brainstate 0.2.1__py2.py3-none-any.whl → 0.2.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +167 -169
- brainstate/_compatible_import.py +340 -340
- brainstate/_compatible_import_test.py +681 -681
- brainstate/_deprecation.py +210 -210
- brainstate/_deprecation_test.py +2297 -2319
- brainstate/_error.py +45 -45
- brainstate/_state.py +2157 -1652
- brainstate/_state_test.py +1129 -52
- brainstate/_utils.py +47 -47
- brainstate/environ.py +1495 -1495
- brainstate/environ_test.py +1223 -1223
- brainstate/graph/__init__.py +22 -22
- brainstate/graph/_node.py +240 -240
- brainstate/graph/_node_test.py +589 -589
- brainstate/graph/_operation.py +1620 -1624
- brainstate/graph/_operation_test.py +1147 -1147
- brainstate/mixin.py +1447 -1433
- brainstate/mixin_test.py +1017 -1017
- brainstate/nn/__init__.py +146 -137
- brainstate/nn/_activations.py +1100 -1100
- brainstate/nn/_activations_test.py +354 -354
- brainstate/nn/_collective_ops.py +635 -633
- brainstate/nn/_collective_ops_test.py +774 -774
- brainstate/nn/_common.py +226 -226
- brainstate/nn/_common_test.py +134 -154
- brainstate/nn/_conv.py +2010 -2010
- brainstate/nn/_conv_test.py +849 -849
- brainstate/nn/_delay.py +575 -575
- brainstate/nn/_delay_test.py +243 -243
- brainstate/nn/_dropout.py +618 -618
- brainstate/nn/_dropout_test.py +480 -477
- brainstate/nn/_dynamics.py +870 -1267
- brainstate/nn/_dynamics_test.py +53 -67
- brainstate/nn/_elementwise.py +1298 -1298
- brainstate/nn/_elementwise_test.py +829 -829
- brainstate/nn/_embedding.py +408 -408
- brainstate/nn/_embedding_test.py +156 -156
- brainstate/nn/_event_fixedprob.py +233 -233
- brainstate/nn/_event_fixedprob_test.py +115 -115
- brainstate/nn/_event_linear.py +83 -83
- brainstate/nn/_event_linear_test.py +121 -121
- brainstate/nn/_exp_euler.py +254 -254
- brainstate/nn/_exp_euler_test.py +377 -377
- brainstate/nn/_linear.py +744 -744
- brainstate/nn/_linear_test.py +475 -475
- brainstate/nn/_metrics.py +1070 -1070
- brainstate/nn/_metrics_test.py +611 -611
- brainstate/nn/_module.py +391 -384
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_normalizations.py +1334 -1334
- brainstate/nn/_normalizations_test.py +699 -699
- brainstate/nn/_paddings.py +1020 -1020
- brainstate/nn/_paddings_test.py +722 -722
- brainstate/nn/_poolings.py +2239 -2239
- brainstate/nn/_poolings_test.py +952 -952
- brainstate/nn/_rnns.py +946 -946
- brainstate/nn/_rnns_test.py +592 -592
- brainstate/nn/_utils.py +216 -216
- brainstate/nn/_utils_test.py +401 -401
- brainstate/nn/init.py +809 -809
- brainstate/nn/init_test.py +180 -180
- brainstate/random/__init__.py +270 -270
- brainstate/random/{_rand_funs.py → _fun.py} +3938 -3938
- brainstate/random/{_rand_funs_test.py → _fun_test.py} +638 -640
- brainstate/random/_impl.py +672 -0
- brainstate/random/{_rand_seed.py → _seed.py} +675 -675
- brainstate/random/{_rand_seed_test.py → _seed_test.py} +48 -48
- brainstate/random/{_rand_state.py → _state.py} +1320 -1617
- brainstate/random/{_rand_state_test.py → _state_test.py} +551 -551
- brainstate/transform/__init__.py +56 -59
- brainstate/transform/_ad_checkpoint.py +176 -176
- brainstate/transform/_ad_checkpoint_test.py +49 -49
- brainstate/transform/_autograd.py +1025 -1025
- brainstate/transform/_autograd_test.py +1289 -1289
- brainstate/transform/_conditions.py +316 -316
- brainstate/transform/_conditions_test.py +220 -220
- brainstate/transform/_error_if.py +94 -94
- brainstate/transform/_error_if_test.py +52 -52
- brainstate/transform/_find_state.py +200 -0
- brainstate/transform/_find_state_test.py +84 -0
- brainstate/transform/_jit.py +399 -399
- brainstate/transform/_jit_test.py +143 -143
- brainstate/transform/_loop_collect_return.py +675 -675
- brainstate/transform/_loop_collect_return_test.py +58 -58
- brainstate/transform/_loop_no_collection.py +283 -283
- brainstate/transform/_loop_no_collection_test.py +50 -50
- brainstate/transform/_make_jaxpr.py +2176 -2016
- brainstate/transform/_make_jaxpr_test.py +1634 -1510
- brainstate/transform/_mapping.py +607 -529
- brainstate/transform/_mapping_test.py +104 -194
- brainstate/transform/_progress_bar.py +255 -255
- brainstate/transform/_unvmap.py +256 -256
- brainstate/transform/_util.py +286 -286
- brainstate/typing.py +837 -837
- brainstate/typing_test.py +780 -780
- brainstate/util/__init__.py +27 -27
- brainstate/util/_others.py +1024 -1024
- brainstate/util/_others_test.py +962 -962
- brainstate/util/_pretty_pytree.py +1301 -1301
- brainstate/util/_pretty_pytree_test.py +675 -675
- brainstate/util/_pretty_repr.py +462 -462
- brainstate/util/_pretty_repr_test.py +696 -696
- brainstate/util/filter.py +945 -945
- brainstate/util/filter_test.py +911 -911
- brainstate/util/struct.py +910 -910
- brainstate/util/struct_test.py +602 -602
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/METADATA +108 -108
- brainstate-0.2.2.dist-info/RECORD +111 -0
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/licenses/LICENSE +202 -202
- brainstate/transform/_eval_shape.py +0 -145
- brainstate/transform/_eval_shape_test.py +0 -38
- brainstate/transform/_random.py +0 -171
- brainstate-0.2.1.dist-info/RECORD +0 -111
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/WHEEL +0 -0
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/top_level.txt +0 -0
brainstate/nn/_embedding_test.py
CHANGED
@@ -1,156 +1,156 @@
|
|
1
|
-
# Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
# -*- coding: utf-8 -*-
|
17
|
-
|
18
|
-
import unittest
|
19
|
-
|
20
|
-
import jax
|
21
|
-
import jax.numpy as jnp
|
22
|
-
|
23
|
-
import brainstate as bs
|
24
|
-
|
25
|
-
|
26
|
-
class TestEmbedding(unittest.TestCase):
|
27
|
-
"""Comprehensive tests for the Embedding module."""
|
28
|
-
|
29
|
-
def setUp(self):
|
30
|
-
settings = bs.environ.all()
|
31
|
-
self._prev_fit = settings.get('fit', None)
|
32
|
-
bs.environ.set(fit=True)
|
33
|
-
|
34
|
-
def tearDown(self):
|
35
|
-
if self._prev_fit is None:
|
36
|
-
bs.environ.pop('fit', None)
|
37
|
-
else:
|
38
|
-
bs.environ.set(fit=self._prev_fit)
|
39
|
-
|
40
|
-
def test_padding_idx_zero_gradient(self):
|
41
|
-
embedding = bs.nn.Embedding(num_embeddings=4, embedding_size=3, padding_idx=0)
|
42
|
-
lookup = embedding._lookup
|
43
|
-
weight = jnp.arange(12.0, dtype=jnp.float32).reshape(4, 3)
|
44
|
-
indices = jnp.array([0, 1, 0, 2], dtype=jnp.int32)
|
45
|
-
|
46
|
-
def loss_fn(w):
|
47
|
-
return jnp.sum(lookup(w, indices))
|
48
|
-
|
49
|
-
grad = jax.grad(loss_fn)(weight)
|
50
|
-
self.assertTrue(jnp.allclose(grad[0], 0.0))
|
51
|
-
self.assertFalse(jnp.allclose(grad[1], 0.0))
|
52
|
-
|
53
|
-
def test_scale_grad_by_freq(self):
|
54
|
-
base = bs.nn.Embedding(num_embeddings=5, embedding_size=2)
|
55
|
-
scaled = bs.nn.Embedding(num_embeddings=5, embedding_size=2, scale_grad_by_freq=True)
|
56
|
-
base_lookup = base._lookup
|
57
|
-
scaled_lookup = scaled._lookup
|
58
|
-
|
59
|
-
weight = jnp.arange(10.0, dtype=jnp.float32).reshape(5, 2)
|
60
|
-
indices = jnp.array([1, 1, 2], dtype=jnp.int32)
|
61
|
-
|
62
|
-
def loss_base(w):
|
63
|
-
return jnp.sum(base_lookup(w, indices))
|
64
|
-
|
65
|
-
def loss_scaled(w):
|
66
|
-
return jnp.sum(scaled_lookup(w, indices))
|
67
|
-
|
68
|
-
base_grad = jax.grad(loss_base)(weight)
|
69
|
-
scaled_grad = jax.grad(loss_scaled)(weight)
|
70
|
-
|
71
|
-
counts = jnp.bincount(indices, length=weight.shape[0])
|
72
|
-
ones = jnp.ones((indices.shape[0], weight.shape[1]), dtype=weight.dtype)
|
73
|
-
expected_base = jnp.zeros_like(weight).at[indices].add(ones)
|
74
|
-
expected_scaled = jnp.where(counts[:, None] > 0, jnp.ones_like(weight), 0.0)
|
75
|
-
|
76
|
-
self.assertTrue(jnp.allclose(base_grad, expected_base))
|
77
|
-
self.assertTrue(jnp.allclose(scaled_grad, expected_scaled))
|
78
|
-
|
79
|
-
def test_lookup_grad_jit_consistent(self):
|
80
|
-
embedding = bs.nn.Embedding(num_embeddings=4, embedding_size=2)
|
81
|
-
lookup = embedding._lookup
|
82
|
-
weight = jnp.arange(8.0, dtype=jnp.float32).reshape(4, 2)
|
83
|
-
indices = jnp.array([0, 1, 1, 3], dtype=jnp.int32)
|
84
|
-
|
85
|
-
def loss_fn(w):
|
86
|
-
return jnp.sum(lookup(w, indices))
|
87
|
-
|
88
|
-
grad_eager = jax.grad(loss_fn)(weight)
|
89
|
-
grad_jitted = jax.grad(jax.jit(loss_fn))(weight)
|
90
|
-
|
91
|
-
expected = jnp.zeros_like(weight).at[indices].add(jnp.ones((indices.shape[0], weight.shape[1]), dtype=weight.dtype))
|
92
|
-
|
93
|
-
self.assertTrue(jnp.allclose(grad_eager, grad_jitted))
|
94
|
-
self.assertTrue(jnp.allclose(grad_eager, expected))
|
95
|
-
|
96
|
-
def test_jit_forward_with_max_norm(self):
|
97
|
-
embedding = bs.nn.Embedding(num_embeddings=3, embedding_size=3, max_norm=0.5)
|
98
|
-
heavy = jnp.array([[0.0, 0.0, 0.0], [1.0, 2.0, 2.0], [0.3, -0.4, 0.5]], dtype=jnp.float32)
|
99
|
-
embedding.weight.value = heavy
|
100
|
-
indices = jnp.array([1, 2, 1], dtype=jnp.int32)
|
101
|
-
|
102
|
-
compiled = jax.jit(lambda ids: embedding(ids))
|
103
|
-
out = compiled(indices)
|
104
|
-
self.assertEqual(out.shape, (3, 3))
|
105
|
-
output_norms = jnp.linalg.norm(out, axis=-1)
|
106
|
-
self.assertTrue(jnp.all(output_norms <= 0.5 + 1e-6))
|
107
|
-
# Weight remains unclipped during JIT execution but must be usable without tracer leaks
|
108
|
-
self.assertGreater(float(jnp.linalg.norm(embedding.weight.value[1])), 0.5)
|
109
|
-
|
110
|
-
def test_freeze_disables_gradients(self):
|
111
|
-
embedding = bs.nn.Embedding(num_embeddings=4, embedding_size=2, freeze=True)
|
112
|
-
indices = jnp.array([1, 2, 3], dtype=jnp.int32)
|
113
|
-
|
114
|
-
def loss_fn(weight):
|
115
|
-
embedding.weight.value = weight
|
116
|
-
return jnp.sum(embedding(indices))
|
117
|
-
|
118
|
-
grad = jax.grad(loss_fn)(embedding.weight.value)
|
119
|
-
self.assertTrue(jnp.allclose(grad, 0.0))
|
120
|
-
|
121
|
-
def test_from_pretrained_defaults_to_freeze(self):
|
122
|
-
pretrained = jnp.arange(12.0, dtype=jnp.float32).reshape(4, 3)
|
123
|
-
embedding = bs.nn.Embedding.from_pretrained(pretrained)
|
124
|
-
self.assertTrue(embedding.freeze)
|
125
|
-
|
126
|
-
def loss_fn(weight):
|
127
|
-
embedding.weight.value = weight
|
128
|
-
return jnp.sum(embedding(jnp.array([1, 2], dtype=jnp.int32)))
|
129
|
-
|
130
|
-
grad = jax.grad(loss_fn)(embedding.weight.value)
|
131
|
-
self.assertTrue(jnp.allclose(grad, 0.0))
|
132
|
-
|
133
|
-
def test_from_pretrained_unfrozen_gradients(self):
|
134
|
-
pretrained = jnp.arange(6.0, dtype=jnp.float32).reshape(2, 3)
|
135
|
-
embedding = bs.nn.Embedding.from_pretrained(pretrained, freeze=False)
|
136
|
-
|
137
|
-
def loss_fn(weight):
|
138
|
-
embedding.weight.value = weight
|
139
|
-
return jnp.sum(embedding(jnp.array([0, 1], dtype=jnp.int32)))
|
140
|
-
|
141
|
-
grad = jax.grad(loss_fn)(embedding.weight.value)
|
142
|
-
self.assertFalse(jnp.allclose(grad, 0.0))
|
143
|
-
|
144
|
-
def test_max_norm_renormalizes_weights(self):
|
145
|
-
embedding = bs.nn.Embedding(num_embeddings=3, embedding_size=3, max_norm=1.0, norm_type=2.0)
|
146
|
-
custom_weight = jnp.array([[0.0, 0.0, 0.0], [3.0, 4.0, 0.0], [0.5, 0.5, 0.5]], dtype=jnp.float32)
|
147
|
-
embedding.weight.value = custom_weight
|
148
|
-
_ = embedding(jnp.array([1, 2], dtype=jnp.int32))
|
149
|
-
|
150
|
-
row_norm = jnp.linalg.norm(embedding.weight.value[1])
|
151
|
-
self.assertLessEqual(float(row_norm), 1.0 + 1e-6)
|
152
|
-
self.assertTrue(jnp.allclose(embedding.weight.value[0], custom_weight[0]))
|
153
|
-
|
154
|
-
|
155
|
-
if __name__ == '__main__':
|
156
|
-
unittest.main()
|
1
|
+
# Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# -*- coding: utf-8 -*-
|
17
|
+
|
18
|
+
import unittest
|
19
|
+
|
20
|
+
import jax
|
21
|
+
import jax.numpy as jnp
|
22
|
+
|
23
|
+
import brainstate as bs
|
24
|
+
|
25
|
+
|
26
|
+
class TestEmbedding(unittest.TestCase):
|
27
|
+
"""Comprehensive tests for the Embedding module."""
|
28
|
+
|
29
|
+
def setUp(self):
|
30
|
+
settings = bs.environ.all()
|
31
|
+
self._prev_fit = settings.get('fit', None)
|
32
|
+
bs.environ.set(fit=True)
|
33
|
+
|
34
|
+
def tearDown(self):
|
35
|
+
if self._prev_fit is None:
|
36
|
+
bs.environ.pop('fit', None)
|
37
|
+
else:
|
38
|
+
bs.environ.set(fit=self._prev_fit)
|
39
|
+
|
40
|
+
def test_padding_idx_zero_gradient(self):
|
41
|
+
embedding = bs.nn.Embedding(num_embeddings=4, embedding_size=3, padding_idx=0)
|
42
|
+
lookup = embedding._lookup
|
43
|
+
weight = jnp.arange(12.0, dtype=jnp.float32).reshape(4, 3)
|
44
|
+
indices = jnp.array([0, 1, 0, 2], dtype=jnp.int32)
|
45
|
+
|
46
|
+
def loss_fn(w):
|
47
|
+
return jnp.sum(lookup(w, indices))
|
48
|
+
|
49
|
+
grad = jax.grad(loss_fn)(weight)
|
50
|
+
self.assertTrue(jnp.allclose(grad[0], 0.0))
|
51
|
+
self.assertFalse(jnp.allclose(grad[1], 0.0))
|
52
|
+
|
53
|
+
def test_scale_grad_by_freq(self):
|
54
|
+
base = bs.nn.Embedding(num_embeddings=5, embedding_size=2)
|
55
|
+
scaled = bs.nn.Embedding(num_embeddings=5, embedding_size=2, scale_grad_by_freq=True)
|
56
|
+
base_lookup = base._lookup
|
57
|
+
scaled_lookup = scaled._lookup
|
58
|
+
|
59
|
+
weight = jnp.arange(10.0, dtype=jnp.float32).reshape(5, 2)
|
60
|
+
indices = jnp.array([1, 1, 2], dtype=jnp.int32)
|
61
|
+
|
62
|
+
def loss_base(w):
|
63
|
+
return jnp.sum(base_lookup(w, indices))
|
64
|
+
|
65
|
+
def loss_scaled(w):
|
66
|
+
return jnp.sum(scaled_lookup(w, indices))
|
67
|
+
|
68
|
+
base_grad = jax.grad(loss_base)(weight)
|
69
|
+
scaled_grad = jax.grad(loss_scaled)(weight)
|
70
|
+
|
71
|
+
counts = jnp.bincount(indices, length=weight.shape[0])
|
72
|
+
ones = jnp.ones((indices.shape[0], weight.shape[1]), dtype=weight.dtype)
|
73
|
+
expected_base = jnp.zeros_like(weight).at[indices].add(ones)
|
74
|
+
expected_scaled = jnp.where(counts[:, None] > 0, jnp.ones_like(weight), 0.0)
|
75
|
+
|
76
|
+
self.assertTrue(jnp.allclose(base_grad, expected_base))
|
77
|
+
self.assertTrue(jnp.allclose(scaled_grad, expected_scaled))
|
78
|
+
|
79
|
+
def test_lookup_grad_jit_consistent(self):
|
80
|
+
embedding = bs.nn.Embedding(num_embeddings=4, embedding_size=2)
|
81
|
+
lookup = embedding._lookup
|
82
|
+
weight = jnp.arange(8.0, dtype=jnp.float32).reshape(4, 2)
|
83
|
+
indices = jnp.array([0, 1, 1, 3], dtype=jnp.int32)
|
84
|
+
|
85
|
+
def loss_fn(w):
|
86
|
+
return jnp.sum(lookup(w, indices))
|
87
|
+
|
88
|
+
grad_eager = jax.grad(loss_fn)(weight)
|
89
|
+
grad_jitted = jax.grad(jax.jit(loss_fn))(weight)
|
90
|
+
|
91
|
+
expected = jnp.zeros_like(weight).at[indices].add(jnp.ones((indices.shape[0], weight.shape[1]), dtype=weight.dtype))
|
92
|
+
|
93
|
+
self.assertTrue(jnp.allclose(grad_eager, grad_jitted))
|
94
|
+
self.assertTrue(jnp.allclose(grad_eager, expected))
|
95
|
+
|
96
|
+
def test_jit_forward_with_max_norm(self):
|
97
|
+
embedding = bs.nn.Embedding(num_embeddings=3, embedding_size=3, max_norm=0.5)
|
98
|
+
heavy = jnp.array([[0.0, 0.0, 0.0], [1.0, 2.0, 2.0], [0.3, -0.4, 0.5]], dtype=jnp.float32)
|
99
|
+
embedding.weight.value = heavy
|
100
|
+
indices = jnp.array([1, 2, 1], dtype=jnp.int32)
|
101
|
+
|
102
|
+
compiled = jax.jit(lambda ids: embedding(ids))
|
103
|
+
out = compiled(indices)
|
104
|
+
self.assertEqual(out.shape, (3, 3))
|
105
|
+
output_norms = jnp.linalg.norm(out, axis=-1)
|
106
|
+
self.assertTrue(jnp.all(output_norms <= 0.5 + 1e-6))
|
107
|
+
# Weight remains unclipped during JIT execution but must be usable without tracer leaks
|
108
|
+
self.assertGreater(float(jnp.linalg.norm(embedding.weight.value[1])), 0.5)
|
109
|
+
|
110
|
+
def test_freeze_disables_gradients(self):
|
111
|
+
embedding = bs.nn.Embedding(num_embeddings=4, embedding_size=2, freeze=True)
|
112
|
+
indices = jnp.array([1, 2, 3], dtype=jnp.int32)
|
113
|
+
|
114
|
+
def loss_fn(weight):
|
115
|
+
embedding.weight.value = weight
|
116
|
+
return jnp.sum(embedding(indices))
|
117
|
+
|
118
|
+
grad = jax.grad(loss_fn)(embedding.weight.value)
|
119
|
+
self.assertTrue(jnp.allclose(grad, 0.0))
|
120
|
+
|
121
|
+
def test_from_pretrained_defaults_to_freeze(self):
|
122
|
+
pretrained = jnp.arange(12.0, dtype=jnp.float32).reshape(4, 3)
|
123
|
+
embedding = bs.nn.Embedding.from_pretrained(pretrained)
|
124
|
+
self.assertTrue(embedding.freeze)
|
125
|
+
|
126
|
+
def loss_fn(weight):
|
127
|
+
embedding.weight.value = weight
|
128
|
+
return jnp.sum(embedding(jnp.array([1, 2], dtype=jnp.int32)))
|
129
|
+
|
130
|
+
grad = jax.grad(loss_fn)(embedding.weight.value)
|
131
|
+
self.assertTrue(jnp.allclose(grad, 0.0))
|
132
|
+
|
133
|
+
def test_from_pretrained_unfrozen_gradients(self):
|
134
|
+
pretrained = jnp.arange(6.0, dtype=jnp.float32).reshape(2, 3)
|
135
|
+
embedding = bs.nn.Embedding.from_pretrained(pretrained, freeze=False)
|
136
|
+
|
137
|
+
def loss_fn(weight):
|
138
|
+
embedding.weight.value = weight
|
139
|
+
return jnp.sum(embedding(jnp.array([0, 1], dtype=jnp.int32)))
|
140
|
+
|
141
|
+
grad = jax.grad(loss_fn)(embedding.weight.value)
|
142
|
+
self.assertFalse(jnp.allclose(grad, 0.0))
|
143
|
+
|
144
|
+
def test_max_norm_renormalizes_weights(self):
|
145
|
+
embedding = bs.nn.Embedding(num_embeddings=3, embedding_size=3, max_norm=1.0, norm_type=2.0)
|
146
|
+
custom_weight = jnp.array([[0.0, 0.0, 0.0], [3.0, 4.0, 0.0], [0.5, 0.5, 0.5]], dtype=jnp.float32)
|
147
|
+
embedding.weight.value = custom_weight
|
148
|
+
_ = embedding(jnp.array([1, 2], dtype=jnp.int32))
|
149
|
+
|
150
|
+
row_norm = jnp.linalg.norm(embedding.weight.value[1])
|
151
|
+
self.assertLessEqual(float(row_norm), 1.0 + 1e-6)
|
152
|
+
self.assertTrue(jnp.allclose(embedding.weight.value[0], custom_weight[0]))
|
153
|
+
|
154
|
+
|
155
|
+
if __name__ == '__main__':
|
156
|
+
unittest.main()
|