brainstate 0.2.0__py2.py3-none-any.whl → 0.2.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +169 -169
- brainstate/_compatible_import.py +340 -340
- brainstate/_compatible_import_test.py +681 -681
- brainstate/_deprecation.py +210 -210
- brainstate/_deprecation_test.py +2319 -2319
- brainstate/_error.py +45 -45
- brainstate/_state.py +1652 -1652
- brainstate/_state_test.py +52 -52
- brainstate/_utils.py +47 -47
- brainstate/environ.py +1495 -1495
- brainstate/environ_test.py +1223 -1223
- brainstate/graph/__init__.py +22 -22
- brainstate/graph/_node.py +240 -240
- brainstate/graph/_node_test.py +589 -589
- brainstate/graph/_operation.py +1624 -1624
- brainstate/graph/_operation_test.py +1147 -1147
- brainstate/mixin.py +1433 -1433
- brainstate/mixin_test.py +1017 -1017
- brainstate/nn/__init__.py +137 -137
- brainstate/nn/_activations.py +1100 -1100
- brainstate/nn/_activations_test.py +354 -354
- brainstate/nn/_collective_ops.py +633 -633
- brainstate/nn/_collective_ops_test.py +774 -774
- brainstate/nn/_common.py +226 -226
- brainstate/nn/_common_test.py +154 -154
- brainstate/nn/_conv.py +2010 -2010
- brainstate/nn/_conv_test.py +849 -849
- brainstate/nn/_delay.py +575 -575
- brainstate/nn/_delay_test.py +243 -243
- brainstate/nn/_dropout.py +618 -618
- brainstate/nn/_dropout_test.py +477 -477
- brainstate/nn/_dynamics.py +1267 -1267
- brainstate/nn/_dynamics_test.py +67 -67
- brainstate/nn/_elementwise.py +1298 -1298
- brainstate/nn/_elementwise_test.py +829 -829
- brainstate/nn/_embedding.py +408 -408
- brainstate/nn/_embedding_test.py +156 -156
- brainstate/nn/_event_fixedprob.py +233 -233
- brainstate/nn/_event_fixedprob_test.py +115 -115
- brainstate/nn/_event_linear.py +83 -83
- brainstate/nn/_event_linear_test.py +121 -121
- brainstate/nn/_exp_euler.py +254 -254
- brainstate/nn/_exp_euler_test.py +377 -377
- brainstate/nn/_linear.py +744 -744
- brainstate/nn/_linear_test.py +475 -475
- brainstate/nn/_metrics.py +1070 -1070
- brainstate/nn/_metrics_test.py +611 -611
- brainstate/nn/_module.py +384 -384
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_normalizations.py +1334 -1334
- brainstate/nn/_normalizations_test.py +699 -699
- brainstate/nn/_paddings.py +1020 -1020
- brainstate/nn/_paddings_test.py +722 -722
- brainstate/nn/_poolings.py +2239 -2239
- brainstate/nn/_poolings_test.py +952 -952
- brainstate/nn/_rnns.py +946 -946
- brainstate/nn/_rnns_test.py +592 -592
- brainstate/nn/_utils.py +216 -216
- brainstate/nn/_utils_test.py +401 -401
- brainstate/nn/init.py +809 -809
- brainstate/nn/init_test.py +180 -180
- brainstate/random/__init__.py +270 -270
- brainstate/random/_rand_funs.py +3938 -3938
- brainstate/random/_rand_funs_test.py +640 -640
- brainstate/random/_rand_seed.py +675 -675
- brainstate/random/_rand_seed_test.py +48 -48
- brainstate/random/_rand_state.py +1617 -1617
- brainstate/random/_rand_state_test.py +551 -551
- brainstate/transform/__init__.py +59 -59
- brainstate/transform/_ad_checkpoint.py +176 -176
- brainstate/transform/_ad_checkpoint_test.py +49 -49
- brainstate/transform/_autograd.py +1025 -1025
- brainstate/transform/_autograd_test.py +1289 -1289
- brainstate/transform/_conditions.py +316 -316
- brainstate/transform/_conditions_test.py +220 -220
- brainstate/transform/_error_if.py +94 -94
- brainstate/transform/_error_if_test.py +52 -52
- brainstate/transform/_eval_shape.py +145 -145
- brainstate/transform/_eval_shape_test.py +38 -38
- brainstate/transform/_jit.py +399 -399
- brainstate/transform/_jit_test.py +143 -143
- brainstate/transform/_loop_collect_return.py +675 -675
- brainstate/transform/_loop_collect_return_test.py +58 -58
- brainstate/transform/_loop_no_collection.py +283 -283
- brainstate/transform/_loop_no_collection_test.py +50 -50
- brainstate/transform/_make_jaxpr.py +2016 -2016
- brainstate/transform/_make_jaxpr_test.py +1510 -1510
- brainstate/transform/_mapping.py +529 -529
- brainstate/transform/_mapping_test.py +194 -194
- brainstate/transform/_progress_bar.py +255 -255
- brainstate/transform/_random.py +171 -171
- brainstate/transform/_unvmap.py +256 -256
- brainstate/transform/_util.py +286 -286
- brainstate/typing.py +837 -837
- brainstate/typing_test.py +780 -780
- brainstate/util/__init__.py +27 -27
- brainstate/util/_others.py +1024 -1024
- brainstate/util/_others_test.py +962 -962
- brainstate/util/_pretty_pytree.py +1301 -1301
- brainstate/util/_pretty_pytree_test.py +675 -675
- brainstate/util/_pretty_repr.py +462 -462
- brainstate/util/_pretty_repr_test.py +696 -696
- brainstate/util/filter.py +945 -945
- brainstate/util/filter_test.py +911 -911
- brainstate/util/struct.py +910 -910
- brainstate/util/struct_test.py +602 -602
- {brainstate-0.2.0.dist-info → brainstate-0.2.1.dist-info}/METADATA +108 -108
- brainstate-0.2.1.dist-info/RECORD +111 -0
- {brainstate-0.2.0.dist-info → brainstate-0.2.1.dist-info}/licenses/LICENSE +202 -202
- brainstate-0.2.0.dist-info/RECORD +0 -111
- {brainstate-0.2.0.dist-info → brainstate-0.2.1.dist-info}/WHEEL +0 -0
- {brainstate-0.2.0.dist-info → brainstate-0.2.1.dist-info}/top_level.txt +0 -0
brainstate/nn/_linear_test.py
CHANGED
@@ -1,475 +1,475 @@
|
|
1
|
-
# Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
import unittest
|
17
|
-
|
18
|
-
import brainunit as u
|
19
|
-
import jax.numpy as jnp
|
20
|
-
from absl.testing import parameterized
|
21
|
-
|
22
|
-
import brainstate
|
23
|
-
import braintools
|
24
|
-
|
25
|
-
|
26
|
-
class TestLinear(parameterized.TestCase):
|
27
|
-
"""Test suite for Linear layer."""
|
28
|
-
|
29
|
-
@parameterized.product(
|
30
|
-
size=[(10,), (20, 10), (5, 8, 10)],
|
31
|
-
num_out=[20, 5]
|
32
|
-
)
|
33
|
-
def test_linear_shapes(self, size, num_out):
|
34
|
-
"""Test output shapes with various input dimensions."""
|
35
|
-
layer = brainstate.nn.Linear(10, num_out)
|
36
|
-
x = brainstate.random.random(size)
|
37
|
-
y = layer(x)
|
38
|
-
self.assertEqual(y.shape, size[:-1] + (num_out,))
|
39
|
-
|
40
|
-
def test_linear_with_bias(self):
|
41
|
-
"""Test linear layer with bias."""
|
42
|
-
layer = brainstate.nn.Linear(10, 5)
|
43
|
-
self.assertIn('bias', layer.weight.value)
|
44
|
-
x = brainstate.random.random((3, 10))
|
45
|
-
y = layer(x)
|
46
|
-
self.assertEqual(y.shape, (3, 5))
|
47
|
-
|
48
|
-
def test_linear_without_bias(self):
|
49
|
-
"""Test linear layer without bias."""
|
50
|
-
layer = brainstate.nn.Linear(10, 5, b_init=None)
|
51
|
-
self.assertNotIn('bias', layer.weight.value)
|
52
|
-
x = brainstate.random.random((3, 10))
|
53
|
-
y = layer(x)
|
54
|
-
self.assertEqual(y.shape, (3, 5))
|
55
|
-
|
56
|
-
def test_linear_with_mask(self):
|
57
|
-
"""Test linear layer with weight mask."""
|
58
|
-
w_mask = jnp.ones((10, 5))
|
59
|
-
w_mask = w_mask.at[:, 0].set(0) # mask out first output column
|
60
|
-
layer = brainstate.nn.Linear(10, 5, w_mask=w_mask)
|
61
|
-
x = jnp.ones((3, 10))
|
62
|
-
y = layer(x)
|
63
|
-
self.assertEqual(y.shape, (3, 5))
|
64
|
-
|
65
|
-
def test_linear_weight_initialization(self):
|
66
|
-
"""Test custom weight initialization."""
|
67
|
-
layer = brainstate.nn.Linear(
|
68
|
-
10, 5,
|
69
|
-
w_init=braintools.init.ZeroInit(),
|
70
|
-
b_init=braintools.init.Constant(1.0)
|
71
|
-
)
|
72
|
-
self.assertTrue(jnp.allclose(layer.weight.value['weight'], 0.0))
|
73
|
-
self.assertTrue(jnp.allclose(layer.weight.value['bias'], 1.0))
|
74
|
-
|
75
|
-
def test_linear_computation(self):
|
76
|
-
"""Test that computation is correct."""
|
77
|
-
layer = brainstate.nn.Linear(3, 2, b_init=None)
|
78
|
-
# Set known weights
|
79
|
-
layer.weight.value = {'weight': jnp.array([[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]])}
|
80
|
-
x = jnp.array([[1.0, 2.0, 3.0]])
|
81
|
-
y = layer(x)
|
82
|
-
expected = jnp.array([[4.0, 5.0]]) # [1*1+2*0+3*1, 1*0+2*1+3*1]
|
83
|
-
self.assertTrue(jnp.allclose(y, expected))
|
84
|
-
|
85
|
-
|
86
|
-
class TestSignedWLinear(parameterized.TestCase):
|
87
|
-
"""Test suite for SignedWLinear layer."""
|
88
|
-
|
89
|
-
@parameterized.product(
|
90
|
-
in_size=[10, 20],
|
91
|
-
out_size=[5, 10]
|
92
|
-
)
|
93
|
-
def test_signed_linear_shapes(self, in_size, out_size):
|
94
|
-
"""Test output shapes."""
|
95
|
-
layer = brainstate.nn.SignedWLinear((in_size,), (out_size,))
|
96
|
-
x = brainstate.random.random((3, in_size))
|
97
|
-
y = layer(x)
|
98
|
-
self.assertEqual(y.shape, (3, out_size))
|
99
|
-
|
100
|
-
def test_signed_linear_positive_weights(self):
|
101
|
-
"""Test that weights are positive when w_sign is None."""
|
102
|
-
layer = brainstate.nn.SignedWLinear((5,), (3,))
|
103
|
-
# Set weights to negative values
|
104
|
-
layer.weight.value = jnp.array([[-1.0, -2.0, -3.0]] * 5)
|
105
|
-
x = jnp.ones((1, 5))
|
106
|
-
y = layer(x)
|
107
|
-
# Output should be positive since abs is applied
|
108
|
-
self.assertTrue(jnp.all(y > 0))
|
109
|
-
|
110
|
-
def test_signed_linear_with_sign_matrix(self):
|
111
|
-
"""Test signed linear with custom sign matrix."""
|
112
|
-
w_sign = jnp.ones((5, 3)) * -1.0 # all negative
|
113
|
-
layer = brainstate.nn.SignedWLinear((5,), (3,), w_sign=w_sign)
|
114
|
-
layer.weight.value = jnp.ones((5, 3))
|
115
|
-
x = jnp.ones((1, 5))
|
116
|
-
y = layer(x)
|
117
|
-
# All outputs should be negative
|
118
|
-
self.assertTrue(jnp.all(y < 0))
|
119
|
-
|
120
|
-
def test_signed_linear_mixed_signs(self):
|
121
|
-
"""Test with mixed positive and negative signs."""
|
122
|
-
w_sign = jnp.array([[1.0, -1.0], [1.0, -1.0], [-1.0, 1.0]])
|
123
|
-
layer = brainstate.nn.SignedWLinear((3,), (2,), w_sign=w_sign)
|
124
|
-
layer.weight.value = jnp.ones((3, 2))
|
125
|
-
x = jnp.array([[1.0, 1.0, 1.0]])
|
126
|
-
y = layer(x)
|
127
|
-
expected = jnp.array([[1.0, -1.0]]) # [1-1, -1+1]
|
128
|
-
self.assertTrue(jnp.allclose(y, expected))
|
129
|
-
|
130
|
-
|
131
|
-
class TestScaledWSLinear(parameterized.TestCase):
|
132
|
-
"""Test suite for ScaledWSLinear layer."""
|
133
|
-
|
134
|
-
@parameterized.product(
|
135
|
-
in_size=[10, 20],
|
136
|
-
out_size=[5, 10],
|
137
|
-
ws_gain=[True, False]
|
138
|
-
)
|
139
|
-
def test_scaled_ws_shapes(self, in_size, out_size, ws_gain):
|
140
|
-
"""Test output shapes with and without gain."""
|
141
|
-
layer = brainstate.nn.ScaledWSLinear((in_size,), (out_size,), ws_gain=ws_gain)
|
142
|
-
x = brainstate.random.random((3, in_size))
|
143
|
-
y = layer(x)
|
144
|
-
self.assertEqual(y.shape, (3, out_size))
|
145
|
-
|
146
|
-
def test_scaled_ws_with_gain(self):
|
147
|
-
"""Test that gain parameter exists when ws_gain=True."""
|
148
|
-
layer = brainstate.nn.ScaledWSLinear((10,), (5,), ws_gain=True)
|
149
|
-
self.assertIn('gain', layer.weight.value)
|
150
|
-
|
151
|
-
def test_scaled_ws_without_gain(self):
|
152
|
-
"""Test that gain parameter is absent when ws_gain=False."""
|
153
|
-
layer = brainstate.nn.ScaledWSLinear((10,), (5,), ws_gain=False)
|
154
|
-
self.assertNotIn('gain', layer.weight.value)
|
155
|
-
|
156
|
-
def test_scaled_ws_with_mask(self):
|
157
|
-
"""Test scaled WS linear with weight mask."""
|
158
|
-
w_mask = jnp.ones((10, 1))
|
159
|
-
layer = brainstate.nn.ScaledWSLinear((10,), (5,), w_mask=w_mask)
|
160
|
-
x = brainstate.random.random((3, 10))
|
161
|
-
y = layer(x)
|
162
|
-
self.assertEqual(y.shape, (3, 5))
|
163
|
-
|
164
|
-
def test_scaled_ws_without_bias(self):
|
165
|
-
"""Test scaled WS linear without bias."""
|
166
|
-
layer = brainstate.nn.ScaledWSLinear((10,), (5,), b_init=None)
|
167
|
-
self.assertNotIn('bias', layer.weight.value)
|
168
|
-
x = brainstate.random.random((3, 10))
|
169
|
-
y = layer(x)
|
170
|
-
self.assertEqual(y.shape, (3, 5))
|
171
|
-
|
172
|
-
def test_scaled_ws_eps_parameter(self):
|
173
|
-
"""Test that eps parameter is stored correctly."""
|
174
|
-
eps_value = 1e-5
|
175
|
-
layer = brainstate.nn.ScaledWSLinear((10,), (5,), eps=eps_value)
|
176
|
-
self.assertEqual(layer.eps, eps_value)
|
177
|
-
|
178
|
-
|
179
|
-
class TestSparseLinear(unittest.TestCase):
|
180
|
-
"""Test suite for SparseLinear layer."""
|
181
|
-
|
182
|
-
def test_sparse_csr(self):
|
183
|
-
"""Test SparseLinear with CSR format."""
|
184
|
-
data = brainstate.random.rand(10, 20)
|
185
|
-
data = data * (data > 0.9)
|
186
|
-
layer = brainstate.nn.SparseLinear(u.sparse.CSR.fromdense(data))
|
187
|
-
|
188
|
-
x = brainstate.random.rand(10)
|
189
|
-
y = layer(x)
|
190
|
-
self.assertTrue(u.math.allclose(y, x @ data))
|
191
|
-
|
192
|
-
x = brainstate.random.rand(5, 10)
|
193
|
-
y = layer(x)
|
194
|
-
self.assertTrue(u.math.allclose(y, x @ data))
|
195
|
-
|
196
|
-
def test_sparse_csc(self):
|
197
|
-
"""Test SparseLinear with CSC format."""
|
198
|
-
data = brainstate.random.rand(10, 20)
|
199
|
-
data = data * (data > 0.9)
|
200
|
-
layer = brainstate.nn.SparseLinear(u.sparse.CSC.fromdense(data))
|
201
|
-
|
202
|
-
x = brainstate.random.rand(10)
|
203
|
-
y = layer(x)
|
204
|
-
self.assertTrue(u.math.allclose(y, x @ data))
|
205
|
-
|
206
|
-
x = brainstate.random.rand(5, 10)
|
207
|
-
y = layer(x)
|
208
|
-
self.assertTrue(u.math.allclose(y, x @ data))
|
209
|
-
|
210
|
-
def test_sparse_coo(self):
|
211
|
-
"""Test SparseLinear with COO format."""
|
212
|
-
data = brainstate.random.rand(10, 20)
|
213
|
-
data = data * (data > 0.9)
|
214
|
-
layer = brainstate.nn.SparseLinear(u.sparse.COO.fromdense(data))
|
215
|
-
|
216
|
-
x = brainstate.random.rand(10)
|
217
|
-
y = layer(x)
|
218
|
-
self.assertTrue(u.math.allclose(y, x @ data))
|
219
|
-
|
220
|
-
x = brainstate.random.rand(5, 10)
|
221
|
-
y = layer(x)
|
222
|
-
self.assertTrue(u.math.allclose(y, x @ data))
|
223
|
-
|
224
|
-
def test_sparse_with_bias(self):
|
225
|
-
"""Test SparseLinear with bias."""
|
226
|
-
data = brainstate.random.rand(10, 20)
|
227
|
-
data = data * (data > 0.9)
|
228
|
-
spar_mat = u.sparse.CSR.fromdense(data)
|
229
|
-
layer = brainstate.nn.SparseLinear(
|
230
|
-
spar_mat,
|
231
|
-
b_init=braintools.init.Constant(0.5),
|
232
|
-
in_size=(10,)
|
233
|
-
)
|
234
|
-
self.assertIn('bias', layer.weight.value)
|
235
|
-
x = brainstate.random.rand(5, 10)
|
236
|
-
y = layer(x)
|
237
|
-
expected = x @ data + 0.5
|
238
|
-
self.assertTrue(u.math.allclose(y, expected))
|
239
|
-
|
240
|
-
def test_sparse_without_bias(self):
|
241
|
-
"""Test SparseLinear without bias."""
|
242
|
-
data = brainstate.random.rand(10, 20)
|
243
|
-
data = data * (data > 0.9)
|
244
|
-
spar_mat = u.sparse.CSR.fromdense(data)
|
245
|
-
layer = brainstate.nn.SparseLinear(spar_mat, b_init=None)
|
246
|
-
self.assertNotIn('bias', layer.weight.value)
|
247
|
-
|
248
|
-
|
249
|
-
class TestAllToAll(parameterized.TestCase):
|
250
|
-
"""Test suite for AllToAll connection layer."""
|
251
|
-
|
252
|
-
@parameterized.product(
|
253
|
-
in_size=[10, 20],
|
254
|
-
out_size=[10, 15],
|
255
|
-
include_self=[True, False]
|
256
|
-
)
|
257
|
-
def test_all_to_all_shapes(self, in_size, out_size, include_self):
|
258
|
-
"""Test output shapes with various configurations."""
|
259
|
-
layer = brainstate.nn.AllToAll((in_size,), (out_size,), include_self=include_self)
|
260
|
-
x = brainstate.random.random((3, in_size))
|
261
|
-
y = layer(x)
|
262
|
-
self.assertEqual(y.shape, (3, out_size))
|
263
|
-
|
264
|
-
def test_all_to_all_with_self(self):
|
265
|
-
"""Test all-to-all with self-connections."""
|
266
|
-
layer = brainstate.nn.AllToAll((5,), (5,), include_self=True)
|
267
|
-
layer.weight.value = {'weight': jnp.eye(5)}
|
268
|
-
x = jnp.ones((1, 5))
|
269
|
-
y = layer(x)
|
270
|
-
expected = jnp.ones((1, 5))
|
271
|
-
self.assertTrue(jnp.allclose(y, expected))
|
272
|
-
|
273
|
-
def test_all_to_all_without_self(self):
|
274
|
-
"""Test all-to-all without self-connections."""
|
275
|
-
layer = brainstate.nn.AllToAll((5,), (5,), include_self=False)
|
276
|
-
layer.weight.value = {'weight': jnp.eye(5)}
|
277
|
-
x = jnp.ones((1, 5))
|
278
|
-
y = layer(x)
|
279
|
-
# Diagonal should be zeroed out
|
280
|
-
expected = jnp.zeros((1, 5))
|
281
|
-
self.assertTrue(jnp.allclose(y, expected))
|
282
|
-
|
283
|
-
def test_all_to_all_scalar_weight(self):
|
284
|
-
"""Test all-to-all with scalar weight."""
|
285
|
-
layer = brainstate.nn.AllToAll((5,), (5,), w_init=braintools.init.Constant(2.0))
|
286
|
-
# Override with scalar
|
287
|
-
layer.weight.value = {'weight': 2.0}
|
288
|
-
x = jnp.ones((1, 5))
|
289
|
-
y = layer(x)
|
290
|
-
expected = jnp.ones((1, 5)) * 10.0 # sum of 5 ones * 2
|
291
|
-
self.assertTrue(jnp.allclose(y, expected))
|
292
|
-
|
293
|
-
def test_all_to_all_with_bias(self):
|
294
|
-
"""Test all-to-all with bias."""
|
295
|
-
layer = brainstate.nn.AllToAll(
|
296
|
-
(5,), (5,),
|
297
|
-
b_init=braintools.init.Constant(1.0)
|
298
|
-
)
|
299
|
-
self.assertIn('bias', layer.weight.value)
|
300
|
-
x = brainstate.random.random((3, 5))
|
301
|
-
y = layer(x)
|
302
|
-
self.assertEqual(y.shape, (3, 5))
|
303
|
-
|
304
|
-
def test_all_to_all_with_units(self):
|
305
|
-
"""Test all-to-all with brainunit quantities."""
|
306
|
-
layer = brainstate.nn.AllToAll((5,), (5,))
|
307
|
-
layer.weight.value = {'weight': jnp.ones((5, 5)) * u.siemens}
|
308
|
-
x = jnp.ones((1, 5)) * u.volt
|
309
|
-
y = layer(x)
|
310
|
-
# Should have units of siemens * volt
|
311
|
-
self.assertTrue(hasattr(y, 'unit') or isinstance(y, u.Quantity))
|
312
|
-
|
313
|
-
|
314
|
-
class TestOneToOne(parameterized.TestCase):
|
315
|
-
"""Test suite for OneToOne connection layer."""
|
316
|
-
|
317
|
-
@parameterized.parameters(5, 10, 20)
|
318
|
-
def test_one_to_one_shapes(self, size):
|
319
|
-
"""Test output shapes."""
|
320
|
-
layer = brainstate.nn.OneToOne((size,))
|
321
|
-
x = brainstate.random.random((3, size))
|
322
|
-
y = layer(x)
|
323
|
-
self.assertEqual(y.shape, (3, size))
|
324
|
-
|
325
|
-
def test_one_to_one_computation(self):
|
326
|
-
"""Test element-wise multiplication."""
|
327
|
-
layer = brainstate.nn.OneToOne((5,), b_init=None)
|
328
|
-
layer.weight.value = {'weight': jnp.array([1.0, 2.0, 3.0, 4.0, 5.0])}
|
329
|
-
x = jnp.ones((1, 5))
|
330
|
-
y = layer(x)
|
331
|
-
expected = jnp.array([[1.0, 2.0, 3.0, 4.0, 5.0]])
|
332
|
-
self.assertTrue(jnp.allclose(y, expected))
|
333
|
-
|
334
|
-
def test_one_to_one_with_bias(self):
|
335
|
-
"""Test one-to-one with bias."""
|
336
|
-
layer = brainstate.nn.OneToOne((5,), b_init=braintools.init.Constant(1.0))
|
337
|
-
self.assertIn('bias', layer.weight.value)
|
338
|
-
layer.weight.value = {
|
339
|
-
'weight': jnp.ones(5),
|
340
|
-
'bias': jnp.ones(5)
|
341
|
-
}
|
342
|
-
x = jnp.ones((1, 5))
|
343
|
-
y = layer(x)
|
344
|
-
expected = jnp.ones((1, 5)) * 2.0 # 1*1 + 1
|
345
|
-
self.assertTrue(jnp.allclose(y, expected))
|
346
|
-
|
347
|
-
def test_one_to_one_without_bias(self):
|
348
|
-
"""Test one-to-one without bias."""
|
349
|
-
layer = brainstate.nn.OneToOne((5,), b_init=None)
|
350
|
-
self.assertNotIn('bias', layer.weight.value)
|
351
|
-
|
352
|
-
def test_one_to_one_zero_weights(self):
|
353
|
-
"""Test one-to-one with zero weights."""
|
354
|
-
layer = brainstate.nn.OneToOne((5,), w_init=braintools.init.ZeroInit(), b_init=None)
|
355
|
-
x = jnp.ones((1, 5))
|
356
|
-
y = layer(x)
|
357
|
-
expected = jnp.zeros((1, 5))
|
358
|
-
self.assertTrue(jnp.allclose(y, expected))
|
359
|
-
|
360
|
-
|
361
|
-
class TestLoRA(parameterized.TestCase):
|
362
|
-
"""Test suite for LoRA layer."""
|
363
|
-
|
364
|
-
@parameterized.product(
|
365
|
-
in_features=[10, 20],
|
366
|
-
lora_rank=[2, 4],
|
367
|
-
out_features=[5, 10]
|
368
|
-
)
|
369
|
-
def test_lora_shapes(self, in_features, lora_rank, out_features):
|
370
|
-
"""Test output shapes with various configurations."""
|
371
|
-
layer = brainstate.nn.LoRA(in_features, lora_rank, out_features)
|
372
|
-
x = brainstate.random.random((3, in_features))
|
373
|
-
y = layer(x)
|
374
|
-
self.assertEqual(y.shape, (3, out_features))
|
375
|
-
|
376
|
-
def test_lora_parameter_count(self):
|
377
|
-
"""Test that LoRA has correct number of parameters."""
|
378
|
-
in_features, lora_rank, out_features = 10, 2, 5
|
379
|
-
layer = brainstate.nn.LoRA(in_features, lora_rank, out_features)
|
380
|
-
# lora_a: 10 x 2, lora_b: 2 x 5
|
381
|
-
self.assertEqual(layer.weight.value['lora_a'].shape, (10, 2))
|
382
|
-
self.assertEqual(layer.weight.value['lora_b'].shape, (2, 5))
|
383
|
-
|
384
|
-
def test_lora_standalone(self):
|
385
|
-
"""Test standalone LoRA without base module."""
|
386
|
-
layer = brainstate.nn.LoRA(5, 2, 3)
|
387
|
-
layer.weight.value = {
|
388
|
-
'lora_a': jnp.ones((5, 2)),
|
389
|
-
'lora_b': jnp.ones((2, 3))
|
390
|
-
}
|
391
|
-
x = jnp.ones((1, 5))
|
392
|
-
y = layer(x)
|
393
|
-
# Each output: sum(5 ones) * 2 = 10
|
394
|
-
expected = jnp.ones((1, 3)) * 10.0
|
395
|
-
self.assertTrue(jnp.allclose(y, expected))
|
396
|
-
|
397
|
-
def test_lora_with_base_module(self):
|
398
|
-
"""Test LoRA wrapped around base module."""
|
399
|
-
base = brainstate.nn.Linear(5, 3, b_init=None)
|
400
|
-
base.weight.value = {'weight': jnp.ones((5, 3))}
|
401
|
-
layer = brainstate.nn.LoRA(5, 2, 3, base_module=base)
|
402
|
-
layer.weight.value = {
|
403
|
-
'lora_a': jnp.ones((5, 2)),
|
404
|
-
'lora_b': jnp.ones((2, 3))
|
405
|
-
}
|
406
|
-
x = jnp.ones((1, 5))
|
407
|
-
y = layer(x)
|
408
|
-
# LoRA output: 10, Base output: 5, Total: 15
|
409
|
-
expected = jnp.ones((1, 3)) * 15.0
|
410
|
-
self.assertTrue(jnp.allclose(y, expected))
|
411
|
-
|
412
|
-
def test_lora_base_module_attribute(self):
|
413
|
-
"""Test that base_module attribute is set correctly."""
|
414
|
-
base = brainstate.nn.Linear(5, 3)
|
415
|
-
layer = brainstate.nn.LoRA(5, 2, 3, base_module=base)
|
416
|
-
self.assertEqual(layer.base_module, base)
|
417
|
-
|
418
|
-
def test_lora_without_base_module(self):
|
419
|
-
"""Test that base_module is None when not provided."""
|
420
|
-
layer = brainstate.nn.LoRA(5, 2, 3)
|
421
|
-
self.assertIsNone(layer.base_module)
|
422
|
-
|
423
|
-
def test_lora_size_attributes(self):
|
424
|
-
"""Test that size attributes are set correctly."""
|
425
|
-
layer = brainstate.nn.LoRA(10, 3, 5, in_size=(10,))
|
426
|
-
self.assertEqual(layer.in_features, 10)
|
427
|
-
self.assertEqual(layer.out_features, 5)
|
428
|
-
self.assertEqual(layer.in_size[0], 10)
|
429
|
-
self.assertEqual(layer.out_size[0], 5)
|
430
|
-
|
431
|
-
def test_lora_custom_initialization(self):
|
432
|
-
"""Test LoRA with custom initialization."""
|
433
|
-
layer = brainstate.nn.LoRA(
|
434
|
-
5, 2, 3,
|
435
|
-
kernel_init=braintools.init.ZeroInit()
|
436
|
-
)
|
437
|
-
self.assertTrue(jnp.allclose(layer.weight.value['lora_a'], 0.0))
|
438
|
-
self.assertTrue(jnp.allclose(layer.weight.value['lora_b'], 0.0))
|
439
|
-
|
440
|
-
|
441
|
-
class TestLinearEdgeCases(unittest.TestCase):
|
442
|
-
"""Test edge cases and error conditions for linear layers."""
|
443
|
-
|
444
|
-
def test_linear_size_mismatch(self):
|
445
|
-
"""Test that size mismatch raises error."""
|
446
|
-
with self.assertRaises(AssertionError):
|
447
|
-
# Mismatched first dimensions
|
448
|
-
brainstate.nn.Linear((5, 10), (3, 5))
|
449
|
-
|
450
|
-
def test_linear_1d_sizes(self):
|
451
|
-
"""Test with 1D size specifications."""
|
452
|
-
layer = brainstate.nn.Linear(10, 5)
|
453
|
-
x = brainstate.random.random((3, 10))
|
454
|
-
y = layer(x)
|
455
|
-
self.assertEqual(y.shape, (3, 5))
|
456
|
-
|
457
|
-
def test_signed_linear_size_mismatch(self):
|
458
|
-
"""Test SignedWLinear with size mismatch."""
|
459
|
-
with self.assertRaises(AssertionError):
|
460
|
-
brainstate.nn.SignedWLinear((5, 10), (3, 5))
|
461
|
-
|
462
|
-
def test_all_to_all_size_mismatch(self):
|
463
|
-
"""Test AllToAll with size mismatch."""
|
464
|
-
with self.assertRaises(AssertionError):
|
465
|
-
brainstate.nn.AllToAll((5, 10), (3, 5))
|
466
|
-
|
467
|
-
def test_sparse_linear_invalid_input(self):
|
468
|
-
"""Test SparseLinear with invalid sparse matrix."""
|
469
|
-
with self.assertRaises(AssertionError):
|
470
|
-
# Not a SparseMatrix
|
471
|
-
brainstate.nn.SparseLinear(jnp.ones((5, 5)))
|
472
|
-
|
473
|
-
|
474
|
-
if __name__ == '__main__':
|
475
|
-
unittest.main()
|
1
|
+
# Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import unittest
|
17
|
+
|
18
|
+
import brainunit as u
|
19
|
+
import jax.numpy as jnp
|
20
|
+
from absl.testing import parameterized
|
21
|
+
|
22
|
+
import brainstate
|
23
|
+
import braintools
|
24
|
+
|
25
|
+
|
26
|
+
class TestLinear(parameterized.TestCase):
|
27
|
+
"""Test suite for Linear layer."""
|
28
|
+
|
29
|
+
@parameterized.product(
|
30
|
+
size=[(10,), (20, 10), (5, 8, 10)],
|
31
|
+
num_out=[20, 5]
|
32
|
+
)
|
33
|
+
def test_linear_shapes(self, size, num_out):
|
34
|
+
"""Test output shapes with various input dimensions."""
|
35
|
+
layer = brainstate.nn.Linear(10, num_out)
|
36
|
+
x = brainstate.random.random(size)
|
37
|
+
y = layer(x)
|
38
|
+
self.assertEqual(y.shape, size[:-1] + (num_out,))
|
39
|
+
|
40
|
+
def test_linear_with_bias(self):
|
41
|
+
"""Test linear layer with bias."""
|
42
|
+
layer = brainstate.nn.Linear(10, 5)
|
43
|
+
self.assertIn('bias', layer.weight.value)
|
44
|
+
x = brainstate.random.random((3, 10))
|
45
|
+
y = layer(x)
|
46
|
+
self.assertEqual(y.shape, (3, 5))
|
47
|
+
|
48
|
+
def test_linear_without_bias(self):
|
49
|
+
"""Test linear layer without bias."""
|
50
|
+
layer = brainstate.nn.Linear(10, 5, b_init=None)
|
51
|
+
self.assertNotIn('bias', layer.weight.value)
|
52
|
+
x = brainstate.random.random((3, 10))
|
53
|
+
y = layer(x)
|
54
|
+
self.assertEqual(y.shape, (3, 5))
|
55
|
+
|
56
|
+
def test_linear_with_mask(self):
|
57
|
+
"""Test linear layer with weight mask."""
|
58
|
+
w_mask = jnp.ones((10, 5))
|
59
|
+
w_mask = w_mask.at[:, 0].set(0) # mask out first output column
|
60
|
+
layer = brainstate.nn.Linear(10, 5, w_mask=w_mask)
|
61
|
+
x = jnp.ones((3, 10))
|
62
|
+
y = layer(x)
|
63
|
+
self.assertEqual(y.shape, (3, 5))
|
64
|
+
|
65
|
+
def test_linear_weight_initialization(self):
|
66
|
+
"""Test custom weight initialization."""
|
67
|
+
layer = brainstate.nn.Linear(
|
68
|
+
10, 5,
|
69
|
+
w_init=braintools.init.ZeroInit(),
|
70
|
+
b_init=braintools.init.Constant(1.0)
|
71
|
+
)
|
72
|
+
self.assertTrue(jnp.allclose(layer.weight.value['weight'], 0.0))
|
73
|
+
self.assertTrue(jnp.allclose(layer.weight.value['bias'], 1.0))
|
74
|
+
|
75
|
+
def test_linear_computation(self):
|
76
|
+
"""Test that computation is correct."""
|
77
|
+
layer = brainstate.nn.Linear(3, 2, b_init=None)
|
78
|
+
# Set known weights
|
79
|
+
layer.weight.value = {'weight': jnp.array([[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]])}
|
80
|
+
x = jnp.array([[1.0, 2.0, 3.0]])
|
81
|
+
y = layer(x)
|
82
|
+
expected = jnp.array([[4.0, 5.0]]) # [1*1+2*0+3*1, 1*0+2*1+3*1]
|
83
|
+
self.assertTrue(jnp.allclose(y, expected))
|
84
|
+
|
85
|
+
|
86
|
+
class TestSignedWLinear(parameterized.TestCase):
|
87
|
+
"""Test suite for SignedWLinear layer."""
|
88
|
+
|
89
|
+
@parameterized.product(
|
90
|
+
in_size=[10, 20],
|
91
|
+
out_size=[5, 10]
|
92
|
+
)
|
93
|
+
def test_signed_linear_shapes(self, in_size, out_size):
|
94
|
+
"""Test output shapes."""
|
95
|
+
layer = brainstate.nn.SignedWLinear((in_size,), (out_size,))
|
96
|
+
x = brainstate.random.random((3, in_size))
|
97
|
+
y = layer(x)
|
98
|
+
self.assertEqual(y.shape, (3, out_size))
|
99
|
+
|
100
|
+
def test_signed_linear_positive_weights(self):
|
101
|
+
"""Test that weights are positive when w_sign is None."""
|
102
|
+
layer = brainstate.nn.SignedWLinear((5,), (3,))
|
103
|
+
# Set weights to negative values
|
104
|
+
layer.weight.value = jnp.array([[-1.0, -2.0, -3.0]] * 5)
|
105
|
+
x = jnp.ones((1, 5))
|
106
|
+
y = layer(x)
|
107
|
+
# Output should be positive since abs is applied
|
108
|
+
self.assertTrue(jnp.all(y > 0))
|
109
|
+
|
110
|
+
def test_signed_linear_with_sign_matrix(self):
|
111
|
+
"""Test signed linear with custom sign matrix."""
|
112
|
+
w_sign = jnp.ones((5, 3)) * -1.0 # all negative
|
113
|
+
layer = brainstate.nn.SignedWLinear((5,), (3,), w_sign=w_sign)
|
114
|
+
layer.weight.value = jnp.ones((5, 3))
|
115
|
+
x = jnp.ones((1, 5))
|
116
|
+
y = layer(x)
|
117
|
+
# All outputs should be negative
|
118
|
+
self.assertTrue(jnp.all(y < 0))
|
119
|
+
|
120
|
+
def test_signed_linear_mixed_signs(self):
|
121
|
+
"""Test with mixed positive and negative signs."""
|
122
|
+
w_sign = jnp.array([[1.0, -1.0], [1.0, -1.0], [-1.0, 1.0]])
|
123
|
+
layer = brainstate.nn.SignedWLinear((3,), (2,), w_sign=w_sign)
|
124
|
+
layer.weight.value = jnp.ones((3, 2))
|
125
|
+
x = jnp.array([[1.0, 1.0, 1.0]])
|
126
|
+
y = layer(x)
|
127
|
+
expected = jnp.array([[1.0, -1.0]]) # [1-1, -1+1]
|
128
|
+
self.assertTrue(jnp.allclose(y, expected))
|
129
|
+
|
130
|
+
|
131
|
+
class TestScaledWSLinear(parameterized.TestCase):
|
132
|
+
"""Test suite for ScaledWSLinear layer."""
|
133
|
+
|
134
|
+
@parameterized.product(
|
135
|
+
in_size=[10, 20],
|
136
|
+
out_size=[5, 10],
|
137
|
+
ws_gain=[True, False]
|
138
|
+
)
|
139
|
+
def test_scaled_ws_shapes(self, in_size, out_size, ws_gain):
|
140
|
+
"""Test output shapes with and without gain."""
|
141
|
+
layer = brainstate.nn.ScaledWSLinear((in_size,), (out_size,), ws_gain=ws_gain)
|
142
|
+
x = brainstate.random.random((3, in_size))
|
143
|
+
y = layer(x)
|
144
|
+
self.assertEqual(y.shape, (3, out_size))
|
145
|
+
|
146
|
+
def test_scaled_ws_with_gain(self):
|
147
|
+
"""Test that gain parameter exists when ws_gain=True."""
|
148
|
+
layer = brainstate.nn.ScaledWSLinear((10,), (5,), ws_gain=True)
|
149
|
+
self.assertIn('gain', layer.weight.value)
|
150
|
+
|
151
|
+
def test_scaled_ws_without_gain(self):
|
152
|
+
"""Test that gain parameter is absent when ws_gain=False."""
|
153
|
+
layer = brainstate.nn.ScaledWSLinear((10,), (5,), ws_gain=False)
|
154
|
+
self.assertNotIn('gain', layer.weight.value)
|
155
|
+
|
156
|
+
def test_scaled_ws_with_mask(self):
|
157
|
+
"""Test scaled WS linear with weight mask."""
|
158
|
+
w_mask = jnp.ones((10, 1))
|
159
|
+
layer = brainstate.nn.ScaledWSLinear((10,), (5,), w_mask=w_mask)
|
160
|
+
x = brainstate.random.random((3, 10))
|
161
|
+
y = layer(x)
|
162
|
+
self.assertEqual(y.shape, (3, 5))
|
163
|
+
|
164
|
+
def test_scaled_ws_without_bias(self):
|
165
|
+
"""Test scaled WS linear without bias."""
|
166
|
+
layer = brainstate.nn.ScaledWSLinear((10,), (5,), b_init=None)
|
167
|
+
self.assertNotIn('bias', layer.weight.value)
|
168
|
+
x = brainstate.random.random((3, 10))
|
169
|
+
y = layer(x)
|
170
|
+
self.assertEqual(y.shape, (3, 5))
|
171
|
+
|
172
|
+
def test_scaled_ws_eps_parameter(self):
|
173
|
+
"""Test that eps parameter is stored correctly."""
|
174
|
+
eps_value = 1e-5
|
175
|
+
layer = brainstate.nn.ScaledWSLinear((10,), (5,), eps=eps_value)
|
176
|
+
self.assertEqual(layer.eps, eps_value)
|
177
|
+
|
178
|
+
|
179
|
+
class TestSparseLinear(unittest.TestCase):
|
180
|
+
"""Test suite for SparseLinear layer."""
|
181
|
+
|
182
|
+
def test_sparse_csr(self):
|
183
|
+
"""Test SparseLinear with CSR format."""
|
184
|
+
data = brainstate.random.rand(10, 20)
|
185
|
+
data = data * (data > 0.9)
|
186
|
+
layer = brainstate.nn.SparseLinear(u.sparse.CSR.fromdense(data))
|
187
|
+
|
188
|
+
x = brainstate.random.rand(10)
|
189
|
+
y = layer(x)
|
190
|
+
self.assertTrue(u.math.allclose(y, x @ data))
|
191
|
+
|
192
|
+
x = brainstate.random.rand(5, 10)
|
193
|
+
y = layer(x)
|
194
|
+
self.assertTrue(u.math.allclose(y, x @ data))
|
195
|
+
|
196
|
+
def test_sparse_csc(self):
|
197
|
+
"""Test SparseLinear with CSC format."""
|
198
|
+
data = brainstate.random.rand(10, 20)
|
199
|
+
data = data * (data > 0.9)
|
200
|
+
layer = brainstate.nn.SparseLinear(u.sparse.CSC.fromdense(data))
|
201
|
+
|
202
|
+
x = brainstate.random.rand(10)
|
203
|
+
y = layer(x)
|
204
|
+
self.assertTrue(u.math.allclose(y, x @ data))
|
205
|
+
|
206
|
+
x = brainstate.random.rand(5, 10)
|
207
|
+
y = layer(x)
|
208
|
+
self.assertTrue(u.math.allclose(y, x @ data))
|
209
|
+
|
210
|
+
def test_sparse_coo(self):
|
211
|
+
"""Test SparseLinear with COO format."""
|
212
|
+
data = brainstate.random.rand(10, 20)
|
213
|
+
data = data * (data > 0.9)
|
214
|
+
layer = brainstate.nn.SparseLinear(u.sparse.COO.fromdense(data))
|
215
|
+
|
216
|
+
x = brainstate.random.rand(10)
|
217
|
+
y = layer(x)
|
218
|
+
self.assertTrue(u.math.allclose(y, x @ data))
|
219
|
+
|
220
|
+
x = brainstate.random.rand(5, 10)
|
221
|
+
y = layer(x)
|
222
|
+
self.assertTrue(u.math.allclose(y, x @ data))
|
223
|
+
|
224
|
+
def test_sparse_with_bias(self):
|
225
|
+
"""Test SparseLinear with bias."""
|
226
|
+
data = brainstate.random.rand(10, 20)
|
227
|
+
data = data * (data > 0.9)
|
228
|
+
spar_mat = u.sparse.CSR.fromdense(data)
|
229
|
+
layer = brainstate.nn.SparseLinear(
|
230
|
+
spar_mat,
|
231
|
+
b_init=braintools.init.Constant(0.5),
|
232
|
+
in_size=(10,)
|
233
|
+
)
|
234
|
+
self.assertIn('bias', layer.weight.value)
|
235
|
+
x = brainstate.random.rand(5, 10)
|
236
|
+
y = layer(x)
|
237
|
+
expected = x @ data + 0.5
|
238
|
+
self.assertTrue(u.math.allclose(y, expected))
|
239
|
+
|
240
|
+
def test_sparse_without_bias(self):
|
241
|
+
"""Test SparseLinear without bias."""
|
242
|
+
data = brainstate.random.rand(10, 20)
|
243
|
+
data = data * (data > 0.9)
|
244
|
+
spar_mat = u.sparse.CSR.fromdense(data)
|
245
|
+
layer = brainstate.nn.SparseLinear(spar_mat, b_init=None)
|
246
|
+
self.assertNotIn('bias', layer.weight.value)
|
247
|
+
|
248
|
+
|
249
|
+
class TestAllToAll(parameterized.TestCase):
|
250
|
+
"""Test suite for AllToAll connection layer."""
|
251
|
+
|
252
|
+
@parameterized.product(
|
253
|
+
in_size=[10, 20],
|
254
|
+
out_size=[10, 15],
|
255
|
+
include_self=[True, False]
|
256
|
+
)
|
257
|
+
def test_all_to_all_shapes(self, in_size, out_size, include_self):
|
258
|
+
"""Test output shapes with various configurations."""
|
259
|
+
layer = brainstate.nn.AllToAll((in_size,), (out_size,), include_self=include_self)
|
260
|
+
x = brainstate.random.random((3, in_size))
|
261
|
+
y = layer(x)
|
262
|
+
self.assertEqual(y.shape, (3, out_size))
|
263
|
+
|
264
|
+
def test_all_to_all_with_self(self):
|
265
|
+
"""Test all-to-all with self-connections."""
|
266
|
+
layer = brainstate.nn.AllToAll((5,), (5,), include_self=True)
|
267
|
+
layer.weight.value = {'weight': jnp.eye(5)}
|
268
|
+
x = jnp.ones((1, 5))
|
269
|
+
y = layer(x)
|
270
|
+
expected = jnp.ones((1, 5))
|
271
|
+
self.assertTrue(jnp.allclose(y, expected))
|
272
|
+
|
273
|
+
def test_all_to_all_without_self(self):
|
274
|
+
"""Test all-to-all without self-connections."""
|
275
|
+
layer = brainstate.nn.AllToAll((5,), (5,), include_self=False)
|
276
|
+
layer.weight.value = {'weight': jnp.eye(5)}
|
277
|
+
x = jnp.ones((1, 5))
|
278
|
+
y = layer(x)
|
279
|
+
# Diagonal should be zeroed out
|
280
|
+
expected = jnp.zeros((1, 5))
|
281
|
+
self.assertTrue(jnp.allclose(y, expected))
|
282
|
+
|
283
|
+
def test_all_to_all_scalar_weight(self):
|
284
|
+
"""Test all-to-all with scalar weight."""
|
285
|
+
layer = brainstate.nn.AllToAll((5,), (5,), w_init=braintools.init.Constant(2.0))
|
286
|
+
# Override with scalar
|
287
|
+
layer.weight.value = {'weight': 2.0}
|
288
|
+
x = jnp.ones((1, 5))
|
289
|
+
y = layer(x)
|
290
|
+
expected = jnp.ones((1, 5)) * 10.0 # sum of 5 ones * 2
|
291
|
+
self.assertTrue(jnp.allclose(y, expected))
|
292
|
+
|
293
|
+
def test_all_to_all_with_bias(self):
|
294
|
+
"""Test all-to-all with bias."""
|
295
|
+
layer = brainstate.nn.AllToAll(
|
296
|
+
(5,), (5,),
|
297
|
+
b_init=braintools.init.Constant(1.0)
|
298
|
+
)
|
299
|
+
self.assertIn('bias', layer.weight.value)
|
300
|
+
x = brainstate.random.random((3, 5))
|
301
|
+
y = layer(x)
|
302
|
+
self.assertEqual(y.shape, (3, 5))
|
303
|
+
|
304
|
+
def test_all_to_all_with_units(self):
|
305
|
+
"""Test all-to-all with brainunit quantities."""
|
306
|
+
layer = brainstate.nn.AllToAll((5,), (5,))
|
307
|
+
layer.weight.value = {'weight': jnp.ones((5, 5)) * u.siemens}
|
308
|
+
x = jnp.ones((1, 5)) * u.volt
|
309
|
+
y = layer(x)
|
310
|
+
# Should have units of siemens * volt
|
311
|
+
self.assertTrue(hasattr(y, 'unit') or isinstance(y, u.Quantity))
|
312
|
+
|
313
|
+
|
314
|
+
class TestOneToOne(parameterized.TestCase):
|
315
|
+
"""Test suite for OneToOne connection layer."""
|
316
|
+
|
317
|
+
@parameterized.parameters(5, 10, 20)
|
318
|
+
def test_one_to_one_shapes(self, size):
|
319
|
+
"""Test output shapes."""
|
320
|
+
layer = brainstate.nn.OneToOne((size,))
|
321
|
+
x = brainstate.random.random((3, size))
|
322
|
+
y = layer(x)
|
323
|
+
self.assertEqual(y.shape, (3, size))
|
324
|
+
|
325
|
+
def test_one_to_one_computation(self):
|
326
|
+
"""Test element-wise multiplication."""
|
327
|
+
layer = brainstate.nn.OneToOne((5,), b_init=None)
|
328
|
+
layer.weight.value = {'weight': jnp.array([1.0, 2.0, 3.0, 4.0, 5.0])}
|
329
|
+
x = jnp.ones((1, 5))
|
330
|
+
y = layer(x)
|
331
|
+
expected = jnp.array([[1.0, 2.0, 3.0, 4.0, 5.0]])
|
332
|
+
self.assertTrue(jnp.allclose(y, expected))
|
333
|
+
|
334
|
+
def test_one_to_one_with_bias(self):
|
335
|
+
"""Test one-to-one with bias."""
|
336
|
+
layer = brainstate.nn.OneToOne((5,), b_init=braintools.init.Constant(1.0))
|
337
|
+
self.assertIn('bias', layer.weight.value)
|
338
|
+
layer.weight.value = {
|
339
|
+
'weight': jnp.ones(5),
|
340
|
+
'bias': jnp.ones(5)
|
341
|
+
}
|
342
|
+
x = jnp.ones((1, 5))
|
343
|
+
y = layer(x)
|
344
|
+
expected = jnp.ones((1, 5)) * 2.0 # 1*1 + 1
|
345
|
+
self.assertTrue(jnp.allclose(y, expected))
|
346
|
+
|
347
|
+
def test_one_to_one_without_bias(self):
|
348
|
+
"""Test one-to-one without bias."""
|
349
|
+
layer = brainstate.nn.OneToOne((5,), b_init=None)
|
350
|
+
self.assertNotIn('bias', layer.weight.value)
|
351
|
+
|
352
|
+
def test_one_to_one_zero_weights(self):
|
353
|
+
"""Test one-to-one with zero weights."""
|
354
|
+
layer = brainstate.nn.OneToOne((5,), w_init=braintools.init.ZeroInit(), b_init=None)
|
355
|
+
x = jnp.ones((1, 5))
|
356
|
+
y = layer(x)
|
357
|
+
expected = jnp.zeros((1, 5))
|
358
|
+
self.assertTrue(jnp.allclose(y, expected))
|
359
|
+
|
360
|
+
|
361
|
+
class TestLoRA(parameterized.TestCase):
|
362
|
+
"""Test suite for LoRA layer."""
|
363
|
+
|
364
|
+
@parameterized.product(
|
365
|
+
in_features=[10, 20],
|
366
|
+
lora_rank=[2, 4],
|
367
|
+
out_features=[5, 10]
|
368
|
+
)
|
369
|
+
def test_lora_shapes(self, in_features, lora_rank, out_features):
|
370
|
+
"""Test output shapes with various configurations."""
|
371
|
+
layer = brainstate.nn.LoRA(in_features, lora_rank, out_features)
|
372
|
+
x = brainstate.random.random((3, in_features))
|
373
|
+
y = layer(x)
|
374
|
+
self.assertEqual(y.shape, (3, out_features))
|
375
|
+
|
376
|
+
def test_lora_parameter_count(self):
|
377
|
+
"""Test that LoRA has correct number of parameters."""
|
378
|
+
in_features, lora_rank, out_features = 10, 2, 5
|
379
|
+
layer = brainstate.nn.LoRA(in_features, lora_rank, out_features)
|
380
|
+
# lora_a: 10 x 2, lora_b: 2 x 5
|
381
|
+
self.assertEqual(layer.weight.value['lora_a'].shape, (10, 2))
|
382
|
+
self.assertEqual(layer.weight.value['lora_b'].shape, (2, 5))
|
383
|
+
|
384
|
+
def test_lora_standalone(self):
|
385
|
+
"""Test standalone LoRA without base module."""
|
386
|
+
layer = brainstate.nn.LoRA(5, 2, 3)
|
387
|
+
layer.weight.value = {
|
388
|
+
'lora_a': jnp.ones((5, 2)),
|
389
|
+
'lora_b': jnp.ones((2, 3))
|
390
|
+
}
|
391
|
+
x = jnp.ones((1, 5))
|
392
|
+
y = layer(x)
|
393
|
+
# Each output: sum(5 ones) * 2 = 10
|
394
|
+
expected = jnp.ones((1, 3)) * 10.0
|
395
|
+
self.assertTrue(jnp.allclose(y, expected))
|
396
|
+
|
397
|
+
def test_lora_with_base_module(self):
|
398
|
+
"""Test LoRA wrapped around base module."""
|
399
|
+
base = brainstate.nn.Linear(5, 3, b_init=None)
|
400
|
+
base.weight.value = {'weight': jnp.ones((5, 3))}
|
401
|
+
layer = brainstate.nn.LoRA(5, 2, 3, base_module=base)
|
402
|
+
layer.weight.value = {
|
403
|
+
'lora_a': jnp.ones((5, 2)),
|
404
|
+
'lora_b': jnp.ones((2, 3))
|
405
|
+
}
|
406
|
+
x = jnp.ones((1, 5))
|
407
|
+
y = layer(x)
|
408
|
+
# LoRA output: 10, Base output: 5, Total: 15
|
409
|
+
expected = jnp.ones((1, 3)) * 15.0
|
410
|
+
self.assertTrue(jnp.allclose(y, expected))
|
411
|
+
|
412
|
+
def test_lora_base_module_attribute(self):
|
413
|
+
"""Test that base_module attribute is set correctly."""
|
414
|
+
base = brainstate.nn.Linear(5, 3)
|
415
|
+
layer = brainstate.nn.LoRA(5, 2, 3, base_module=base)
|
416
|
+
self.assertEqual(layer.base_module, base)
|
417
|
+
|
418
|
+
def test_lora_without_base_module(self):
|
419
|
+
"""Test that base_module is None when not provided."""
|
420
|
+
layer = brainstate.nn.LoRA(5, 2, 3)
|
421
|
+
self.assertIsNone(layer.base_module)
|
422
|
+
|
423
|
+
def test_lora_size_attributes(self):
|
424
|
+
"""Test that size attributes are set correctly."""
|
425
|
+
layer = brainstate.nn.LoRA(10, 3, 5, in_size=(10,))
|
426
|
+
self.assertEqual(layer.in_features, 10)
|
427
|
+
self.assertEqual(layer.out_features, 5)
|
428
|
+
self.assertEqual(layer.in_size[0], 10)
|
429
|
+
self.assertEqual(layer.out_size[0], 5)
|
430
|
+
|
431
|
+
def test_lora_custom_initialization(self):
|
432
|
+
"""Test LoRA with custom initialization."""
|
433
|
+
layer = brainstate.nn.LoRA(
|
434
|
+
5, 2, 3,
|
435
|
+
kernel_init=braintools.init.ZeroInit()
|
436
|
+
)
|
437
|
+
self.assertTrue(jnp.allclose(layer.weight.value['lora_a'], 0.0))
|
438
|
+
self.assertTrue(jnp.allclose(layer.weight.value['lora_b'], 0.0))
|
439
|
+
|
440
|
+
|
441
|
+
class TestLinearEdgeCases(unittest.TestCase):
|
442
|
+
"""Test edge cases and error conditions for linear layers."""
|
443
|
+
|
444
|
+
def test_linear_size_mismatch(self):
|
445
|
+
"""Test that size mismatch raises error."""
|
446
|
+
with self.assertRaises(AssertionError):
|
447
|
+
# Mismatched first dimensions
|
448
|
+
brainstate.nn.Linear((5, 10), (3, 5))
|
449
|
+
|
450
|
+
def test_linear_1d_sizes(self):
|
451
|
+
"""Test with 1D size specifications."""
|
452
|
+
layer = brainstate.nn.Linear(10, 5)
|
453
|
+
x = brainstate.random.random((3, 10))
|
454
|
+
y = layer(x)
|
455
|
+
self.assertEqual(y.shape, (3, 5))
|
456
|
+
|
457
|
+
def test_signed_linear_size_mismatch(self):
|
458
|
+
"""Test SignedWLinear with size mismatch."""
|
459
|
+
with self.assertRaises(AssertionError):
|
460
|
+
brainstate.nn.SignedWLinear((5, 10), (3, 5))
|
461
|
+
|
462
|
+
def test_all_to_all_size_mismatch(self):
|
463
|
+
"""Test AllToAll with size mismatch."""
|
464
|
+
with self.assertRaises(AssertionError):
|
465
|
+
brainstate.nn.AllToAll((5, 10), (3, 5))
|
466
|
+
|
467
|
+
def test_sparse_linear_invalid_input(self):
|
468
|
+
"""Test SparseLinear with invalid sparse matrix."""
|
469
|
+
with self.assertRaises(AssertionError):
|
470
|
+
# Not a SparseMatrix
|
471
|
+
brainstate.nn.SparseLinear(jnp.ones((5, 5)))
|
472
|
+
|
473
|
+
|
474
|
+
if __name__ == '__main__':
|
475
|
+
unittest.main()
|