brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. brainstate/__init__.py +31 -11
  2. brainstate/_state.py +760 -316
  3. brainstate/_state_test.py +41 -12
  4. brainstate/_utils.py +31 -4
  5. brainstate/augment/__init__.py +40 -0
  6. brainstate/augment/_autograd.py +608 -0
  7. brainstate/augment/_autograd_test.py +1193 -0
  8. brainstate/augment/_eval_shape.py +102 -0
  9. brainstate/augment/_eval_shape_test.py +40 -0
  10. brainstate/augment/_mapping.py +525 -0
  11. brainstate/augment/_mapping_test.py +210 -0
  12. brainstate/augment/_random.py +99 -0
  13. brainstate/{transform → compile}/__init__.py +25 -13
  14. brainstate/compile/_ad_checkpoint.py +204 -0
  15. brainstate/compile/_ad_checkpoint_test.py +51 -0
  16. brainstate/compile/_conditions.py +259 -0
  17. brainstate/compile/_conditions_test.py +221 -0
  18. brainstate/compile/_error_if.py +94 -0
  19. brainstate/compile/_error_if_test.py +54 -0
  20. brainstate/compile/_jit.py +314 -0
  21. brainstate/compile/_jit_test.py +143 -0
  22. brainstate/compile/_loop_collect_return.py +516 -0
  23. brainstate/compile/_loop_collect_return_test.py +59 -0
  24. brainstate/compile/_loop_no_collection.py +185 -0
  25. brainstate/compile/_loop_no_collection_test.py +51 -0
  26. brainstate/compile/_make_jaxpr.py +756 -0
  27. brainstate/compile/_make_jaxpr_test.py +134 -0
  28. brainstate/compile/_progress_bar.py +111 -0
  29. brainstate/compile/_unvmap.py +159 -0
  30. brainstate/compile/_util.py +147 -0
  31. brainstate/environ.py +408 -381
  32. brainstate/environ_test.py +34 -32
  33. brainstate/{nn/event → event}/__init__.py +6 -6
  34. brainstate/event/_csr.py +308 -0
  35. brainstate/event/_csr_test.py +118 -0
  36. brainstate/event/_fixed_probability.py +271 -0
  37. brainstate/event/_fixed_probability_test.py +128 -0
  38. brainstate/event/_linear.py +219 -0
  39. brainstate/event/_linear_test.py +112 -0
  40. brainstate/{nn/event → event}/_misc.py +7 -7
  41. brainstate/functional/_activations.py +521 -511
  42. brainstate/functional/_activations_test.py +300 -300
  43. brainstate/functional/_normalization.py +43 -43
  44. brainstate/functional/_others.py +15 -15
  45. brainstate/functional/_spikes.py +49 -49
  46. brainstate/graph/__init__.py +33 -0
  47. brainstate/graph/_graph_context.py +443 -0
  48. brainstate/graph/_graph_context_test.py +65 -0
  49. brainstate/graph/_graph_convert.py +246 -0
  50. brainstate/graph/_graph_node.py +300 -0
  51. brainstate/graph/_graph_node_test.py +75 -0
  52. brainstate/graph/_graph_operation.py +1746 -0
  53. brainstate/graph/_graph_operation_test.py +724 -0
  54. brainstate/init/_base.py +28 -10
  55. brainstate/init/_generic.py +175 -172
  56. brainstate/init/_random_inits.py +470 -415
  57. brainstate/init/_random_inits_test.py +150 -0
  58. brainstate/init/_regular_inits.py +66 -69
  59. brainstate/init/_regular_inits_test.py +51 -0
  60. brainstate/mixin.py +236 -244
  61. brainstate/mixin_test.py +44 -46
  62. brainstate/nn/__init__.py +26 -51
  63. brainstate/nn/_collective_ops.py +199 -0
  64. brainstate/nn/_dyn_impl/__init__.py +46 -0
  65. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  66. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  67. brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
  68. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  69. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  70. brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
  71. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  72. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  73. brainstate/nn/_dyn_impl/_readout.py +128 -0
  74. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  75. brainstate/nn/_dynamics/__init__.py +37 -0
  76. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  77. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  78. brainstate/nn/_dynamics/_projection_base.py +346 -0
  79. brainstate/nn/_dynamics/_state_delay.py +453 -0
  80. brainstate/nn/_dynamics/_synouts.py +161 -0
  81. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  82. brainstate/nn/_elementwise/__init__.py +22 -0
  83. brainstate/nn/_elementwise/_dropout.py +418 -0
  84. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  85. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  86. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  87. brainstate/nn/_exp_euler.py +97 -0
  88. brainstate/nn/_exp_euler_test.py +36 -0
  89. brainstate/nn/_interaction/__init__.py +32 -0
  90. brainstate/nn/_interaction/_connections.py +726 -0
  91. brainstate/nn/_interaction/_connections_test.py +254 -0
  92. brainstate/nn/_interaction/_embedding.py +59 -0
  93. brainstate/nn/_interaction/_normalizations.py +388 -0
  94. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  95. brainstate/nn/_interaction/_poolings.py +1179 -0
  96. brainstate/nn/_interaction/_poolings_test.py +219 -0
  97. brainstate/nn/_module.py +328 -0
  98. brainstate/nn/_module_test.py +211 -0
  99. brainstate/nn/metrics.py +309 -309
  100. brainstate/optim/__init__.py +14 -2
  101. brainstate/optim/_base.py +66 -0
  102. brainstate/optim/_lr_scheduler.py +363 -400
  103. brainstate/optim/_lr_scheduler_test.py +25 -24
  104. brainstate/optim/_optax_optimizer.py +103 -176
  105. brainstate/optim/_optax_optimizer_test.py +41 -1
  106. brainstate/optim/_sgd_optimizer.py +950 -1025
  107. brainstate/random/_rand_funs.py +3269 -3268
  108. brainstate/random/_rand_funs_test.py +568 -0
  109. brainstate/random/_rand_seed.py +149 -117
  110. brainstate/random/_rand_seed_test.py +50 -0
  111. brainstate/random/_rand_state.py +1356 -1321
  112. brainstate/random/_random_for_unit.py +13 -13
  113. brainstate/surrogate.py +1262 -1243
  114. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  115. brainstate/typing.py +157 -130
  116. brainstate/util/__init__.py +52 -0
  117. brainstate/util/_caller.py +100 -0
  118. brainstate/util/_dict.py +734 -0
  119. brainstate/util/_dict_test.py +160 -0
  120. brainstate/util/_error.py +28 -0
  121. brainstate/util/_filter.py +178 -0
  122. brainstate/util/_others.py +497 -0
  123. brainstate/util/_pretty_repr.py +208 -0
  124. brainstate/util/_scaling.py +260 -0
  125. brainstate/util/_struct.py +524 -0
  126. brainstate/util/_tracers.py +75 -0
  127. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  128. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
  129. brainstate-0.1.0.dist-info/RECORD +135 -0
  130. brainstate/_module.py +0 -1637
  131. brainstate/_module_test.py +0 -207
  132. brainstate/nn/_base.py +0 -251
  133. brainstate/nn/_connections.py +0 -686
  134. brainstate/nn/_dynamics.py +0 -426
  135. brainstate/nn/_elementwise.py +0 -1438
  136. brainstate/nn/_embedding.py +0 -66
  137. brainstate/nn/_misc.py +0 -133
  138. brainstate/nn/_normalizations.py +0 -389
  139. brainstate/nn/_others.py +0 -101
  140. brainstate/nn/_poolings.py +0 -1229
  141. brainstate/nn/_poolings_test.py +0 -231
  142. brainstate/nn/_projection/_align_post.py +0 -546
  143. brainstate/nn/_projection/_align_pre.py +0 -599
  144. brainstate/nn/_projection/_delta.py +0 -241
  145. brainstate/nn/_projection/_vanilla.py +0 -101
  146. brainstate/nn/_rate_rnns.py +0 -410
  147. brainstate/nn/_readout.py +0 -136
  148. brainstate/nn/_synouts.py +0 -166
  149. brainstate/nn/event/csr.py +0 -312
  150. brainstate/nn/event/csr_test.py +0 -118
  151. brainstate/nn/event/fixed_probability.py +0 -276
  152. brainstate/nn/event/fixed_probability_test.py +0 -127
  153. brainstate/nn/event/linear.py +0 -220
  154. brainstate/nn/event/linear_test.py +0 -111
  155. brainstate/random/random_test.py +0 -593
  156. brainstate/transform/_autograd.py +0 -585
  157. brainstate/transform/_autograd_test.py +0 -1181
  158. brainstate/transform/_conditions.py +0 -334
  159. brainstate/transform/_conditions_test.py +0 -220
  160. brainstate/transform/_error_if.py +0 -94
  161. brainstate/transform/_error_if_test.py +0 -55
  162. brainstate/transform/_jit.py +0 -265
  163. brainstate/transform/_jit_test.py +0 -118
  164. brainstate/transform/_loop_collect_return.py +0 -502
  165. brainstate/transform/_loop_no_collection.py +0 -170
  166. brainstate/transform/_make_jaxpr.py +0 -739
  167. brainstate/transform/_make_jaxpr_test.py +0 -131
  168. brainstate/transform/_mapping.py +0 -109
  169. brainstate/transform/_progress_bar.py +0 -111
  170. brainstate/transform/_unvmap.py +0 -143
  171. brainstate/util.py +0 -746
  172. brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
  173. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
  174. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
  175. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -29,303 +29,303 @@ import brainstate as bst
29
29
 
30
30
 
31
31
  class NNFunctionsTest(jtu.JaxTestCase):
32
- @jtu.skip_on_flag("jax_skip_slow_tests", True)
33
- def testSoftplusGrad(self):
34
- check_grads(bst.functional.softplus, (1e-8,), order=4, )
35
-
36
- def testSoftplusGradZero(self):
37
- check_grads(bst.functional.softplus, (0.,), order=1)
38
-
39
- def testSoftplusGradInf(self):
40
- self.assertAllClose(1., jax.grad(bst.functional.softplus)(float('inf')))
41
-
42
- def testSoftplusGradNegInf(self):
43
- check_grads(bst.functional.softplus, (-float('inf'),), order=1)
44
-
45
- def testSoftplusGradNan(self):
46
- check_grads(bst.functional.softplus, (float('nan'),), order=1)
47
-
48
- @parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
49
- def testSoftplusZero(self, dtype):
50
- self.assertEqual(jnp.log(dtype(2)), bst.functional.softplus(dtype(0)))
51
-
52
- def testSparseplusGradZero(self):
53
- check_grads(bst.functional.sparse_plus, (-2.,), order=1)
54
-
55
- def testSparseplusGrad(self):
56
- check_grads(bst.functional.sparse_plus, (0.,), order=1)
57
-
58
- def testSparseplusAndSparseSigmoid(self):
59
- self.assertAllClose(
60
- jax.grad(bst.functional.sparse_plus)(0.),
61
- bst.functional.sparse_sigmoid(0.),
62
- check_dtypes=False)
63
- self.assertAllClose(
64
- jax.grad(bst.functional.sparse_plus)(2.),
65
- bst.functional.sparse_sigmoid(2.),
66
- check_dtypes=False)
67
- self.assertAllClose(
68
- jax.grad(bst.functional.sparse_plus)(-2.),
69
- bst.functional.sparse_sigmoid(-2.),
70
- check_dtypes=False)
71
-
72
- def testSquareplusGrad(self):
73
- check_grads(bst.functional.squareplus, (1e-8,), order=4,
74
- )
75
-
76
- def testSquareplusGradZero(self):
77
- check_grads(bst.functional.squareplus, (0.,), order=1,
78
- )
79
-
80
- def testSquareplusGradNegInf(self):
81
- check_grads(bst.functional.squareplus, (-float('inf'),), order=1,
82
- )
83
-
84
- def testSquareplusGradNan(self):
85
- check_grads(bst.functional.squareplus, (float('nan'),), order=1,
86
- )
87
-
88
- @parameterized.parameters([float] + jtu.dtypes.floating)
89
- def testSquareplusZero(self, dtype):
90
- self.assertEqual(dtype(1), bst.functional.squareplus(dtype(0), dtype(4)))
91
-
92
- def testMishGrad(self):
93
- check_grads(bst.functional.mish, (1e-8,), order=4,
94
- )
95
-
96
- def testMishGradZero(self):
97
- check_grads(bst.functional.mish, (0.,), order=1,
98
- )
99
-
100
- def testMishGradNegInf(self):
101
- check_grads(bst.functional.mish, (-float('inf'),), order=1,
102
- )
103
-
104
- def testMishGradNan(self):
105
- check_grads(bst.functional.mish, (float('nan'),), order=1,
106
- )
107
-
108
- @parameterized.parameters([float] + jtu.dtypes.floating)
109
- def testMishZero(self, dtype):
110
- self.assertEqual(dtype(0), bst.functional.mish(dtype(0)))
111
-
112
- def testReluGrad(self):
113
- rtol = None
114
- check_grads(bst.functional.relu, (1.,), order=3, rtol=rtol)
115
- check_grads(bst.functional.relu, (-1.,), order=3, rtol=rtol)
116
- jaxpr = jax.make_jaxpr(jax.grad(bst.functional.relu))(0.)
117
- self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
118
-
119
- def testRelu6Grad(self):
120
- rtol = None
121
- check_grads(bst.functional.relu6, (1.,), order=3, rtol=rtol)
122
- check_grads(bst.functional.relu6, (-1.,), order=3, rtol=rtol)
123
- self.assertAllClose(jax.grad(bst.functional.relu6)(0.), 0., check_dtypes=False)
124
- self.assertAllClose(jax.grad(bst.functional.relu6)(6.), 0., check_dtypes=False)
125
-
126
- def testSoftplusValue(self):
127
- val = bst.functional.softplus(89.)
128
- self.assertAllClose(val, 89., check_dtypes=False)
129
-
130
- def testSparseplusValue(self):
131
- val = bst.functional.sparse_plus(89.)
132
- self.assertAllClose(val, 89., check_dtypes=False)
133
-
134
- def testSparsesigmoidValue(self):
135
- self.assertAllClose(bst.functional.sparse_sigmoid(-2.), 0., check_dtypes=False)
136
- self.assertAllClose(bst.functional.sparse_sigmoid(2.), 1., check_dtypes=False)
137
- self.assertAllClose(bst.functional.sparse_sigmoid(0.), .5, check_dtypes=False)
138
-
139
- def testSquareplusValue(self):
140
- val = bst.functional.squareplus(1e3)
141
- self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
142
-
143
- def testMishValue(self):
144
- val = bst.functional.mish(1e3)
145
- self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
146
-
147
- def testEluValue(self):
148
- val = bst.functional.elu(1e4)
149
- self.assertAllClose(val, 1e4, check_dtypes=False)
150
-
151
- def testGluValue(self):
152
- val = bst.functional.glu(jnp.array([1.0, 0.0]), axis=0)
153
- self.assertAllClose(val, jnp.array([0.5]))
154
-
155
- @parameterized.parameters(False, True)
156
- def testGeluIntType(self, approximate):
157
- val_float = bst.functional.gelu(jnp.array(-1.0), approximate=approximate)
158
- val_int = bst.functional.gelu(jnp.array(-1), approximate=approximate)
159
- self.assertAllClose(val_float, val_int)
160
-
161
- @parameterized.parameters(False, True)
162
- def testGelu(self, approximate):
163
- def gelu_reference(x):
164
- return x * scipy.stats.norm.cdf(x)
165
-
166
- rng = jtu.rand_default(self.rng())
167
- args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
168
- self._CheckAgainstNumpy(
169
- gelu_reference, partial(bst.functional.gelu, approximate=approximate), args_maker,
170
- check_dtypes=False, tol=1e-3 if approximate else None)
171
-
172
- @parameterized.parameters(*itertools.product(
173
- (jnp.float32, jnp.bfloat16, jnp.float16),
174
- (partial(bst.functional.gelu, approximate=False),
175
- partial(bst.functional.gelu, approximate=True),
176
- bst.functional.relu,
177
- bst.functional.softplus,
178
- bst.functional.sparse_plus,
179
- bst.functional.sigmoid,
180
- bst.functional.squareplus,
181
- bst.functional.mish)))
182
- def testDtypeMatchesInput(self, dtype, fn):
183
- x = jnp.zeros((), dtype=dtype)
184
- out = fn(x)
185
- self.assertEqual(out.dtype, dtype)
186
-
187
- def testEluMemory(self):
188
- # see https://github.com/google/jax/pull/1640
189
- with jax.enable_checks(False): # With checks we materialize the array
190
- jax.make_jaxpr(lambda: bst.functional.elu(jnp.ones((10 ** 12,)))) # don't oom
191
-
192
- def testHardTanhMemory(self):
193
- # see https://github.com/google/jax/pull/1640
194
- with jax.enable_checks(False): # With checks we materialize the array
195
- jax.make_jaxpr(lambda: bst.functional.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
196
-
197
- @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
198
- def testSoftmaxEmptyArray(self, fn):
199
- x = jnp.array([], dtype=float)
200
- self.assertArraysEqual(fn(x), x)
201
-
202
- @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
203
- def testSoftmaxEmptyMask(self, fn):
204
- x = jnp.array([5.5, 1.3, -4.2, 0.9])
205
- m = jnp.zeros_like(x, dtype=bool)
206
- expected = jnp.full_like(x, 0.0 if fn is bst.functional.softmax else -jnp.inf)
207
- self.assertArraysEqual(fn(x, where=m), expected)
208
-
209
- @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
210
- def testSoftmaxWhereMask(self, fn):
211
- x = jnp.array([5.5, 1.3, -4.2, 0.9])
212
- m = jnp.array([True, False, True, True])
213
-
214
- out = fn(x, where=m)
215
- self.assertAllClose(out[m], fn(x[m]))
216
-
217
- probs = out if fn is bst.functional.softmax else jnp.exp(out)
218
- self.assertAllClose(probs.sum(), 1.0)
219
-
220
- @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
221
- def testSoftmaxWhereGrad(self, fn):
222
- # regression test for https://github.com/google/jax/issues/19490
223
- x = jnp.array([36., 10000.])
224
- mask = x < 1000
225
-
226
- f = lambda x, mask: fn(x, where=mask)[0]
227
-
228
- self.assertAllClose(jax.grad(f)(x, mask), jnp.zeros_like(x))
229
-
230
- def testSoftmaxGrad(self):
231
- x = jnp.array([5.5, 1.3, -4.2, 0.9])
232
- jtu.check_grads(bst.functional.softmax, (x,), order=2, atol=5e-3)
233
-
234
- def testStandardizeWhereMask(self):
235
- x = jnp.array([5.5, 1.3, -4.2, 0.9])
236
- m = jnp.array([True, False, True, True])
237
- x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
238
-
239
- out_masked = jnp.take(bst.functional.standardize(x, where=m), jnp.array([0, 2, 3]))
240
- out_filtered = bst.functional.standardize(x_filtered)
241
-
242
- self.assertAllClose(out_masked, out_filtered)
243
-
244
- def testOneHot(self):
245
- actual = bst.functional.one_hot(jnp.array([0, 1, 2]), 3)
246
- expected = jnp.array([[1., 0., 0.],
247
- [0., 1., 0.],
248
- [0., 0., 1.]])
249
- self.assertAllClose(actual, expected, check_dtypes=False)
250
-
251
- actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3)
252
- expected = jnp.array([[0., 1., 0.],
253
- [0., 0., 1.],
254
- [1., 0., 0.]])
255
- self.assertAllClose(actual, expected, check_dtypes=False)
256
-
257
- def testOneHotOutOfBound(self):
258
- actual = bst.functional.one_hot(jnp.array([-1, 3]), 3)
259
- expected = jnp.array([[0., 0., 0.],
260
- [0., 0., 0.]])
261
- self.assertAllClose(actual, expected, check_dtypes=False)
262
-
263
- def testOneHotNonArrayInput(self):
264
- actual = bst.functional.one_hot([0, 1, 2], 3)
265
- expected = jnp.array([[1., 0., 0.],
266
- [0., 1., 0.],
267
- [0., 0., 1.]])
268
- self.assertAllClose(actual, expected, check_dtypes=False)
269
-
270
- def testOneHotCustomDtype(self):
271
- actual = bst.functional.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
272
- expected = jnp.array([[True, False, False],
273
- [False, True, False],
274
- [False, False, True]])
275
- self.assertAllClose(actual, expected)
276
-
277
- def testOneHotAxis(self):
278
- expected = jnp.array([[0., 1., 0.],
279
- [0., 0., 1.],
280
- [1., 0., 0.]]).T
281
-
282
- actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
283
- self.assertAllClose(actual, expected, check_dtypes=False)
284
-
285
- actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
286
- self.assertAllClose(actual, expected, check_dtypes=False)
287
-
288
- def testTanhExists(self):
289
- print(bst.functional.tanh) # doesn't crash
290
-
291
- def testCustomJVPLeak(self):
292
- # https://github.com/google/jax/issues/8171
293
- @jax.jit
294
- def fwd():
295
- a = jnp.array(1.)
296
-
297
- def f(hx, _):
298
- hx = bst.functional.sigmoid(hx + a)
299
- return hx, None
300
-
301
- hx = jnp.array(0.)
302
- jax.lax.scan(f, hx, None, length=2)
303
-
304
- with jax.checking_leaks():
305
- fwd() # doesn't crash
306
-
307
- def testCustomJVPLeak2(self):
308
- # https://github.com/google/jax/issues/8171
309
- # The above test uses jax.bst.functional.sigmoid, as in the original #8171, but that
310
- # function no longer actually has a custom_jvp! So we inline the old def.
311
-
312
- @jax.custom_jvp
313
- def sigmoid(x):
314
- one = jnp.float32(1)
315
- return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
316
-
317
- sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
318
-
319
- @jax.jit
320
- def fwd():
321
- a = jnp.array(1., 'float32')
322
-
323
- def f(hx, _):
324
- hx = sigmoid(hx + a)
325
- return hx, None
326
-
327
- hx = jnp.array(0., 'float32')
328
- jax.lax.scan(f, hx, None, length=2)
329
-
330
- with jax.checking_leaks():
331
- fwd() # doesn't crash
32
+ @jtu.skip_on_flag("jax_skip_slow_tests", True)
33
+ def testSoftplusGrad(self):
34
+ check_grads(bst.functional.softplus, (1e-8,), order=4, )
35
+
36
+ def testSoftplusGradZero(self):
37
+ check_grads(bst.functional.softplus, (0.,), order=1)
38
+
39
+ def testSoftplusGradInf(self):
40
+ self.assertAllClose(1., jax.grad(bst.functional.softplus)(float('inf')))
41
+
42
+ def testSoftplusGradNegInf(self):
43
+ check_grads(bst.functional.softplus, (-float('inf'),), order=1)
44
+
45
+ def testSoftplusGradNan(self):
46
+ check_grads(bst.functional.softplus, (float('nan'),), order=1)
47
+
48
+ @parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
49
+ def testSoftplusZero(self, dtype):
50
+ self.assertEqual(jnp.log(dtype(2)), bst.functional.softplus(dtype(0)))
51
+
52
+ def testSparseplusGradZero(self):
53
+ check_grads(bst.functional.sparse_plus, (-2.,), order=1)
54
+
55
+ def testSparseplusGrad(self):
56
+ check_grads(bst.functional.sparse_plus, (0.,), order=1)
57
+
58
+ def testSparseplusAndSparseSigmoid(self):
59
+ self.assertAllClose(
60
+ jax.grad(bst.functional.sparse_plus)(0.),
61
+ bst.functional.sparse_sigmoid(0.),
62
+ check_dtypes=False)
63
+ self.assertAllClose(
64
+ jax.grad(bst.functional.sparse_plus)(2.),
65
+ bst.functional.sparse_sigmoid(2.),
66
+ check_dtypes=False)
67
+ self.assertAllClose(
68
+ jax.grad(bst.functional.sparse_plus)(-2.),
69
+ bst.functional.sparse_sigmoid(-2.),
70
+ check_dtypes=False)
71
+
72
+ # def testSquareplusGrad(self):
73
+ # check_grads(bst.functional.squareplus, (1e-8,), order=4,
74
+ # )
75
+
76
+ # def testSquareplusGradZero(self):
77
+ # check_grads(bst.functional.squareplus, (0.,), order=1,
78
+ # )
79
+
80
+ # def testSquareplusGradNegInf(self):
81
+ # check_grads(bst.functional.squareplus, (-float('inf'),), order=1,
82
+ # )
83
+
84
+ # def testSquareplusGradNan(self):
85
+ # check_grads(bst.functional.squareplus, (float('nan'),), order=1,
86
+ # )
87
+
88
+ # @parameterized.parameters([float] + jtu.dtypes.floating)
89
+ # def testSquareplusZero(self, dtype):
90
+ # self.assertEqual(dtype(1), bst.functional.squareplus(dtype(0), dtype(4)))
91
+ #
92
+ # def testMishGrad(self):
93
+ # check_grads(bst.functional.mish, (1e-8,), order=4,
94
+ # )
95
+ #
96
+ # def testMishGradZero(self):
97
+ # check_grads(bst.functional.mish, (0.,), order=1,
98
+ # )
99
+ #
100
+ # def testMishGradNegInf(self):
101
+ # check_grads(bst.functional.mish, (-float('inf'),), order=1,
102
+ # )
103
+ #
104
+ # def testMishGradNan(self):
105
+ # check_grads(bst.functional.mish, (float('nan'),), order=1,
106
+ # )
107
+
108
+ @parameterized.parameters([float] + jtu.dtypes.floating)
109
+ def testMishZero(self, dtype):
110
+ self.assertEqual(dtype(0), bst.functional.mish(dtype(0)))
111
+
112
+ def testReluGrad(self):
113
+ rtol = None
114
+ check_grads(bst.functional.relu, (1.,), order=3, rtol=rtol)
115
+ check_grads(bst.functional.relu, (-1.,), order=3, rtol=rtol)
116
+ jaxpr = jax.make_jaxpr(jax.grad(bst.functional.relu))(0.)
117
+ self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
118
+
119
+ def testRelu6Grad(self):
120
+ rtol = None
121
+ check_grads(bst.functional.relu6, (1.,), order=3, rtol=rtol)
122
+ check_grads(bst.functional.relu6, (-1.,), order=3, rtol=rtol)
123
+ self.assertAllClose(jax.grad(bst.functional.relu6)(0.), 0., check_dtypes=False)
124
+ self.assertAllClose(jax.grad(bst.functional.relu6)(6.), 0., check_dtypes=False)
125
+
126
+ def testSoftplusValue(self):
127
+ val = bst.functional.softplus(89.)
128
+ self.assertAllClose(val, 89., check_dtypes=False)
129
+
130
+ def testSparseplusValue(self):
131
+ val = bst.functional.sparse_plus(89.)
132
+ self.assertAllClose(val, 89., check_dtypes=False)
133
+
134
+ def testSparsesigmoidValue(self):
135
+ self.assertAllClose(bst.functional.sparse_sigmoid(-2.), 0., check_dtypes=False)
136
+ self.assertAllClose(bst.functional.sparse_sigmoid(2.), 1., check_dtypes=False)
137
+ self.assertAllClose(bst.functional.sparse_sigmoid(0.), .5, check_dtypes=False)
138
+
139
+ # def testSquareplusValue(self):
140
+ # val = bst.functional.squareplus(1e3)
141
+ # self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
142
+
143
+ def testMishValue(self):
144
+ val = bst.functional.mish(1e3)
145
+ self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
146
+
147
+ def testEluValue(self):
148
+ val = bst.functional.elu(1e4)
149
+ self.assertAllClose(val, 1e4, check_dtypes=False)
150
+
151
+ def testGluValue(self):
152
+ val = bst.functional.glu(jnp.array([1.0, 0.0]), axis=0)
153
+ self.assertAllClose(val, jnp.array([0.5]))
154
+
155
+ @parameterized.parameters(False, True)
156
+ def testGeluIntType(self, approximate):
157
+ val_float = bst.functional.gelu(jnp.array(-1.0), approximate=approximate)
158
+ val_int = bst.functional.gelu(jnp.array(-1), approximate=approximate)
159
+ self.assertAllClose(val_float, val_int)
160
+
161
+ @parameterized.parameters(False, True)
162
+ def testGelu(self, approximate):
163
+ def gelu_reference(x):
164
+ return x * scipy.stats.norm.cdf(x)
165
+
166
+ rng = jtu.rand_default(self.rng())
167
+ args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
168
+ self._CheckAgainstNumpy(
169
+ gelu_reference, partial(bst.functional.gelu, approximate=approximate), args_maker,
170
+ check_dtypes=False, tol=1e-3 if approximate else None)
171
+
172
+ @parameterized.parameters(*itertools.product(
173
+ (jnp.float32, jnp.bfloat16, jnp.float16),
174
+ (partial(bst.functional.gelu, approximate=False),
175
+ partial(bst.functional.gelu, approximate=True),
176
+ bst.functional.relu,
177
+ bst.functional.softplus,
178
+ bst.functional.sparse_plus,
179
+ bst.functional.sigmoid,
180
+ # bst.functional.squareplus,
181
+ bst.functional.mish)))
182
+ def testDtypeMatchesInput(self, dtype, fn):
183
+ x = jnp.zeros((), dtype=dtype)
184
+ out = fn(x)
185
+ self.assertEqual(out.dtype, dtype)
186
+
187
+ def testEluMemory(self):
188
+ # see https://github.com/google/jax/pull/1640
189
+ with jax.enable_checks(False): # With checks we materialize the array
190
+ jax.make_jaxpr(lambda: bst.functional.elu(jnp.ones((10 ** 12,)))) # don't oom
191
+
192
+ def testHardTanhMemory(self):
193
+ # see https://github.com/google/jax/pull/1640
194
+ with jax.enable_checks(False): # With checks we materialize the array
195
+ jax.make_jaxpr(lambda: bst.functional.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
196
+
197
+ @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
198
+ def testSoftmaxEmptyArray(self, fn):
199
+ x = jnp.array([], dtype=float)
200
+ self.assertArraysEqual(fn(x), x)
201
+
202
+ @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
203
+ def testSoftmaxEmptyMask(self, fn):
204
+ x = jnp.array([5.5, 1.3, -4.2, 0.9])
205
+ m = jnp.zeros_like(x, dtype=bool)
206
+ expected = jnp.full_like(x, 0.0 if fn is bst.functional.softmax else -jnp.inf)
207
+ self.assertArraysEqual(fn(x, where=m), expected)
208
+
209
+ @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
210
+ def testSoftmaxWhereMask(self, fn):
211
+ x = jnp.array([5.5, 1.3, -4.2, 0.9])
212
+ m = jnp.array([True, False, True, True])
213
+
214
+ out = fn(x, where=m)
215
+ self.assertAllClose(out[m], fn(x[m]))
216
+
217
+ probs = out if fn is bst.functional.softmax else jnp.exp(out)
218
+ self.assertAllClose(probs.sum(), 1.0)
219
+
220
+ @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
221
+ def testSoftmaxWhereGrad(self, fn):
222
+ # regression test for https://github.com/google/jax/issues/19490
223
+ x = jnp.array([36., 10000.])
224
+ mask = x < 1000
225
+
226
+ f = lambda x, mask: fn(x, where=mask)[0]
227
+
228
+ self.assertAllClose(jax.grad(f)(x, mask), jnp.zeros_like(x))
229
+
230
+ def testSoftmaxGrad(self):
231
+ x = jnp.array([5.5, 1.3, -4.2, 0.9])
232
+ jtu.check_grads(bst.functional.softmax, (x,), order=2, atol=5e-3)
233
+
234
+ def testStandardizeWhereMask(self):
235
+ x = jnp.array([5.5, 1.3, -4.2, 0.9])
236
+ m = jnp.array([True, False, True, True])
237
+ x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
238
+
239
+ out_masked = jnp.take(bst.functional.standardize(x, where=m), jnp.array([0, 2, 3]))
240
+ out_filtered = bst.functional.standardize(x_filtered)
241
+
242
+ self.assertAllClose(out_masked, out_filtered)
243
+
244
+ def testOneHot(self):
245
+ actual = bst.functional.one_hot(jnp.array([0, 1, 2]), 3)
246
+ expected = jnp.array([[1., 0., 0.],
247
+ [0., 1., 0.],
248
+ [0., 0., 1.]])
249
+ self.assertAllClose(actual, expected, check_dtypes=False)
250
+
251
+ actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3)
252
+ expected = jnp.array([[0., 1., 0.],
253
+ [0., 0., 1.],
254
+ [1., 0., 0.]])
255
+ self.assertAllClose(actual, expected, check_dtypes=False)
256
+
257
+ def testOneHotOutOfBound(self):
258
+ actual = bst.functional.one_hot(jnp.array([-1, 3]), 3)
259
+ expected = jnp.array([[0., 0., 0.],
260
+ [0., 0., 0.]])
261
+ self.assertAllClose(actual, expected, check_dtypes=False)
262
+
263
+ def testOneHotNonArrayInput(self):
264
+ actual = bst.functional.one_hot([0, 1, 2], 3)
265
+ expected = jnp.array([[1., 0., 0.],
266
+ [0., 1., 0.],
267
+ [0., 0., 1.]])
268
+ self.assertAllClose(actual, expected, check_dtypes=False)
269
+
270
+ def testOneHotCustomDtype(self):
271
+ actual = bst.functional.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
272
+ expected = jnp.array([[True, False, False],
273
+ [False, True, False],
274
+ [False, False, True]])
275
+ self.assertAllClose(actual, expected)
276
+
277
+ def testOneHotAxis(self):
278
+ expected = jnp.array([[0., 1., 0.],
279
+ [0., 0., 1.],
280
+ [1., 0., 0.]]).T
281
+
282
+ actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
283
+ self.assertAllClose(actual, expected, check_dtypes=False)
284
+
285
+ actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
286
+ self.assertAllClose(actual, expected, check_dtypes=False)
287
+
288
+ def testTanhExists(self):
289
+ print(bst.functional.tanh) # doesn't crash
290
+
291
+ def testCustomJVPLeak(self):
292
+ # https://github.com/google/jax/issues/8171
293
+ @jax.jit
294
+ def fwd():
295
+ a = jnp.array(1.)
296
+
297
+ def f(hx, _):
298
+ hx = bst.functional.sigmoid(hx + a)
299
+ return hx, None
300
+
301
+ hx = jnp.array(0.)
302
+ jax.lax.scan(f, hx, None, length=2)
303
+
304
+ with jax.checking_leaks():
305
+ fwd() # doesn't crash
306
+
307
+ def testCustomJVPLeak2(self):
308
+ # https://github.com/google/jax/issues/8171
309
+ # The above test uses jax.bst.functional.sigmoid, as in the original #8171, but that
310
+ # function no longer actually has a custom_jvp! So we inline the old def.
311
+
312
+ @jax.custom_jvp
313
+ def sigmoid(x):
314
+ one = jnp.float32(1)
315
+ return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
316
+
317
+ sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
318
+
319
+ @jax.jit
320
+ def fwd():
321
+ a = jnp.array(1., 'float32')
322
+
323
+ def f(hx, _):
324
+ hx = sigmoid(hx + a)
325
+ return hx, None
326
+
327
+ hx = jnp.array(0., 'float32')
328
+ jax.lax.scan(f, hx, None, length=2)
329
+
330
+ with jax.checking_leaks():
331
+ fwd() # doesn't crash