brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. brainstate/__init__.py +31 -11
  2. brainstate/_state.py +760 -316
  3. brainstate/_state_test.py +41 -12
  4. brainstate/_utils.py +31 -4
  5. brainstate/augment/__init__.py +40 -0
  6. brainstate/augment/_autograd.py +608 -0
  7. brainstate/augment/_autograd_test.py +1193 -0
  8. brainstate/augment/_eval_shape.py +102 -0
  9. brainstate/augment/_eval_shape_test.py +40 -0
  10. brainstate/augment/_mapping.py +525 -0
  11. brainstate/augment/_mapping_test.py +210 -0
  12. brainstate/augment/_random.py +99 -0
  13. brainstate/{transform → compile}/__init__.py +25 -13
  14. brainstate/compile/_ad_checkpoint.py +204 -0
  15. brainstate/compile/_ad_checkpoint_test.py +51 -0
  16. brainstate/compile/_conditions.py +259 -0
  17. brainstate/compile/_conditions_test.py +221 -0
  18. brainstate/compile/_error_if.py +94 -0
  19. brainstate/compile/_error_if_test.py +54 -0
  20. brainstate/compile/_jit.py +314 -0
  21. brainstate/compile/_jit_test.py +143 -0
  22. brainstate/compile/_loop_collect_return.py +516 -0
  23. brainstate/compile/_loop_collect_return_test.py +59 -0
  24. brainstate/compile/_loop_no_collection.py +185 -0
  25. brainstate/compile/_loop_no_collection_test.py +51 -0
  26. brainstate/compile/_make_jaxpr.py +756 -0
  27. brainstate/compile/_make_jaxpr_test.py +134 -0
  28. brainstate/compile/_progress_bar.py +111 -0
  29. brainstate/compile/_unvmap.py +159 -0
  30. brainstate/compile/_util.py +147 -0
  31. brainstate/environ.py +408 -381
  32. brainstate/environ_test.py +34 -32
  33. brainstate/{nn/event → event}/__init__.py +6 -6
  34. brainstate/event/_csr.py +308 -0
  35. brainstate/event/_csr_test.py +118 -0
  36. brainstate/event/_fixed_probability.py +271 -0
  37. brainstate/event/_fixed_probability_test.py +128 -0
  38. brainstate/event/_linear.py +219 -0
  39. brainstate/event/_linear_test.py +112 -0
  40. brainstate/{nn/event → event}/_misc.py +7 -7
  41. brainstate/functional/_activations.py +521 -511
  42. brainstate/functional/_activations_test.py +300 -300
  43. brainstate/functional/_normalization.py +43 -43
  44. brainstate/functional/_others.py +15 -15
  45. brainstate/functional/_spikes.py +49 -49
  46. brainstate/graph/__init__.py +33 -0
  47. brainstate/graph/_graph_context.py +443 -0
  48. brainstate/graph/_graph_context_test.py +65 -0
  49. brainstate/graph/_graph_convert.py +246 -0
  50. brainstate/graph/_graph_node.py +300 -0
  51. brainstate/graph/_graph_node_test.py +75 -0
  52. brainstate/graph/_graph_operation.py +1746 -0
  53. brainstate/graph/_graph_operation_test.py +724 -0
  54. brainstate/init/_base.py +28 -10
  55. brainstate/init/_generic.py +175 -172
  56. brainstate/init/_random_inits.py +470 -415
  57. brainstate/init/_random_inits_test.py +150 -0
  58. brainstate/init/_regular_inits.py +66 -69
  59. brainstate/init/_regular_inits_test.py +51 -0
  60. brainstate/mixin.py +236 -244
  61. brainstate/mixin_test.py +44 -46
  62. brainstate/nn/__init__.py +26 -51
  63. brainstate/nn/_collective_ops.py +199 -0
  64. brainstate/nn/_dyn_impl/__init__.py +46 -0
  65. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  66. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  67. brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
  68. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  69. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  70. brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
  71. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  72. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  73. brainstate/nn/_dyn_impl/_readout.py +128 -0
  74. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  75. brainstate/nn/_dynamics/__init__.py +37 -0
  76. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  77. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  78. brainstate/nn/_dynamics/_projection_base.py +346 -0
  79. brainstate/nn/_dynamics/_state_delay.py +453 -0
  80. brainstate/nn/_dynamics/_synouts.py +161 -0
  81. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  82. brainstate/nn/_elementwise/__init__.py +22 -0
  83. brainstate/nn/_elementwise/_dropout.py +418 -0
  84. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  85. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  86. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  87. brainstate/nn/_exp_euler.py +97 -0
  88. brainstate/nn/_exp_euler_test.py +36 -0
  89. brainstate/nn/_interaction/__init__.py +32 -0
  90. brainstate/nn/_interaction/_connections.py +726 -0
  91. brainstate/nn/_interaction/_connections_test.py +254 -0
  92. brainstate/nn/_interaction/_embedding.py +59 -0
  93. brainstate/nn/_interaction/_normalizations.py +388 -0
  94. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  95. brainstate/nn/_interaction/_poolings.py +1179 -0
  96. brainstate/nn/_interaction/_poolings_test.py +219 -0
  97. brainstate/nn/_module.py +328 -0
  98. brainstate/nn/_module_test.py +211 -0
  99. brainstate/nn/metrics.py +309 -309
  100. brainstate/optim/__init__.py +14 -2
  101. brainstate/optim/_base.py +66 -0
  102. brainstate/optim/_lr_scheduler.py +363 -400
  103. brainstate/optim/_lr_scheduler_test.py +25 -24
  104. brainstate/optim/_optax_optimizer.py +103 -176
  105. brainstate/optim/_optax_optimizer_test.py +41 -1
  106. brainstate/optim/_sgd_optimizer.py +950 -1025
  107. brainstate/random/_rand_funs.py +3269 -3268
  108. brainstate/random/_rand_funs_test.py +568 -0
  109. brainstate/random/_rand_seed.py +149 -117
  110. brainstate/random/_rand_seed_test.py +50 -0
  111. brainstate/random/_rand_state.py +1356 -1321
  112. brainstate/random/_random_for_unit.py +13 -13
  113. brainstate/surrogate.py +1262 -1243
  114. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  115. brainstate/typing.py +157 -130
  116. brainstate/util/__init__.py +52 -0
  117. brainstate/util/_caller.py +100 -0
  118. brainstate/util/_dict.py +734 -0
  119. brainstate/util/_dict_test.py +160 -0
  120. brainstate/util/_error.py +28 -0
  121. brainstate/util/_filter.py +178 -0
  122. brainstate/util/_others.py +497 -0
  123. brainstate/util/_pretty_repr.py +208 -0
  124. brainstate/util/_scaling.py +260 -0
  125. brainstate/util/_struct.py +524 -0
  126. brainstate/util/_tracers.py +75 -0
  127. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  128. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
  129. brainstate-0.1.0.dist-info/RECORD +135 -0
  130. brainstate/_module.py +0 -1637
  131. brainstate/_module_test.py +0 -207
  132. brainstate/nn/_base.py +0 -251
  133. brainstate/nn/_connections.py +0 -686
  134. brainstate/nn/_dynamics.py +0 -426
  135. brainstate/nn/_elementwise.py +0 -1438
  136. brainstate/nn/_embedding.py +0 -66
  137. brainstate/nn/_misc.py +0 -133
  138. brainstate/nn/_normalizations.py +0 -389
  139. brainstate/nn/_others.py +0 -101
  140. brainstate/nn/_poolings.py +0 -1229
  141. brainstate/nn/_poolings_test.py +0 -231
  142. brainstate/nn/_projection/_align_post.py +0 -546
  143. brainstate/nn/_projection/_align_pre.py +0 -599
  144. brainstate/nn/_projection/_delta.py +0 -241
  145. brainstate/nn/_projection/_vanilla.py +0 -101
  146. brainstate/nn/_rate_rnns.py +0 -410
  147. brainstate/nn/_readout.py +0 -136
  148. brainstate/nn/_synouts.py +0 -166
  149. brainstate/nn/event/csr.py +0 -312
  150. brainstate/nn/event/csr_test.py +0 -118
  151. brainstate/nn/event/fixed_probability.py +0 -276
  152. brainstate/nn/event/fixed_probability_test.py +0 -127
  153. brainstate/nn/event/linear.py +0 -220
  154. brainstate/nn/event/linear_test.py +0 -111
  155. brainstate/random/random_test.py +0 -593
  156. brainstate/transform/_autograd.py +0 -585
  157. brainstate/transform/_autograd_test.py +0 -1181
  158. brainstate/transform/_conditions.py +0 -334
  159. brainstate/transform/_conditions_test.py +0 -220
  160. brainstate/transform/_error_if.py +0 -94
  161. brainstate/transform/_error_if_test.py +0 -55
  162. brainstate/transform/_jit.py +0 -265
  163. brainstate/transform/_jit_test.py +0 -118
  164. brainstate/transform/_loop_collect_return.py +0 -502
  165. brainstate/transform/_loop_no_collection.py +0 -170
  166. brainstate/transform/_make_jaxpr.py +0 -739
  167. brainstate/transform/_make_jaxpr_test.py +0 -131
  168. brainstate/transform/_mapping.py +0 -109
  169. brainstate/transform/_progress_bar.py +0 -111
  170. brainstate/transform/_unvmap.py +0 -143
  171. brainstate/util.py +0 -746
  172. brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
  173. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
  174. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
  175. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -1,426 +0,0 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- from __future__ import annotations
19
-
20
- from typing import Callable, Optional
21
-
22
- import jax
23
- import jax.numpy as jnp
24
-
25
- from ._base import ExplicitInOutSize
26
- from ._misc import exp_euler_step
27
- from brainstate import environ, init, surrogate
28
- from brainstate._module import Dynamics
29
- from brainstate._state import ShortTermState
30
- from brainstate.mixin import DelayedInit, Mode, AlignPost
31
- from brainstate.typing import DTypeLike, ArrayLike, Size
32
-
33
- __all__ = [
34
- # neuron models
35
- 'Neuron', 'IF', 'LIF', 'ALIF',
36
-
37
- # synapse models
38
- 'Synapse', 'Expon', 'STP', 'STD',
39
- ]
40
-
41
-
42
- class Neuron(Dynamics, ExplicitInOutSize, DelayedInit):
43
- """
44
- Base class for neuronal dynamics.
45
-
46
- Note here we use the ``ExplicitInOutSize`` mixin to explicitly specify the input and output shape.
47
-
48
- Moreover, all neuron models are differentiable since they use surrogate gradient functions to
49
- generate the spiking state.
50
- """
51
- __module__ = 'brainstate.nn'
52
-
53
- def __init__(
54
- self,
55
- in_size: Size,
56
- keep_size: bool = False,
57
- spk_fun: Callable = surrogate.InvSquareGrad(),
58
- spk_dtype: DTypeLike = None,
59
- spk_reset: str = 'soft',
60
- detach_spk: bool = False,
61
- mode: Optional[Mode] = None,
62
- name: Optional[str] = None,
63
- ):
64
- super().__init__(in_size, keep_size=keep_size, mode=mode, name=name)
65
- self.in_size = tuple(self.varshape)
66
- self.out_size = tuple(self.varshape)
67
- self.spk_reset = spk_reset
68
- self.spk_dtype = spk_dtype
69
- self.spk_fun = spk_fun
70
- self.detach_spk = detach_spk
71
-
72
- def get_spike(self, *args, **kwargs):
73
- raise NotImplementedError
74
-
75
-
76
- class IF(Neuron):
77
- """Integrate-and-fire neuron model."""
78
- __module__ = 'brainstate.nn'
79
-
80
- def __init__(
81
- self,
82
- in_size: Size,
83
- keep_size: bool = False,
84
- tau: ArrayLike = 5.,
85
- V_th: ArrayLike = 1.,
86
- spk_fun: Callable = surrogate.ReluGrad(),
87
- spk_dtype: DTypeLike = None,
88
- spk_reset: str = 'soft',
89
- mode: Mode = None,
90
- name: str = None,
91
- ):
92
- super().__init__(in_size, keep_size=keep_size, name=name, mode=mode,
93
- spk_fun=spk_fun, spk_dtype=spk_dtype, spk_reset=spk_reset)
94
-
95
- # parameters
96
- self.tau = init.param(tau, self.varshape)
97
- self.V_th = init.param(V_th, self.varshape)
98
-
99
- def dv(self, v, t, x):
100
- x = self.sum_current_inputs(v, init=x)
101
- return (-v + x) / self.tau
102
-
103
- def init_state(self, batch_size: int = None, **kwargs):
104
- self.V = ShortTermState(init.param(jnp.zeros, self.varshape, batch_size))
105
-
106
- def reset_state(self, batch_size: int = None, **kwargs):
107
- self.V.value = init.param(jnp.zeros, self.varshape, batch_size)
108
-
109
- def get_spike(self, V=None):
110
- V = self.V.value if V is None else V
111
- v_scaled = (V - self.V_th) / self.V_th
112
- return self.spk_fun(v_scaled)
113
-
114
- def update(self, x=0.):
115
- # reset
116
- last_V = self.V.value
117
- last_spike = self.get_spike(self.V.value)
118
- V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_V)
119
- V = last_V - V_th * last_spike
120
- # membrane potential
121
- V = exp_euler_step(self.dv, V, environ.get('t'), x)
122
- V = V + self.sum_delta_inputs()
123
- self.V.value = V
124
- return self.get_spike(V)
125
-
126
-
127
- class LIF(Neuron):
128
- """Leaky integrate-and-fire neuron model."""
129
- __module__ = 'brainstate.nn'
130
-
131
- def __init__(
132
- self,
133
- in_size: Size,
134
- keep_size: bool = False,
135
- tau: ArrayLike = 5.,
136
- V_th: ArrayLike = 1.,
137
- V_reset: ArrayLike = 0.,
138
- V_rest: ArrayLike = 0.,
139
- spk_fun: Callable = surrogate.ReluGrad(),
140
- spk_dtype: DTypeLike = None,
141
- spk_reset: str = 'soft',
142
- mode: Mode = None,
143
- name: str = None,
144
- ):
145
- super().__init__(in_size,
146
- keep_size=keep_size,
147
- name=name,
148
- mode=mode,
149
- spk_fun=spk_fun,
150
- spk_dtype=spk_dtype,
151
- spk_reset=spk_reset)
152
-
153
- # parameters
154
- self.tau = init.param(tau, self.varshape)
155
- self.V_th = init.param(V_th, self.varshape)
156
- self.V_rest = init.param(V_rest, self.varshape)
157
- self.V_reset = init.param(V_reset, self.varshape)
158
-
159
- def dv(self, v, t, x):
160
- x = self.sum_current_inputs(v, init=x)
161
- return (-v + self.V_rest + x) / self.tau
162
-
163
- def init_state(self, batch_size: int = None, **kwargs):
164
- self.V = ShortTermState(init.param(init.Constant(self.V_reset), self.varshape, batch_size))
165
-
166
- def reset_state(self, batch_size: int = None, **kwargs):
167
- self.V.value = init.param(init.Constant(self.V_reset), self.varshape, batch_size)
168
-
169
- def get_spike(self, V=None):
170
- V = self.V.value if V is None else V
171
- v_scaled = (V - self.V_th) / self.V_th
172
- return self.spk_fun(v_scaled)
173
-
174
- def update(self, x=0.):
175
- last_v = self.V.value
176
- lst_spk = self.get_spike(last_v)
177
- V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
178
- V = last_v - (V_th - self.V_reset) * lst_spk
179
- # membrane potential
180
- V = exp_euler_step(self.dv, V, environ.get('t'), x) + self.sum_delta_inputs()
181
- self.V.value = V
182
- return self.get_spike(V)
183
-
184
-
185
- class ALIF(Neuron):
186
- """Adaptive Leaky Integrate-and-Fire (LIF) neuron model."""
187
- __module__ = 'brainstate.nn'
188
-
189
- def __init__(
190
- self,
191
- in_size: Size,
192
- keep_size: bool = False,
193
- tau: ArrayLike = 5.,
194
- tau_a: ArrayLike = 100.,
195
- V_th: ArrayLike = 1.,
196
- beta: ArrayLike = 0.1,
197
- spk_fun: Callable = surrogate.ReluGrad(),
198
- spk_dtype: DTypeLike = None,
199
- spk_reset: str = 'soft',
200
- mode: Mode = None,
201
- name: str = None,
202
- ):
203
- super().__init__(in_size, keep_size=keep_size, name=name, mode=mode, spk_fun=spk_fun,
204
- spk_dtype=spk_dtype, spk_reset=spk_reset)
205
-
206
- # parameters
207
- self.tau = init.param(tau, self.varshape)
208
- self.tau_a = init.param(tau_a, self.varshape)
209
- self.V_th = init.param(V_th, self.varshape)
210
- self.beta = init.param(beta, self.varshape)
211
-
212
- def dv(self, v, t, x):
213
- x = self.sum_current_inputs(v, init=x)
214
- return (-v + x) / self.tau
215
-
216
- def da(self, a, t):
217
- return -a / self.tau_a
218
-
219
- def init_state(self, batch_size: int = None, **kwargs):
220
- self.V = ShortTermState(init.param(init.Constant(0.), self.varshape, batch_size))
221
- self.a = ShortTermState(init.param(init.Constant(0.), self.varshape, batch_size))
222
-
223
- def reset_state(self, batch_size: int = None, **kwargs):
224
- self.V.value = init.param(init.Constant(0.), self.varshape, batch_size)
225
- self.a.value = init.param(init.Constant(0.), self.varshape, batch_size)
226
-
227
- def get_spike(self, V=None, a=None):
228
- V = self.V.value if V is None else V
229
- a = self.a.value if a is None else a
230
- v_scaled = (V - self.V_th - self.beta * a) / self.V_th
231
- return self.spk_fun(v_scaled)
232
-
233
- def update(self, x=0.):
234
- last_v = self.V.value
235
- last_a = self.a.value
236
- lst_spk = self.get_spike(last_v, last_a)
237
- V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
238
- V = last_v - V_th * lst_spk
239
- a = last_a + lst_spk
240
- # membrane potential
241
- V = exp_euler_step(self.dv, V, environ.get('t'), x)
242
- a = exp_euler_step(self.da, a, environ.get('t'))
243
- self.V.value = V + self.sum_delta_inputs()
244
- self.a.value = a
245
- return self.get_spike(self.V.value, self.a.value)
246
-
247
-
248
- class Synapse(Dynamics, AlignPost, DelayedInit):
249
- """
250
- Base class for synapse dynamics.
251
- """
252
- __module__ = 'brainstate.nn'
253
-
254
-
255
- class Expon(Synapse):
256
- r"""Exponential decay synapse model.
257
-
258
- Args:
259
- tau: float. The time constant of decay. [ms]
260
- %s
261
- """
262
- __module__ = 'brainstate.nn'
263
-
264
- def __init__(
265
- self,
266
- size: Size,
267
- keep_size: bool = False,
268
- name: Optional[str] = None,
269
- mode: Optional[Mode] = None,
270
- tau: ArrayLike = 8.0,
271
- ):
272
- super().__init__(
273
- name=name,
274
- mode=mode,
275
- size=size,
276
- keep_size=keep_size
277
- )
278
-
279
- # parameters
280
- self.tau = init.param(tau, self.varshape)
281
-
282
- def dg(self, g, t):
283
- return -g / self.tau
284
-
285
- def init_state(self, batch_size: int = None, **kwargs):
286
- self.g = ShortTermState(init.param(init.Constant(0.), self.varshape, batch_size))
287
-
288
- def reset_state(self, batch_size: int = None, **kwargs):
289
- self.g.value = init.param(init.Constant(0.), self.varshape, batch_size)
290
-
291
- def update(self, x=None):
292
- self.g.value = exp_euler_step(self.dg, self.g.value, environ.get('t'))
293
- if x is not None:
294
- self.align_post_input_add(x)
295
- return self.g.value
296
-
297
- def align_post_input_add(self, x):
298
- self.g.value += x
299
-
300
- def return_info(self):
301
- return self.g
302
-
303
-
304
- class STP(Synapse):
305
- r"""Synaptic output with short-term plasticity.
306
-
307
- %s
308
-
309
- Args:
310
- tau_f: float, ArrayType, Callable. The time constant of short-term facilitation.
311
- tau_d: float, ArrayType, Callable. The time constant of short-term depression.
312
- U: float, ArrayType, Callable. The fraction of resources used per action potential.
313
- %s
314
- """
315
- __module__ = 'brainstate.nn'
316
-
317
- def __init__(
318
- self,
319
- size: Size,
320
- keep_size: bool = False,
321
- name: Optional[str] = None,
322
- mode: Optional[Mode] = None,
323
- U: ArrayLike = 0.15,
324
- tau_f: ArrayLike = 1500.,
325
- tau_d: ArrayLike = 200.,
326
- ):
327
- super().__init__(name=name,
328
- mode=mode,
329
- size=size,
330
- keep_size=keep_size)
331
-
332
- # parameters
333
- self.tau_f = init.param(tau_f, self.varshape)
334
- self.tau_d = init.param(tau_d, self.varshape)
335
- self.U = init.param(U, self.varshape)
336
-
337
- def init_state(self, batch_size: int = None, **kwargs):
338
- self.x = ShortTermState(init.param(init.Constant(1.), self.varshape, batch_size))
339
- self.u = ShortTermState(init.param(init.Constant(self.U), self.varshape, batch_size))
340
-
341
- def reset_state(self, batch_size: int = None, **kwargs):
342
- self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
343
- self.u.value = init.param(init.Constant(self.U), self.varshape, batch_size)
344
-
345
- def du(self, u, t):
346
- return self.U - u / self.tau_f
347
-
348
- def dx(self, x, t):
349
- return (1 - x) / self.tau_d
350
-
351
- def update(self, pre_spike):
352
- t = environ.get('t')
353
- u = exp_euler_step(self.du, self.u.value, t)
354
- x = exp_euler_step(self.dx, self.x.value, t)
355
-
356
- # --- original code:
357
- # if pre_spike.dtype == jax.numpy.bool_:
358
- # u = bm.where(pre_spike, u + self.U * (1 - self.u), u)
359
- # x = bm.where(pre_spike, x - u * self.x, x)
360
- # else:
361
- # u = pre_spike * (u + self.U * (1 - self.u)) + (1 - pre_spike) * u
362
- # x = pre_spike * (x - u * self.x) + (1 - pre_spike) * x
363
-
364
- # --- simplified code:
365
- u = u + pre_spike * self.U * (1 - self.u.value)
366
- x = x - pre_spike * u * self.x.value
367
-
368
- self.u.value = u
369
- self.x.value = x
370
- return u * x
371
-
372
-
373
- class STD(Synapse):
374
- r"""Synaptic output with short-term depression.
375
-
376
- %s
377
-
378
- Args:
379
- tau: float, ArrayType, Callable. The time constant of recovery of the synaptic vesicles.
380
- U: float, ArrayType, Callable. The fraction of resources used per action potential.
381
- %s
382
- """
383
- __module__ = 'brainstate.nn'
384
-
385
- def __init__(
386
- self,
387
- size: Size,
388
- keep_size: bool = False,
389
- name: Optional[str] = None,
390
- mode: Optional[Mode] = None,
391
- # synapse parameters
392
- tau: ArrayLike = 200.,
393
- U: ArrayLike = 0.07,
394
- ):
395
- super().__init__(name=name,
396
- mode=mode,
397
- size=size,
398
- keep_size=keep_size)
399
-
400
- # parameters
401
- self.tau = init.param(tau, self.varshape)
402
- self.U = init.param(U, self.varshape)
403
-
404
- def dx(self, x, t):
405
- return (1 - x) / self.tau
406
-
407
- def init_state(self, batch_size: int = None, **kwargs):
408
- self.x = ShortTermState(init.param(init.Constant(1.), self.varshape, batch_size))
409
-
410
- def reset_state(self, batch_size: int = None, **kwargs):
411
- self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
412
-
413
- def update(self, pre_spike):
414
- t = environ.get('t')
415
- x = exp_euler_step(self.dx, self.x.value, t)
416
-
417
- # --- original code:
418
- # self.x.value = bm.where(pre_spike, x - self.U * self.x, x)
419
-
420
- # --- simplified code:
421
- self.x.value = x - pre_spike * self.U * self.x.value
422
-
423
- return self.x.value
424
-
425
- def return_info(self):
426
- return self.x