brainstate 0.2.1__py2.py3-none-any.whl → 0.2.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +167 -169
- brainstate/_compatible_import.py +340 -340
- brainstate/_compatible_import_test.py +681 -681
- brainstate/_deprecation.py +210 -210
- brainstate/_deprecation_test.py +2297 -2319
- brainstate/_error.py +45 -45
- brainstate/_state.py +2157 -1652
- brainstate/_state_test.py +1129 -52
- brainstate/_utils.py +47 -47
- brainstate/environ.py +1495 -1495
- brainstate/environ_test.py +1223 -1223
- brainstate/graph/__init__.py +22 -22
- brainstate/graph/_node.py +240 -240
- brainstate/graph/_node_test.py +589 -589
- brainstate/graph/_operation.py +1620 -1624
- brainstate/graph/_operation_test.py +1147 -1147
- brainstate/mixin.py +1447 -1433
- brainstate/mixin_test.py +1017 -1017
- brainstate/nn/__init__.py +146 -137
- brainstate/nn/_activations.py +1100 -1100
- brainstate/nn/_activations_test.py +354 -354
- brainstate/nn/_collective_ops.py +635 -633
- brainstate/nn/_collective_ops_test.py +774 -774
- brainstate/nn/_common.py +226 -226
- brainstate/nn/_common_test.py +134 -154
- brainstate/nn/_conv.py +2010 -2010
- brainstate/nn/_conv_test.py +849 -849
- brainstate/nn/_delay.py +575 -575
- brainstate/nn/_delay_test.py +243 -243
- brainstate/nn/_dropout.py +618 -618
- brainstate/nn/_dropout_test.py +480 -477
- brainstate/nn/_dynamics.py +870 -1267
- brainstate/nn/_dynamics_test.py +53 -67
- brainstate/nn/_elementwise.py +1298 -1298
- brainstate/nn/_elementwise_test.py +829 -829
- brainstate/nn/_embedding.py +408 -408
- brainstate/nn/_embedding_test.py +156 -156
- brainstate/nn/_event_fixedprob.py +233 -233
- brainstate/nn/_event_fixedprob_test.py +115 -115
- brainstate/nn/_event_linear.py +83 -83
- brainstate/nn/_event_linear_test.py +121 -121
- brainstate/nn/_exp_euler.py +254 -254
- brainstate/nn/_exp_euler_test.py +377 -377
- brainstate/nn/_linear.py +744 -744
- brainstate/nn/_linear_test.py +475 -475
- brainstate/nn/_metrics.py +1070 -1070
- brainstate/nn/_metrics_test.py +611 -611
- brainstate/nn/_module.py +391 -384
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_normalizations.py +1334 -1334
- brainstate/nn/_normalizations_test.py +699 -699
- brainstate/nn/_paddings.py +1020 -1020
- brainstate/nn/_paddings_test.py +722 -722
- brainstate/nn/_poolings.py +2239 -2239
- brainstate/nn/_poolings_test.py +952 -952
- brainstate/nn/_rnns.py +946 -946
- brainstate/nn/_rnns_test.py +592 -592
- brainstate/nn/_utils.py +216 -216
- brainstate/nn/_utils_test.py +401 -401
- brainstate/nn/init.py +809 -809
- brainstate/nn/init_test.py +180 -180
- brainstate/random/__init__.py +270 -270
- brainstate/random/{_rand_funs.py → _fun.py} +3938 -3938
- brainstate/random/{_rand_funs_test.py → _fun_test.py} +638 -640
- brainstate/random/_impl.py +672 -0
- brainstate/random/{_rand_seed.py → _seed.py} +675 -675
- brainstate/random/{_rand_seed_test.py → _seed_test.py} +48 -48
- brainstate/random/{_rand_state.py → _state.py} +1320 -1617
- brainstate/random/{_rand_state_test.py → _state_test.py} +551 -551
- brainstate/transform/__init__.py +56 -59
- brainstate/transform/_ad_checkpoint.py +176 -176
- brainstate/transform/_ad_checkpoint_test.py +49 -49
- brainstate/transform/_autograd.py +1025 -1025
- brainstate/transform/_autograd_test.py +1289 -1289
- brainstate/transform/_conditions.py +316 -316
- brainstate/transform/_conditions_test.py +220 -220
- brainstate/transform/_error_if.py +94 -94
- brainstate/transform/_error_if_test.py +52 -52
- brainstate/transform/_find_state.py +200 -0
- brainstate/transform/_find_state_test.py +84 -0
- brainstate/transform/_jit.py +399 -399
- brainstate/transform/_jit_test.py +143 -143
- brainstate/transform/_loop_collect_return.py +675 -675
- brainstate/transform/_loop_collect_return_test.py +58 -58
- brainstate/transform/_loop_no_collection.py +283 -283
- brainstate/transform/_loop_no_collection_test.py +50 -50
- brainstate/transform/_make_jaxpr.py +2176 -2016
- brainstate/transform/_make_jaxpr_test.py +1634 -1510
- brainstate/transform/_mapping.py +607 -529
- brainstate/transform/_mapping_test.py +104 -194
- brainstate/transform/_progress_bar.py +255 -255
- brainstate/transform/_unvmap.py +256 -256
- brainstate/transform/_util.py +286 -286
- brainstate/typing.py +837 -837
- brainstate/typing_test.py +780 -780
- brainstate/util/__init__.py +27 -27
- brainstate/util/_others.py +1024 -1024
- brainstate/util/_others_test.py +962 -962
- brainstate/util/_pretty_pytree.py +1301 -1301
- brainstate/util/_pretty_pytree_test.py +675 -675
- brainstate/util/_pretty_repr.py +462 -462
- brainstate/util/_pretty_repr_test.py +696 -696
- brainstate/util/filter.py +945 -945
- brainstate/util/filter_test.py +911 -911
- brainstate/util/struct.py +910 -910
- brainstate/util/struct_test.py +602 -602
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/METADATA +108 -108
- brainstate-0.2.2.dist-info/RECORD +111 -0
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/licenses/LICENSE +202 -202
- brainstate/transform/_eval_shape.py +0 -145
- brainstate/transform/_eval_shape_test.py +0 -38
- brainstate/transform/_random.py +0 -171
- brainstate-0.2.1.dist-info/RECORD +0 -111
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/WHEEL +0 -0
- {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/top_level.txt +0 -0
@@ -1,194 +1,104 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
return
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
result_2d = nested_vmap(data_2d)
|
106
|
-
print("Result after nested vmap:", result_2d)
|
107
|
-
|
108
|
-
inner_vmap_bst = brainstate.transform.vmap(nested_computation, axis_name='inner')
|
109
|
-
nested_vmap_bst = brainstate.transform.vmap(inner_vmap_bst, axis_name='outer')
|
110
|
-
result_2d_bst = nested_vmap_bst(data_2d)
|
111
|
-
print("Result after nested vmap:", result_2d_bst)
|
112
|
-
|
113
|
-
assert jnp.allclose(result_2d, result_2d_bst)
|
114
|
-
|
115
|
-
def _gradient_averaging_simulation_bst(self):
|
116
|
-
def loss_function(params, x, y):
|
117
|
-
"""Simple quadratic loss"""
|
118
|
-
pred = params * x
|
119
|
-
return (pred - y) ** 2
|
120
|
-
|
121
|
-
def compute_gradients_with_averaging(params, batch_x, batch_y):
|
122
|
-
"""Compute gradients and average them across the batch"""
|
123
|
-
# Compute per-sample gradients
|
124
|
-
grad_fn = jax.grad(loss_function, argnums=0)
|
125
|
-
per_sample_grads = vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
|
126
|
-
|
127
|
-
# Average gradients across batch using named axis
|
128
|
-
def average_grads(grads):
|
129
|
-
return pmean(grads, axis_name='batch')
|
130
|
-
|
131
|
-
# Apply averaging with named axis
|
132
|
-
averaged_grads = vmap(average_grads, axis_name='batch')(per_sample_grads)
|
133
|
-
return averaged_grads
|
134
|
-
|
135
|
-
# Example data
|
136
|
-
params = 2.0
|
137
|
-
batch_x = jnp.array([1.0, 2.0, 3.0, 4.0])
|
138
|
-
batch_y = jnp.array([2.0, 4.0, 7.0, 8.0])
|
139
|
-
|
140
|
-
print("Parameters:", params)
|
141
|
-
print("Batch X:", batch_x)
|
142
|
-
print("Batch Y:", batch_y)
|
143
|
-
|
144
|
-
# Compute individual gradients first
|
145
|
-
grad_fn = jax.grad(loss_function, argnums=0)
|
146
|
-
individual_grads = vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
|
147
|
-
print("Individual gradients:", individual_grads)
|
148
|
-
|
149
|
-
# Now compute averaged gradients using axis names
|
150
|
-
averaged_grads = compute_gradients_with_averaging(params, batch_x, batch_y)
|
151
|
-
print("Averaged gradients:", averaged_grads)
|
152
|
-
|
153
|
-
return individual_grads, averaged_grads
|
154
|
-
|
155
|
-
def _gradient_averaging_simulation_jax(self):
|
156
|
-
def loss_function(params, x, y):
|
157
|
-
"""Simple quadratic loss"""
|
158
|
-
pred = params * x
|
159
|
-
return (pred - y) ** 2
|
160
|
-
|
161
|
-
def compute_gradients_with_averaging(params, batch_x, batch_y):
|
162
|
-
"""Compute gradients and average them across the batch"""
|
163
|
-
# Compute per-sample gradients
|
164
|
-
grad_fn = jax.grad(loss_function, argnums=0)
|
165
|
-
per_sample_grads = brainstate.transform.vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
|
166
|
-
|
167
|
-
# Average gradients across batch using named axis
|
168
|
-
def average_grads(grads):
|
169
|
-
return pmean(grads, axis_name='batch')
|
170
|
-
|
171
|
-
# Apply averaging with named axis
|
172
|
-
averaged_grads = brainstate.transform.vmap(average_grads, axis_name='batch')(per_sample_grads)
|
173
|
-
return averaged_grads
|
174
|
-
|
175
|
-
# Example data
|
176
|
-
params = 2.0
|
177
|
-
batch_x = jnp.array([1.0, 2.0, 3.0, 4.0])
|
178
|
-
batch_y = jnp.array([2.0, 4.0, 7.0, 8.0])
|
179
|
-
|
180
|
-
print("Parameters:", params)
|
181
|
-
print("Batch X:", batch_x)
|
182
|
-
print("Batch Y:", batch_y)
|
183
|
-
|
184
|
-
# Compute individual gradients first
|
185
|
-
grad_fn = jax.grad(loss_function, argnums=0)
|
186
|
-
individual_grads = brainstate.transform.vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
|
187
|
-
print("Individual gradients:", individual_grads)
|
188
|
-
|
189
|
-
# Now compute averaged gradients using axis names
|
190
|
-
averaged_grads = compute_gradients_with_averaging(params, batch_x, batch_y)
|
191
|
-
print("Averaged gradients:", averaged_grads)
|
192
|
-
|
193
|
-
return individual_grads, averaged_grads
|
194
|
-
|
1
|
+
import unittest
|
2
|
+
|
3
|
+
import jax
|
4
|
+
import jax.numpy as jnp
|
5
|
+
|
6
|
+
import brainstate as bst
|
7
|
+
from brainstate.transform import StatefulMapping, vmap, vmap_new_states, pmap, map as bst_map
|
8
|
+
from brainstate.util import filter as state_filter
|
9
|
+
|
10
|
+
|
11
|
+
class TestMap(unittest.TestCase):
|
12
|
+
def test_map_matches_vectorized(self):
|
13
|
+
xs = jnp.arange(6.0).reshape(6, 1)
|
14
|
+
|
15
|
+
def fn(x):
|
16
|
+
return x + 1.0
|
17
|
+
|
18
|
+
expected = jax.vmap(fn)(xs)
|
19
|
+
result = bst_map(fn, xs)
|
20
|
+
self.assertTrue(jnp.allclose(result, expected))
|
21
|
+
|
22
|
+
def test_map_multiple_inputs_and_batch_size(self):
|
23
|
+
xs = jnp.arange(5.0)
|
24
|
+
ys = jnp.ones_like(xs) * 2.0
|
25
|
+
|
26
|
+
def fn(a, b):
|
27
|
+
return a * a + b
|
28
|
+
|
29
|
+
expected = jax.vmap(fn)(xs, ys)
|
30
|
+
result = bst_map(fn, xs, ys, batch_size=2)
|
31
|
+
self.assertTrue(jnp.allclose(result, expected))
|
32
|
+
|
33
|
+
|
34
|
+
class TestVmapIntegration(unittest.TestCase):
|
35
|
+
def test_decorator_batched_stateful_function(self):
|
36
|
+
counter = bst.ShortTermState(jnp.zeros(3))
|
37
|
+
|
38
|
+
@vmap(
|
39
|
+
in_axes=0,
|
40
|
+
out_axes=0,
|
41
|
+
state_in_axes={0: state_filter.OfType(bst.ShortTermState)},
|
42
|
+
state_out_axes={0: state_filter.OfType(bst.ShortTermState)},
|
43
|
+
)
|
44
|
+
def accumulate(x):
|
45
|
+
counter.value = counter.value + x
|
46
|
+
return counter.value
|
47
|
+
|
48
|
+
xs = jnp.asarray([1.0, 2.0, 3.0])
|
49
|
+
result = accumulate(xs)
|
50
|
+
self.assertTrue(jnp.allclose(result, xs))
|
51
|
+
self.assertTrue(jnp.allclose(counter.value, xs))
|
52
|
+
|
53
|
+
def test_vmap_partial_returns_stateful_mapping(self):
|
54
|
+
builder = vmap(in_axes=0, out_axes=0)
|
55
|
+
|
56
|
+
def fn(x):
|
57
|
+
return x * 2.0
|
58
|
+
|
59
|
+
mapped = builder(fn)
|
60
|
+
self.assertIsInstance(mapped, StatefulMapping)
|
61
|
+
xs = jnp.arange(3.0)
|
62
|
+
self.assertTrue(jnp.allclose(mapped(xs), xs * 2.0))
|
63
|
+
|
64
|
+
|
65
|
+
class TestVmapNewStates(unittest.TestCase):
|
66
|
+
def test_new_states_are_vectorized(self):
|
67
|
+
@vmap_new_states(in_axes=0, out_axes=0)
|
68
|
+
def build(x):
|
69
|
+
scratch = bst.ShortTermState(jnp.array(0.0), tag='scratch')
|
70
|
+
scratch.value = scratch.value + x
|
71
|
+
return scratch.value
|
72
|
+
|
73
|
+
xs = jnp.arange(4.0)
|
74
|
+
result_first = build(xs)
|
75
|
+
result_second = build(xs)
|
76
|
+
self.assertTrue(jnp.allclose(result_first, xs))
|
77
|
+
self.assertTrue(jnp.allclose(result_second, xs))
|
78
|
+
|
79
|
+
|
80
|
+
class TestPmapIntegration(unittest.TestCase):
|
81
|
+
@unittest.skipIf(jax.local_device_count() < 2, "Requires at least 2 devices")
|
82
|
+
def test_pmap_stateful_execution(self):
|
83
|
+
param = bst.ParamState(jnp.ones((4,)))
|
84
|
+
|
85
|
+
@pmap(
|
86
|
+
in_axes=0,
|
87
|
+
out_axes=0,
|
88
|
+
axis_name='devices',
|
89
|
+
state_in_axes={0: state_filter.OfType(bst.ParamState)},
|
90
|
+
state_out_axes={0: state_filter.OfType(bst.ParamState)},
|
91
|
+
)
|
92
|
+
def update(delta):
|
93
|
+
param.value = param.value + delta
|
94
|
+
return param.value
|
95
|
+
|
96
|
+
device_count = jax.local_device_count()
|
97
|
+
deltas = jnp.arange(device_count * 4.0, dtype=param.value.dtype).reshape(device_count, 4)
|
98
|
+
updated = update(deltas)
|
99
|
+
self.assertEqual(updated.shape, (device_count, 4))
|
100
|
+
self.assertTrue(jnp.all(updated >= 1.0))
|
101
|
+
|
102
|
+
|
103
|
+
if __name__ == "__main__":
|
104
|
+
unittest.main()
|