brainstate 0.2.0__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (112) hide show
  1. brainstate/__init__.py +169 -169
  2. brainstate/_compatible_import.py +340 -340
  3. brainstate/_compatible_import_test.py +681 -681
  4. brainstate/_deprecation.py +210 -210
  5. brainstate/_deprecation_test.py +2319 -2319
  6. brainstate/_error.py +45 -45
  7. brainstate/_state.py +1652 -1652
  8. brainstate/_state_test.py +52 -52
  9. brainstate/_utils.py +47 -47
  10. brainstate/environ.py +1495 -1495
  11. brainstate/environ_test.py +1223 -1223
  12. brainstate/graph/__init__.py +22 -22
  13. brainstate/graph/_node.py +240 -240
  14. brainstate/graph/_node_test.py +589 -589
  15. brainstate/graph/_operation.py +1624 -1624
  16. brainstate/graph/_operation_test.py +1147 -1147
  17. brainstate/mixin.py +1433 -1433
  18. brainstate/mixin_test.py +1017 -1017
  19. brainstate/nn/__init__.py +137 -137
  20. brainstate/nn/_activations.py +1100 -1100
  21. brainstate/nn/_activations_test.py +354 -354
  22. brainstate/nn/_collective_ops.py +633 -633
  23. brainstate/nn/_collective_ops_test.py +774 -774
  24. brainstate/nn/_common.py +226 -226
  25. brainstate/nn/_common_test.py +154 -154
  26. brainstate/nn/_conv.py +2010 -2010
  27. brainstate/nn/_conv_test.py +849 -849
  28. brainstate/nn/_delay.py +575 -575
  29. brainstate/nn/_delay_test.py +243 -243
  30. brainstate/nn/_dropout.py +618 -618
  31. brainstate/nn/_dropout_test.py +477 -477
  32. brainstate/nn/_dynamics.py +1267 -1267
  33. brainstate/nn/_dynamics_test.py +67 -67
  34. brainstate/nn/_elementwise.py +1298 -1298
  35. brainstate/nn/_elementwise_test.py +829 -829
  36. brainstate/nn/_embedding.py +408 -408
  37. brainstate/nn/_embedding_test.py +156 -156
  38. brainstate/nn/_event_fixedprob.py +233 -233
  39. brainstate/nn/_event_fixedprob_test.py +115 -115
  40. brainstate/nn/_event_linear.py +83 -83
  41. brainstate/nn/_event_linear_test.py +121 -121
  42. brainstate/nn/_exp_euler.py +254 -254
  43. brainstate/nn/_exp_euler_test.py +377 -377
  44. brainstate/nn/_linear.py +744 -744
  45. brainstate/nn/_linear_test.py +475 -475
  46. brainstate/nn/_metrics.py +1070 -1070
  47. brainstate/nn/_metrics_test.py +611 -611
  48. brainstate/nn/_module.py +384 -384
  49. brainstate/nn/_module_test.py +40 -40
  50. brainstate/nn/_normalizations.py +1334 -1334
  51. brainstate/nn/_normalizations_test.py +699 -699
  52. brainstate/nn/_paddings.py +1020 -1020
  53. brainstate/nn/_paddings_test.py +722 -722
  54. brainstate/nn/_poolings.py +2239 -2239
  55. brainstate/nn/_poolings_test.py +952 -952
  56. brainstate/nn/_rnns.py +946 -946
  57. brainstate/nn/_rnns_test.py +592 -592
  58. brainstate/nn/_utils.py +216 -216
  59. brainstate/nn/_utils_test.py +401 -401
  60. brainstate/nn/init.py +809 -809
  61. brainstate/nn/init_test.py +180 -180
  62. brainstate/random/__init__.py +270 -270
  63. brainstate/random/_rand_funs.py +3938 -3938
  64. brainstate/random/_rand_funs_test.py +640 -640
  65. brainstate/random/_rand_seed.py +675 -675
  66. brainstate/random/_rand_seed_test.py +48 -48
  67. brainstate/random/_rand_state.py +1617 -1617
  68. brainstate/random/_rand_state_test.py +551 -551
  69. brainstate/transform/__init__.py +59 -59
  70. brainstate/transform/_ad_checkpoint.py +176 -176
  71. brainstate/transform/_ad_checkpoint_test.py +49 -49
  72. brainstate/transform/_autograd.py +1025 -1025
  73. brainstate/transform/_autograd_test.py +1289 -1289
  74. brainstate/transform/_conditions.py +316 -316
  75. brainstate/transform/_conditions_test.py +220 -220
  76. brainstate/transform/_error_if.py +94 -94
  77. brainstate/transform/_error_if_test.py +52 -52
  78. brainstate/transform/_eval_shape.py +145 -145
  79. brainstate/transform/_eval_shape_test.py +38 -38
  80. brainstate/transform/_jit.py +399 -399
  81. brainstate/transform/_jit_test.py +143 -143
  82. brainstate/transform/_loop_collect_return.py +675 -675
  83. brainstate/transform/_loop_collect_return_test.py +58 -58
  84. brainstate/transform/_loop_no_collection.py +283 -283
  85. brainstate/transform/_loop_no_collection_test.py +50 -50
  86. brainstate/transform/_make_jaxpr.py +2016 -2016
  87. brainstate/transform/_make_jaxpr_test.py +1510 -1510
  88. brainstate/transform/_mapping.py +529 -529
  89. brainstate/transform/_mapping_test.py +194 -194
  90. brainstate/transform/_progress_bar.py +255 -255
  91. brainstate/transform/_random.py +171 -171
  92. brainstate/transform/_unvmap.py +256 -256
  93. brainstate/transform/_util.py +286 -286
  94. brainstate/typing.py +837 -837
  95. brainstate/typing_test.py +780 -780
  96. brainstate/util/__init__.py +27 -27
  97. brainstate/util/_others.py +1024 -1024
  98. brainstate/util/_others_test.py +962 -962
  99. brainstate/util/_pretty_pytree.py +1301 -1301
  100. brainstate/util/_pretty_pytree_test.py +675 -675
  101. brainstate/util/_pretty_repr.py +462 -462
  102. brainstate/util/_pretty_repr_test.py +696 -696
  103. brainstate/util/filter.py +945 -945
  104. brainstate/util/filter_test.py +911 -911
  105. brainstate/util/struct.py +910 -910
  106. brainstate/util/struct_test.py +602 -602
  107. {brainstate-0.2.0.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -108
  108. brainstate-0.2.1.dist-info/RECORD +111 -0
  109. {brainstate-0.2.0.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
  110. brainstate-0.2.0.dist-info/RECORD +0 -111
  111. {brainstate-0.2.0.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
  112. {brainstate-0.2.0.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
@@ -1,640 +1,640 @@
1
- # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import platform
18
- import unittest
19
-
20
- import jax.numpy as jnp
21
- import jax.random as jr
22
- import numpy as np
23
- import pytest
24
-
25
- import brainstate
26
-
27
-
28
- class TestRandomExamples(unittest.TestCase):
29
- """Test cases that demonstrate usage examples from docstrings."""
30
-
31
- def test_rand_examples(self):
32
- """Test examples from rand function docstring."""
33
- # Generate random values in a 3x2 array
34
- arr = brainstate.random.rand(3, 2)
35
- self.assertEqual(arr.shape, (3, 2))
36
- self.assertTrue((arr >= 0).all() and (arr < 1).all())
37
-
38
- def test_randint_examples(self):
39
- """Test examples from randint function docstring."""
40
- # Generate 10 random integers from 0 to 1 (exclusive)
41
- arr = brainstate.random.randint(2, size=10)
42
- self.assertEqual(arr.shape, (10,))
43
- self.assertTrue((arr >= 0).all() and (arr < 2).all())
44
-
45
- # Generate a 2x4 array of integers from 0 to 4 (exclusive)
46
- arr = brainstate.random.randint(5, size=(2, 4))
47
- self.assertEqual(arr.shape, (2, 4))
48
- self.assertTrue((arr >= 0).all() and (arr < 5).all())
49
-
50
- # Generate integers with different upper bounds using broadcasting
51
- arr = brainstate.random.randint(1, [3, 5, 10])
52
- self.assertEqual(arr.shape, (3,))
53
-
54
- # Generate integers with different lower bounds
55
- arr = brainstate.random.randint([1, 5, 7], 10)
56
- self.assertEqual(arr.shape, (3,))
57
- self.assertTrue((arr >= jnp.array([1, 5, 7])).all())
58
-
59
- def test_randn_examples(self):
60
- """Test examples from randn function docstring."""
61
- # Generate standard normal distributed values
62
- arr = brainstate.random.randn(3, 2)
63
- self.assertEqual(arr.shape, (3, 2))
64
-
65
- def test_choice_examples(self):
66
- """Test examples from choice function docstring."""
67
- # Choose from range
68
- result = brainstate.random.choice(5)
69
- self.assertTrue(0 <= result < 5)
70
-
71
- # Choose multiple with probabilities
72
- arr = brainstate.random.choice(5, 3, p=[0.1, 0.4, 0.2, 0.0, 0.3])
73
- self.assertEqual(arr.shape, (3,))
74
- self.assertTrue((arr >= 0).all() and (arr < 5).all())
75
-
76
- def test_normal_examples(self):
77
- """Test examples from normal function docstring."""
78
- # Standard normal
79
- result = brainstate.random.normal()
80
- self.assertEqual(result.shape, ())
81
-
82
- # With different parameters
83
- arr = brainstate.random.normal(loc=0.0, scale=1.0, size=(2, 3))
84
- self.assertEqual(arr.shape, (2, 3))
85
-
86
- def test_uniform_examples(self):
87
- """Test examples from uniform function docstring."""
88
- # Standard uniform
89
- result = brainstate.random.uniform()
90
- self.assertEqual(result.shape, ())
91
- self.assertTrue(0.0 <= result < 1.0)
92
-
93
- # With custom range
94
- arr = brainstate.random.uniform(low=2.0, high=5.0, size=(3, 2))
95
- self.assertEqual(arr.shape, (3, 2))
96
- self.assertTrue((arr >= 2.0).all() and (arr < 5.0).all())
97
-
98
-
99
- class TestRandom(unittest.TestCase):
100
- def setUp(self):
101
- brainstate.environ.set(precision=32)
102
-
103
- def test_rand(self):
104
- brainstate.random.seed()
105
- a = brainstate.random.rand(3, 2)
106
- self.assertTupleEqual(a.shape, (3, 2))
107
- self.assertTrue((a >= 0).all() and (a < 1).all())
108
-
109
- key = jr.PRNGKey(123)
110
- jres = jr.uniform(key, shape=(10, 100))
111
- self.assertTrue(jnp.allclose(jres, brainstate.random.rand(10, 100, key=key)))
112
- self.assertTrue(jnp.allclose(jres, brainstate.random.rand(10, 100, key=123)))
113
-
114
- def test_randint1(self):
115
- brainstate.random.seed()
116
- a = brainstate.random.randint(5)
117
- self.assertTupleEqual(a.shape, ())
118
- self.assertTrue(0 <= a < 5)
119
-
120
- def test_randint2(self):
121
- brainstate.random.seed()
122
- a = brainstate.random.randint(2, 6, size=(4, 3))
123
- self.assertTupleEqual(a.shape, (4, 3))
124
- self.assertTrue((a >= 2).all() and (a < 6).all())
125
-
126
- def test_randint3(self):
127
- brainstate.random.seed()
128
- a = brainstate.random.randint([1, 2, 3], [10, 7, 8])
129
- self.assertTupleEqual(a.shape, (3,))
130
- self.assertTrue((a - jnp.array([1, 2, 3]) >= 0).all()
131
- and (-a + jnp.array([10, 7, 8]) > 0).all())
132
-
133
- def test_randint4(self):
134
- brainstate.random.seed()
135
- a = brainstate.random.randint([1, 2, 3], [10, 7, 8], size=(2, 3))
136
- self.assertTupleEqual(a.shape, (2, 3))
137
-
138
- def test_randn(self):
139
- brainstate.random.seed()
140
- a = brainstate.random.randn(3, 2)
141
- self.assertTupleEqual(a.shape, (3, 2))
142
-
143
- def test_random1(self):
144
- brainstate.random.seed()
145
- a = brainstate.random.random()
146
- self.assertTrue(0. <= a < 1)
147
-
148
- def test_random2(self):
149
- brainstate.random.seed()
150
- a = brainstate.random.random(size=(3, 2))
151
- self.assertTupleEqual(a.shape, (3, 2))
152
- self.assertTrue((a >= 0).all() and (a < 1).all())
153
-
154
- def test_random_sample(self):
155
- brainstate.random.seed()
156
- a = brainstate.random.random_sample(size=(3, 2))
157
- self.assertTupleEqual(a.shape, (3, 2))
158
- self.assertTrue((a >= 0).all() and (a < 1).all())
159
-
160
- def test_choice1(self):
161
- brainstate.random.seed()
162
- a = brainstate.random.choice(5)
163
- self.assertTupleEqual(jnp.shape(a), ())
164
- self.assertTrue(0 <= a < 5)
165
-
166
- def test_choice2(self):
167
- brainstate.random.seed()
168
- a = brainstate.random.choice(5, 3, p=[0.1, 0.4, 0.2, 0., 0.3])
169
- self.assertTupleEqual(a.shape, (3,))
170
- self.assertTrue((a >= 0).all() and (a < 5).all())
171
-
172
- def test_choice3(self):
173
- brainstate.random.seed()
174
- a = brainstate.random.choice(jnp.arange(2, 20), size=(4, 3), replace=False)
175
- self.assertTupleEqual(a.shape, (4, 3))
176
- self.assertTrue((a >= 2).all() and (a < 20).all())
177
- self.assertEqual(len(jnp.unique(a)), 12)
178
-
179
- def test_permutation1(self):
180
- brainstate.random.seed()
181
- a = brainstate.random.permutation(10)
182
- self.assertTupleEqual(a.shape, (10,))
183
- self.assertEqual(len(jnp.unique(a)), 10)
184
-
185
- def test_permutation2(self):
186
- brainstate.random.seed()
187
- a = brainstate.random.permutation(jnp.arange(10))
188
- self.assertTupleEqual(a.shape, (10,))
189
- self.assertEqual(len(jnp.unique(a)), 10)
190
-
191
- def test_shuffle1(self):
192
- brainstate.random.seed()
193
- a = jnp.arange(10)
194
- brainstate.random.shuffle(a)
195
- self.assertTupleEqual(a.shape, (10,))
196
- self.assertEqual(len(jnp.unique(a)), 10)
197
-
198
- def test_shuffle2(self):
199
- brainstate.random.seed()
200
- a = jnp.arange(12).reshape(4, 3)
201
- brainstate.random.shuffle(a, axis=1)
202
- self.assertTupleEqual(a.shape, (4, 3))
203
- self.assertEqual(len(jnp.unique(a)), 12)
204
-
205
- # test that a is only shuffled along axis 1
206
- uni = jnp.unique(jnp.diff(a, axis=0))
207
- self.assertEqual(uni, jnp.asarray([3]))
208
-
209
- def test_beta1(self):
210
- brainstate.random.seed()
211
- a = brainstate.random.beta(2, 2)
212
- self.assertTupleEqual(a.shape, ())
213
-
214
- def test_beta2(self):
215
- brainstate.random.seed()
216
- a = brainstate.random.beta([2, 2, 3], 2, size=(3,))
217
- self.assertTupleEqual(a.shape, (3,))
218
-
219
- def test_exponential1(self):
220
- brainstate.random.seed()
221
- a = brainstate.random.exponential(10., size=[3, 2])
222
- self.assertTupleEqual(a.shape, (3, 2))
223
-
224
- def test_exponential2(self):
225
- brainstate.random.seed()
226
- a = brainstate.random.exponential([1., 2., 5.])
227
- self.assertTupleEqual(a.shape, (3,))
228
-
229
- def test_gamma(self):
230
- brainstate.random.seed()
231
- a = brainstate.random.gamma(2, 10., size=[3, 2])
232
- self.assertTupleEqual(a.shape, (3, 2))
233
-
234
- def test_gumbel(self):
235
- brainstate.random.seed()
236
- a = brainstate.random.gumbel(0., 2., size=[3, 2])
237
- self.assertTupleEqual(a.shape, (3, 2))
238
-
239
- def test_laplace(self):
240
- brainstate.random.seed()
241
- a = brainstate.random.laplace(0., 2., size=[3, 2])
242
- self.assertTupleEqual(a.shape, (3, 2))
243
-
244
- def test_logistic(self):
245
- brainstate.random.seed()
246
- a = brainstate.random.logistic(0., 2., size=[3, 2])
247
- self.assertTupleEqual(a.shape, (3, 2))
248
-
249
- def test_normal1(self):
250
- brainstate.random.seed()
251
- a = brainstate.random.normal()
252
- self.assertTupleEqual(a.shape, ())
253
-
254
- def test_normal2(self):
255
- brainstate.random.seed()
256
- a = brainstate.random.normal(loc=[0., 2., 4.], scale=[1., 2., 3.])
257
- self.assertTupleEqual(a.shape, (3,))
258
-
259
- def test_normal3(self):
260
- brainstate.random.seed()
261
- a = brainstate.random.normal(loc=[0., 2., 4.], scale=[[1., 2., 3.], [1., 1., 1.]])
262
- print(a)
263
- self.assertTupleEqual(a.shape, (2, 3))
264
-
265
- def test_pareto(self):
266
- brainstate.random.seed()
267
- a = brainstate.random.pareto([1, 2, 2])
268
- self.assertTupleEqual(a.shape, (3,))
269
-
270
- def test_poisson(self):
271
- brainstate.random.seed()
272
- a = brainstate.random.poisson([1., 2., 2.], size=3)
273
- self.assertTupleEqual(a.shape, (3,))
274
-
275
- def test_standard_cauchy(self):
276
- brainstate.random.seed()
277
- a = brainstate.random.standard_cauchy(size=(3, 2))
278
- self.assertTupleEqual(a.shape, (3, 2))
279
-
280
- def test_standard_exponential(self):
281
- brainstate.random.seed()
282
- a = brainstate.random.standard_exponential(size=(3, 2))
283
- self.assertTupleEqual(a.shape, (3, 2))
284
-
285
- def test_standard_gamma(self):
286
- brainstate.random.seed()
287
- a = brainstate.random.standard_gamma(shape=[1, 2, 4], size=3)
288
- self.assertTupleEqual(a.shape, (3,))
289
-
290
- def test_standard_normal(self):
291
- brainstate.random.seed()
292
- a = brainstate.random.standard_normal(size=(3, 2))
293
- self.assertTupleEqual(a.shape, (3, 2))
294
-
295
- def test_standard_t(self):
296
- brainstate.random.seed()
297
- a = brainstate.random.standard_t(df=[1, 2, 4], size=3)
298
- self.assertTupleEqual(a.shape, (3,))
299
-
300
- def test_standard_uniform1(self):
301
- brainstate.random.seed()
302
- a = brainstate.random.uniform()
303
- self.assertTupleEqual(a.shape, ())
304
- self.assertTrue(0 <= a < 1)
305
-
306
- def test_uniform2(self):
307
- brainstate.random.seed()
308
- a = brainstate.random.uniform(low=[-1., 5., 2.], high=[2., 6., 10.], size=3)
309
- self.assertTupleEqual(a.shape, (3,))
310
- self.assertTrue((a - jnp.array([-1., 5., 2.]) >= 0).all()
311
- and (-a + jnp.array([2., 6., 10.]) > 0).all())
312
-
313
- def test_uniform3(self):
314
- brainstate.random.seed()
315
- a = brainstate.random.uniform(low=-1., high=[2., 6., 10.], size=(2, 3))
316
- self.assertTupleEqual(a.shape, (2, 3))
317
-
318
- def test_uniform4(self):
319
- brainstate.random.seed()
320
- a = brainstate.random.uniform(low=[-1., 5., 2.], high=[[2., 6., 10.], [10., 10., 10.]])
321
- self.assertTupleEqual(a.shape, (2, 3))
322
-
323
- def test_truncated_normal1(self):
324
- brainstate.random.seed()
325
- a = brainstate.random.truncated_normal(-1., 1.)
326
- self.assertTupleEqual(a.shape, ())
327
- self.assertTrue(-1. <= a <= 1.)
328
-
329
- def test_truncated_normal2(self):
330
- brainstate.random.seed()
331
- a = brainstate.random.truncated_normal(-1., [1., 2., 1.], size=(4, 3))
332
- self.assertTupleEqual(a.shape, (4, 3))
333
-
334
- def test_truncated_normal3(self):
335
- brainstate.random.seed()
336
- a = brainstate.random.truncated_normal([-1., 0., 1.], [[2., 2., 4.], [2., 2., 4.]])
337
- self.assertTupleEqual(a.shape, (2, 3))
338
- self.assertTrue((a - jnp.array([-1., 0., 1.]) >= 0.).all()
339
- and (- a + jnp.array([2., 2., 4.]) >= 0.).all())
340
-
341
- def test_bernoulli1(self):
342
- brainstate.random.seed()
343
- a = brainstate.random.bernoulli()
344
- self.assertTupleEqual(a.shape, ())
345
- self.assertTrue(a == 0 or a == 1)
346
-
347
- def test_bernoulli2(self):
348
- brainstate.random.seed()
349
- a = brainstate.random.bernoulli([0.5, 0.6, 0.8])
350
- self.assertTupleEqual(a.shape, (3,))
351
- self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
352
-
353
- def test_bernoulli3(self):
354
- brainstate.random.seed()
355
- a = brainstate.random.bernoulli([0.5, 0.6], size=(3, 2))
356
- self.assertTupleEqual(a.shape, (3, 2))
357
- self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
358
-
359
- def test_lognormal1(self):
360
- brainstate.random.seed()
361
- a = brainstate.random.lognormal()
362
- self.assertTupleEqual(a.shape, ())
363
-
364
- def test_lognormal2(self):
365
- brainstate.random.seed()
366
- a = brainstate.random.lognormal(sigma=[2., 1.], size=[3, 2])
367
- self.assertTupleEqual(a.shape, (3, 2))
368
-
369
- def test_lognormal3(self):
370
- brainstate.random.seed()
371
- a = brainstate.random.lognormal([2., 0.], [[2., 1.], [3., 1.2]])
372
- self.assertTupleEqual(a.shape, (2, 2))
373
-
374
- def test_binomial1(self):
375
- brainstate.random.seed()
376
- a = brainstate.random.binomial(5, 0.5)
377
- b = np.random.binomial(5, 0.5)
378
- print(a)
379
- print(b)
380
- self.assertTupleEqual(a.shape, ())
381
- self.assertTrue(a.dtype, int)
382
-
383
- def test_binomial2(self):
384
- brainstate.random.seed()
385
- a = brainstate.random.binomial(5, 0.5, size=(3, 2))
386
- self.assertTupleEqual(a.shape, (3, 2))
387
- self.assertTrue((a >= 0).all() and (a <= 5).all())
388
-
389
- def test_binomial3(self):
390
- brainstate.random.seed()
391
- a = brainstate.random.binomial(n=jnp.asarray([2, 3, 4]), p=jnp.asarray([[0.5, 0.5, 0.5], [0.6, 0.6, 0.6]]))
392
- self.assertTupleEqual(a.shape, (2, 3))
393
-
394
- def test_chisquare1(self):
395
- brainstate.random.seed()
396
- a = brainstate.random.chisquare(3)
397
- self.assertTupleEqual(a.shape, ())
398
- self.assertTrue(a.dtype, float)
399
-
400
- def test_chisquare2(self):
401
- brainstate.random.seed()
402
- with self.assertRaises(NotImplementedError):
403
- a = brainstate.random.chisquare(df=[2, 3, 4])
404
-
405
- def test_chisquare3(self):
406
- brainstate.random.seed()
407
- a = brainstate.random.chisquare(df=2, size=100)
408
- self.assertTupleEqual(a.shape, (100,))
409
-
410
- def test_chisquare4(self):
411
- brainstate.random.seed()
412
- a = brainstate.random.chisquare(df=2, size=(100, 10))
413
- self.assertTupleEqual(a.shape, (100, 10))
414
-
415
- def test_dirichlet1(self):
416
- brainstate.random.seed()
417
- a = brainstate.random.dirichlet((10, 5, 3))
418
- self.assertTupleEqual(a.shape, (3,))
419
-
420
- def test_dirichlet2(self):
421
- brainstate.random.seed()
422
- a = brainstate.random.dirichlet((10, 5, 3), 20)
423
- self.assertTupleEqual(a.shape, (20, 3))
424
-
425
- def test_f(self):
426
- brainstate.random.seed()
427
- a = brainstate.random.f(1., 48., 100)
428
- self.assertTupleEqual(a.shape, (100,))
429
-
430
- def test_geometric(self):
431
- brainstate.random.seed()
432
- a = brainstate.random.geometric([0.7, 0.5, 0.2])
433
- self.assertTupleEqual(a.shape, (3,))
434
-
435
- def test_hypergeometric1(self):
436
- brainstate.random.seed()
437
- a = brainstate.random.hypergeometric(10, 10, 10, 20)
438
- self.assertTupleEqual(a.shape, (20,))
439
-
440
- @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
441
- def test_hypergeometric2(self):
442
- brainstate.random.seed()
443
- a = brainstate.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]])
444
- self.assertTupleEqual(a.shape, (2, 2))
445
-
446
- @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
447
- def test_hypergeometric3(self):
448
- brainstate.random.seed()
449
- a = brainstate.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]], size=(3, 2, 2))
450
- self.assertTupleEqual(a.shape, (3, 2, 2))
451
-
452
- def test_logseries(self):
453
- brainstate.random.seed()
454
- a = brainstate.random.logseries([0.7, 0.5, 0.2], size=[4, 3])
455
- self.assertTupleEqual(a.shape, (4, 3))
456
-
457
- def test_multinominal1(self):
458
- brainstate.random.seed()
459
- a = np.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
460
- print(a, a.shape)
461
- b = brainstate.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
462
- print(b, b.shape)
463
- self.assertTupleEqual(a.shape, b.shape)
464
- self.assertTupleEqual(b.shape, (4, 2, 3))
465
-
466
- def test_multinominal2(self):
467
- brainstate.random.seed()
468
- a = brainstate.random.multinomial(100, (0.5, 0.2, 0.3))
469
- self.assertTupleEqual(a.shape, (3,))
470
- self.assertTrue(a.sum() == 100)
471
-
472
- def test_multivariate_normal1(self):
473
- brainstate.random.seed()
474
- # self.skipTest('Windows jaxlib error')
475
- a = np.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
476
- b = brainstate.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
477
- print('test_multivariate_normal1')
478
- print(a)
479
- print(b)
480
- self.assertTupleEqual(a.shape, b.shape)
481
- self.assertTupleEqual(a.shape, (3, 2))
482
-
483
- def test_multivariate_normal2(self):
484
- brainstate.random.seed()
485
- a = np.random.multivariate_normal([1, 2], [[1, 3], [3, 1]])
486
- b = brainstate.random.multivariate_normal([1, 2], [[1, 3], [3, 1]], method='svd')
487
- print(a)
488
- print(b)
489
- self.assertTupleEqual(a.shape, b.shape)
490
- self.assertTupleEqual(a.shape, (2,))
491
-
492
- def test_negative_binomial(self):
493
- brainstate.random.seed()
494
- a = np.random.negative_binomial([3., 10.], 0.5)
495
- b = brainstate.random.negative_binomial([3., 10.], 0.5)
496
- print(a)
497
- print(b)
498
- self.assertTupleEqual(a.shape, b.shape)
499
- self.assertTupleEqual(b.shape, (2,))
500
-
501
- def test_negative_binomial2(self):
502
- brainstate.random.seed()
503
- a = np.random.negative_binomial(3., 0.5, 10)
504
- b = brainstate.random.negative_binomial(3., 0.5, 10)
505
- print(a)
506
- print(b)
507
- self.assertTupleEqual(a.shape, b.shape)
508
- self.assertTupleEqual(b.shape, (10,))
509
-
510
- def test_noncentral_chisquare(self):
511
- brainstate.random.seed()
512
- a = np.random.noncentral_chisquare(3, [3., 2.], (4, 2))
513
- b = brainstate.random.noncentral_chisquare(3, [3., 2.], (4, 2))
514
- self.assertTupleEqual(a.shape, b.shape)
515
- self.assertTupleEqual(b.shape, (4, 2))
516
-
517
- def test_noncentral_chisquare2(self):
518
- brainstate.random.seed()
519
- a = brainstate.random.noncentral_chisquare(3, [3., 2.])
520
- self.assertTupleEqual(a.shape, (2,))
521
-
522
- def test_noncentral_f(self):
523
- brainstate.random.seed()
524
- a = brainstate.random.noncentral_f(3, 20, 3., 100)
525
- self.assertTupleEqual(a.shape, (100,))
526
-
527
- def test_power(self):
528
- brainstate.random.seed()
529
- a = np.random.power(2, (4, 2))
530
- b = brainstate.random.power(2, (4, 2))
531
- self.assertTupleEqual(a.shape, b.shape)
532
- self.assertTupleEqual(b.shape, (4, 2))
533
-
534
- def test_rayleigh(self):
535
- brainstate.random.seed()
536
- a = brainstate.random.power(2., (4, 2))
537
- self.assertTupleEqual(a.shape, (4, 2))
538
-
539
- def test_triangular(self):
540
- brainstate.random.seed()
541
- a = brainstate.random.triangular((2, 2))
542
- self.assertTupleEqual(a.shape, (2, 2))
543
-
544
- def test_vonmises(self):
545
- brainstate.random.seed()
546
- a = np.random.vonmises(2., 2.)
547
- b = brainstate.random.vonmises(2., 2.)
548
- print(a, b)
549
- self.assertTupleEqual(np.shape(a), b.shape)
550
- self.assertTupleEqual(b.shape, ())
551
-
552
- def test_vonmises2(self):
553
- brainstate.random.seed()
554
- a = np.random.vonmises(2., 2., 10)
555
- b = brainstate.random.vonmises(2., 2., 10)
556
- print(a, b)
557
- self.assertTupleEqual(a.shape, b.shape)
558
- self.assertTupleEqual(b.shape, (10,))
559
-
560
- def test_wald(self):
561
- brainstate.random.seed()
562
- a = np.random.wald([2., 0.5], 2.)
563
- b = brainstate.random.wald([2., 0.5], 2.)
564
- self.assertTupleEqual(a.shape, b.shape)
565
- self.assertTupleEqual(b.shape, (2,))
566
-
567
- def test_wald2(self):
568
- brainstate.random.seed()
569
- a = np.random.wald(2., 2., 100)
570
- b = brainstate.random.wald(2., 2., 100)
571
- self.assertTupleEqual(a.shape, b.shape)
572
- self.assertTupleEqual(b.shape, (100,))
573
-
574
- def test_weibull(self):
575
- brainstate.random.seed()
576
- a = brainstate.random.weibull(2., (4, 2))
577
- self.assertTupleEqual(a.shape, (4, 2))
578
-
579
- def test_weibull2(self):
580
- brainstate.random.seed()
581
- a = brainstate.random.weibull(2., )
582
- self.assertTupleEqual(a.shape, ())
583
-
584
- def test_weibull3(self):
585
- brainstate.random.seed()
586
- a = brainstate.random.weibull([2., 3.], )
587
- self.assertTupleEqual(a.shape, (2,))
588
-
589
- def test_weibull_min(self):
590
- brainstate.random.seed()
591
- a = brainstate.random.weibull_min(2., 2., (4, 2))
592
- self.assertTupleEqual(a.shape, (4, 2))
593
-
594
- def test_weibull_min2(self):
595
- brainstate.random.seed()
596
- a = brainstate.random.weibull_min(2., 2.)
597
- self.assertTupleEqual(a.shape, ())
598
-
599
- def test_weibull_min3(self):
600
- brainstate.random.seed()
601
- a = brainstate.random.weibull_min([2., 3.], 2.)
602
- self.assertTupleEqual(a.shape, (2,))
603
-
604
- def test_zipf(self):
605
- brainstate.random.seed()
606
- a = brainstate.random.zipf(2., (4, 2))
607
- self.assertTupleEqual(a.shape, (4, 2))
608
-
609
- def test_zipf2(self):
610
- brainstate.random.seed()
611
- a = np.random.zipf([1.1, 2.])
612
- b = brainstate.random.zipf([1.1, 2.])
613
- self.assertTupleEqual(a.shape, b.shape)
614
- self.assertTupleEqual(b.shape, (2,))
615
-
616
- def test_maxwell(self):
617
- brainstate.random.seed()
618
- a = brainstate.random.maxwell(10)
619
- self.assertTupleEqual(a.shape, (10,))
620
-
621
- def test_maxwell2(self):
622
- brainstate.random.seed()
623
- a = brainstate.random.maxwell()
624
- self.assertTupleEqual(a.shape, ())
625
-
626
- def test_t(self):
627
- brainstate.random.seed()
628
- a = brainstate.random.t(1., size=10)
629
- self.assertTupleEqual(a.shape, (10,))
630
-
631
- def test_t2(self):
632
- brainstate.random.seed()
633
- a = brainstate.random.t([1., 2.], size=None)
634
- self.assertTupleEqual(a.shape, (2,))
635
-
636
- # class TestRandomKey(unittest.TestCase):
637
- # def test_clear_memory(self):
638
- # brainstate.random.split_key()
639
- # print(brainstate.random.DEFAULT.value)
640
- # self.assertTrue(isinstance(brainstate.random.DEFAULT.value, np.ndarray))
1
+ # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import platform
18
+ import unittest
19
+
20
+ import jax.numpy as jnp
21
+ import jax.random as jr
22
+ import numpy as np
23
+ import pytest
24
+
25
+ import brainstate
26
+
27
+
28
+ class TestRandomExamples(unittest.TestCase):
29
+ """Test cases that demonstrate usage examples from docstrings."""
30
+
31
+ def test_rand_examples(self):
32
+ """Test examples from rand function docstring."""
33
+ # Generate random values in a 3x2 array
34
+ arr = brainstate.random.rand(3, 2)
35
+ self.assertEqual(arr.shape, (3, 2))
36
+ self.assertTrue((arr >= 0).all() and (arr < 1).all())
37
+
38
+ def test_randint_examples(self):
39
+ """Test examples from randint function docstring."""
40
+ # Generate 10 random integers from 0 to 1 (exclusive)
41
+ arr = brainstate.random.randint(2, size=10)
42
+ self.assertEqual(arr.shape, (10,))
43
+ self.assertTrue((arr >= 0).all() and (arr < 2).all())
44
+
45
+ # Generate a 2x4 array of integers from 0 to 4 (exclusive)
46
+ arr = brainstate.random.randint(5, size=(2, 4))
47
+ self.assertEqual(arr.shape, (2, 4))
48
+ self.assertTrue((arr >= 0).all() and (arr < 5).all())
49
+
50
+ # Generate integers with different upper bounds using broadcasting
51
+ arr = brainstate.random.randint(1, [3, 5, 10])
52
+ self.assertEqual(arr.shape, (3,))
53
+
54
+ # Generate integers with different lower bounds
55
+ arr = brainstate.random.randint([1, 5, 7], 10)
56
+ self.assertEqual(arr.shape, (3,))
57
+ self.assertTrue((arr >= jnp.array([1, 5, 7])).all())
58
+
59
+ def test_randn_examples(self):
60
+ """Test examples from randn function docstring."""
61
+ # Generate standard normal distributed values
62
+ arr = brainstate.random.randn(3, 2)
63
+ self.assertEqual(arr.shape, (3, 2))
64
+
65
+ def test_choice_examples(self):
66
+ """Test examples from choice function docstring."""
67
+ # Choose from range
68
+ result = brainstate.random.choice(5)
69
+ self.assertTrue(0 <= result < 5)
70
+
71
+ # Choose multiple with probabilities
72
+ arr = brainstate.random.choice(5, 3, p=[0.1, 0.4, 0.2, 0.0, 0.3])
73
+ self.assertEqual(arr.shape, (3,))
74
+ self.assertTrue((arr >= 0).all() and (arr < 5).all())
75
+
76
+ def test_normal_examples(self):
77
+ """Test examples from normal function docstring."""
78
+ # Standard normal
79
+ result = brainstate.random.normal()
80
+ self.assertEqual(result.shape, ())
81
+
82
+ # With different parameters
83
+ arr = brainstate.random.normal(loc=0.0, scale=1.0, size=(2, 3))
84
+ self.assertEqual(arr.shape, (2, 3))
85
+
86
+ def test_uniform_examples(self):
87
+ """Test examples from uniform function docstring."""
88
+ # Standard uniform
89
+ result = brainstate.random.uniform()
90
+ self.assertEqual(result.shape, ())
91
+ self.assertTrue(0.0 <= result < 1.0)
92
+
93
+ # With custom range
94
+ arr = brainstate.random.uniform(low=2.0, high=5.0, size=(3, 2))
95
+ self.assertEqual(arr.shape, (3, 2))
96
+ self.assertTrue((arr >= 2.0).all() and (arr < 5.0).all())
97
+
98
+
99
+ class TestRandom(unittest.TestCase):
100
+ def setUp(self):
101
+ brainstate.environ.set(precision=32)
102
+
103
+ def test_rand(self):
104
+ brainstate.random.seed()
105
+ a = brainstate.random.rand(3, 2)
106
+ self.assertTupleEqual(a.shape, (3, 2))
107
+ self.assertTrue((a >= 0).all() and (a < 1).all())
108
+
109
+ key = jr.PRNGKey(123)
110
+ jres = jr.uniform(key, shape=(10, 100))
111
+ self.assertTrue(jnp.allclose(jres, brainstate.random.rand(10, 100, key=key)))
112
+ self.assertTrue(jnp.allclose(jres, brainstate.random.rand(10, 100, key=123)))
113
+
114
+ def test_randint1(self):
115
+ brainstate.random.seed()
116
+ a = brainstate.random.randint(5)
117
+ self.assertTupleEqual(a.shape, ())
118
+ self.assertTrue(0 <= a < 5)
119
+
120
+ def test_randint2(self):
121
+ brainstate.random.seed()
122
+ a = brainstate.random.randint(2, 6, size=(4, 3))
123
+ self.assertTupleEqual(a.shape, (4, 3))
124
+ self.assertTrue((a >= 2).all() and (a < 6).all())
125
+
126
+ def test_randint3(self):
127
+ brainstate.random.seed()
128
+ a = brainstate.random.randint([1, 2, 3], [10, 7, 8])
129
+ self.assertTupleEqual(a.shape, (3,))
130
+ self.assertTrue((a - jnp.array([1, 2, 3]) >= 0).all()
131
+ and (-a + jnp.array([10, 7, 8]) > 0).all())
132
+
133
+ def test_randint4(self):
134
+ brainstate.random.seed()
135
+ a = brainstate.random.randint([1, 2, 3], [10, 7, 8], size=(2, 3))
136
+ self.assertTupleEqual(a.shape, (2, 3))
137
+
138
+ def test_randn(self):
139
+ brainstate.random.seed()
140
+ a = brainstate.random.randn(3, 2)
141
+ self.assertTupleEqual(a.shape, (3, 2))
142
+
143
+ def test_random1(self):
144
+ brainstate.random.seed()
145
+ a = brainstate.random.random()
146
+ self.assertTrue(0. <= a < 1)
147
+
148
+ def test_random2(self):
149
+ brainstate.random.seed()
150
+ a = brainstate.random.random(size=(3, 2))
151
+ self.assertTupleEqual(a.shape, (3, 2))
152
+ self.assertTrue((a >= 0).all() and (a < 1).all())
153
+
154
+ def test_random_sample(self):
155
+ brainstate.random.seed()
156
+ a = brainstate.random.random_sample(size=(3, 2))
157
+ self.assertTupleEqual(a.shape, (3, 2))
158
+ self.assertTrue((a >= 0).all() and (a < 1).all())
159
+
160
+ def test_choice1(self):
161
+ brainstate.random.seed()
162
+ a = brainstate.random.choice(5)
163
+ self.assertTupleEqual(jnp.shape(a), ())
164
+ self.assertTrue(0 <= a < 5)
165
+
166
+ def test_choice2(self):
167
+ brainstate.random.seed()
168
+ a = brainstate.random.choice(5, 3, p=[0.1, 0.4, 0.2, 0., 0.3])
169
+ self.assertTupleEqual(a.shape, (3,))
170
+ self.assertTrue((a >= 0).all() and (a < 5).all())
171
+
172
+ def test_choice3(self):
173
+ brainstate.random.seed()
174
+ a = brainstate.random.choice(jnp.arange(2, 20), size=(4, 3), replace=False)
175
+ self.assertTupleEqual(a.shape, (4, 3))
176
+ self.assertTrue((a >= 2).all() and (a < 20).all())
177
+ self.assertEqual(len(jnp.unique(a)), 12)
178
+
179
+ def test_permutation1(self):
180
+ brainstate.random.seed()
181
+ a = brainstate.random.permutation(10)
182
+ self.assertTupleEqual(a.shape, (10,))
183
+ self.assertEqual(len(jnp.unique(a)), 10)
184
+
185
+ def test_permutation2(self):
186
+ brainstate.random.seed()
187
+ a = brainstate.random.permutation(jnp.arange(10))
188
+ self.assertTupleEqual(a.shape, (10,))
189
+ self.assertEqual(len(jnp.unique(a)), 10)
190
+
191
+ def test_shuffle1(self):
192
+ brainstate.random.seed()
193
+ a = jnp.arange(10)
194
+ brainstate.random.shuffle(a)
195
+ self.assertTupleEqual(a.shape, (10,))
196
+ self.assertEqual(len(jnp.unique(a)), 10)
197
+
198
+ def test_shuffle2(self):
199
+ brainstate.random.seed()
200
+ a = jnp.arange(12).reshape(4, 3)
201
+ brainstate.random.shuffle(a, axis=1)
202
+ self.assertTupleEqual(a.shape, (4, 3))
203
+ self.assertEqual(len(jnp.unique(a)), 12)
204
+
205
+ # test that a is only shuffled along axis 1
206
+ uni = jnp.unique(jnp.diff(a, axis=0))
207
+ self.assertEqual(uni, jnp.asarray([3]))
208
+
209
+ def test_beta1(self):
210
+ brainstate.random.seed()
211
+ a = brainstate.random.beta(2, 2)
212
+ self.assertTupleEqual(a.shape, ())
213
+
214
+ def test_beta2(self):
215
+ brainstate.random.seed()
216
+ a = brainstate.random.beta([2, 2, 3], 2, size=(3,))
217
+ self.assertTupleEqual(a.shape, (3,))
218
+
219
+ def test_exponential1(self):
220
+ brainstate.random.seed()
221
+ a = brainstate.random.exponential(10., size=[3, 2])
222
+ self.assertTupleEqual(a.shape, (3, 2))
223
+
224
+ def test_exponential2(self):
225
+ brainstate.random.seed()
226
+ a = brainstate.random.exponential([1., 2., 5.])
227
+ self.assertTupleEqual(a.shape, (3,))
228
+
229
+ def test_gamma(self):
230
+ brainstate.random.seed()
231
+ a = brainstate.random.gamma(2, 10., size=[3, 2])
232
+ self.assertTupleEqual(a.shape, (3, 2))
233
+
234
+ def test_gumbel(self):
235
+ brainstate.random.seed()
236
+ a = brainstate.random.gumbel(0., 2., size=[3, 2])
237
+ self.assertTupleEqual(a.shape, (3, 2))
238
+
239
+ def test_laplace(self):
240
+ brainstate.random.seed()
241
+ a = brainstate.random.laplace(0., 2., size=[3, 2])
242
+ self.assertTupleEqual(a.shape, (3, 2))
243
+
244
+ def test_logistic(self):
245
+ brainstate.random.seed()
246
+ a = brainstate.random.logistic(0., 2., size=[3, 2])
247
+ self.assertTupleEqual(a.shape, (3, 2))
248
+
249
+ def test_normal1(self):
250
+ brainstate.random.seed()
251
+ a = brainstate.random.normal()
252
+ self.assertTupleEqual(a.shape, ())
253
+
254
+ def test_normal2(self):
255
+ brainstate.random.seed()
256
+ a = brainstate.random.normal(loc=[0., 2., 4.], scale=[1., 2., 3.])
257
+ self.assertTupleEqual(a.shape, (3,))
258
+
259
+ def test_normal3(self):
260
+ brainstate.random.seed()
261
+ a = brainstate.random.normal(loc=[0., 2., 4.], scale=[[1., 2., 3.], [1., 1., 1.]])
262
+ print(a)
263
+ self.assertTupleEqual(a.shape, (2, 3))
264
+
265
+ def test_pareto(self):
266
+ brainstate.random.seed()
267
+ a = brainstate.random.pareto([1, 2, 2])
268
+ self.assertTupleEqual(a.shape, (3,))
269
+
270
+ def test_poisson(self):
271
+ brainstate.random.seed()
272
+ a = brainstate.random.poisson([1., 2., 2.], size=3)
273
+ self.assertTupleEqual(a.shape, (3,))
274
+
275
+ def test_standard_cauchy(self):
276
+ brainstate.random.seed()
277
+ a = brainstate.random.standard_cauchy(size=(3, 2))
278
+ self.assertTupleEqual(a.shape, (3, 2))
279
+
280
+ def test_standard_exponential(self):
281
+ brainstate.random.seed()
282
+ a = brainstate.random.standard_exponential(size=(3, 2))
283
+ self.assertTupleEqual(a.shape, (3, 2))
284
+
285
+ def test_standard_gamma(self):
286
+ brainstate.random.seed()
287
+ a = brainstate.random.standard_gamma(shape=[1, 2, 4], size=3)
288
+ self.assertTupleEqual(a.shape, (3,))
289
+
290
+ def test_standard_normal(self):
291
+ brainstate.random.seed()
292
+ a = brainstate.random.standard_normal(size=(3, 2))
293
+ self.assertTupleEqual(a.shape, (3, 2))
294
+
295
+ def test_standard_t(self):
296
+ brainstate.random.seed()
297
+ a = brainstate.random.standard_t(df=[1, 2, 4], size=3)
298
+ self.assertTupleEqual(a.shape, (3,))
299
+
300
+ def test_standard_uniform1(self):
301
+ brainstate.random.seed()
302
+ a = brainstate.random.uniform()
303
+ self.assertTupleEqual(a.shape, ())
304
+ self.assertTrue(0 <= a < 1)
305
+
306
+ def test_uniform2(self):
307
+ brainstate.random.seed()
308
+ a = brainstate.random.uniform(low=[-1., 5., 2.], high=[2., 6., 10.], size=3)
309
+ self.assertTupleEqual(a.shape, (3,))
310
+ self.assertTrue((a - jnp.array([-1., 5., 2.]) >= 0).all()
311
+ and (-a + jnp.array([2., 6., 10.]) > 0).all())
312
+
313
+ def test_uniform3(self):
314
+ brainstate.random.seed()
315
+ a = brainstate.random.uniform(low=-1., high=[2., 6., 10.], size=(2, 3))
316
+ self.assertTupleEqual(a.shape, (2, 3))
317
+
318
+ def test_uniform4(self):
319
+ brainstate.random.seed()
320
+ a = brainstate.random.uniform(low=[-1., 5., 2.], high=[[2., 6., 10.], [10., 10., 10.]])
321
+ self.assertTupleEqual(a.shape, (2, 3))
322
+
323
+ def test_truncated_normal1(self):
324
+ brainstate.random.seed()
325
+ a = brainstate.random.truncated_normal(-1., 1.)
326
+ self.assertTupleEqual(a.shape, ())
327
+ self.assertTrue(-1. <= a <= 1.)
328
+
329
+ def test_truncated_normal2(self):
330
+ brainstate.random.seed()
331
+ a = brainstate.random.truncated_normal(-1., [1., 2., 1.], size=(4, 3))
332
+ self.assertTupleEqual(a.shape, (4, 3))
333
+
334
+ def test_truncated_normal3(self):
335
+ brainstate.random.seed()
336
+ a = brainstate.random.truncated_normal([-1., 0., 1.], [[2., 2., 4.], [2., 2., 4.]])
337
+ self.assertTupleEqual(a.shape, (2, 3))
338
+ self.assertTrue((a - jnp.array([-1., 0., 1.]) >= 0.).all()
339
+ and (- a + jnp.array([2., 2., 4.]) >= 0.).all())
340
+
341
+ def test_bernoulli1(self):
342
+ brainstate.random.seed()
343
+ a = brainstate.random.bernoulli()
344
+ self.assertTupleEqual(a.shape, ())
345
+ self.assertTrue(a == 0 or a == 1)
346
+
347
+ def test_bernoulli2(self):
348
+ brainstate.random.seed()
349
+ a = brainstate.random.bernoulli([0.5, 0.6, 0.8])
350
+ self.assertTupleEqual(a.shape, (3,))
351
+ self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
352
+
353
+ def test_bernoulli3(self):
354
+ brainstate.random.seed()
355
+ a = brainstate.random.bernoulli([0.5, 0.6], size=(3, 2))
356
+ self.assertTupleEqual(a.shape, (3, 2))
357
+ self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
358
+
359
+ def test_lognormal1(self):
360
+ brainstate.random.seed()
361
+ a = brainstate.random.lognormal()
362
+ self.assertTupleEqual(a.shape, ())
363
+
364
+ def test_lognormal2(self):
365
+ brainstate.random.seed()
366
+ a = brainstate.random.lognormal(sigma=[2., 1.], size=[3, 2])
367
+ self.assertTupleEqual(a.shape, (3, 2))
368
+
369
+ def test_lognormal3(self):
370
+ brainstate.random.seed()
371
+ a = brainstate.random.lognormal([2., 0.], [[2., 1.], [3., 1.2]])
372
+ self.assertTupleEqual(a.shape, (2, 2))
373
+
374
+ def test_binomial1(self):
375
+ brainstate.random.seed()
376
+ a = brainstate.random.binomial(5, 0.5)
377
+ b = np.random.binomial(5, 0.5)
378
+ print(a)
379
+ print(b)
380
+ self.assertTupleEqual(a.shape, ())
381
+ self.assertTrue(a.dtype, int)
382
+
383
+ def test_binomial2(self):
384
+ brainstate.random.seed()
385
+ a = brainstate.random.binomial(5, 0.5, size=(3, 2))
386
+ self.assertTupleEqual(a.shape, (3, 2))
387
+ self.assertTrue((a >= 0).all() and (a <= 5).all())
388
+
389
+ def test_binomial3(self):
390
+ brainstate.random.seed()
391
+ a = brainstate.random.binomial(n=jnp.asarray([2, 3, 4]), p=jnp.asarray([[0.5, 0.5, 0.5], [0.6, 0.6, 0.6]]))
392
+ self.assertTupleEqual(a.shape, (2, 3))
393
+
394
+ def test_chisquare1(self):
395
+ brainstate.random.seed()
396
+ a = brainstate.random.chisquare(3)
397
+ self.assertTupleEqual(a.shape, ())
398
+ self.assertTrue(a.dtype, float)
399
+
400
+ def test_chisquare2(self):
401
+ brainstate.random.seed()
402
+ with self.assertRaises(NotImplementedError):
403
+ a = brainstate.random.chisquare(df=[2, 3, 4])
404
+
405
+ def test_chisquare3(self):
406
+ brainstate.random.seed()
407
+ a = brainstate.random.chisquare(df=2, size=100)
408
+ self.assertTupleEqual(a.shape, (100,))
409
+
410
+ def test_chisquare4(self):
411
+ brainstate.random.seed()
412
+ a = brainstate.random.chisquare(df=2, size=(100, 10))
413
+ self.assertTupleEqual(a.shape, (100, 10))
414
+
415
+ def test_dirichlet1(self):
416
+ brainstate.random.seed()
417
+ a = brainstate.random.dirichlet((10, 5, 3))
418
+ self.assertTupleEqual(a.shape, (3,))
419
+
420
+ def test_dirichlet2(self):
421
+ brainstate.random.seed()
422
+ a = brainstate.random.dirichlet((10, 5, 3), 20)
423
+ self.assertTupleEqual(a.shape, (20, 3))
424
+
425
+ def test_f(self):
426
+ brainstate.random.seed()
427
+ a = brainstate.random.f(1., 48., 100)
428
+ self.assertTupleEqual(a.shape, (100,))
429
+
430
+ def test_geometric(self):
431
+ brainstate.random.seed()
432
+ a = brainstate.random.geometric([0.7, 0.5, 0.2])
433
+ self.assertTupleEqual(a.shape, (3,))
434
+
435
+ def test_hypergeometric1(self):
436
+ brainstate.random.seed()
437
+ a = brainstate.random.hypergeometric(10, 10, 10, 20)
438
+ self.assertTupleEqual(a.shape, (20,))
439
+
440
+ @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
441
+ def test_hypergeometric2(self):
442
+ brainstate.random.seed()
443
+ a = brainstate.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]])
444
+ self.assertTupleEqual(a.shape, (2, 2))
445
+
446
+ @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
447
+ def test_hypergeometric3(self):
448
+ brainstate.random.seed()
449
+ a = brainstate.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]], size=(3, 2, 2))
450
+ self.assertTupleEqual(a.shape, (3, 2, 2))
451
+
452
+ def test_logseries(self):
453
+ brainstate.random.seed()
454
+ a = brainstate.random.logseries([0.7, 0.5, 0.2], size=[4, 3])
455
+ self.assertTupleEqual(a.shape, (4, 3))
456
+
457
+ def test_multinominal1(self):
458
+ brainstate.random.seed()
459
+ a = np.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
460
+ print(a, a.shape)
461
+ b = brainstate.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
462
+ print(b, b.shape)
463
+ self.assertTupleEqual(a.shape, b.shape)
464
+ self.assertTupleEqual(b.shape, (4, 2, 3))
465
+
466
+ def test_multinominal2(self):
467
+ brainstate.random.seed()
468
+ a = brainstate.random.multinomial(100, (0.5, 0.2, 0.3))
469
+ self.assertTupleEqual(a.shape, (3,))
470
+ self.assertTrue(a.sum() == 100)
471
+
472
+ def test_multivariate_normal1(self):
473
+ brainstate.random.seed()
474
+ # self.skipTest('Windows jaxlib error')
475
+ a = np.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
476
+ b = brainstate.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
477
+ print('test_multivariate_normal1')
478
+ print(a)
479
+ print(b)
480
+ self.assertTupleEqual(a.shape, b.shape)
481
+ self.assertTupleEqual(a.shape, (3, 2))
482
+
483
+ def test_multivariate_normal2(self):
484
+ brainstate.random.seed()
485
+ a = np.random.multivariate_normal([1, 2], [[1, 3], [3, 1]])
486
+ b = brainstate.random.multivariate_normal([1, 2], [[1, 3], [3, 1]], method='svd')
487
+ print(a)
488
+ print(b)
489
+ self.assertTupleEqual(a.shape, b.shape)
490
+ self.assertTupleEqual(a.shape, (2,))
491
+
492
+ def test_negative_binomial(self):
493
+ brainstate.random.seed()
494
+ a = np.random.negative_binomial([3., 10.], 0.5)
495
+ b = brainstate.random.negative_binomial([3., 10.], 0.5)
496
+ print(a)
497
+ print(b)
498
+ self.assertTupleEqual(a.shape, b.shape)
499
+ self.assertTupleEqual(b.shape, (2,))
500
+
501
+ def test_negative_binomial2(self):
502
+ brainstate.random.seed()
503
+ a = np.random.negative_binomial(3., 0.5, 10)
504
+ b = brainstate.random.negative_binomial(3., 0.5, 10)
505
+ print(a)
506
+ print(b)
507
+ self.assertTupleEqual(a.shape, b.shape)
508
+ self.assertTupleEqual(b.shape, (10,))
509
+
510
+ def test_noncentral_chisquare(self):
511
+ brainstate.random.seed()
512
+ a = np.random.noncentral_chisquare(3, [3., 2.], (4, 2))
513
+ b = brainstate.random.noncentral_chisquare(3, [3., 2.], (4, 2))
514
+ self.assertTupleEqual(a.shape, b.shape)
515
+ self.assertTupleEqual(b.shape, (4, 2))
516
+
517
+ def test_noncentral_chisquare2(self):
518
+ brainstate.random.seed()
519
+ a = brainstate.random.noncentral_chisquare(3, [3., 2.])
520
+ self.assertTupleEqual(a.shape, (2,))
521
+
522
+ def test_noncentral_f(self):
523
+ brainstate.random.seed()
524
+ a = brainstate.random.noncentral_f(3, 20, 3., 100)
525
+ self.assertTupleEqual(a.shape, (100,))
526
+
527
+ def test_power(self):
528
+ brainstate.random.seed()
529
+ a = np.random.power(2, (4, 2))
530
+ b = brainstate.random.power(2, (4, 2))
531
+ self.assertTupleEqual(a.shape, b.shape)
532
+ self.assertTupleEqual(b.shape, (4, 2))
533
+
534
+ def test_rayleigh(self):
535
+ brainstate.random.seed()
536
+ a = brainstate.random.power(2., (4, 2))
537
+ self.assertTupleEqual(a.shape, (4, 2))
538
+
539
+ def test_triangular(self):
540
+ brainstate.random.seed()
541
+ a = brainstate.random.triangular((2, 2))
542
+ self.assertTupleEqual(a.shape, (2, 2))
543
+
544
+ def test_vonmises(self):
545
+ brainstate.random.seed()
546
+ a = np.random.vonmises(2., 2.)
547
+ b = brainstate.random.vonmises(2., 2.)
548
+ print(a, b)
549
+ self.assertTupleEqual(np.shape(a), b.shape)
550
+ self.assertTupleEqual(b.shape, ())
551
+
552
+ def test_vonmises2(self):
553
+ brainstate.random.seed()
554
+ a = np.random.vonmises(2., 2., 10)
555
+ b = brainstate.random.vonmises(2., 2., 10)
556
+ print(a, b)
557
+ self.assertTupleEqual(a.shape, b.shape)
558
+ self.assertTupleEqual(b.shape, (10,))
559
+
560
+ def test_wald(self):
561
+ brainstate.random.seed()
562
+ a = np.random.wald([2., 0.5], 2.)
563
+ b = brainstate.random.wald([2., 0.5], 2.)
564
+ self.assertTupleEqual(a.shape, b.shape)
565
+ self.assertTupleEqual(b.shape, (2,))
566
+
567
+ def test_wald2(self):
568
+ brainstate.random.seed()
569
+ a = np.random.wald(2., 2., 100)
570
+ b = brainstate.random.wald(2., 2., 100)
571
+ self.assertTupleEqual(a.shape, b.shape)
572
+ self.assertTupleEqual(b.shape, (100,))
573
+
574
+ def test_weibull(self):
575
+ brainstate.random.seed()
576
+ a = brainstate.random.weibull(2., (4, 2))
577
+ self.assertTupleEqual(a.shape, (4, 2))
578
+
579
+ def test_weibull2(self):
580
+ brainstate.random.seed()
581
+ a = brainstate.random.weibull(2., )
582
+ self.assertTupleEqual(a.shape, ())
583
+
584
+ def test_weibull3(self):
585
+ brainstate.random.seed()
586
+ a = brainstate.random.weibull([2., 3.], )
587
+ self.assertTupleEqual(a.shape, (2,))
588
+
589
+ def test_weibull_min(self):
590
+ brainstate.random.seed()
591
+ a = brainstate.random.weibull_min(2., 2., (4, 2))
592
+ self.assertTupleEqual(a.shape, (4, 2))
593
+
594
+ def test_weibull_min2(self):
595
+ brainstate.random.seed()
596
+ a = brainstate.random.weibull_min(2., 2.)
597
+ self.assertTupleEqual(a.shape, ())
598
+
599
+ def test_weibull_min3(self):
600
+ brainstate.random.seed()
601
+ a = brainstate.random.weibull_min([2., 3.], 2.)
602
+ self.assertTupleEqual(a.shape, (2,))
603
+
604
+ def test_zipf(self):
605
+ brainstate.random.seed()
606
+ a = brainstate.random.zipf(2., (4, 2))
607
+ self.assertTupleEqual(a.shape, (4, 2))
608
+
609
+ def test_zipf2(self):
610
+ brainstate.random.seed()
611
+ a = np.random.zipf([1.1, 2.])
612
+ b = brainstate.random.zipf([1.1, 2.])
613
+ self.assertTupleEqual(a.shape, b.shape)
614
+ self.assertTupleEqual(b.shape, (2,))
615
+
616
+ def test_maxwell(self):
617
+ brainstate.random.seed()
618
+ a = brainstate.random.maxwell(10)
619
+ self.assertTupleEqual(a.shape, (10,))
620
+
621
+ def test_maxwell2(self):
622
+ brainstate.random.seed()
623
+ a = brainstate.random.maxwell()
624
+ self.assertTupleEqual(a.shape, ())
625
+
626
+ def test_t(self):
627
+ brainstate.random.seed()
628
+ a = brainstate.random.t(1., size=10)
629
+ self.assertTupleEqual(a.shape, (10,))
630
+
631
+ def test_t2(self):
632
+ brainstate.random.seed()
633
+ a = brainstate.random.t([1., 2.], size=None)
634
+ self.assertTupleEqual(a.shape, (2,))
635
+
636
+ # class TestRandomKey(unittest.TestCase):
637
+ # def test_clear_memory(self):
638
+ # brainstate.random.split_key()
639
+ # print(brainstate.random.DEFAULT.value)
640
+ # self.assertTrue(isinstance(brainstate.random.DEFAULT.value, np.ndarray))