsa8gNEW04KmdLxxC9rqhd7PCHlUqkzoiDxnMTio0,2363
93
+ ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=tfgfYrbVu5biWCWmdTZRr7ZRC-zlAzycsRyaJbDtI1g,2047
94
+ ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=LdzbiIVknZQMLYB2wzCHqul3NilfKp4nx5SdaGQsF6s,1676
95
+ ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=nQzysAwOq6t9vDTJGhDhnKPecJ4a5g1jPe110wWjzqk,2048
96
+ ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=7FlNlY-sB8bCcVty2Hf_nYD8fxZpsqaTgGxTfac8DRI,1958
97
+ ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=hFeiOFVwTV4zv08IrmTIuzJcUZmYkY7SIi2oV322e6U,1587
98
+ ultralytics/cfg/models/v8/yolov8-world.yaml,sha256=rjWAxH5occ9-28StkgYD2dGMJ_niQRZqoZWgyZgErUw,2169
99
+ ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=t-Q0bV8qQ7L4b_InviUxhTW6RqrPWg6LPezYLj_JkHM,2119
100
+ ultralytics/cfg/models/v8/yolov8.yaml,sha256=QFo8MC62CWEDqZr02CwdLYsrv_RpoijFWqyUSywZZyo,1977
101
+ ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=UBHoQ_cJV2yp6rMzHXRp46uBAUmKIrbgd3jiEBPRvqI,1447
102
+ ultralytics/cfg/models/v9/yolov9c.yaml,sha256=x1kus_2mQdU9V3ZGg0XdE5WTUU3j8fwGe1Ou3x2aX5I,1426
103
+ ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=WVpU5jHgoUuCMVirvmn_ScOmH9d1MyVVIX8XAY8787c,2377
104
+ ultralytics/cfg/models/v9/yolov9e.yaml,sha256=Olr2PlADpkD6N1TiVyAJEMzkrA7SbNul1nOaUF8CS38,2355
105
+ ultralytics/cfg/models/v9/yolov9m.yaml,sha256=WcKQ3xRsC1JMgA42Hx4xzr4FZmtE6B3wKvqhlQxkqw8,1411
106
+ ultralytics/cfg/models/v9/yolov9s.yaml,sha256=cWkQtYNWWOckOBXjd8XrJ_q5v6T_C54xGMP1S3qnpZU,1392
107
+ ultralytics/cfg/models/v9/yolov9t.yaml,sha256=Q8GpSXE7fumhuJiQg4a2SkuS_UmnXqp-eoZxW_C0vEo,1375
108
+ ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMge-mhpe7U,1431
109
+ ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
110
+ ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
111
+ ultralytics/data/annotator.py,sha256=kbfSPBesKEVK6ys3dilTdMh7rCKyp0xV7tGQeEDbpWI,2985
112
+ ultralytics/data/augment.py,sha256=ahqEe2ZBLeMZbK44Z-QihfCVCArOqtHjSSD-41_NlA8,127503
113
+ ultralytics/data/base.py,sha256=pMs8yJOmAFPXdgfLCDtUemSvkPNDzxReP-fWzkNtonc,19723
114
+ ultralytics/data/build.py,sha256=s-tkSZPf3OfQyfXPXB9XxdW_gIcU6Xy_u21ekSgTnRo,17205
115
+ ultralytics/data/converter.py,sha256=1m345J7YUn7gtaChO7To4BWZm72pC8D8L2O0k99q0DE,31898
116
+ ultralytics/data/dataset.py,sha256=L5QYgic_B1e1zffgRA5lqKDd5PQuMDg6PZVd-RTUA7E,36523
117
+ ultralytics/data/loaders.py,sha256=BQbhgjiLCGcRBPkGVG9Hr1jeNfG1nuZD3jstiWb7zS8,31889
118
+ ultralytics/data/split.py,sha256=HpR0ltf5oN1DpZstavFbBFC1YdpGPaATXxDOcAMwOqc,5101
119
+ ultralytics/data/split_dota.py,sha256=Qp9vGB2lzb5fQOrpNupKc8KN9ulqZoco9d4gRcx7JZk,12873
120
+ ultralytics/data/utils.py,sha256=WkMWje6JTEA-ndOO1PBuDlklD9GEPgH9K1_cLBMqbIQ,36824
121
+ ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
122
+ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
123
+ ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
124
+ ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
125
+ ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
126
+ ultralytics/engine/exporter.py,sha256=Ncf5GK5xAqSu0DH-6z5V53qZB7LstDJFTMF5a-7VQfs,72639
127
+ ultralytics/engine/model.py,sha256=61ea1rB0wmL0CCaEr8p5gzneH0eL55OOMaTcFt8fR80,53079
128
+ ultralytics/engine/predictor.py,sha256=neYmNDX27Vv3ggk9xqaKlH6XzB2vlFIghU5o7ZC0zFo,22838
129
+ ultralytics/engine/results.py,sha256=DomI01voqR_i7v8LhDGb6jWCprWB4H6I436GSO2NMBY,68030
130
+ ultralytics/engine/trainer.py,sha256=mqVrhL8xnJwwKJVjxDEiiwu0WH48Ne5dB4SXxlxyHh4,45479
131
+ ultralytics/engine/tuner.py,sha256=qiozSxYC-Hk1TQgyftrYTKkqLrrwFzjjkT6mOYR3Vjc,21460
132
+ ultralytics/engine/validator.py,sha256=2rqdVt4hB9ruMJq-L7PbaCNFwuERS7ZHdVSg91RM3wk,17761
133
+ ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
134
+ ultralytics/hub/auth.py,sha256=ANzCeZA7lUzTWc_sFHbDuuyBh1jLl2sTpHkoUbIkFYE,6254
135
+ ultralytics/hub/session.py,sha256=OzBXAL9R135gRDdfNYUqyiSrxOyaiMFCVYSZua99sF0,18364
136
+ ultralytics/hub/utils.py,sha256=jknll06yNaAxKyOqKliILJv1XOU39WJWOGG_DyFUh20,6353
137
+ ultralytics/hub/google/__init__.py,sha256=r06Ld4TuZEBOqg4iagpeN-eMAkg43T2OTxOH4_7IfkM,8445
138
+ ultralytics/models/__init__.py,sha256=ljus_u1CIuP99k9fu6sCtzIeFZ-TCE28NZ8kefZHFNY,309
139
+ ultralytics/models/fastsam/__init__.py,sha256=Ku89Fy_X8ok3YPEUajjUZ5i4O08jdJMjJHt-3Z99Frk,231
140
+ ultralytics/models/fastsam/model.py,sha256=HN6CAHCTwMmyBCQlXx4wMBU7XqkvVHyUawRaxn2Gur8,3426
141
+ ultralytics/models/fastsam/predict.py,sha256=b4wisfRMvv8mGyfqxDk_LD4fyiFush-yQX4i2-R9n_o,8534
142
+ ultralytics/models/fastsam/utils.py,sha256=de9ieh4pBUuTNh5HTiNdRpWZhXAaSfNo3R1FNMt2GOE,879
143
+ ultralytics/models/fastsam/val.py,sha256=T76Yl4PtPezjGOcpXUxEobr0xnkR42Z-wnIz89cZ-IE,2028
144
+ ultralytics/models/nas/__init__.py,sha256=Q4ZQak8xNWtV5YSw_pFu0anbCyDxxEAuMMDfMzu6-0s,207
145
+ ultralytics/models/nas/model.py,sha256=tfr8g3hF-DOIJz4F56aetmFrRJsnKLJ7fgjkgeVzySM,3880
146
+ ultralytics/models/nas/predict.py,sha256=4nbuo9nbvnvI3qVH1ylhLCjo-7oW39MumIesm-1eU3Y,2692
147
+ ultralytics/models/nas/val.py,sha256=MIRym3LQNDIRxnYs5xcOiLkKOgv3enZFXh5_g9Pq2hA,1543
148
+ ultralytics/models/rtdetr/__init__.py,sha256=F4NEQqtcVKFxj97Dh7rkn2Vu3JG4Ea_nxqrBB-9P1vc,225
149
+ ultralytics/models/rtdetr/model.py,sha256=jJzSh_5E__rVQO7_IkmncpC4jIdu9xNiIxlTTIaFJVw,2269
150
+ ultralytics/models/rtdetr/predict.py,sha256=4X1evUcFSNqIGDIwII1to3kZFYTVOd3ohp_YtnjN0iI,4210
151
+ ultralytics/models/rtdetr/train.py,sha256=b7FCFU_m0BWftVGvuYp6uPBJUG9RviKdWcMkQTLQDlE,3742
152
+ ultralytics/models/rtdetr/val.py,sha256=Wfd9GHbE7FHJ_71zjcMzsEHYYiP53DMSFhvOjZ6BnBA,9187
153
+ ultralytics/models/sam/__init__.py,sha256=hofz9cGGhxEWpZXX8yLp5k_LQUmWL_Shd9kfzK4U6z0,592
154
+ ultralytics/models/sam/amg.py,sha256=aYvJ7jQMkTR3X9KV7SHi3qP3yNchQggWNUurTRZwxQg,11786
155
+ ultralytics/models/sam/build.py,sha256=rEaFXA4R1nyutSonIenRKcuNtO1FgEojnkcayo0FTP4,12867
156
+ ultralytics/models/sam/build_sam3.py,sha256=Gg_LiqNrCDTYaDWrob05vj-ln2AhkfMa5KkKhyk5wdE,11976
157
+ ultralytics/models/sam/model.py,sha256=cOawDSkFqJPbt3455aTZ8tjaoWshFWFHQGGqxzsL_QQ,7372
158
+ ultralytics/models/sam/predict.py,sha256=Y6JEP3WGAF1gzTg8Z4eCgdtPFFbexSEA75F7zd8Cp_c,203689
159
+ ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
160
+ ultralytics/models/sam/modules/blocks.py,sha256=ZU2aY4h6fmosj5pZ5EOEuO1O8Cl8UYeH11eOxkqCt8M,44570
161
+ ultralytics/models/sam/modules/decoders.py,sha256=G4li37ahUe5rTTNTKibWMsAoz6G3R18rI8OPvfunVX8,25045
162
+ ultralytics/models/sam/modules/encoders.py,sha256=C2KlyvWWbYk48uNnymyvPLg_Q2ioRycjK2nMPGKkMhA,35456
163
+ ultralytics/models/sam/modules/memory_attention.py,sha256=jFVWVbgDS7VXPqOL1e3gAzk0vPwWhy-8vj3Vl5WhT4I,13299
164
+ ultralytics/models/sam/modules/sam.py,sha256=-KV-1PZK39DTdSpR5DI3E8I6gGVLja3tMv1MH7Au_eA,61654
165
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=RJQTHjfUe2N3cm1EZHXObJlKqVn10EnYJFla1mnWU_8,42065
166
+ ultralytics/models/sam/modules/transformer.py,sha256=NmTuyxS9PNsg66tKY9_Q2af4I09VW5s8IbfswyTT3ao,14892
167
+ ultralytics/models/sam/modules/utils.py,sha256=hE06t6cZf10AmPLPwGZbFrGheoOgGAGZ0GXRWlJH9pE,21125
168
+ ultralytics/models/sam/sam3/__init__.py,sha256=aM4-KimnYgIFe-e5ctLT8e6k9PagvuvKFaHaagDZM7E,144
169
+ ultralytics/models/sam/sam3/decoder.py,sha256=kXgPOjOh63ttJPFwMF90arK9AKZwPmhxOiexnPijiTE,22872
170
+ ultralytics/models/sam/sam3/encoder.py,sha256=IFUIJkWrVW1MmkeA142Sxhgnx5Tssq2Bgi9T3iIppU4,21543
171
+ ultralytics/models/sam/sam3/geometry_encoders.py,sha256=EAxeVvZgz4Y0q2VYX-4OP_1YuWWG21WilUt_IMBzE_0,17375
172
+ ultralytics/models/sam/sam3/maskformer_segmentation.py,sha256=jf9qJj7xyTVGp7OZ5uJQF0EUD468EOnBm1PsjiTO2ug,10735
173
+ ultralytics/models/sam/sam3/model_misc.py,sha256=4t2ee9hFZRkCV2SLaBpW8cZf2KD2riJ6Xw9vTyYrPAQ,7921
174
+ ultralytics/models/sam/sam3/necks.py,sha256=geWVSSheOwXSy_LiNKkOqQhK13DEe_fDOTgse_W68qU,4553
175
+ ultralytics/models/sam/sam3/sam3_image.py,sha256=MZZXObriPP5VPMKTxJ7rPTWFATAgYng7jeMzchYP8YE,13336
176
+ ultralytics/models/sam/sam3/text_encoder_ve.py,sha256=iv8-6VA3t4yJ1M42RPjHDlFuH9P_nNRSNyaoFn2sjMw,12283
177
+ ultralytics/models/sam/sam3/vitdet.py,sha256=6kvVQUnbjzo3WFww-rrkgSf3wNcNRvreTaKZ7XGiOOk,21834
178
+ ultralytics/models/sam/sam3/vl_combiner.py,sha256=HpFpNj3pXsWIc_aTov-EpW5j1fOj_m0j4yuXmCfWNg4,6476
179
+ ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
180
+ ultralytics/models/utils/loss.py,sha256=9CcqRXDj5-I-7eZuenInvyoLcPf22Ynf3rUFA5V22bI,21131
181
+ ultralytics/models/utils/ops.py,sha256=z-Ebjv_k14bWOoP6nszDzDBiy3yELcVtbj6M8PsRpvE,15207
182
+ ultralytics/models/yolo/__init__.py,sha256=YD407NDDiyjo0x_MR6usJaTpePKPgsfBUYehlCw7lRs,307
183
+ ultralytics/models/yolo/model.py,sha256=-U7TQ2HlW5JdePBBzNpxK172uCXpM2RKMlhuZsMbxSw,18495
184
+ ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
185
+ ultralytics/models/yolo/classify/predict.py,sha256=wKICjwofH7-7QLJhX2vYSNJXWu2-5kWzjoXXmUPI0pU,4137
186
+ ultralytics/models/yolo/classify/train.py,sha256=oODDfPwjgKzsbpO7NCYnOp_uwkWD7HNLhvsHxAJTA4g,8958
187
+ ultralytics/models/yolo/classify/val.py,sha256=gtoUJN5_-56EbiYp5Ur-shfdBNMJOqToWmup_-1wW7I,10503
188
+ ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
189
+ ultralytics/models/yolo/detect/predict.py,sha256=Sct-UwkDe54ZmVtTYl0-fKgx_0BOlPBUsr4NodFd-eU,5385
190
+ ultralytics/models/yolo/detect/train.py,sha256=-PHH6i767_XKCPsBeAOi7AxfHpoq451GfjY4TRMuo7c,10469
191
+ ultralytics/models/yolo/detect/val.py,sha256=-UTrVG3HturHHAY76BUegO2s5d9Xq_dEumebLiNkSVc,22351
192
+ ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
193
+ ultralytics/models/yolo/obb/predict.py,sha256=vA_BueSJJJuyaAZPWE0xKk7KI_YPQCUOCqeZZLMTeXM,2600
194
+ ultralytics/models/yolo/obb/train.py,sha256=qtBjwOHOq0oQ9mK0mOtnUrXAQ5UCUrntKq_Z0-oCBHo,3438
195
+ ultralytics/models/yolo/obb/val.py,sha256=XkZhjPqF7bdYotyUTnRCj6Zre6QsB1M3ulZ0DMf-xiE,14513
196
+ ultralytics/models/yolo/pose/__init__.py,sha256=_9OFLj19XwvJHBRxQtVW5CV7rvJ_3hDPE97miit0sPc,227
197
+ ultralytics/models/yolo/pose/predict.py,sha256=rsorTRpyL-x40R2QVDDG2isc1e2F2lGfD13oKaD5ANs,3118
198
+ ultralytics/models/yolo/pose/train.py,sha256=lKxZ1dnkN3WlEPGlIlLF7ZuR_W2eoPrxhVrKGbJIQto,4628
199
+ ultralytics/models/yolo/pose/val.py,sha256=s5WmXcZI5cAi3LPdIVHnkFUbEoFZsw5PBnnLnZ3Ep_c,12004
200
+ ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
201
+ ultralytics/models/yolo/segment/predict.py,sha256=XK-SOrxfcIT8c52JC2ruEf3y9xcWSHsi6Yj1jZ0JqdU,5429
202
+ ultralytics/models/yolo/segment/train.py,sha256=i1nDO0B7ScFo3G64ZSTmRZ2WLUVaMsvAoedSYa_MoIU,3009
203
+ ultralytics/models/yolo/segment/val.py,sha256=LkyV5_I5YPdJNyI6OGy2i7J_r0Ll-jYdru_HXS1mN6s,13252
204
+ ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
205
+ ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
206
+ ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
207
+ ultralytics/models/yolo/yoloe/__init__.py,sha256=zaZo1_ommaxNv7mD7xpdSomNF4s8mpOcCVTXspg0ncY,760
208
+ ultralytics/models/yolo/yoloe/predict.py,sha256=zeu_whH4e2SIWXV8MmJ1NNzoM_cNsiI2kOTjlAhV4qg,7065
209
+ ultralytics/models/yolo/yoloe/train.py,sha256=giX6zDu5Z3z48PCaBHzu7v9NH3BrpUaGAYNIQvqO3Og,12937
210
+ ultralytics/models/yolo/yoloe/train_seg.py,sha256=0hRByMXsEJA-J2B1wXDMVhiW9f9MOTj3LlrGTibN6Ww,4919
211
+ ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
212
+ ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
213
+ ultralytics/nn/autobackend.py,sha256=RkHTt8nBZaeupfshPpze8Wy7vw08FiJWctvzU3SEaro,44578
214
+ ultralytics/nn/tasks.py,sha256=nHhP3R8r17K_pHSfGXwDAPEwUyV0sbqzkSHjeZ2PRkg,70418
215
+ ultralytics/nn/text_model.py,sha256=novnuosqXnW1NmlOzWOk7dEKuN6Vq40CTksr6hI3Knc,15109
216
+ ultralytics/nn/modules/__init__.py,sha256=5Sg_28MDfKwdu14Ty_WCaiIXZyjBSQ-xCNCwnoz_w-w,3198
217
+ ultralytics/nn/modules/activation.py,sha256=J6n-CJKFK0YbhwcRDqm9zEJM9pSAEycj5quQss_3x6E,2219
218
+ ultralytics/nn/modules/block.py,sha256=YRALZHImSMdLpmF0qIf8uF3yENz0EK63SFp7gzylo5g,69885
219
+ ultralytics/nn/modules/conv.py,sha256=9WUlBzHD-wLgz0riLyttzASLIqBtXPK6Jk5EdyIiGCM,21100
220
+ ultralytics/nn/modules/head.py,sha256=V1zSWN-AOHPkciqvfruDA0LgBgSGyKc_CULNCNEAe8o,51875
221
+ ultralytics/nn/modules/transformer.py,sha256=lAjTH-U8IkBp_1cXSOOFSus9tJf-s8WISKKcXPB84CM,31972
222
+ ultralytics/nn/modules/utils.py,sha256=EyhENse_RESlXjLHAJWvV07_tq1MVMmfzXgPR1fiT9w,6066
223
+ ultralytics/solutions/__init__.py,sha256=Jj7OcRiYjHH-e104H4xTgjjR5W6aPB4mBRndbaSPmgU,1209
224
+ ultralytics/solutions/ai_gym.py,sha256=ItLE6HYMx6AEgiHEDG1HKDkippnrnycb-79S2g72AYA,5181
225
+ ultralytics/solutions/analytics.py,sha256=UaH-B6h8Ir9l00deRUeAIW6QQTIO_595HTp93sdwteM,12820
226
+ ultralytics/solutions/config.py,sha256=RZMCsnJpoInpADGnuVHTKgH5mKHyDMF4uD4DNZqanpY,5396
227
+ ultralytics/solutions/distance_calculation.py,sha256=RcpRDodEHAJUug9tobtQKt5_bySNA8NMSRiaL347Q1U,5891
228
+ ultralytics/solutions/heatmap.py,sha256=DUyV5UFsOwZ8ArN4BtW8Vm3ps8_VZXc6VP0uiKyGDWY,5481
229
+ ultralytics/solutions/instance_segmentation.py,sha256=eggk1uWCZ-6cp0YfxCGVUwnKS6xqJua946oxafjAXGk,3778
230
+ ultralytics/solutions/object_blurrer.py,sha256=EZrv3oU68kEaahAxlhk9cF5ZKFtoVaW8bDB4Css9xe0,3981
231
+ ultralytics/solutions/object_counter.py,sha256=nguTJebkCi_sCsP1cz2jABfi0kPOg2DdNZeS2xG-CeE,9354
232
+ ultralytics/solutions/object_cropper.py,sha256=WRbrfXAR5aD6PQBqJ-BvcVaiaqta_9YeTlXN2dY274s,3510
233
+ ultralytics/solutions/parking_management.py,sha256=FQKeLEiwnTmRcXqsNOlOt9GTFPjkyvnE5pwwKnneJa4,13770
234
+ ultralytics/solutions/queue_management.py,sha256=NlVX6PMEaffjoZjfQrVyayaDUdtc0JF8GzTQrZFjpCg,4371
235
+ ultralytics/solutions/region_counter.py,sha256=IAvlFwEYoNftDzfBbdo5MzLwcuidOHW9oTGyRCDzMRc,6025
236
+ ultralytics/solutions/security_alarm.py,sha256=QjUIVBWcy094VTcOkk_zOq3BmKKOeIaHpVi_QMWo_3Q,6293
237
+ ultralytics/solutions/similarity_search.py,sha256=Q2FOBUtEokegiJHlfDbPP0bKxr5F-sHN3-IvskDoe00,9644
238
+ ultralytics/solutions/solutions.py,sha256=pT3uBxs27BdBud0a4URqVxld3DgcOHgRKxmcTQlXyk4,36984
239
+ ultralytics/solutions/speed_estimation.py,sha256=WrZECxKAq6P4QpeTbhkp3-Rqjnox7tdR25fUxzozlpU,5861
240
+ ultralytics/solutions/streamlit_inference.py,sha256=utJOe0Weu44_ABF9rDnAjwLjKyn3gwfaYaxFfFbx-9c,13060
241
+ ultralytics/solutions/trackzone.py,sha256=oqv-zZL99RVUMcN5ViAPmadzX6QNdAEozYrrg2pqO6k,3903
242
+ ultralytics/solutions/vision_eye.py,sha256=bSXmJ93DyLu4_CWgbF3GkHzh_VpiEmkK5vVJDPPGzI4,2982
243
+ ultralytics/solutions/templates/similarity-search.html,sha256=mYuJI8H84cmu4kwPq2aEsmzazimFEEiLhOXZ08lXQgA,4165
244
+ ultralytics/trackers/__init__.py,sha256=n3BOO0TR-Sz5ANDYOkKDipM9nSHOePMEwqafbk-YEPs,255
245
+ ultralytics/trackers/basetrack.py,sha256=F-EW29F9E8GwXr5vzwLqW2rNwItu4KIx2MKce5pQXxI,4374
246
+ ultralytics/trackers/bot_sort.py,sha256=WImn-BOzGrK9dgMFfMPzKFE5awhXEB2VOi7AbOf_Cdc,11831
247
+ ultralytics/trackers/byte_tracker.py,sha256=Twmbe3EyqnIds211M84vtuuM1WgHXDykjTMeiAJZzC0,21117
248
+ ultralytics/trackers/track.py,sha256=RHgPvx9FNVBL5pUalX2l-jcWrei1UiAXszjeL3V5d-M,4742
249
+ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
250
+ ultralytics/trackers/utils/gmc.py,sha256=cvvhNXOhylVQti4pJQSNPx4yPqhhhw1k2yzY0JFl7Zo,13760
251
+ ultralytics/trackers/utils/kalman_filter.py,sha256=crgysL2bo0v1eTljOlP2YqIJDLBcHjl75MRpbxfaR_M,21514
252
+ ultralytics/trackers/utils/matching.py,sha256=x6uZOIx0O9oVmAcfY6tYMTJQE2cDTUlRR690Y5UkHLs,7129
253
+ ultralytics/utils/__init__.py,sha256=JfvODTB4mG_JOhTeCiPtq0iCEgiCh14hJf195rnOhLQ,55145
254
+ ultralytics/utils/autobatch.py,sha256=jiE4m_--H9UkXFDm_FqzcZk_hSTCGpS72XdVEKgZwAo,5114
255
+ ultralytics/utils/autodevice.py,sha256=rXlPuo-iX-vZ4BabmMGEGh9Uxpau4R7Zlt1KCo9Xfyc,8892
256
+ ultralytics/utils/benchmarks.py,sha256=S_W4S4pe2ktSRdSuWb6m09UEFQmZhmjl943bbo67hOI,32277
257
+ ultralytics/utils/checks.py,sha256=QAy9nCtgBCCcweJhB4Wa_5SE25g5PF07lXJOhQOBssM,38312
258
+ ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
259
+ ultralytics/utils/dist.py,sha256=hOuY1-unhQAY-uWiZw3LWw36d1mqJuYK75NdlwB4oKE,4131
260
+ ultralytics/utils/downloads.py,sha256=IyiGjjXqOyf1B0qLMk7vE6sSQ8s232OhKS8aj9XbTgs,22883
261
+ ultralytics/utils/errors.py,sha256=dUZcTWpbJJHqEuWHM6IbeoJJ4TzA_yHBP8E7tEEpBVs,1388
262
+ ultralytics/utils/events.py,sha256=6vqs_iSxoXIhQ804sOjApNZmXwNW9FUFtjaHPY8ta10,4665
263
+ ultralytics/utils/files.py,sha256=BdaRwEKqzle4glSj8n_jq6bDjTCAs_H1SN06ZOQ9qFU,8190
264
+ ultralytics/utils/git.py,sha256=UdqeIiiEzg1qkerAZrg5YtTYPuJYwrpxW9N_6Pq6s8U,5501
265
+ ultralytics/utils/instance.py,sha256=11mhefvTI9ftMqSirXuiViAi0Fxlo6v84qvNxfRNUoE,18862
266
+ ultralytics/utils/logger.py,sha256=T5iaNnaqbCvx_FZf1dhVkr5FVxyxb4vO17t4SJfCIhg,19132
267
+ ultralytics/utils/loss.py,sha256=t-z7qkvqF8OtuRHrj2wmvClZV2CCumIRi9jnqkc9i_A,39573
268
+ ultralytics/utils/metrics.py,sha256=dpS9jSPf3dqozcrkiraKhYBI03U2t-_lt8pWNCijGww,69152
269
+ ultralytics/utils/nms.py,sha256=zv1rOzMF6WU8Kdk41VzNf1H1EMt_vZHcbDFbg3mnN2o,14248
270
+ ultralytics/utils/ops.py,sha256=nWvTLJSBeW_XrxCy5Ytxl7sZJHp2sRqyCv4mm8QwYnw,25797
271
+ ultralytics/utils/patches.py,sha256=mD3slAMAhcezzP42_fOWmacNMU6zXB68Br4_EBCyIjs,7117
272
+ ultralytics/utils/plotting.py,sha256=SmKGGNYcd3cKaa5nQGqKUSEG2eG23QR1EdZh-9bB9ls,48301
273
+ ultralytics/utils/tal.py,sha256=w7oi6fp0NmL6hHh-yvCCX1cBuuB4JuX7w1wiR4_SMZs,20678
274
+ ultralytics/utils/torch_utils.py,sha256=zOPUQlorTiEPSkqlSEPyaQhpmzmgOIKF7f3xJb0UjdQ,40268
275
+ ultralytics/utils/tqdm.py,sha256=4kL_nczykHu6VxRzRSbvUSJknrCZydoS_ZegZkFXpsg,16197
276
+ ultralytics/utils/triton.py,sha256=BQu3CD3OlT76d1OtmnX5slQU37VC1kzRvEtfI2saIQA,5211
277
+ ultralytics/utils/tuner.py,sha256=NOh0CDAqD1IvTLB5UglIgSS5RXP7lmiyrWKU4uJ0I74,7355
278
+ ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
279
+ ultralytics/utils/callbacks/base.py,sha256=floD31JHqHpiVabQiE76_hzC_j7KjtL4w_czkD1bLKc,6883
280
+ ultralytics/utils/callbacks/clearml.py,sha256=LjfNe4mswceCOpEGVLxqGXjkl_XGbef4awdcp4502RU,5831
281
+ ultralytics/utils/callbacks/comet.py,sha256=iBfIe-ToVq2OnZO0LSpd9-GIjlrpbncsG_MQyo7l3PM,25320
282
+ ultralytics/utils/callbacks/dvc.py,sha256=YT0Sa5P8Huj8Fn9jM2P6MYzUY3PIVxsa5BInViOtOU8,7485
283
+ ultralytics/utils/callbacks/hub.py,sha256=fVLqqr3ZM6hoYFlVMEeejfq1MWDrkWCskPFOG3HGILQ,4159
284
+ ultralytics/utils/callbacks/mlflow.py,sha256=wCXjQgdufp9LYujqMzLZOmIOur6kvrApHNeo9dA7t_g,5323
285
+ ultralytics/utils/callbacks/neptune.py,sha256=_vt3cMwDHCR-LyT3KtRikGpj6AG11oQ-skUUUUdZ74o,4391
286
+ ultralytics/utils/callbacks/platform.py,sha256=L7P5ttko-QVkig2y3r-D8YxfOWb7lNAan4iuMXxQ_u4,11682
287
+ ultralytics/utils/callbacks/raytune.py,sha256=Y0dFyNZVRuFovSh7nkgUIHTQL3xIXOACElgHuYbg_5I,1278
288
+ ultralytics/utils/callbacks/tensorboard.py,sha256=PTJYvD2gqRUN8xw5VoTjvKnu2adukLfvhMlDgTnTiFU,4952
289
+ ultralytics/utils/callbacks/wb.py,sha256=ghmL3gigOa-z_F54-TzMraKw9MAaYX-Wk4H8dLoRvX8,7705
290
+ ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
291
+ ultralytics/utils/export/engine.py,sha256=23-lC6dNsmz5vprSJzaN7UGNXrFlVedNcqhlOH_IXes,9956
292
+ ultralytics/utils/export/imx.py,sha256=2_mcNzqRIk5LB92JofqNYLN0kkQke1UgKT2jWmEy_l4,13300
293
+ ultralytics/utils/export/tensorflow.py,sha256=igYzwbdblb9YgfV4Jgl5lMvynuVRcF51dAzI7j-BBI0,9966
294
+ dgenerate_ultralytics_headless-8.3.248.dist-info/METADATA,sha256=qyUIMMG9J2dBqH73RFEcAizFoag0j0t3iGhnz-_ZTDA,38799
295
+ dgenerate_ultralytics_headless-8.3.248.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
296
+ dgenerate_ultralytics_headless-8.3.248.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
297
+ dgenerate_ultralytics_headless-8.3.248.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
298
+ dgenerate_ultralytics_headless-8.3.248.dist-info/RECORD,,
tests/__init__.py CHANGED
@@ -1,25 +1,23 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
4
- from ultralytics.utils import ASSETS, ROOT, WEIGHTS_DIR, checks
4
+ from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks
5
5
 
6
6
  # Constants used in tests
7
7
  MODEL = WEIGHTS_DIR / "path with spaces" / "yolo11n.pt" # test spaces in path
8
8
  CFG = "yolo11n.yaml"
9
9
  SOURCE = ASSETS / "bus.jpg"
10
10
  SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
11
- TMP = (ROOT / "../tests/tmp").resolve() # temp directory for test files
12
11
  CUDA_IS_AVAILABLE = checks.cuda_is_available()
13
12
  CUDA_DEVICE_COUNT = checks.cuda_device_count()
14
13
  TASK_MODEL_DATA = [(task, WEIGHTS_DIR / TASK2MODEL[task], TASK2DATA[task]) for task in TASKS]
15
- MODELS = frozenset(list(TASK2MODEL.values()) + ["yolo11n-grayscale.pt"])
14
+ MODELS = frozenset([*list(TASK2MODEL.values()), "yolo11n-grayscale.pt"])
16
15
 
17
16
  __all__ = (
18
- "MODEL",
19
17
  "CFG",
18
+ "CUDA_DEVICE_COUNT",
19
+ "CUDA_IS_AVAILABLE",
20
+ "MODEL",
20
21
  "SOURCE",
21
22
  "SOURCES_LIST",
22
- "TMP",
23
- "CUDA_IS_AVAILABLE",
24
- "CUDA_DEVICE_COUNT",
25
23
  )
tests/conftest.py CHANGED
@@ -3,8 +3,6 @@
3
3
  import shutil
4
4
  from pathlib import Path
5
5
 
6
- from tests import TMP
7
-
8
6
 
9
7
  def pytest_addoption(parser):
10
8
  """Add custom command-line options to pytest."""
@@ -12,8 +10,7 @@ def pytest_addoption(parser):
12
10
 
13
11
 
14
12
  def pytest_collection_modifyitems(config, items):
15
- """
16
- Modify the list of test items to exclude tests marked as slow if the --slow option is not specified.
13
+ """Modify the list of test items to exclude tests marked as slow if the --slow option is not specified.
17
14
 
18
15
  Args:
19
16
  config: The pytest configuration object that provides access to command-line options.
@@ -25,11 +22,10 @@ def pytest_collection_modifyitems(config, items):
25
22
 
26
23
 
27
24
  def pytest_sessionstart(session):
28
- """
29
- Initialize session configurations for pytest.
25
+ """Initialize session configurations for pytest.
30
26
 
31
27
  This function is automatically called by pytest after the 'Session' object has been created but before performing
32
- test collection. It sets the initial seeds and prepares the temporary directory for the test session.
28
+ test collection. It sets the initial seeds for the test session.
33
29
 
34
30
  Args:
35
31
  session: The pytest session object.
@@ -37,16 +33,13 @@ def pytest_sessionstart(session):
37
33
  from ultralytics.utils.torch_utils import init_seeds
38
34
 
39
35
  init_seeds()
40
- shutil.rmtree(TMP, ignore_errors=True) # Delete any existing tests/tmp directory
41
- TMP.mkdir(parents=True, exist_ok=True) # Create a new empty directory
42
36
 
43
37
 
44
38
  def pytest_terminal_summary(terminalreporter, exitstatus, config):
45
- """
46
- Cleanup operations after pytest session.
39
+ """Cleanup operations after pytest session.
47
40
 
48
- This function is automatically called by pytest at the end of the entire test session. It removes certain files
49
- and directories used during testing.
41
+ This function is automatically called by pytest at the end of the entire test session. It removes certain files and
42
+ directories used during testing.
50
43
 
51
44
  Args:
52
45
  terminalreporter: The terminal reporter object used for terminal output.
@@ -57,10 +50,10 @@ def pytest_terminal_summary(terminalreporter, exitstatus, config):
57
50
 
58
51
  # Remove files
59
52
  models = [path for x in {"*.onnx", "*.torchscript"} for path in WEIGHTS_DIR.rglob(x)]
60
- for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript"] + models:
53
+ for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript", *models]:
61
54
  Path(file).unlink(missing_ok=True)
62
55
 
63
56
  # Remove directories
64
57
  models = [path for x in {"*.mlpackage", "*_openvino_model"} for path in WEIGHTS_DIR.rglob(x)]
65
- for directory in [WEIGHTS_DIR / "path with spaces", TMP.parents[1] / ".pytest_cache", TMP] + models:
58
+ for directory in [WEIGHTS_DIR / "path with spaces", *models]:
66
59
  shutil.rmtree(directory, ignore_errors=True)