brainstate 0.2.1__py2.py3-none-any.whl → 0.2.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +167 -169
- brainstate/_compatible_import.py +340 -340
- brainstate/_compatible_import_test.py +681 -681
- brainstate/_deprecation.py +210 -210
- brainstate/_deprecation_test.py +2297 -2319
- brainstate/_error.py +45 -45
- brainstate/_state.py +2157 -1652
- brainstate/_state_test.py +1129 -52
- brainstate/_utils.py +47 -47
- brainstate/environ.py +1495 -1495
- brainstate/environ_test.py +1223 -1223
- brainstate/graph/__init__.py +22 -22
- brainstate/graph/_node.py +240 -240
- brainstate/graph/_node_test.py +589 -589
- brainstate/graph/_operation.py +1620 -1624
- brainstate/graph/_operation_test.py +1147 -1147
- brainstate/mixin.py +1447 -1433
- brainstate/mixin_test.py +1017 -1017
- brainstate/nn/__init__.py +146 -137
- brainstate/nn/_activations.py +1100 -1100
- brainstate/nn/_activations_test.py +354 -354
- brainstate/nn/_collective_ops.py +635 -633
- brainstate/nn/_collective_ops_test.py +774 -774
- brainstate/nn/_common.py +226 -226
- brainstate/nn/_common_test.py +134 -154
- brainstate/nn/_conv.py +2010 -2010
- brainstate/nn/_conv_test.py +849 -849
- brainstate/nn/_delay.py +575 -575
- brainstate/nn/_delay_test.py +243 -243
- brainstate/nn/_dropout.py +618 -618
- brainstate/nn/_dropout_test.py +480 -477
- brainstate/nn/_dynamics.py +870 -1267
- brainstate/nn/_dynamics_test.py +53 -67
- brainstate/nn/_elementwise.py +1298 -1298
- brainstate/nn/_elementwise_test.py +829 -829
- brainstate/nn/_embedding.py +408 -408
- brainstate/nn/_embedding_test.py +156 -156
- brainstate/nn/_event_fixedprob.py +233 -233
- brainstate/nn/_event_fixedprob_test.py +115 -115
- brainstate/nn/_event_linear.py +83 -83
- brainstate/nn/_event_linear_test.py +121 -121
- brainstate/nn/_exp_euler.py +254 -254
- brainstate/nn/_exp_euler_test.py +377 -377
- brainstate/nn/_linear.py +744 -744
- brainstate/nn/_linear_test.py +475 -475
- brainstate/nn/_metrics.py +1070 -1070
- brainstate/nn/_metrics_test.py +611 -611
- brainstate/nn/_module.py +391 -384
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_normalizations.py +1334 -1334
- brainstate/nn/_normalizations_test.py +699 -699
- brainstate/nn/_paddings.py +1020 -1020
- brainstate/nn/_paddings_test.py +722 -722
- brainstate/nn/_poolings.py +2239 -2239
- brainstate/nn/_poolings_test.py +952 -952
- brainstate/nn/_rnns.py +946 -946
- brainstate/nn/_rnns_test.py +592 -592
- brainstate/nn/_utils.py +216 -216
- brainstate/nn/_utils_test.py +401 -401
- brainstate/nn/init.py +809 -809
- brainstate/nn/init_test.py +180 -180
- brainstate/random/__init__.py +270 -270
- brainstate/random/{_rand_funs.py → _fun.py} +3938 -3938
- brainstate/random/{_rand_funs_test.py → _fun_test.py} +638 -640
- brainstate/random/_impl.py +672 -0
- brainstate/random/{_rand_seed.py → _seed.py} +675 -675
- brainstate/random/{_rand_seed_test.py → _seed_test.py} +48 -48
- brainstate/random/{_rand_state.py → _state.py} +1320 -1617
- brainstate/random/{_rand_state_test.py → _state_test.py} +551 -551
- brainstate/transform/__init__.py +56 -59
- brainstate/transform/_ad_checkpoint.py +176 -176
- brainstate/transform/_ad_checkpoint_test.py +49 -49
- brainstate/transform/_autograd.py +1025 -1025
- brainstate/transform/_autograd_test.py +1289 -1289
- brainstate/transform/_conditions.py +316 -316
- brainstate/transform/_conditions_test.py +220 -220
- brainstate/transform/_error_if.py +94 -94
- brainstate/transform/_error_if_test.py +52 -52
- brainstate/transform/_find_state.py +200 -0
- brainstate/transform/_find_state_test.py +84 -0
- brainstate/transform/_jit.py +399 -399
- brainstate/transform/_jit_test.py +143 -143
- brainstate/transform/_loop_collect_return.py +675 -675
- brainstate/transform/_loop_collect_return_test.py +58 -58
- brainstate/transform/_loop_no_collection.py +283 -283
- brainstate/transform/_loop_no_collection_test.py +50 -50
- brainstate/transform/_make_jaxpr.py +2176 -2016
- brainstate/transform/_make_jaxpr_test.py +1634 -1510
- brainstate/transform/_mapping.py +607 -529
- brainstate/transform/_mapping_test.py +104 -194
- brainstate/transform/_progress_bar.py +255 -255
- brainstate/transform/_unvmap.py +256 -256
- brainstate/transform/_util.py +286 -286
- brainstate/typing.py +837 -837
- brainstate/typing_test.py +780 -780
- brainstate/util/__init__.py +27 -27
- brainstate/util/_others.py +1024 -1024
- brainstate/util/_others_test.py +962 -962
- brainstate/util/_pretty_pytree.py +1301 -1301
- brainstate/util/_pretty_pytree_test.py +675 -675
- brainstate/util/_pretty_repr.py +462 -462
- brainstate/util/_pretty_repr_test.py +696 -696
- brainstate/util/filter.py +945 -945
- brainstate/util/filter_test.py +911 -911
- brainstate/util/struct.py +910 -910
- brainstate/util/struct_test.py +602 -602
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/METADATA +108 -108
- brainstate-0.2.2.dist-info/RECORD +111 -0
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/licenses/LICENSE +202 -202
- brainstate/transform/_eval_shape.py +0 -145
- brainstate/transform/_eval_shape_test.py +0 -38
- brainstate/transform/_random.py +0 -171
- brainstate-0.2.1.dist-info/RECORD +0 -111
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/WHEEL +0 -0
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/top_level.txt +0 -0
brainstate/transform/_unvmap.py
CHANGED
@@ -1,256 +1,256 @@
|
|
1
|
-
# Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
import jax
|
17
|
-
import jax.core
|
18
|
-
import jax.interpreters.batching as batching
|
19
|
-
import jax.interpreters.mlir as mlir
|
20
|
-
import jax.numpy as jnp
|
21
|
-
|
22
|
-
from brainstate._compatible_import import Primitive
|
23
|
-
from brainstate._utils import set_module_as
|
24
|
-
|
25
|
-
__all__ = [
|
26
|
-
"unvmap",
|
27
|
-
]
|
28
|
-
|
29
|
-
|
30
|
-
@set_module_as('brainstate.transform')
|
31
|
-
def unvmap(x, op: str = 'any'):
|
32
|
-
"""
|
33
|
-
Remove a leading vmap dimension by aggregating batched values.
|
34
|
-
|
35
|
-
Parameters
|
36
|
-
----------
|
37
|
-
x : Any
|
38
|
-
Value produced inside a :func:`jax.vmap`-transformed function.
|
39
|
-
op : {'all', 'any', 'none', 'max'}, default='any'
|
40
|
-
Reduction to apply across the vmapped axis. ``'none'`` returns ``x`` without
|
41
|
-
reduction, while ``'max'`` computes the maximum element.
|
42
|
-
|
43
|
-
Returns
|
44
|
-
-------
|
45
|
-
Any
|
46
|
-
Result of applying the requested reduction with vmap metadata removed.
|
47
|
-
|
48
|
-
Raises
|
49
|
-
------
|
50
|
-
ValueError
|
51
|
-
If ``op`` is not one of ``'all'``, ``'any'``, ``'none'``, or ``'max'``.
|
52
|
-
|
53
|
-
Examples
|
54
|
-
--------
|
55
|
-
.. code-block:: python
|
56
|
-
|
57
|
-
>>> import jax.numpy as jnp
|
58
|
-
>>> import brainstate
|
59
|
-
>>>
|
60
|
-
>>> xs = jnp.array([[True, False], [True, True]])
|
61
|
-
>>> brainstate.transform.unvmap(xs, op='all')
|
62
|
-
"""
|
63
|
-
if op == 'all':
|
64
|
-
return unvmap_all(x)
|
65
|
-
elif op == 'any':
|
66
|
-
return unvmap_any(x)
|
67
|
-
elif op == 'none':
|
68
|
-
return _without_vmap(x)
|
69
|
-
elif op == 'max':
|
70
|
-
return unvmap_max(x)
|
71
|
-
else:
|
72
|
-
raise ValueError(f'Do not support type: {op}')
|
73
|
-
|
74
|
-
|
75
|
-
# unvmap_all
|
76
|
-
|
77
|
-
unvmap_all_p = Primitive("unvmap_all")
|
78
|
-
|
79
|
-
|
80
|
-
def unvmap_all(x):
|
81
|
-
"""
|
82
|
-
Evaluate :func:`jax.numpy.all` while ignoring vmapped batch dimensions.
|
83
|
-
|
84
|
-
Parameters
|
85
|
-
----------
|
86
|
-
x : Any
|
87
|
-
Input array or pytree produced under :func:`jax.vmap`.
|
88
|
-
|
89
|
-
Returns
|
90
|
-
-------
|
91
|
-
jax.Array
|
92
|
-
Scalar boolean result of ``jnp.all(x)``.
|
93
|
-
|
94
|
-
Examples
|
95
|
-
--------
|
96
|
-
.. code-block:: python
|
97
|
-
|
98
|
-
>>> import jax.numpy as jnp
|
99
|
-
>>> import brainstate
|
100
|
-
>>>
|
101
|
-
>>> values = jnp.array([[True, False], [True, True]])
|
102
|
-
>>> brainstate.transform.unvmap(values, op='all')
|
103
|
-
"""
|
104
|
-
return unvmap_all_p.bind(x)
|
105
|
-
|
106
|
-
|
107
|
-
def _unvmap_all_impl(x):
|
108
|
-
return jnp.all(x)
|
109
|
-
|
110
|
-
|
111
|
-
def _unvmap_all_abstract_eval(x):
|
112
|
-
return jax.core.ShapedArray(shape=(), dtype=jax.numpy.bool_.dtype) # pyright: ignore
|
113
|
-
|
114
|
-
|
115
|
-
def _unvmap_all_batch(x, batch_axes):
|
116
|
-
(x,) = x
|
117
|
-
return unvmap_all(x), batching.not_mapped
|
118
|
-
|
119
|
-
|
120
|
-
unvmap_all_p.def_impl(_unvmap_all_impl)
|
121
|
-
unvmap_all_p.def_abstract_eval(_unvmap_all_abstract_eval)
|
122
|
-
batching.primitive_batchers[unvmap_all_p] = _unvmap_all_batch # pyright: ignore
|
123
|
-
mlir.register_lowering(
|
124
|
-
unvmap_all_p,
|
125
|
-
mlir.lower_fun(_unvmap_all_impl, multiple_results=False),
|
126
|
-
)
|
127
|
-
|
128
|
-
# unvmap_any
|
129
|
-
|
130
|
-
unvmap_any_p = Primitive("unvmap_any")
|
131
|
-
|
132
|
-
|
133
|
-
def unvmap_any(x):
|
134
|
-
"""
|
135
|
-
Evaluate :func:`jax.numpy.any` while ignoring vmapped batch dimensions.
|
136
|
-
|
137
|
-
Parameters
|
138
|
-
----------
|
139
|
-
x : Any
|
140
|
-
Input array or pytree produced under :func:`jax.vmap`.
|
141
|
-
|
142
|
-
Returns
|
143
|
-
-------
|
144
|
-
jax.Array
|
145
|
-
Scalar boolean result of ``jnp.any(x)``.
|
146
|
-
|
147
|
-
Examples
|
148
|
-
--------
|
149
|
-
.. code-block:: python
|
150
|
-
|
151
|
-
>>> import jax.numpy as jnp
|
152
|
-
>>> import brainstate
|
153
|
-
>>>
|
154
|
-
>>> values = jnp.array([[False, False], [False, True]])
|
155
|
-
>>> brainstate.transform.unvmap(values, op='any')
|
156
|
-
"""
|
157
|
-
return unvmap_any_p.bind(x)
|
158
|
-
|
159
|
-
|
160
|
-
def _unvmap_any_impl(x):
|
161
|
-
return jnp.any(x)
|
162
|
-
|
163
|
-
|
164
|
-
def _unvmap_any_abstract_eval(x):
|
165
|
-
return jax.core.ShapedArray(shape=(), dtype=jax.numpy.bool_.dtype) # pyright: ignore
|
166
|
-
|
167
|
-
|
168
|
-
def _unvmap_any_batch(x, batch_axes):
|
169
|
-
(x,) = x
|
170
|
-
return unvmap_any(x), batching.not_mapped
|
171
|
-
|
172
|
-
|
173
|
-
unvmap_any_p.def_impl(_unvmap_any_impl)
|
174
|
-
unvmap_any_p.def_abstract_eval(_unvmap_any_abstract_eval)
|
175
|
-
batching.primitive_batchers[unvmap_any_p] = _unvmap_any_batch # pyright: ignore
|
176
|
-
mlir.register_lowering(
|
177
|
-
unvmap_any_p,
|
178
|
-
mlir.lower_fun(_unvmap_any_impl, multiple_results=False),
|
179
|
-
)
|
180
|
-
|
181
|
-
# unvmap_max
|
182
|
-
|
183
|
-
unvmap_max_p = Primitive("unvmap_max")
|
184
|
-
|
185
|
-
|
186
|
-
def unvmap_max(x):
|
187
|
-
"""
|
188
|
-
Evaluate :func:`jax.numpy.max` while ignoring vmapped batch dimensions.
|
189
|
-
|
190
|
-
Parameters
|
191
|
-
----------
|
192
|
-
x : Any
|
193
|
-
Input array or pytree produced under :func:`jax.vmap`.
|
194
|
-
|
195
|
-
Returns
|
196
|
-
-------
|
197
|
-
jax.Array
|
198
|
-
Scalar containing the maximum value of ``x`` with the same dtype.
|
199
|
-
|
200
|
-
Examples
|
201
|
-
--------
|
202
|
-
.. code-block:: python
|
203
|
-
|
204
|
-
>>> import jax.numpy as jnp
|
205
|
-
>>> import brainstate
|
206
|
-
>>>
|
207
|
-
>>> values = jnp.array([[1.0, 2.0], [0.5, 3.5]])
|
208
|
-
>>> brainstate.transform.unvmap(values, op='max')
|
209
|
-
"""
|
210
|
-
return unvmap_max_p.bind(x)
|
211
|
-
|
212
|
-
|
213
|
-
def _unvmap_max_impl(x):
|
214
|
-
return jnp.max(x)
|
215
|
-
|
216
|
-
|
217
|
-
def _unvmap_max_abstract_eval(x):
|
218
|
-
return jax.core.ShapedArray(shape=(), dtype=x.dtype)
|
219
|
-
|
220
|
-
|
221
|
-
def _unvmap_max_batch(x, batch_axes):
|
222
|
-
(x,) = x
|
223
|
-
return unvmap_max(x), batching.not_mapped
|
224
|
-
|
225
|
-
|
226
|
-
unvmap_max_p.def_impl(_unvmap_max_impl)
|
227
|
-
unvmap_max_p.def_abstract_eval(_unvmap_max_abstract_eval)
|
228
|
-
batching.primitive_batchers[unvmap_max_p] = _unvmap_max_batch # pyright: ignore
|
229
|
-
mlir.register_lowering(
|
230
|
-
unvmap_max_p,
|
231
|
-
mlir.lower_fun(_unvmap_max_impl, multiple_results=False),
|
232
|
-
)
|
233
|
-
|
234
|
-
|
235
|
-
def _without_vmap(x):
|
236
|
-
return _no_vmap_prim.bind(x)
|
237
|
-
|
238
|
-
|
239
|
-
def _without_vmap_imp(x):
|
240
|
-
return x
|
241
|
-
|
242
|
-
|
243
|
-
def _without_vmap_abs(x):
|
244
|
-
return x
|
245
|
-
|
246
|
-
|
247
|
-
def _without_vmap_batch(x, batch_axes):
|
248
|
-
(x,) = x
|
249
|
-
return _without_vmap(x), batching.not_mapped
|
250
|
-
|
251
|
-
|
252
|
-
_no_vmap_prim = Primitive('no_vmap')
|
253
|
-
_no_vmap_prim.def_impl(_without_vmap_imp)
|
254
|
-
_no_vmap_prim.def_abstract_eval(_without_vmap_abs)
|
255
|
-
batching.primitive_batchers[_no_vmap_prim] = _without_vmap_batch
|
256
|
-
mlir.register_lowering(_no_vmap_prim, mlir.lower_fun(_without_vmap_imp, multiple_results=False))
|
1
|
+
# Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import jax
|
17
|
+
import jax.core
|
18
|
+
import jax.interpreters.batching as batching
|
19
|
+
import jax.interpreters.mlir as mlir
|
20
|
+
import jax.numpy as jnp
|
21
|
+
|
22
|
+
from brainstate._compatible_import import Primitive
|
23
|
+
from brainstate._utils import set_module_as
|
24
|
+
|
25
|
+
__all__ = [
|
26
|
+
"unvmap",
|
27
|
+
]
|
28
|
+
|
29
|
+
|
30
|
+
@set_module_as('brainstate.transform')
|
31
|
+
def unvmap(x, op: str = 'any'):
|
32
|
+
"""
|
33
|
+
Remove a leading vmap dimension by aggregating batched values.
|
34
|
+
|
35
|
+
Parameters
|
36
|
+
----------
|
37
|
+
x : Any
|
38
|
+
Value produced inside a :func:`jax.vmap`-transformed function.
|
39
|
+
op : {'all', 'any', 'none', 'max'}, default='any'
|
40
|
+
Reduction to apply across the vmapped axis. ``'none'`` returns ``x`` without
|
41
|
+
reduction, while ``'max'`` computes the maximum element.
|
42
|
+
|
43
|
+
Returns
|
44
|
+
-------
|
45
|
+
Any
|
46
|
+
Result of applying the requested reduction with vmap metadata removed.
|
47
|
+
|
48
|
+
Raises
|
49
|
+
------
|
50
|
+
ValueError
|
51
|
+
If ``op`` is not one of ``'all'``, ``'any'``, ``'none'``, or ``'max'``.
|
52
|
+
|
53
|
+
Examples
|
54
|
+
--------
|
55
|
+
.. code-block:: python
|
56
|
+
|
57
|
+
>>> import jax.numpy as jnp
|
58
|
+
>>> import brainstate
|
59
|
+
>>>
|
60
|
+
>>> xs = jnp.array([[True, False], [True, True]])
|
61
|
+
>>> brainstate.transform.unvmap(xs, op='all')
|
62
|
+
"""
|
63
|
+
if op == 'all':
|
64
|
+
return unvmap_all(x)
|
65
|
+
elif op == 'any':
|
66
|
+
return unvmap_any(x)
|
67
|
+
elif op == 'none':
|
68
|
+
return _without_vmap(x)
|
69
|
+
elif op == 'max':
|
70
|
+
return unvmap_max(x)
|
71
|
+
else:
|
72
|
+
raise ValueError(f'Do not support type: {op}')
|
73
|
+
|
74
|
+
|
75
|
+
# unvmap_all
|
76
|
+
|
77
|
+
unvmap_all_p = Primitive("unvmap_all")
|
78
|
+
|
79
|
+
|
80
|
+
def unvmap_all(x):
|
81
|
+
"""
|
82
|
+
Evaluate :func:`jax.numpy.all` while ignoring vmapped batch dimensions.
|
83
|
+
|
84
|
+
Parameters
|
85
|
+
----------
|
86
|
+
x : Any
|
87
|
+
Input array or pytree produced under :func:`jax.vmap`.
|
88
|
+
|
89
|
+
Returns
|
90
|
+
-------
|
91
|
+
jax.Array
|
92
|
+
Scalar boolean result of ``jnp.all(x)``.
|
93
|
+
|
94
|
+
Examples
|
95
|
+
--------
|
96
|
+
.. code-block:: python
|
97
|
+
|
98
|
+
>>> import jax.numpy as jnp
|
99
|
+
>>> import brainstate
|
100
|
+
>>>
|
101
|
+
>>> values = jnp.array([[True, False], [True, True]])
|
102
|
+
>>> brainstate.transform.unvmap(values, op='all')
|
103
|
+
"""
|
104
|
+
return unvmap_all_p.bind(x)
|
105
|
+
|
106
|
+
|
107
|
+
def _unvmap_all_impl(x):
|
108
|
+
return jnp.all(x)
|
109
|
+
|
110
|
+
|
111
|
+
def _unvmap_all_abstract_eval(x):
|
112
|
+
return jax.core.ShapedArray(shape=(), dtype=jax.numpy.bool_.dtype) # pyright: ignore
|
113
|
+
|
114
|
+
|
115
|
+
def _unvmap_all_batch(x, batch_axes):
|
116
|
+
(x,) = x
|
117
|
+
return unvmap_all(x), batching.not_mapped
|
118
|
+
|
119
|
+
|
120
|
+
unvmap_all_p.def_impl(_unvmap_all_impl)
|
121
|
+
unvmap_all_p.def_abstract_eval(_unvmap_all_abstract_eval)
|
122
|
+
batching.primitive_batchers[unvmap_all_p] = _unvmap_all_batch # pyright: ignore
|
123
|
+
mlir.register_lowering(
|
124
|
+
unvmap_all_p,
|
125
|
+
mlir.lower_fun(_unvmap_all_impl, multiple_results=False),
|
126
|
+
)
|
127
|
+
|
128
|
+
# unvmap_any
|
129
|
+
|
130
|
+
unvmap_any_p = Primitive("unvmap_any")
|
131
|
+
|
132
|
+
|
133
|
+
def unvmap_any(x):
|
134
|
+
"""
|
135
|
+
Evaluate :func:`jax.numpy.any` while ignoring vmapped batch dimensions.
|
136
|
+
|
137
|
+
Parameters
|
138
|
+
----------
|
139
|
+
x : Any
|
140
|
+
Input array or pytree produced under :func:`jax.vmap`.
|
141
|
+
|
142
|
+
Returns
|
143
|
+
-------
|
144
|
+
jax.Array
|
145
|
+
Scalar boolean result of ``jnp.any(x)``.
|
146
|
+
|
147
|
+
Examples
|
148
|
+
--------
|
149
|
+
.. code-block:: python
|
150
|
+
|
151
|
+
>>> import jax.numpy as jnp
|
152
|
+
>>> import brainstate
|
153
|
+
>>>
|
154
|
+
>>> values = jnp.array([[False, False], [False, True]])
|
155
|
+
>>> brainstate.transform.unvmap(values, op='any')
|
156
|
+
"""
|
157
|
+
return unvmap_any_p.bind(x)
|
158
|
+
|
159
|
+
|
160
|
+
def _unvmap_any_impl(x):
|
161
|
+
return jnp.any(x)
|
162
|
+
|
163
|
+
|
164
|
+
def _unvmap_any_abstract_eval(x):
|
165
|
+
return jax.core.ShapedArray(shape=(), dtype=jax.numpy.bool_.dtype) # pyright: ignore
|
166
|
+
|
167
|
+
|
168
|
+
def _unvmap_any_batch(x, batch_axes):
|
169
|
+
(x,) = x
|
170
|
+
return unvmap_any(x), batching.not_mapped
|
171
|
+
|
172
|
+
|
173
|
+
unvmap_any_p.def_impl(_unvmap_any_impl)
|
174
|
+
unvmap_any_p.def_abstract_eval(_unvmap_any_abstract_eval)
|
175
|
+
batching.primitive_batchers[unvmap_any_p] = _unvmap_any_batch # pyright: ignore
|
176
|
+
mlir.register_lowering(
|
177
|
+
unvmap_any_p,
|
178
|
+
mlir.lower_fun(_unvmap_any_impl, multiple_results=False),
|
179
|
+
)
|
180
|
+
|
181
|
+
# unvmap_max
|
182
|
+
|
183
|
+
unvmap_max_p = Primitive("unvmap_max")
|
184
|
+
|
185
|
+
|
186
|
+
def unvmap_max(x):
|
187
|
+
"""
|
188
|
+
Evaluate :func:`jax.numpy.max` while ignoring vmapped batch dimensions.
|
189
|
+
|
190
|
+
Parameters
|
191
|
+
----------
|
192
|
+
x : Any
|
193
|
+
Input array or pytree produced under :func:`jax.vmap`.
|
194
|
+
|
195
|
+
Returns
|
196
|
+
-------
|
197
|
+
jax.Array
|
198
|
+
Scalar containing the maximum value of ``x`` with the same dtype.
|
199
|
+
|
200
|
+
Examples
|
201
|
+
--------
|
202
|
+
.. code-block:: python
|
203
|
+
|
204
|
+
>>> import jax.numpy as jnp
|
205
|
+
>>> import brainstate
|
206
|
+
>>>
|
207
|
+
>>> values = jnp.array([[1.0, 2.0], [0.5, 3.5]])
|
208
|
+
>>> brainstate.transform.unvmap(values, op='max')
|
209
|
+
"""
|
210
|
+
return unvmap_max_p.bind(x)
|
211
|
+
|
212
|
+
|
213
|
+
def _unvmap_max_impl(x):
|
214
|
+
return jnp.max(x)
|
215
|
+
|
216
|
+
|
217
|
+
def _unvmap_max_abstract_eval(x):
|
218
|
+
return jax.core.ShapedArray(shape=(), dtype=x.dtype)
|
219
|
+
|
220
|
+
|
221
|
+
def _unvmap_max_batch(x, batch_axes):
|
222
|
+
(x,) = x
|
223
|
+
return unvmap_max(x), batching.not_mapped
|
224
|
+
|
225
|
+
|
226
|
+
unvmap_max_p.def_impl(_unvmap_max_impl)
|
227
|
+
unvmap_max_p.def_abstract_eval(_unvmap_max_abstract_eval)
|
228
|
+
batching.primitive_batchers[unvmap_max_p] = _unvmap_max_batch # pyright: ignore
|
229
|
+
mlir.register_lowering(
|
230
|
+
unvmap_max_p,
|
231
|
+
mlir.lower_fun(_unvmap_max_impl, multiple_results=False),
|
232
|
+
)
|
233
|
+
|
234
|
+
|
235
|
+
def _without_vmap(x):
|
236
|
+
return _no_vmap_prim.bind(x)
|
237
|
+
|
238
|
+
|
239
|
+
def _without_vmap_imp(x):
|
240
|
+
return x
|
241
|
+
|
242
|
+
|
243
|
+
def _without_vmap_abs(x):
|
244
|
+
return x
|
245
|
+
|
246
|
+
|
247
|
+
def _without_vmap_batch(x, batch_axes):
|
248
|
+
(x,) = x
|
249
|
+
return _without_vmap(x), batching.not_mapped
|
250
|
+
|
251
|
+
|
252
|
+
_no_vmap_prim = Primitive('no_vmap')
|
253
|
+
_no_vmap_prim.def_impl(_without_vmap_imp)
|
254
|
+
_no_vmap_prim.def_abstract_eval(_without_vmap_abs)
|
255
|
+
batching.primitive_batchers[_no_vmap_prim] = _without_vmap_batch
|
256
|
+
mlir.register_lowering(_no_vmap_prim, mlir.lower_fun(_without_vmap_imp, multiple_results=False))
|