brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. brainstate/__init__.py +31 -11
  2. brainstate/_state.py +760 -316
  3. brainstate/_state_test.py +41 -12
  4. brainstate/_utils.py +31 -4
  5. brainstate/augment/__init__.py +40 -0
  6. brainstate/augment/_autograd.py +608 -0
  7. brainstate/augment/_autograd_test.py +1193 -0
  8. brainstate/augment/_eval_shape.py +102 -0
  9. brainstate/augment/_eval_shape_test.py +40 -0
  10. brainstate/augment/_mapping.py +525 -0
  11. brainstate/augment/_mapping_test.py +210 -0
  12. brainstate/augment/_random.py +99 -0
  13. brainstate/{transform → compile}/__init__.py +25 -13
  14. brainstate/compile/_ad_checkpoint.py +204 -0
  15. brainstate/compile/_ad_checkpoint_test.py +51 -0
  16. brainstate/compile/_conditions.py +259 -0
  17. brainstate/compile/_conditions_test.py +221 -0
  18. brainstate/compile/_error_if.py +94 -0
  19. brainstate/compile/_error_if_test.py +54 -0
  20. brainstate/compile/_jit.py +314 -0
  21. brainstate/compile/_jit_test.py +143 -0
  22. brainstate/compile/_loop_collect_return.py +516 -0
  23. brainstate/compile/_loop_collect_return_test.py +59 -0
  24. brainstate/compile/_loop_no_collection.py +185 -0
  25. brainstate/compile/_loop_no_collection_test.py +51 -0
  26. brainstate/compile/_make_jaxpr.py +756 -0
  27. brainstate/compile/_make_jaxpr_test.py +134 -0
  28. brainstate/compile/_progress_bar.py +111 -0
  29. brainstate/compile/_unvmap.py +159 -0
  30. brainstate/compile/_util.py +147 -0
  31. brainstate/environ.py +408 -381
  32. brainstate/environ_test.py +34 -32
  33. brainstate/{nn/event → event}/__init__.py +6 -6
  34. brainstate/event/_csr.py +308 -0
  35. brainstate/event/_csr_test.py +118 -0
  36. brainstate/event/_fixed_probability.py +271 -0
  37. brainstate/event/_fixed_probability_test.py +128 -0
  38. brainstate/event/_linear.py +219 -0
  39. brainstate/event/_linear_test.py +112 -0
  40. brainstate/{nn/event → event}/_misc.py +7 -7
  41. brainstate/functional/_activations.py +521 -511
  42. brainstate/functional/_activations_test.py +300 -300
  43. brainstate/functional/_normalization.py +43 -43
  44. brainstate/functional/_others.py +15 -15
  45. brainstate/functional/_spikes.py +49 -49
  46. brainstate/graph/__init__.py +33 -0
  47. brainstate/graph/_graph_context.py +443 -0
  48. brainstate/graph/_graph_context_test.py +65 -0
  49. brainstate/graph/_graph_convert.py +246 -0
  50. brainstate/graph/_graph_node.py +300 -0
  51. brainstate/graph/_graph_node_test.py +75 -0
  52. brainstate/graph/_graph_operation.py +1746 -0
  53. brainstate/graph/_graph_operation_test.py +724 -0
  54. brainstate/init/_base.py +28 -10
  55. brainstate/init/_generic.py +175 -172
  56. brainstate/init/_random_inits.py +470 -415
  57. brainstate/init/_random_inits_test.py +150 -0
  58. brainstate/init/_regular_inits.py +66 -69
  59. brainstate/init/_regular_inits_test.py +51 -0
  60. brainstate/mixin.py +236 -244
  61. brainstate/mixin_test.py +44 -46
  62. brainstate/nn/__init__.py +26 -51
  63. brainstate/nn/_collective_ops.py +199 -0
  64. brainstate/nn/_dyn_impl/__init__.py +46 -0
  65. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  66. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  67. brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
  68. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  69. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  70. brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
  71. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  72. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  73. brainstate/nn/_dyn_impl/_readout.py +128 -0
  74. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  75. brainstate/nn/_dynamics/__init__.py +37 -0
  76. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  77. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  78. brainstate/nn/_dynamics/_projection_base.py +346 -0
  79. brainstate/nn/_dynamics/_state_delay.py +453 -0
  80. brainstate/nn/_dynamics/_synouts.py +161 -0
  81. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  82. brainstate/nn/_elementwise/__init__.py +22 -0
  83. brainstate/nn/_elementwise/_dropout.py +418 -0
  84. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  85. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  86. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  87. brainstate/nn/_exp_euler.py +97 -0
  88. brainstate/nn/_exp_euler_test.py +36 -0
  89. brainstate/nn/_interaction/__init__.py +32 -0
  90. brainstate/nn/_interaction/_connections.py +726 -0
  91. brainstate/nn/_interaction/_connections_test.py +254 -0
  92. brainstate/nn/_interaction/_embedding.py +59 -0
  93. brainstate/nn/_interaction/_normalizations.py +388 -0
  94. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  95. brainstate/nn/_interaction/_poolings.py +1179 -0
  96. brainstate/nn/_interaction/_poolings_test.py +219 -0
  97. brainstate/nn/_module.py +328 -0
  98. brainstate/nn/_module_test.py +211 -0
  99. brainstate/nn/metrics.py +309 -309
  100. brainstate/optim/__init__.py +14 -2
  101. brainstate/optim/_base.py +66 -0
  102. brainstate/optim/_lr_scheduler.py +363 -400
  103. brainstate/optim/_lr_scheduler_test.py +25 -24
  104. brainstate/optim/_optax_optimizer.py +103 -176
  105. brainstate/optim/_optax_optimizer_test.py +41 -1
  106. brainstate/optim/_sgd_optimizer.py +950 -1025
  107. brainstate/random/_rand_funs.py +3269 -3268
  108. brainstate/random/_rand_funs_test.py +568 -0
  109. brainstate/random/_rand_seed.py +149 -117
  110. brainstate/random/_rand_seed_test.py +50 -0
  111. brainstate/random/_rand_state.py +1356 -1321
  112. brainstate/random/_random_for_unit.py +13 -13
  113. brainstate/surrogate.py +1262 -1243
  114. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  115. brainstate/typing.py +157 -130
  116. brainstate/util/__init__.py +52 -0
  117. brainstate/util/_caller.py +100 -0
  118. brainstate/util/_dict.py +734 -0
  119. brainstate/util/_dict_test.py +160 -0
  120. brainstate/util/_error.py +28 -0
  121. brainstate/util/_filter.py +178 -0
  122. brainstate/util/_others.py +497 -0
  123. brainstate/util/_pretty_repr.py +208 -0
  124. brainstate/util/_scaling.py +260 -0
  125. brainstate/util/_struct.py +524 -0
  126. brainstate/util/_tracers.py +75 -0
  127. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  128. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
  129. brainstate-0.1.0.dist-info/RECORD +135 -0
  130. brainstate/_module.py +0 -1637
  131. brainstate/_module_test.py +0 -207
  132. brainstate/nn/_base.py +0 -251
  133. brainstate/nn/_connections.py +0 -686
  134. brainstate/nn/_dynamics.py +0 -426
  135. brainstate/nn/_elementwise.py +0 -1438
  136. brainstate/nn/_embedding.py +0 -66
  137. brainstate/nn/_misc.py +0 -133
  138. brainstate/nn/_normalizations.py +0 -389
  139. brainstate/nn/_others.py +0 -101
  140. brainstate/nn/_poolings.py +0 -1229
  141. brainstate/nn/_poolings_test.py +0 -231
  142. brainstate/nn/_projection/_align_post.py +0 -546
  143. brainstate/nn/_projection/_align_pre.py +0 -599
  144. brainstate/nn/_projection/_delta.py +0 -241
  145. brainstate/nn/_projection/_vanilla.py +0 -101
  146. brainstate/nn/_rate_rnns.py +0 -410
  147. brainstate/nn/_readout.py +0 -136
  148. brainstate/nn/_synouts.py +0 -166
  149. brainstate/nn/event/csr.py +0 -312
  150. brainstate/nn/event/csr_test.py +0 -118
  151. brainstate/nn/event/fixed_probability.py +0 -276
  152. brainstate/nn/event/fixed_probability_test.py +0 -127
  153. brainstate/nn/event/linear.py +0 -220
  154. brainstate/nn/event/linear_test.py +0 -111
  155. brainstate/random/random_test.py +0 -593
  156. brainstate/transform/_autograd.py +0 -585
  157. brainstate/transform/_autograd_test.py +0 -1181
  158. brainstate/transform/_conditions.py +0 -334
  159. brainstate/transform/_conditions_test.py +0 -220
  160. brainstate/transform/_error_if.py +0 -94
  161. brainstate/transform/_error_if_test.py +0 -55
  162. brainstate/transform/_jit.py +0 -265
  163. brainstate/transform/_jit_test.py +0 -118
  164. brainstate/transform/_loop_collect_return.py +0 -502
  165. brainstate/transform/_loop_no_collection.py +0 -170
  166. brainstate/transform/_make_jaxpr.py +0 -739
  167. brainstate/transform/_make_jaxpr_test.py +0 -131
  168. brainstate/transform/_mapping.py +0 -109
  169. brainstate/transform/_progress_bar.py +0 -111
  170. brainstate/transform/_unvmap.py +0 -143
  171. brainstate/util.py +0 -746
  172. brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
  173. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
  174. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
  175. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1193 @@
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+ from __future__ import annotations
18
+
19
+ import unittest
20
+ from pprint import pprint
21
+
22
+ import jax
23
+ import jax.numpy as jnp
24
+ import pytest
25
+
26
+ import brainstate as bst
27
+ from brainstate.augment._autograd import _jacfwd
28
+
29
+
30
+ class TestPureFuncGrad(unittest.TestCase):
31
+ def test_grad_pure_func_1(self):
32
+ def call(a, b, c): return jnp.sum(a + b + c)
33
+
34
+ bst.random.seed(1)
35
+ a = jnp.ones(10)
36
+ b = bst.random.randn(10)
37
+ c = bst.random.uniform(size=10)
38
+ f_grad = bst.augment.grad(call, argnums=[0, 1, 2])
39
+ grads = f_grad(a, b, c)
40
+
41
+ for g in grads: assert (g == 1.).all()
42
+
43
+ def test_grad_pure_func_2(self):
44
+ def call(a, b, c): return jnp.sum(a + b + c)
45
+
46
+ bst.random.seed(1)
47
+ a = jnp.ones(10)
48
+ b = bst.random.randn(10)
49
+ c = bst.random.uniform(size=10)
50
+ f_grad = bst.augment.grad(call)
51
+ assert (f_grad(a, b, c) == 1.).all()
52
+
53
+ def test_grad_pure_func_aux1(self):
54
+ def call(a, b, c):
55
+ return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
56
+
57
+ bst.random.seed(1)
58
+ f_grad = bst.augment.grad(call, argnums=[0, 1, 2])
59
+ with pytest.raises(TypeError):
60
+ f_grad(jnp.ones(10), bst.random.randn(10), bst.random.uniform(size=10))
61
+
62
+ def test_grad_pure_func_aux2(self):
63
+ def call(a, b, c):
64
+ return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
65
+
66
+ bst.random.seed(1)
67
+ f_grad = bst.augment.grad(call, argnums=[0, 1, 2], has_aux=True)
68
+ grads, aux = f_grad(jnp.ones(10), bst.random.randn(10), bst.random.uniform(size=10))
69
+ for g in grads: assert (g == 1.).all()
70
+ assert aux[0] == jnp.sin(100)
71
+ assert aux[1] == jnp.exp(0.1)
72
+
73
+ def test_grad_pure_func_return1(self):
74
+ def call(a, b, c): return jnp.sum(a + b + c)
75
+
76
+ bst.random.seed(1)
77
+ a = jnp.ones(10)
78
+ b = bst.random.randn(10)
79
+ c = bst.random.uniform(size=10)
80
+ f_grad = bst.augment.grad(call, return_value=True)
81
+ grads, returns = f_grad(a, b, c)
82
+ assert (grads == 1.).all()
83
+ assert returns == jnp.sum(a + b + c)
84
+
85
+ def test_grad_func_return_aux1(self):
86
+ def call(a, b, c):
87
+ return jnp.sum(a + b + c), (jnp.sin(100), jnp.exp(0.1))
88
+
89
+ bst.random.seed(1)
90
+ a = jnp.ones(10)
91
+ b = bst.random.randn(10)
92
+ c = bst.random.uniform(size=10)
93
+ f_grad = bst.augment.grad(call, return_value=True, has_aux=True)
94
+ grads, returns, aux = f_grad(a, b, c)
95
+ assert (grads == 1.).all()
96
+ assert returns == jnp.sum(a + b + c)
97
+ assert aux[0] == jnp.sin(100)
98
+ assert aux[1] == jnp.exp(0.1)
99
+
100
+
101
+ class TestObjectFuncGrad(unittest.TestCase):
102
+ def test_grad_ob1(self):
103
+ class Test(bst.nn.Module):
104
+ def __init__(self):
105
+ super(Test, self).__init__()
106
+
107
+ self.a = bst.ParamState(jnp.ones(10))
108
+ self.b = bst.ParamState(bst.random.randn(10))
109
+ self.c = bst.ParamState(bst.random.uniform(size=10))
110
+
111
+ def __call__(self):
112
+ return jnp.sum(self.a.value + self.b.value + self.c.value)
113
+
114
+ bst.random.seed(0)
115
+
116
+ t = Test()
117
+ f_grad = bst.augment.grad(t, grad_states={'a': t.a, 'b': t.b, 'c': t.c})
118
+ grads = f_grad()
119
+ for g in grads.values():
120
+ assert (g == 1.).all()
121
+
122
+ t = Test()
123
+ f_grad = bst.augment.grad(t, grad_states=[t.a, t.b])
124
+ grads = f_grad()
125
+ for g in grads: assert (g == 1.).all()
126
+
127
+ t = Test()
128
+ f_grad = bst.augment.grad(t, grad_states=t.a)
129
+ grads = f_grad()
130
+ assert (grads == 1.).all()
131
+
132
+ t = Test()
133
+ f_grad = bst.augment.grad(t, grad_states=t.states())
134
+ grads = f_grad()
135
+ for g in grads.values():
136
+ assert (g == 1.).all()
137
+
138
+ def test_grad_ob_aux(self):
139
+ class Test(bst.nn.Module):
140
+ def __init__(self):
141
+ super(Test, self).__init__()
142
+ self.a = bst.ParamState(jnp.ones(10))
143
+ self.b = bst.ParamState(bst.random.randn(10))
144
+ self.c = bst.ParamState(bst.random.uniform(size=10))
145
+
146
+ def __call__(self):
147
+ return jnp.sum(self.a.value + self.b.value + self.c.value), (jnp.sin(100), jnp.exp(0.1))
148
+
149
+ bst.random.seed(0)
150
+ t = Test()
151
+ f_grad = bst.augment.grad(t, grad_states=[t.a, t.b], has_aux=True)
152
+ grads, aux = f_grad()
153
+ for g in grads: assert (g == 1.).all()
154
+ assert aux[0] == jnp.sin(100)
155
+ assert aux[1] == jnp.exp(0.1)
156
+
157
+ t = Test()
158
+ f_grad = bst.augment.grad(t, grad_states=t.a, has_aux=True)
159
+ grads, aux = f_grad()
160
+ assert (grads == 1.).all()
161
+ assert aux[0] == jnp.sin(100)
162
+ assert aux[1] == jnp.exp(0.1)
163
+
164
+ t = Test()
165
+ f_grad = bst.augment.grad(t, grad_states=t.states(), has_aux=True)
166
+ grads, aux = f_grad()
167
+ self.assertTrue(len(grads) == len(t.states()))
168
+
169
+ def test_grad_ob_return(self):
170
+ class Test(bst.nn.Module):
171
+ def __init__(self):
172
+ super(Test, self).__init__()
173
+ self.a = bst.ParamState(jnp.ones(10))
174
+ self.b = bst.ParamState(bst.random.randn(10))
175
+ self.c = bst.ParamState(bst.random.uniform(size=10))
176
+
177
+ def __call__(self):
178
+ return jnp.sum(self.a.value + self.b.value + self.c.value)
179
+
180
+ bst.random.seed(0)
181
+ t = Test()
182
+ f_grad = bst.augment.grad(t, grad_states=[t.a, t.b], return_value=True)
183
+ grads, returns = f_grad()
184
+ for g in grads: assert (g == 1.).all()
185
+ assert returns == t()
186
+
187
+ t = Test()
188
+ f_grad = bst.augment.grad(t, grad_states=t.a, return_value=True)
189
+ grads, returns = f_grad()
190
+ assert (grads == 1.).all()
191
+ assert returns == t()
192
+
193
+ def test_grad_ob_aux_return(self):
194
+ class Test(bst.nn.Module):
195
+ def __init__(self):
196
+ super(Test, self).__init__()
197
+ self.a = bst.ParamState(jnp.ones(10))
198
+ self.b = bst.ParamState(bst.random.randn(10))
199
+ self.c = bst.ParamState(bst.random.uniform(size=10))
200
+
201
+ def __call__(self):
202
+ return jnp.sum(self.a.value + self.b.value + self.c.value), (jnp.sin(100), jnp.exp(0.1))
203
+
204
+ bst.random.seed(0)
205
+ t = Test()
206
+ f_grad = bst.augment.grad(t, grad_states=[t.a, t.b], has_aux=True, return_value=True)
207
+ grads, returns, aux = f_grad()
208
+ for g in grads: assert (g == 1.).all()
209
+ assert returns == jnp.sum(t.a.value + t.b.value + t.c.value)
210
+ assert aux[0] == jnp.sin(100)
211
+ assert aux[1] == jnp.exp(0.1)
212
+
213
+ t = Test()
214
+ f_grad = bst.augment.grad(t, grad_states=t.a, has_aux=True, return_value=True)
215
+ grads, returns, aux = f_grad()
216
+ assert (grads == 1.).all()
217
+ assert returns == jnp.sum(t.a.value + t.b.value + t.c.value)
218
+ assert aux[0] == jnp.sin(100)
219
+ assert aux[1] == jnp.exp(0.1)
220
+
221
+ def test_grad_ob_argnums(self):
222
+ class Test(bst.nn.Module):
223
+ def __init__(self):
224
+ super(Test, self).__init__()
225
+ bst.random.seed()
226
+ self.a = bst.ParamState(jnp.ones(10))
227
+ self.b = bst.ParamState(bst.random.randn(10))
228
+ self.c = bst.ParamState(bst.random.uniform(size=10))
229
+
230
+ def __call__(self, d):
231
+ return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d)
232
+
233
+ bst.random.seed(0)
234
+
235
+ t = Test()
236
+ f_grad = bst.augment.grad(t, t.states(), argnums=0)
237
+ var_grads, arg_grads = f_grad(bst.random.random(10))
238
+ for g in var_grads.values(): assert (g == 1.).all()
239
+ assert (arg_grads == 2.).all()
240
+
241
+ t = Test()
242
+ f_grad = bst.augment.grad(t, t.states(), argnums=[0])
243
+ var_grads, arg_grads = f_grad(bst.random.random(10))
244
+ for g in var_grads.values(): assert (g == 1.).all()
245
+ assert (arg_grads[0] == 2.).all()
246
+
247
+ t = Test()
248
+ f_grad = bst.augment.grad(t, argnums=0)
249
+ arg_grads = f_grad(bst.random.random(10))
250
+ assert (arg_grads == 2.).all()
251
+
252
+ t = Test()
253
+ f_grad = bst.augment.grad(t, argnums=[0])
254
+ arg_grads = f_grad(bst.random.random(10))
255
+ assert (arg_grads[0] == 2.).all()
256
+
257
+ def test_grad_ob_argnums_aux(self):
258
+ class Test(bst.nn.Module):
259
+ def __init__(self):
260
+ super(Test, self).__init__()
261
+ self.a = bst.ParamState(jnp.ones(10))
262
+ self.b = bst.ParamState(bst.random.randn(10))
263
+ self.c = bst.ParamState(bst.random.uniform(size=10))
264
+
265
+ def __call__(self, d):
266
+ return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d), (jnp.sin(100), jnp.exp(0.1))
267
+
268
+ bst.random.seed(0)
269
+
270
+ t = Test()
271
+ f_grad = bst.augment.grad(t, grad_states=t.states(), argnums=0, has_aux=True)
272
+ (var_grads, arg_grads), aux = f_grad(bst.random.random(10))
273
+ for g in var_grads.values(): assert (g == 1.).all()
274
+ assert (arg_grads == 2.).all()
275
+ assert aux[0] == jnp.sin(100)
276
+ assert aux[1] == jnp.exp(0.1)
277
+
278
+ t = Test()
279
+ f_grad = bst.augment.grad(t, grad_states=t.states(), argnums=[0], has_aux=True)
280
+ (var_grads, arg_grads), aux = f_grad(bst.random.random(10))
281
+ for g in var_grads.values(): assert (g == 1.).all()
282
+ assert (arg_grads[0] == 2.).all()
283
+ assert aux[0] == jnp.sin(100)
284
+ assert aux[1] == jnp.exp(0.1)
285
+
286
+ t = Test()
287
+ f_grad = bst.augment.grad(t, argnums=0, has_aux=True)
288
+ arg_grads, aux = f_grad(bst.random.random(10))
289
+ assert (arg_grads == 2.).all()
290
+ assert aux[0] == jnp.sin(100)
291
+ assert aux[1] == jnp.exp(0.1)
292
+
293
+ t = Test()
294
+ f_grad = bst.augment.grad(t, argnums=[0], has_aux=True)
295
+ arg_grads, aux = f_grad(bst.random.random(10))
296
+ assert (arg_grads[0] == 2.).all()
297
+ assert aux[0] == jnp.sin(100)
298
+ assert aux[1] == jnp.exp(0.1)
299
+
300
+ def test_grad_ob_argnums_return(self):
301
+ class Test(bst.nn.Module):
302
+ def __init__(self):
303
+ super(Test, self).__init__()
304
+
305
+ self.a = bst.ParamState(jnp.ones(10))
306
+ self.b = bst.ParamState(bst.random.randn(10))
307
+ self.c = bst.ParamState(bst.random.uniform(size=10))
308
+
309
+ def __call__(self, d):
310
+ return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d)
311
+
312
+ bst.random.seed(0)
313
+
314
+ t = Test()
315
+ f_grad = bst.augment.grad(t, t.states(), argnums=0, return_value=True)
316
+ d = bst.random.random(10)
317
+ (var_grads, arg_grads), loss = f_grad(d)
318
+ for g in var_grads.values():
319
+ assert (g == 1.).all()
320
+ assert (arg_grads == 2.).all()
321
+ assert loss == t(d)
322
+
323
+ t = Test()
324
+ f_grad = bst.augment.grad(t, t.states(), argnums=[0], return_value=True)
325
+ d = bst.random.random(10)
326
+ (var_grads, arg_grads), loss = f_grad(d)
327
+ for g in var_grads.values():
328
+ assert (g == 1.).all()
329
+ assert (arg_grads[0] == 2.).all()
330
+ assert loss == t(d)
331
+
332
+ t = Test()
333
+ f_grad = bst.augment.grad(t, argnums=0, return_value=True)
334
+ d = bst.random.random(10)
335
+ arg_grads, loss = f_grad(d)
336
+ assert (arg_grads == 2.).all()
337
+ assert loss == t(d)
338
+
339
+ t = Test()
340
+ f_grad = bst.augment.grad(t, argnums=[0], return_value=True)
341
+ d = bst.random.random(10)
342
+ arg_grads, loss = f_grad(d)
343
+ assert (arg_grads[0] == 2.).all()
344
+ assert loss == t(d)
345
+
346
+ def test_grad_ob_argnums_aux_return(self):
347
+ class Test(bst.nn.Module):
348
+ def __init__(self):
349
+ super(Test, self).__init__()
350
+ self.a = bst.ParamState(jnp.ones(10))
351
+ self.b = bst.ParamState(bst.random.randn(10))
352
+ self.c = bst.ParamState(bst.random.uniform(size=10))
353
+
354
+ def __call__(self, d):
355
+ return jnp.sum(self.a.value + self.b.value + self.c.value + 2 * d), (jnp.sin(100), jnp.exp(0.1))
356
+
357
+ bst.random.seed(0)
358
+
359
+ t = Test()
360
+ f_grad = bst.augment.grad(t, grad_states=t.states(), argnums=0, has_aux=True, return_value=True)
361
+ d = bst.random.random(10)
362
+ (var_grads, arg_grads), loss, aux = f_grad(d)
363
+ for g in var_grads.values(): assert (g == 1.).all()
364
+ assert (arg_grads == 2.).all()
365
+ assert aux[0] == jnp.sin(100)
366
+ assert aux[1] == jnp.exp(0.1)
367
+ assert loss == t(d)[0]
368
+
369
+ t = Test()
370
+ f_grad = bst.augment.grad(t, grad_states=t.states(), argnums=[0], has_aux=True, return_value=True)
371
+ d = bst.random.random(10)
372
+ (var_grads, arg_grads), loss, aux = f_grad(d)
373
+ for g in var_grads.values(): assert (g == 1.).all()
374
+ assert (arg_grads[0] == 2.).all()
375
+ assert aux[0] == jnp.sin(100)
376
+ assert aux[1] == jnp.exp(0.1)
377
+ assert loss == t(d)[0]
378
+
379
+ t = Test()
380
+ f_grad = bst.augment.grad(t, argnums=0, has_aux=True, return_value=True)
381
+ d = bst.random.random(10)
382
+ arg_grads, loss, aux = f_grad(d)
383
+ assert (arg_grads == 2.).all()
384
+ assert aux[0] == jnp.sin(100)
385
+ assert aux[1] == jnp.exp(0.1)
386
+ assert loss == t(d)[0]
387
+
388
+ t = Test()
389
+ f_grad = bst.augment.grad(t, argnums=[0], has_aux=True, return_value=True)
390
+ d = bst.random.random(10)
391
+ arg_grads, loss, aux = f_grad(d)
392
+ assert (arg_grads[0] == 2.).all()
393
+ assert aux[0] == jnp.sin(100)
394
+ assert aux[1] == jnp.exp(0.1)
395
+ assert loss == t(d)[0]
396
+
397
+
398
+ class TestPureFuncJacobian(unittest.TestCase):
399
+ def test1(self):
400
+ jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 2]), has_aux=True)(3.)
401
+ self.assertTrue(jax.numpy.allclose(jac, jax.jacfwd(lambda x: x ** 3)(3.)))
402
+ self.assertTrue(aux[0] == 9.)
403
+
404
+ def test_jacfwd_and_aux_nested(self):
405
+ def f(x):
406
+ jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 3]), has_aux=True)(x)
407
+ return aux[0]
408
+
409
+ f2 = lambda x: x ** 3
410
+
411
+ self.assertEqual(_jacfwd(f)(4.), _jacfwd(f2)(4.))
412
+ self.assertEqual(jax.jit(_jacfwd(f))(4.), _jacfwd(f2)(4.))
413
+ self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(4.), _jacfwd(f2)(4.))
414
+
415
+ self.assertEqual(_jacfwd(f)(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
416
+ self.assertEqual(jax.jit(_jacfwd(f))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
417
+ self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
418
+
419
+ def f(x):
420
+ jac, aux = _jacfwd(lambda x: (x ** 3, [x ** 3]), has_aux=True)(x)
421
+ return aux[0] * jnp.sin(x)
422
+
423
+ f2 = lambda x: x ** 3 * jnp.sin(x)
424
+
425
+ self.assertEqual(_jacfwd(f)(4.), _jacfwd(f2)(4.))
426
+ self.assertEqual(jax.jit(_jacfwd(f))(4.), _jacfwd(f2)(4.))
427
+ self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(4.), _jacfwd(f2)(4.))
428
+
429
+ self.assertEqual(_jacfwd(f)(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
430
+ self.assertEqual(jax.jit(_jacfwd(f))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
431
+ self.assertEqual(jax.jit(_jacfwd(jax.jit(f)))(jnp.asarray(4.)), _jacfwd(f2)(jnp.asarray(4.)))
432
+
433
+ def test_jacrev1(self):
434
+ def f1(x, y):
435
+ r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
436
+ return r
437
+
438
+ br = bst.augment.jacrev(f1)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
439
+ jr = jax.jacrev(f1)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
440
+ assert (br == jr).all()
441
+
442
+ br = bst.augment.jacrev(f1, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
443
+ jr = jax.jacrev(f1, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
444
+ assert (br[0] == jr[0]).all()
445
+ assert (br[1] == jr[1]).all()
446
+
447
+ def test_jacrev2(self):
448
+ print()
449
+
450
+ def f2(x, y):
451
+ r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
452
+ r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
453
+ return r1, r2
454
+
455
+ jr = jax.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
456
+ pprint(jr)
457
+
458
+ br = bst.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
459
+ pprint(br)
460
+ assert jnp.array_equal(br[0], jr[0])
461
+ assert jnp.array_equal(br[1], jr[1])
462
+
463
+ br = bst.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
464
+ pprint(br)
465
+ assert jnp.array_equal(br[0], jr[0])
466
+ assert jnp.array_equal(br[1], jr[1])
467
+
468
+ def f2(x, y):
469
+ r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
470
+ r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
471
+ return r1, r2
472
+
473
+ br = bst.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
474
+ pprint(br)
475
+ assert jnp.array_equal(br[0], jr[0])
476
+ assert jnp.array_equal(br[1], jr[1])
477
+
478
+ br = bst.augment.jacrev(f2)(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
479
+ pprint(br)
480
+ assert jnp.array_equal(br[0], jr[0])
481
+ assert jnp.array_equal(br[1], jr[1])
482
+
483
+ def test_jacrev3(self):
484
+ print()
485
+
486
+ def f3(x, y):
487
+ r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
488
+ r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
489
+ return r1, r2
490
+
491
+ jr = jax.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
492
+ pprint(jr)
493
+
494
+ br = bst.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
495
+ pprint(br)
496
+ assert jnp.array_equal(br[0][0], jr[0][0])
497
+ assert jnp.array_equal(br[0][1], jr[0][1])
498
+ assert jnp.array_equal(br[1][0], jr[1][0])
499
+ assert jnp.array_equal(br[1][1], jr[1][1])
500
+
501
+ br = bst.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
502
+ pprint(br)
503
+ assert jnp.array_equal(br[0][0], jr[0][0])
504
+ assert jnp.array_equal(br[0][1], jr[0][1])
505
+ assert jnp.array_equal(br[1][0], jr[1][0])
506
+ assert jnp.array_equal(br[1][1], jr[1][1])
507
+
508
+ def f3(x, y):
509
+ r1 = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1]])
510
+ r2 = jnp.asarray([4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
511
+ return r1, r2
512
+
513
+ br = bst.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
514
+ pprint(br)
515
+ assert jnp.array_equal(br[0][0], jr[0][0])
516
+ assert jnp.array_equal(br[0][1], jr[0][1])
517
+ assert jnp.array_equal(br[1][0], jr[1][0])
518
+ assert jnp.array_equal(br[1][1], jr[1][1])
519
+
520
+ br = bst.augment.jacrev(f3, argnums=(0, 1))(jnp.array([1., 2., 3.]), jnp.array([10., 5.]))
521
+ pprint(br)
522
+ assert jnp.array_equal(br[0][0], jr[0][0])
523
+ assert jnp.array_equal(br[0][1], jr[0][1])
524
+ assert jnp.array_equal(br[1][0], jr[1][0])
525
+ assert jnp.array_equal(br[1][1], jr[1][1])
526
+
527
+ def test_jacrev_aux1(self):
528
+ x = jnp.array([1., 2., 3.])
529
+ y = jnp.array([10., 5.])
530
+
531
+ def f1(x, y):
532
+ a = 4 * x[1] ** 2 - 2 * x[2]
533
+ r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], a, x[2] * jnp.sin(x[0])])
534
+ return r, a
535
+
536
+ f2 = lambda *args: f1(*args)[0]
537
+ jr = jax.jacrev(f2)(x, y) # jax jacobian
538
+ pprint(jr)
539
+ grads, aux = bst.augment.jacrev(f1, has_aux=True)(x, y)
540
+ assert (grads == jr).all()
541
+ assert aux == (4 * x[1] ** 2 - 2 * x[2])
542
+
543
+ jr = jax.jacrev(f2, argnums=(0, 1))(x, y) # jax jacobian
544
+ pprint(jr)
545
+ grads, aux = bst.augment.jacrev(f1, argnums=(0, 1), has_aux=True)(x, y)
546
+ assert (grads[0] == jr[0]).all()
547
+ assert (grads[1] == jr[1]).all()
548
+ assert aux == (4 * x[1] ** 2 - 2 * x[2])
549
+
550
+ def test_jacrev_return_aux1(self):
551
+ with bst.environ.context(precision=64):
552
+ def f1(x, y):
553
+ a = 4 * x[1] ** 2 - 2 * x[2]
554
+ r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], a, x[2] * jnp.sin(x[0])])
555
+ return r, a
556
+
557
+ _x = jnp.array([1., 2., 3.])
558
+ _y = jnp.array([10., 5.])
559
+ _r, _a = f1(_x, _y)
560
+ f2 = lambda *args: f1(*args)[0]
561
+ _g1 = jax.jacrev(f2)(_x, _y) # jax jacobian
562
+ pprint(_g1)
563
+ _g2 = jax.jacrev(f2, argnums=(0, 1))(_x, _y) # jax jacobian
564
+ pprint(_g2)
565
+
566
+ grads, vec, aux = bst.augment.jacrev(f1, return_value=True, has_aux=True)(_x, _y)
567
+ assert (grads == _g1).all()
568
+ assert aux == _a
569
+ assert (vec == _r).all()
570
+
571
+ grads, vec, aux = bst.augment.jacrev(f1, return_value=True, argnums=(0, 1), has_aux=True)(_x, _y)
572
+ assert (grads[0] == _g2[0]).all()
573
+ assert (grads[1] == _g2[1]).all()
574
+ assert aux == _a
575
+ assert (vec == _r).all()
576
+
577
+
578
+ class TestClassFuncJacobian(unittest.TestCase):
579
+ def test_jacrev1(self):
580
+ def f1(x, y):
581
+ r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
582
+ return r
583
+
584
+ _x = jnp.array([1., 2., 3.])
585
+ _y = jnp.array([10., 5.])
586
+
587
+ class Test(bst.nn.Module):
588
+ def __init__(self):
589
+ super(Test, self).__init__()
590
+ self.x = bst.State(jnp.array([1., 2., 3.]))
591
+ self.y = bst.State(jnp.array([10., 5.]))
592
+
593
+ def __call__(self, ):
594
+ a = self.x.value[0] * self.y.value[0]
595
+ b = 5 * self.x.value[2] * self.y.value[1]
596
+ c = 4 * self.x.value[1] ** 2 - 2 * self.x.value[2]
597
+ d = self.x.value[2] * jnp.sin(self.x.value[0])
598
+ r = jnp.asarray([a, b, c, d])
599
+ return r
600
+
601
+ _jr = jax.jacrev(f1)(_x, _y)
602
+ t = Test()
603
+ br = bst.augment.jacrev(t, grad_states=t.x)()
604
+ self.assertTrue((br == _jr).all())
605
+
606
+ _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
607
+ t = Test()
608
+ br = bst.augment.jacrev(t, grad_states=[t.x, t.y])()
609
+ self.assertTrue((br[0] == _jr[0]).all())
610
+ self.assertTrue((br[1] == _jr[1]).all())
611
+ #
612
+ # def test_jacfwd1(self):
613
+ # def f1(x, y):
614
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
615
+ # return r
616
+ #
617
+ # _x = jnp.array([1., 2., 3.])
618
+ # _y = jnp.array([10., 5.])
619
+ #
620
+ # class Test(bst.nn.Module):
621
+ # def __init__(self):
622
+ # super(Test, self).__init__()
623
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
624
+ # self.y = jnp.Variable(jnp.array([10., 5.]))
625
+ #
626
+ # def __call__(self, ):
627
+ # a = self.x[0] * self.y[0]
628
+ # b = 5 * self.x[2] * self.y[1]
629
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
630
+ # d = self.x[2] * jnp.sin(self.x[0])
631
+ # r = jnp.asarray([a, b, c, d])
632
+ # return r
633
+ #
634
+ # _jr = jax.jacfwd(f1)(_x, _y)
635
+ # t = Test()
636
+ # br = bst.augment.jacfwd(t, grad_states=t.x)()
637
+ # self.assertTrue((br == _jr).all())
638
+ #
639
+ # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
640
+ # t = Test()
641
+ # br = bst.augment.jacfwd(t, grad_states=[t.x, t.y])()
642
+ # self.assertTrue((br[0] == _jr[0]).all())
643
+ # self.assertTrue((br[1] == _jr[1]).all())
644
+ #
645
+ # def test_jacrev2(self):
646
+ # def f1(x, y):
647
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
648
+ # return r
649
+ #
650
+ # _x = jnp.array([1., 2., 3.])
651
+ # _y = jnp.array([10., 5.])
652
+ #
653
+ # class Test(bst.nn.Module):
654
+ # def __init__(self):
655
+ # super(Test, self).__init__()
656
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
657
+ #
658
+ # def __call__(self, y):
659
+ # a = self.x[0] * y[0]
660
+ # b = 5 * self.x[2] * y[1]
661
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
662
+ # d = self.x[2] * jnp.sin(self.x[0])
663
+ # r = jnp.asarray([a, b, c, d])
664
+ # return r
665
+ #
666
+ # _jr = jax.jacrev(f1)(_x, _y)
667
+ # t = Test()
668
+ # br = bst.augment.jacrev(t, grad_states=t.x)(_y)
669
+ # self.assertTrue((br == _jr).all())
670
+ #
671
+ # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
672
+ # t = Test()
673
+ # var_grads, arg_grads = bst.augment.jacrev(t, grad_states=t.x, argnums=0)(_y)
674
+ # print(var_grads, )
675
+ # print(arg_grads, )
676
+ # self.assertTrue((var_grads == _jr[0]).all())
677
+ # self.assertTrue((arg_grads == _jr[1]).all())
678
+ #
679
+ # def test_jacfwd2(self):
680
+ # def f1(x, y):
681
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
682
+ # return r
683
+ #
684
+ # _x = jnp.array([1., 2., 3.])
685
+ # _y = jnp.array([10., 5.])
686
+ #
687
+ # class Test(bst.nn.Module):
688
+ # def __init__(self):
689
+ # super(Test, self).__init__()
690
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
691
+ #
692
+ # def __call__(self, y):
693
+ # a = self.x[0] * y[0]
694
+ # b = 5 * self.x[2] * y[1]
695
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
696
+ # d = self.x[2] * jnp.sin(self.x[0])
697
+ # r = jnp.asarray([a, b, c, d])
698
+ # return r
699
+ #
700
+ # _jr = jax.jacfwd(f1)(_x, _y)
701
+ # t = Test()
702
+ # br = bst.augment.jacfwd(t, grad_states=t.x)(_y)
703
+ # self.assertTrue((br == _jr).all())
704
+ #
705
+ # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
706
+ # t = Test()
707
+ # var_grads, arg_grads = bst.augment.jacfwd(t, grad_states=t.x, argnums=0)(_y)
708
+ # print(var_grads, )
709
+ # print(arg_grads, )
710
+ # self.assertTrue((var_grads == _jr[0]).all())
711
+ # self.assertTrue((arg_grads == _jr[1]).all())
712
+ #
713
+ # def test_jacrev_aux1(self):
714
+ # jnp.enable_x64()
715
+ #
716
+ # def f1(x, y):
717
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
718
+ # return r
719
+ #
720
+ # _x = jnp.array([1., 2., 3.])
721
+ # _y = jnp.array([10., 5.])
722
+ #
723
+ # class Test(bst.nn.Module):
724
+ # def __init__(self):
725
+ # super(Test, self).__init__()
726
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
727
+ #
728
+ # def __call__(self, y):
729
+ # a = self.x[0] * y[0]
730
+ # b = 5 * self.x[2] * y[1]
731
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
732
+ # d = self.x[2] * jnp.sin(self.x[0])
733
+ # r = jnp.asarray([a, b, c, d])
734
+ # return r, (c, d)
735
+ #
736
+ # _jr = jax.jacrev(f1)(_x, _y)
737
+ # t = Test()
738
+ # br, _ = bst.augment.jacrev(t, grad_states=t.x, has_aux=True)(_y)
739
+ # self.assertTrue((br == _jr).all())
740
+ #
741
+ # t = Test()
742
+ # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
743
+ # _aux = t(_y)[1]
744
+ # (var_grads, arg_grads), aux = bst.augment.jacrev(t, grad_states=t.x, argnums=0, has_aux=True)(_y)
745
+ # print(var_grads, )
746
+ # print(arg_grads, )
747
+ # self.assertTrue((var_grads == _jr[0]).all())
748
+ # self.assertTrue((arg_grads == _jr[1]).all())
749
+ # self.assertTrue(jnp.array_equal(aux, _aux))
750
+ #
751
+ # jnp.disable_x64()
752
+ #
753
+ # def test_jacfwd_aux1(self):
754
+ # jnp.enable_x64()
755
+ #
756
+ # def f1(x, y):
757
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
758
+ # return r
759
+ #
760
+ # _x = jnp.array([1., 2., 3.])
761
+ # _y = jnp.array([10., 5.])
762
+ #
763
+ # class Test(bst.nn.Module):
764
+ # def __init__(self):
765
+ # super(Test, self).__init__()
766
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
767
+ #
768
+ # def __call__(self, y):
769
+ # a = self.x[0] * y[0]
770
+ # b = 5 * self.x[2] * y[1]
771
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
772
+ # d = self.x[2] * jnp.sin(self.x[0])
773
+ # r = jnp.asarray([a, b, c, d])
774
+ # return r, (c, d)
775
+ #
776
+ # _jr = jax.jacfwd(f1)(_x, _y)
777
+ # t = Test()
778
+ # br, (c, d) = bst.augment.jacfwd(t, grad_states=t.x, has_aux=True)(_y)
779
+ # # print(_jr)
780
+ # # print(br)
781
+ # a = (br == _jr)
782
+ # self.assertTrue(a.all())
783
+ #
784
+ # t = Test()
785
+ # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
786
+ # _aux = t(_y)[1]
787
+ # (var_grads, arg_grads), aux = bst.augment.jacfwd(t, grad_states=t.x, argnums=0, has_aux=True)(_y)
788
+ # print(var_grads, )
789
+ # print(arg_grads, )
790
+ # self.assertTrue((var_grads == _jr[0]).all())
791
+ # self.assertTrue((arg_grads == _jr[1]).all())
792
+ # self.assertTrue(jnp.array_equal(aux, _aux))
793
+ #
794
+ # jnp.disable_x64()
795
+ #
796
+ # def test_jacrev_return_aux1(self):
797
+ # jnp.enable_x64()
798
+ #
799
+ # def f1(x, y):
800
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
801
+ # return r
802
+ #
803
+ # _x = jnp.array([1., 2., 3.])
804
+ # _y = jnp.array([10., 5.])
805
+ #
806
+ # class Test(bst.nn.Module):
807
+ # def __init__(self):
808
+ # super(Test, self).__init__()
809
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
810
+ #
811
+ # def __call__(self, y):
812
+ # a = self.x[0] * y[0]
813
+ # b = 5 * self.x[2] * y[1]
814
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
815
+ # d = self.x[2] * jnp.sin(self.x[0])
816
+ # r = jnp.asarray([a, b, c, d])
817
+ # return r, (c, d)
818
+ #
819
+ # _jr = jax.jacrev(f1)(_x, _y)
820
+ # t = Test()
821
+ # br, _ = bst.augment.jacrev(t, grad_states=t.x, has_aux=True)(_y)
822
+ # self.assertTrue((br == _jr).all())
823
+ #
824
+ # t = Test()
825
+ # _jr = jax.jacrev(f1, argnums=(0, 1))(_x, _y)
826
+ # _val, _aux = t(_y)
827
+ # (var_grads, arg_grads), value, aux = bst.augment.jacrev(t, grad_states=t.x, argnums=0, has_aux=True, return_value=True)(_y)
828
+ # print(var_grads, )
829
+ # print(arg_grads, )
830
+ # self.assertTrue((var_grads == _jr[0]).all())
831
+ # self.assertTrue((arg_grads == _jr[1]).all())
832
+ # self.assertTrue(jnp.array_equal(aux, _aux))
833
+ # self.assertTrue(jnp.array_equal(value, _val))
834
+ #
835
+ # jnp.disable_x64()
836
+ #
837
+ # def test_jacfwd_return_aux1(self):
838
+ # jnp.enable_x64()
839
+ #
840
+ # def f1(x, y):
841
+ # r = jnp.asarray([x[0] * y[0], 5 * x[2] * y[1], 4 * x[1] ** 2 - 2 * x[2], x[2] * jnp.sin(x[0])])
842
+ # return r
843
+ #
844
+ # _x = jnp.array([1., 2., 3.])
845
+ # _y = jnp.array([10., 5.])
846
+ #
847
+ # class Test(bst.nn.Module):
848
+ # def __init__(self):
849
+ # super(Test, self).__init__()
850
+ # self.x = jnp.Variable(jnp.array([1., 2., 3.]))
851
+ #
852
+ # def __call__(self, y):
853
+ # a = self.x[0] * y[0]
854
+ # b = 5 * self.x[2] * y[1]
855
+ # c = 4 * self.x[1] ** 2 - 2 * self.x[2]
856
+ # d = self.x[2] * jnp.sin(self.x[0])
857
+ # r = jnp.asarray([a, b, c, d])
858
+ # return r, (c, d)
859
+ #
860
+ # _jr = jax.jacfwd(f1)(_x, _y)
861
+ # t = Test()
862
+ # br, _ = bst.augment.jacfwd(t, grad_states=t.x, has_aux=True)(_y)
863
+ # self.assertTrue((br == _jr).all())
864
+ #
865
+ # t = Test()
866
+ # _jr = jax.jacfwd(f1, argnums=(0, 1))(_x, _y)
867
+ # _val, _aux = t(_y)
868
+ # (var_grads, arg_grads), value, aux = bst.augment.jacfwd(t, grad_states=t.x, argnums=0, has_aux=True, return_value=True)(_y)
869
+ # print(_val, )
870
+ # print('_aux: ', _aux, 'aux: ', aux)
871
+ # print(var_grads, )
872
+ # print(arg_grads, )
873
+ # self.assertTrue((var_grads == _jr[0]).all())
874
+ # self.assertTrue((arg_grads == _jr[1]).all())
875
+ # self.assertTrue(jnp.array_equal(aux, _aux))
876
+ # self.assertTrue(jnp.array_equal(value, _val))
877
+ #
878
+ # jnp.disable_x64()
879
+ #
880
+ #
881
+ # class TestPureFuncVectorGrad(unittest.TestCase):
882
+ # def test1(self):
883
+ # f = lambda x: 3 * x ** 2
884
+ # _x = jnp.ones(10)
885
+ # pprint(bst.augment.vector_grad(f, argnums=0)(_x))
886
+ #
887
+ # def test2(self):
888
+ # def f(x, y):
889
+ # dx = x ** 2 + y ** 2 + 10
890
+ # return dx
891
+ #
892
+ # _x = jnp.ones(5)
893
+ # _y = jnp.ones(5)
894
+ #
895
+ # g = bst.augment.vector_grad(f, argnums=0)(_x, _y)
896
+ # pprint(g)
897
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
898
+ #
899
+ # g = bst.augment.vector_grad(f, argnums=(0,))(_x, _y)
900
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
901
+ #
902
+ # g = bst.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
903
+ # pprint(g)
904
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
905
+ # self.assertTrue(jnp.array_equal(g[1], 2 * _y))
906
+ #
907
+ # def test3(self):
908
+ # def f(x, y):
909
+ # dx = x ** 2 + y ** 2 + 10
910
+ # dy = x ** 3 + y ** 3 - 10
911
+ # return dx, dy
912
+ #
913
+ # _x = jnp.ones(5)
914
+ # _y = jnp.ones(5)
915
+ #
916
+ # g = bst.augment.vector_grad(f, argnums=0)(_x, _y)
917
+ # # pprint(g)
918
+ # self.assertTrue(jnp.array_equal(g, 2 * _x + 3 * _x ** 2))
919
+ #
920
+ # g = bst.augment.vector_grad(f, argnums=(0,))(_x, _y)
921
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x + 3 * _x ** 2))
922
+ #
923
+ # g = bst.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
924
+ # # pprint(g)
925
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x + 3 * _x ** 2))
926
+ # self.assertTrue(jnp.array_equal(g[1], 2 * _y + 3 * _y ** 2))
927
+ #
928
+ # def test4_2d(self):
929
+ # def f(x, y):
930
+ # dx = x ** 2 + y ** 2 + 10
931
+ # return dx
932
+ #
933
+ # _x = jnp.ones((5, 5))
934
+ # _y = jnp.ones((5, 5))
935
+ #
936
+ # g = bst.augment.vector_grad(f, argnums=0)(_x, _y)
937
+ # pprint(g)
938
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
939
+ #
940
+ # g = bst.augment.vector_grad(f, argnums=(0,))(_x, _y)
941
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
942
+ #
943
+ # g = bst.augment.vector_grad(f, argnums=(0, 1))(_x, _y)
944
+ # pprint(g)
945
+ # self.assertTrue(jnp.array_equal(g[0], 2 * _x))
946
+ # self.assertTrue(jnp.array_equal(g[1], 2 * _y))
947
+ #
948
+ # def test_aux1(self):
949
+ # def f(x, y):
950
+ # dx = x ** 2 + y ** 2 + 10
951
+ # dy = x ** 3 + y ** 3 - 10
952
+ # return dx, dy
953
+ #
954
+ # _x = jnp.ones(5)
955
+ # _y = jnp.ones(5)
956
+ #
957
+ # g, aux = bst.augment.vector_grad(f, has_aux=True)(_x, _y)
958
+ # pprint(g, )
959
+ # pprint(aux)
960
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
961
+ # self.assertTrue(jnp.array_equal(aux, _x ** 3 + _y ** 3 - 10))
962
+ #
963
+ # def test_return1(self):
964
+ # def f(x, y):
965
+ # dx = x ** 2 + y ** 2 + 10
966
+ # return dx
967
+ #
968
+ # _x = jnp.ones(5)
969
+ # _y = jnp.ones(5)
970
+ #
971
+ # g, value = bst.augment.vector_grad(f, return_value=True)(_x, _y)
972
+ # pprint(g, )
973
+ # pprint(value)
974
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
975
+ # self.assertTrue(jnp.array_equal(value, _x ** 2 + _y ** 2 + 10))
976
+ #
977
+ # def test_return_aux1(self):
978
+ # def f(x, y):
979
+ # dx = x ** 2 + y ** 2 + 10
980
+ # dy = x ** 3 + y ** 3 - 10
981
+ # return dx, dy
982
+ #
983
+ # _x = jnp.ones(5)
984
+ # _y = jnp.ones(5)
985
+ #
986
+ # g, value, aux = bst.augment.vector_grad(f, has_aux=True, return_value=True)(_x, _y)
987
+ # print('grad', g)
988
+ # print('value', value)
989
+ # print('aux', aux)
990
+ # self.assertTrue(jnp.array_equal(g, 2 * _x))
991
+ # self.assertTrue(jnp.array_equal(value, _x ** 2 + _y ** 2 + 10))
992
+ # self.assertTrue(jnp.array_equal(aux, _x ** 3 + _y ** 3 - 10))
993
+ #
994
+ #
995
+ # class TestClassFuncVectorGrad(unittest.TestCase):
996
+ # def test1(self):
997
+ # class Test(bst.nn.Module):
998
+ # def __init__(self):
999
+ # super(Test, self).__init__()
1000
+ # self.x = jnp.Variable(jnp.ones(5))
1001
+ # self.y = jnp.Variable(jnp.ones(5))
1002
+ #
1003
+ # def __call__(self, *args, **kwargs):
1004
+ # return self.x ** 2 + self.y ** 2 + 10
1005
+ #
1006
+ # t = Test()
1007
+ #
1008
+ # g = bst.augment.vector_grad(t, grad_states=t.x)()
1009
+ # self.assertTrue(jnp.array_equal(g, 2 * t.x))
1010
+ #
1011
+ # g = bst.augment.vector_grad(t, grad_states=(t.x,))()
1012
+ # self.assertTrue(jnp.array_equal(g[0], 2 * t.x))
1013
+ #
1014
+ # g = bst.augment.vector_grad(t, grad_states=(t.x, t.y))()
1015
+ # self.assertTrue(jnp.array_equal(g[0], 2 * t.x))
1016
+ # self.assertTrue(jnp.array_equal(g[1], 2 * t.y))
1017
+ #
1018
+ #
1019
+ # def vgrad(f, *x):
1020
+ # y, vjp_fn = jax.vjp(f, *x)
1021
+ # return vjp_fn(jnp.ones(y.shape).value)[0]
1022
+ #
1023
+ #
1024
+ # class TestDebug(parameterized.TestCase):
1025
+ # def test_debug1(self):
1026
+ # a = bst.random.RandomState()
1027
+ #
1028
+ # def f(b):
1029
+ # print(a.value)
1030
+ # return a + b + a.random()
1031
+ #
1032
+ # f = bst.augment.vector_grad(f, argnums=0)
1033
+ # f(1.)
1034
+ #
1035
+ # with jax.disable_jit():
1036
+ # f(1.)
1037
+ #
1038
+ # @parameterized.product(
1039
+ # grad_fun=[bst.augment.grad, bst.augment.vector_grad]
1040
+ # )
1041
+ # def test_print_info1(self, grad_fun):
1042
+ # file = tempfile.TemporaryFile(mode='w+')
1043
+ #
1044
+ # @functools.partial(grad_fun, argnums=0)
1045
+ # def f2(a, b):
1046
+ # print('compiling f2 ...', file=file)
1047
+ # return a + b
1048
+ #
1049
+ # @functools.partial(grad_fun, argnums=0)
1050
+ # def f1(a):
1051
+ # print('compiling f1 ...', file=file)
1052
+ # return f2(a, 1.)
1053
+ #
1054
+ # expect_res = '''
1055
+ # compiling f1 ...
1056
+ # compiling f2 ...
1057
+ # compiling f1 ...
1058
+ # compiling f2 ...
1059
+ # '''
1060
+ #
1061
+ # print(f1(1.))
1062
+ # file.seek(0)
1063
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1064
+ #
1065
+ # file = tempfile.TemporaryFile(mode='w+')
1066
+ # with jax.disable_jit():
1067
+ # expect_res = '''
1068
+ # compiling f1 ...
1069
+ # compiling f2 ...
1070
+ # '''
1071
+ # self.assertTrue(f1(1.) == 0.)
1072
+ # file.seek(0)
1073
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1074
+ #
1075
+ # @parameterized.product(
1076
+ # grad_fun=[bst.augment.grad, bst.augment.vector_grad]
1077
+ # )
1078
+ # def test_print_info2(self, grad_fun):
1079
+ # file = tempfile.TemporaryFile(mode='w+')
1080
+ #
1081
+ # @functools.partial(grad_fun, argnums=0)
1082
+ # def f1(a):
1083
+ # @functools.partial(grad_fun, argnums=0)
1084
+ # def f2(a, b):
1085
+ # print('compiling f2 ...', file=file)
1086
+ # return a + b
1087
+ #
1088
+ # print('compiling f1 ...', file=file)
1089
+ # return f2(a, 1.)
1090
+ #
1091
+ # expect_res = '''
1092
+ # compiling f1 ...
1093
+ # compiling f2 ...
1094
+ # compiling f1 ...
1095
+ # compiling f2 ...
1096
+ # compiling f2 ...
1097
+ # '''
1098
+ # self.assertTrue(f1(1.) == 0.)
1099
+ # file.seek(0)
1100
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1101
+ #
1102
+ # file = tempfile.TemporaryFile(mode='w+')
1103
+ # with jax.disable_jit():
1104
+ # expect_res = '''
1105
+ # compiling f1 ...
1106
+ # compiling f2 ...
1107
+ # '''
1108
+ # self.assertTrue(f1(1.) == 0.)
1109
+ # file.seek(0)
1110
+ # # print(file.read().strip())
1111
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1112
+ #
1113
+ # def test_debug_correctness1(self):
1114
+ # def test_f():
1115
+ # a = jnp.Variable(jnp.ones(2))
1116
+ # b = jnp.Variable(jnp.zeros(2))
1117
+ #
1118
+ # @bst.augment.vector_grad(argnums=0)
1119
+ # def f1(c):
1120
+ # a.value += 1
1121
+ # b.value += 10
1122
+ # return a * b * c
1123
+ #
1124
+ # return a, b, f1(1.)
1125
+ #
1126
+ # r1 = test_f()
1127
+ # print(r1)
1128
+ #
1129
+ # with jax.disable_jit():
1130
+ # r2 = test_f()
1131
+ # print(r2)
1132
+ # self.assertTrue(jnp.allclose(r1[0], r2[0]))
1133
+ # self.assertTrue(jnp.allclose(r1[1], r2[1]))
1134
+ # self.assertTrue(jnp.allclose(r1[2], r2[2]))
1135
+ #
1136
+ # def f1(c, a, b):
1137
+ # a += 1
1138
+ # b += 10
1139
+ # return a * b * c
1140
+ #
1141
+ # r3 = vgrad(f1, 1., jnp.ones(2).value, jnp.zeros(2).value)
1142
+ # self.assertTrue(jnp.allclose(r1[2], r3))
1143
+ #
1144
+ # def _bench_f2(self, dd):
1145
+ # a = jnp.Variable(jnp.ones(2))
1146
+ # b = jnp.Variable(jnp.zeros(2))
1147
+ #
1148
+ #
1149
+ # def run_fun(d):
1150
+ # @bst.augment.vector_grad(argnums=0)
1151
+ # def f1(c):
1152
+ # a.value += d
1153
+ # b.value += 10
1154
+ # return a * b * c
1155
+ #
1156
+ # return a, b, f1(1.)
1157
+ #
1158
+ # return run_fun(dd)
1159
+ #
1160
+ # def test_debug_correctness2(self):
1161
+ # r1 = self._bench_f2(1.)
1162
+ # print(r1)
1163
+ #
1164
+ # with jax.disable_jit():
1165
+ # r2 = self._bench_f2(1.)
1166
+ # print(r2)
1167
+ #
1168
+ # self.assertTrue(jnp.allclose(r1[0], r2[0]))
1169
+ # self.assertTrue(jnp.allclose(r1[1], r2[1]))
1170
+ # self.assertTrue(jnp.allclose(r1[2], r2[2]))
1171
+ #
1172
+ # def test_cache1(self):
1173
+ # file = tempfile.TemporaryFile(mode='w+')
1174
+ #
1175
+ # def f(a, b):
1176
+ # print('compiling f ...', file=file)
1177
+ # return a + b
1178
+ #
1179
+ # grad1 = bst.augment.grad(f)(1., 2.) # call "f" twice, one for Variable finding, one for compiling
1180
+ # grad2 = bst.augment.vector_grad(f)(1., 2.) # call "f" once for compiling
1181
+ #
1182
+ # file.seek(0)
1183
+ # print(file.read().strip())
1184
+ #
1185
+ # expect_res = '''
1186
+ # compiling f ...
1187
+ # compiling f ...
1188
+ # compiling f ...
1189
+ # '''
1190
+ # file.seek(0)
1191
+ # self.assertTrue(file.read().strip() == expect_res.strip())
1192
+ #
1193
+ #