brainstate 0.2.1__py2.py3-none-any.whl → 0.2.2__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. brainstate/__init__.py +167 -169
  2. brainstate/_compatible_import.py +340 -340
  3. brainstate/_compatible_import_test.py +681 -681
  4. brainstate/_deprecation.py +210 -210
  5. brainstate/_deprecation_test.py +2297 -2319
  6. brainstate/_error.py +45 -45
  7. brainstate/_state.py +2157 -1652
  8. brainstate/_state_test.py +1129 -52
  9. brainstate/_utils.py +47 -47
  10. brainstate/environ.py +1495 -1495
  11. brainstate/environ_test.py +1223 -1223
  12. brainstate/graph/__init__.py +22 -22
  13. brainstate/graph/_node.py +240 -240
  14. brainstate/graph/_node_test.py +589 -589
  15. brainstate/graph/_operation.py +1620 -1624
  16. brainstate/graph/_operation_test.py +1147 -1147
  17. brainstate/mixin.py +1447 -1433
  18. brainstate/mixin_test.py +1017 -1017
  19. brainstate/nn/__init__.py +146 -137
  20. brainstate/nn/_activations.py +1100 -1100
  21. brainstate/nn/_activations_test.py +354 -354
  22. brainstate/nn/_collective_ops.py +635 -633
  23. brainstate/nn/_collective_ops_test.py +774 -774
  24. brainstate/nn/_common.py +226 -226
  25. brainstate/nn/_common_test.py +134 -154
  26. brainstate/nn/_conv.py +2010 -2010
  27. brainstate/nn/_conv_test.py +849 -849
  28. brainstate/nn/_delay.py +575 -575
  29. brainstate/nn/_delay_test.py +243 -243
  30. brainstate/nn/_dropout.py +618 -618
  31. brainstate/nn/_dropout_test.py +480 -477
  32. brainstate/nn/_dynamics.py +870 -1267
  33. brainstate/nn/_dynamics_test.py +53 -67
  34. brainstate/nn/_elementwise.py +1298 -1298
  35. brainstate/nn/_elementwise_test.py +829 -829
  36. brainstate/nn/_embedding.py +408 -408
  37. brainstate/nn/_embedding_test.py +156 -156
  38. brainstate/nn/_event_fixedprob.py +233 -233
  39. brainstate/nn/_event_fixedprob_test.py +115 -115
  40. brainstate/nn/_event_linear.py +83 -83
  41. brainstate/nn/_event_linear_test.py +121 -121
  42. brainstate/nn/_exp_euler.py +254 -254
  43. brainstate/nn/_exp_euler_test.py +377 -377
  44. brainstate/nn/_linear.py +744 -744
  45. brainstate/nn/_linear_test.py +475 -475
  46. brainstate/nn/_metrics.py +1070 -1070
  47. brainstate/nn/_metrics_test.py +611 -611
  48. brainstate/nn/_module.py +391 -384
  49. brainstate/nn/_module_test.py +40 -40
  50. brainstate/nn/_normalizations.py +1334 -1334
  51. brainstate/nn/_normalizations_test.py +699 -699
  52. brainstate/nn/_paddings.py +1020 -1020
  53. brainstate/nn/_paddings_test.py +722 -722
  54. brainstate/nn/_poolings.py +2239 -2239
  55. brainstate/nn/_poolings_test.py +952 -952
  56. brainstate/nn/_rnns.py +946 -946
  57. brainstate/nn/_rnns_test.py +592 -592
  58. brainstate/nn/_utils.py +216 -216
  59. brainstate/nn/_utils_test.py +401 -401
  60. brainstate/nn/init.py +809 -809
  61. brainstate/nn/init_test.py +180 -180
  62. brainstate/random/__init__.py +270 -270
  63. brainstate/random/{_rand_funs.py → _fun.py} +3938 -3938
  64. brainstate/random/{_rand_funs_test.py → _fun_test.py} +638 -640
  65. brainstate/random/_impl.py +672 -0
  66. brainstate/random/{_rand_seed.py → _seed.py} +675 -675
  67. brainstate/random/{_rand_seed_test.py → _seed_test.py} +48 -48
  68. brainstate/random/{_rand_state.py → _state.py} +1320 -1617
  69. brainstate/random/{_rand_state_test.py → _state_test.py} +551 -551
  70. brainstate/transform/__init__.py +56 -59
  71. brainstate/transform/_ad_checkpoint.py +176 -176
  72. brainstate/transform/_ad_checkpoint_test.py +49 -49
  73. brainstate/transform/_autograd.py +1025 -1025
  74. brainstate/transform/_autograd_test.py +1289 -1289
  75. brainstate/transform/_conditions.py +316 -316
  76. brainstate/transform/_conditions_test.py +220 -220
  77. brainstate/transform/_error_if.py +94 -94
  78. brainstate/transform/_error_if_test.py +52 -52
  79. brainstate/transform/_find_state.py +200 -0
  80. brainstate/transform/_find_state_test.py +84 -0
  81. brainstate/transform/_jit.py +399 -399
  82. brainstate/transform/_jit_test.py +143 -143
  83. brainstate/transform/_loop_collect_return.py +675 -675
  84. brainstate/transform/_loop_collect_return_test.py +58 -58
  85. brainstate/transform/_loop_no_collection.py +283 -283
  86. brainstate/transform/_loop_no_collection_test.py +50 -50
  87. brainstate/transform/_make_jaxpr.py +2176 -2016
  88. brainstate/transform/_make_jaxpr_test.py +1634 -1510
  89. brainstate/transform/_mapping.py +607 -529
  90. brainstate/transform/_mapping_test.py +104 -194
  91. brainstate/transform/_progress_bar.py +255 -255
  92. brainstate/transform/_unvmap.py +256 -256
  93. brainstate/transform/_util.py +286 -286
  94. brainstate/typing.py +837 -837
  95. brainstate/typing_test.py +780 -780
  96. brainstate/util/__init__.py +27 -27
  97. brainstate/util/_others.py +1024 -1024
  98. brainstate/util/_others_test.py +962 -962
  99. brainstate/util/_pretty_pytree.py +1301 -1301
  100. brainstate/util/_pretty_pytree_test.py +675 -675
  101. brainstate/util/_pretty_repr.py +462 -462
  102. brainstate/util/_pretty_repr_test.py +696 -696
  103. brainstate/util/filter.py +945 -945
  104. brainstate/util/filter_test.py +911 -911
  105. brainstate/util/struct.py +910 -910
  106. brainstate/util/struct_test.py +602 -602
  107. {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/METADATA +108 -108
  108. brainstate-0.2.2.dist-info/RECORD +111 -0
  109. {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/licenses/LICENSE +202 -202
  110. brainstate/transform/_eval_shape.py +0 -145
  111. brainstate/transform/_eval_shape_test.py +0 -38
  112. brainstate/transform/_random.py +0 -171
  113. brainstate-0.2.1.dist-info/RECORD +0 -111
  114. {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/WHEEL +0 -0
  115. {brainstate-0.2.1.dist-info → brainstate-0.2.2.dist-info}/top_level.txt +0 -0
@@ -1,115 +1,115 @@
1
- # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import jax.numpy
18
- import jax.numpy as jnp
19
- import pytest
20
-
21
- import brainstate
22
- import braintools
23
-
24
-
25
- class TestFixedProbCSR:
26
- @pytest.mark.parametrize('allow_multi_conn', [True, False, ])
27
- def test1(self, allow_multi_conn):
28
- x = brainstate.random.rand(20) < 0.1
29
- # x = brainstate.random.rand(20)
30
- m = brainstate.nn.EventFixedProb(20, 40, 0.1, 1.0, seed=123, allow_multi_conn=allow_multi_conn)
31
- y = m(x)
32
- print(y)
33
-
34
- m2 = brainstate.nn.EventFixedProb(20, 40, 0.1, braintools.init.KaimingUniform(), seed=123)
35
- print(m2(x))
36
-
37
- def test_grad_bool(self):
38
- n_in = 20
39
- n_out = 30
40
- x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
41
- fn = brainstate.nn.EventFixedProb(n_in, n_out, 0.1, braintools.init.KaimingUniform(), seed=123)
42
-
43
- def f(x):
44
- return fn(x).sum()
45
-
46
- print(jax.grad(f)(x))
47
-
48
- @pytest.mark.parametrize('homo_w', [True, False])
49
- def test_vjp(self, homo_w):
50
- n_in = 20
51
- n_out = 30
52
- x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
53
-
54
- if homo_w:
55
- fn = brainstate.nn.EventFixedProb(n_in, n_out, 0.1, 1.5, seed=123)
56
- else:
57
- fn = brainstate.nn.EventFixedProb(n_in, n_out, 0.1, braintools.init.KaimingUniform(), seed=123)
58
- w = fn.weight.value
59
-
60
- def f(x, w):
61
- fn.weight.value = w
62
- return fn(x).sum()
63
-
64
- r = brainstate.augment.grad(f, argnums=(0, 1))(x, w)
65
-
66
- # -------------------
67
- # TRUE gradients
68
-
69
- def true_fn(x, w, indices, n_post):
70
- post = jnp.zeros((n_post,))
71
- for i in range(n_in):
72
- post = post.at[indices[i]].add(w * x[i] if homo_w else w[i] * x[i])
73
- return post
74
-
75
- def f2(x, w):
76
- return true_fn(x, w, fn.conn.indices, n_out).sum()
77
-
78
- r2 = jax.grad(f2, argnums=(0, 1))(x, w)
79
- assert (jnp.allclose(r[0], r2[0]))
80
- assert (jnp.allclose(r[1], r2[1]))
81
-
82
- @pytest.mark.parametrize('homo_w', [True, False])
83
- def test_jvp(self, homo_w):
84
- n_in = 20
85
- n_out = 30
86
- x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
87
-
88
- fn = brainstate.nn.EventFixedProb(
89
- n_in, n_out, 0.1, 1.5 if homo_w else braintools.init.KaimingUniform(),
90
- seed=123,
91
- )
92
- w = fn.weight.value
93
-
94
- def f(x, w):
95
- fn.weight.value = w
96
- return fn(x)
97
-
98
- o1, r1 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
99
-
100
- # -------------------
101
- # TRUE gradients
102
-
103
- def true_fn(x, w, indices, n_post):
104
- post = jnp.zeros((n_post,))
105
- for i in range(n_in):
106
- post = post.at[indices[i]].add(w * x[i] if homo_w else w[i] * x[i])
107
- return post
108
-
109
- def f2(x, w):
110
- return true_fn(x, w, fn.conn.indices, n_out)
111
-
112
- o2, r2 = jax.jvp(f2, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
113
- assert (jnp.allclose(o1, o2))
114
- # assert jnp.allclose(r1, r2), f'r1={r1}, r2={r2}'
115
- assert (jnp.allclose(r1, r2, rtol=1e-4, atol=1e-4))
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import jax.numpy
18
+ import jax.numpy as jnp
19
+ import pytest
20
+
21
+ import brainstate
22
+ import braintools
23
+
24
+
25
+ class TestFixedProbCSR:
26
+ @pytest.mark.parametrize('allow_multi_conn', [True, False, ])
27
+ def test1(self, allow_multi_conn):
28
+ x = brainstate.random.rand(20) < 0.1
29
+ # x = brainstate.random.rand(20)
30
+ m = brainstate.nn.EventFixedProb(20, 40, 0.1, 1.0, seed=123, allow_multi_conn=allow_multi_conn)
31
+ y = m(x)
32
+ print(y)
33
+
34
+ m2 = brainstate.nn.EventFixedProb(20, 40, 0.1, braintools.init.KaimingUniform(), seed=123)
35
+ print(m2(x))
36
+
37
+ def test_grad_bool(self):
38
+ n_in = 20
39
+ n_out = 30
40
+ x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
41
+ fn = brainstate.nn.EventFixedProb(n_in, n_out, 0.1, braintools.init.KaimingUniform(), seed=123)
42
+
43
+ def f(x):
44
+ return fn(x).sum()
45
+
46
+ print(jax.grad(f)(x))
47
+
48
+ @pytest.mark.parametrize('homo_w', [True, False])
49
+ def test_vjp(self, homo_w):
50
+ n_in = 20
51
+ n_out = 30
52
+ x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
53
+
54
+ if homo_w:
55
+ fn = brainstate.nn.EventFixedProb(n_in, n_out, 0.1, 1.5, seed=123)
56
+ else:
57
+ fn = brainstate.nn.EventFixedProb(n_in, n_out, 0.1, braintools.init.KaimingUniform(), seed=123)
58
+ w = fn.weight.value
59
+
60
+ def f(x, w):
61
+ fn.weight.value = w
62
+ return fn(x).sum()
63
+
64
+ r = brainstate.augment.grad(f, argnums=(0, 1))(x, w)
65
+
66
+ # -------------------
67
+ # TRUE gradients
68
+
69
+ def true_fn(x, w, indices, n_post):
70
+ post = jnp.zeros((n_post,))
71
+ for i in range(n_in):
72
+ post = post.at[indices[i]].add(w * x[i] if homo_w else w[i] * x[i])
73
+ return post
74
+
75
+ def f2(x, w):
76
+ return true_fn(x, w, fn.conn.indices, n_out).sum()
77
+
78
+ r2 = jax.grad(f2, argnums=(0, 1))(x, w)
79
+ assert (jnp.allclose(r[0], r2[0]))
80
+ assert (jnp.allclose(r[1], r2[1]))
81
+
82
+ @pytest.mark.parametrize('homo_w', [True, False])
83
+ def test_jvp(self, homo_w):
84
+ n_in = 20
85
+ n_out = 30
86
+ x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
87
+
88
+ fn = brainstate.nn.EventFixedProb(
89
+ n_in, n_out, 0.1, 1.5 if homo_w else braintools.init.KaimingUniform(),
90
+ seed=123,
91
+ )
92
+ w = fn.weight.value
93
+
94
+ def f(x, w):
95
+ fn.weight.value = w
96
+ return fn(x)
97
+
98
+ o1, r1 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
99
+
100
+ # -------------------
101
+ # TRUE gradients
102
+
103
+ def true_fn(x, w, indices, n_post):
104
+ post = jnp.zeros((n_post,))
105
+ for i in range(n_in):
106
+ post = post.at[indices[i]].add(w * x[i] if homo_w else w[i] * x[i])
107
+ return post
108
+
109
+ def f2(x, w):
110
+ return true_fn(x, w, fn.conn.indices, n_out)
111
+
112
+ o2, r2 = jax.jvp(f2, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
113
+ assert (jnp.allclose(o1, o2))
114
+ # assert jnp.allclose(r1, r2), f'r1={r1}, r2={r2}'
115
+ assert (jnp.allclose(r1, r2, rtol=1e-4, atol=1e-4))
@@ -1,83 +1,83 @@
1
- # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from typing import Union, Callable, Optional
17
-
18
- import brainevent
19
- import brainunit as u
20
- import jax
21
-
22
- from brainstate._state import ParamState
23
- from brainstate.typing import Size, ArrayLike
24
- from . import init as init
25
- from ._module import Module
26
-
27
- __all__ = [
28
- 'EventLinear',
29
- ]
30
-
31
-
32
- class EventLinear(Module):
33
- """
34
-
35
- Parameters
36
- ----------
37
- in_size : Size
38
- Number of pre-synaptic neurons, i.e., input size.
39
- out_size : Size
40
- Number of post-synaptic neurons, i.e., output size.
41
- weight : float or callable or jax.Array or brainunit.Quantity
42
- Maximum synaptic conductance.
43
- block_size : int, optional
44
- Block size for parallel computation.
45
- float_as_event : bool, optional
46
- Whether to treat float as event.
47
- name : str, optional
48
- Name of the module.
49
- """
50
-
51
- __module__ = 'brainstate.nn'
52
-
53
- def __init__(
54
- self,
55
- in_size: Size,
56
- out_size: Size,
57
- weight: Union[Callable, ArrayLike],
58
- float_as_event: bool = True,
59
- block_size: int = 64,
60
- name: Optional[str] = None,
61
- param_type: type = ParamState,
62
- ):
63
- super().__init__(name=name)
64
-
65
- # network parameters
66
- self.in_size = in_size
67
- self.out_size = out_size
68
- self.float_as_event = float_as_event
69
- self.block_size = block_size
70
-
71
- # maximum synaptic conductance
72
- weight = init.param(weight, (self.in_size[-1], self.out_size[-1]), allow_none=False)
73
- self.weight = param_type(weight)
74
-
75
- def update(self, spk: jax.Array) -> Union[jax.Array, u.Quantity]:
76
- weight = self.weight.value
77
- if u.math.size(weight) == 1:
78
- return u.math.ones(self.out_size) * (u.math.sum(spk) * weight)
79
-
80
- if self.float_as_event:
81
- return brainevent.EventArray(spk) @ weight
82
- else:
83
- return spk @ weight
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import Union, Callable, Optional
17
+
18
+ import brainevent
19
+ import brainunit as u
20
+ import jax
21
+
22
+ from brainstate._state import ParamState
23
+ from brainstate.typing import Size, ArrayLike
24
+ from . import init as init
25
+ from ._module import Module
26
+
27
+ __all__ = [
28
+ 'EventLinear',
29
+ ]
30
+
31
+
32
+ class EventLinear(Module):
33
+ """
34
+
35
+ Parameters
36
+ ----------
37
+ in_size : Size
38
+ Number of pre-synaptic neurons, i.e., input size.
39
+ out_size : Size
40
+ Number of post-synaptic neurons, i.e., output size.
41
+ weight : float or callable or jax.Array or brainunit.Quantity
42
+ Maximum synaptic conductance.
43
+ block_size : int, optional
44
+ Block size for parallel computation.
45
+ float_as_event : bool, optional
46
+ Whether to treat float as event.
47
+ name : str, optional
48
+ Name of the module.
49
+ """
50
+
51
+ __module__ = 'brainstate.nn'
52
+
53
+ def __init__(
54
+ self,
55
+ in_size: Size,
56
+ out_size: Size,
57
+ weight: Union[Callable, ArrayLike],
58
+ float_as_event: bool = True,
59
+ block_size: int = 64,
60
+ name: Optional[str] = None,
61
+ param_type: type = ParamState,
62
+ ):
63
+ super().__init__(name=name)
64
+
65
+ # network parameters
66
+ self.in_size = in_size
67
+ self.out_size = out_size
68
+ self.float_as_event = float_as_event
69
+ self.block_size = block_size
70
+
71
+ # maximum synaptic conductance
72
+ weight = init.param(weight, (self.in_size[-1], self.out_size[-1]), allow_none=False)
73
+ self.weight = param_type(weight)
74
+
75
+ def update(self, spk: jax.Array) -> Union[jax.Array, u.Quantity]:
76
+ weight = self.weight.value
77
+ if u.math.size(weight) == 1:
78
+ return u.math.ones(self.out_size) * (u.math.sum(spk) * weight)
79
+
80
+ if self.float_as_event:
81
+ return brainevent.EventArray(spk) @ weight
82
+ else:
83
+ return spk @ weight
@@ -1,121 +1,121 @@
1
- # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import jax
18
- import jax.numpy as jnp
19
- import pytest
20
-
21
- import braintools
22
- import brainstate
23
-
24
-
25
- class TestEventLinear:
26
- @pytest.mark.parametrize('bool_x', [True, False])
27
- @pytest.mark.parametrize('homo_w', [True, False])
28
- def test1(self, homo_w, bool_x):
29
- x = brainstate.random.rand(20) < 0.1
30
- if not bool_x:
31
- x = jnp.asarray(x, dtype=float)
32
- m = brainstate.nn.EventLinear(
33
- 20, 40,
34
- 1.5 if homo_w else braintools.init.KaimingUniform(),
35
- float_as_event=bool_x
36
- )
37
- y = m(x)
38
- print(y)
39
-
40
- assert (jnp.allclose(y, (x.sum() * m.weight.value) if homo_w else (x @ m.weight.value)))
41
-
42
- def test_grad_bool(self):
43
- n_in = 20
44
- n_out = 30
45
- x = brainstate.random.rand(n_in) < 0.3
46
- fn = brainstate.nn.EventLinear(n_in, n_out, braintools.init.KaimingUniform())
47
-
48
- with pytest.raises(TypeError):
49
- print(jax.grad(lambda x: fn(x).sum())(x))
50
-
51
- @pytest.mark.parametrize('bool_x', [True, False])
52
- @pytest.mark.parametrize('homo_w', [True, False])
53
- def test_vjp(self, bool_x, homo_w):
54
- n_in = 20
55
- n_out = 30
56
- if bool_x:
57
- x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
58
- else:
59
- x = brainstate.random.rand(n_in)
60
-
61
- fn = brainstate.nn.EventLinear(
62
- n_in,
63
- n_out,
64
- 1.5 if homo_w else braintools.init.KaimingUniform(),
65
- float_as_event=bool_x
66
- )
67
- w = fn.weight.value
68
-
69
- def f(x, w):
70
- fn.weight.value = w
71
- return fn(x).sum()
72
-
73
- r1 = jax.grad(f, argnums=(0, 1))(x, w)
74
-
75
- # -------------------
76
- # TRUE gradients
77
-
78
- def f2(x, w):
79
- y = (x @ (jnp.ones([n_in, n_out]) * w)) if homo_w else (x @ w)
80
- return y.sum()
81
-
82
- r2 = jax.grad(f2, argnums=(0, 1))(x, w)
83
- assert (jnp.allclose(r1[0], r2[0]))
84
-
85
- if not jnp.allclose(r1[1], r2[1]):
86
- print(r1[1] - r2[1])
87
-
88
- assert (jnp.allclose(r1[1], r2[1]))
89
-
90
- @pytest.mark.parametrize('bool_x', [True, False])
91
- @pytest.mark.parametrize('homo_w', [True, False])
92
- def test_jvp(self, bool_x, homo_w):
93
- n_in = 20
94
- n_out = 30
95
- if bool_x:
96
- x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
97
- else:
98
- x = brainstate.random.rand(n_in)
99
-
100
- fn = brainstate.nn.EventLinear(
101
- n_in, n_out, 1.5 if homo_w else braintools.init.KaimingUniform(),
102
- float_as_event=bool_x
103
- )
104
- w = fn.weight.value
105
-
106
- def f(x, w):
107
- fn.weight.value = w
108
- return fn(x)
109
-
110
- o1, r1 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
111
-
112
- # -------------------
113
- # TRUE gradients
114
-
115
- def f2(x, w):
116
- y = (x @ (jnp.ones([n_in, n_out]) * w)) if homo_w else (x @ w)
117
- return y
118
-
119
- o2, r2 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
120
- assert (jnp.allclose(o1, o2))
121
- assert (jnp.allclose(r1, r2))
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import jax
18
+ import jax.numpy as jnp
19
+ import pytest
20
+
21
+ import braintools
22
+ import brainstate
23
+
24
+
25
+ class TestEventLinear:
26
+ @pytest.mark.parametrize('bool_x', [True, False])
27
+ @pytest.mark.parametrize('homo_w', [True, False])
28
+ def test1(self, homo_w, bool_x):
29
+ x = brainstate.random.rand(20) < 0.1
30
+ if not bool_x:
31
+ x = jnp.asarray(x, dtype=float)
32
+ m = brainstate.nn.EventLinear(
33
+ 20, 40,
34
+ 1.5 if homo_w else braintools.init.KaimingUniform(),
35
+ float_as_event=bool_x
36
+ )
37
+ y = m(x)
38
+ print(y)
39
+
40
+ assert (jnp.allclose(y, (x.sum() * m.weight.value) if homo_w else (x @ m.weight.value)))
41
+
42
+ def test_grad_bool(self):
43
+ n_in = 20
44
+ n_out = 30
45
+ x = brainstate.random.rand(n_in) < 0.3
46
+ fn = brainstate.nn.EventLinear(n_in, n_out, braintools.init.KaimingUniform())
47
+
48
+ with pytest.raises(TypeError):
49
+ print(jax.grad(lambda x: fn(x).sum())(x))
50
+
51
+ @pytest.mark.parametrize('bool_x', [True, False])
52
+ @pytest.mark.parametrize('homo_w', [True, False])
53
+ def test_vjp(self, bool_x, homo_w):
54
+ n_in = 20
55
+ n_out = 30
56
+ if bool_x:
57
+ x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
58
+ else:
59
+ x = brainstate.random.rand(n_in)
60
+
61
+ fn = brainstate.nn.EventLinear(
62
+ n_in,
63
+ n_out,
64
+ 1.5 if homo_w else braintools.init.KaimingUniform(),
65
+ float_as_event=bool_x
66
+ )
67
+ w = fn.weight.value
68
+
69
+ def f(x, w):
70
+ fn.weight.value = w
71
+ return fn(x).sum()
72
+
73
+ r1 = jax.grad(f, argnums=(0, 1))(x, w)
74
+
75
+ # -------------------
76
+ # TRUE gradients
77
+
78
+ def f2(x, w):
79
+ y = (x @ (jnp.ones([n_in, n_out]) * w)) if homo_w else (x @ w)
80
+ return y.sum()
81
+
82
+ r2 = jax.grad(f2, argnums=(0, 1))(x, w)
83
+ assert (jnp.allclose(r1[0], r2[0]))
84
+
85
+ if not jnp.allclose(r1[1], r2[1]):
86
+ print(r1[1] - r2[1])
87
+
88
+ assert (jnp.allclose(r1[1], r2[1]))
89
+
90
+ @pytest.mark.parametrize('bool_x', [True, False])
91
+ @pytest.mark.parametrize('homo_w', [True, False])
92
+ def test_jvp(self, bool_x, homo_w):
93
+ n_in = 20
94
+ n_out = 30
95
+ if bool_x:
96
+ x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
97
+ else:
98
+ x = brainstate.random.rand(n_in)
99
+
100
+ fn = brainstate.nn.EventLinear(
101
+ n_in, n_out, 1.5 if homo_w else braintools.init.KaimingUniform(),
102
+ float_as_event=bool_x
103
+ )
104
+ w = fn.weight.value
105
+
106
+ def f(x, w):
107
+ fn.weight.value = w
108
+ return fn(x)
109
+
110
+ o1, r1 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
111
+
112
+ # -------------------
113
+ # TRUE gradients
114
+
115
+ def f2(x, w):
116
+ y = (x @ (jnp.ones([n_in, n_out]) * w)) if homo_w else (x @ w)
117
+ return y
118
+
119
+ o2, r2 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
120
+ assert (jnp.allclose(o1, o2))
121
+ assert (jnp.allclose(r1, r2))