brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +31 -11
- brainstate/_state.py +760 -316
- brainstate/_state_test.py +41 -12
- brainstate/_utils.py +31 -4
- brainstate/augment/__init__.py +40 -0
- brainstate/augment/_autograd.py +608 -0
- brainstate/augment/_autograd_test.py +1193 -0
- brainstate/augment/_eval_shape.py +102 -0
- brainstate/augment/_eval_shape_test.py +40 -0
- brainstate/augment/_mapping.py +525 -0
- brainstate/augment/_mapping_test.py +210 -0
- brainstate/augment/_random.py +99 -0
- brainstate/{transform → compile}/__init__.py +25 -13
- brainstate/compile/_ad_checkpoint.py +204 -0
- brainstate/compile/_ad_checkpoint_test.py +51 -0
- brainstate/compile/_conditions.py +259 -0
- brainstate/compile/_conditions_test.py +221 -0
- brainstate/compile/_error_if.py +94 -0
- brainstate/compile/_error_if_test.py +54 -0
- brainstate/compile/_jit.py +314 -0
- brainstate/compile/_jit_test.py +143 -0
- brainstate/compile/_loop_collect_return.py +516 -0
- brainstate/compile/_loop_collect_return_test.py +59 -0
- brainstate/compile/_loop_no_collection.py +185 -0
- brainstate/compile/_loop_no_collection_test.py +51 -0
- brainstate/compile/_make_jaxpr.py +756 -0
- brainstate/compile/_make_jaxpr_test.py +134 -0
- brainstate/compile/_progress_bar.py +111 -0
- brainstate/compile/_unvmap.py +159 -0
- brainstate/compile/_util.py +147 -0
- brainstate/environ.py +408 -381
- brainstate/environ_test.py +34 -32
- brainstate/{nn/event → event}/__init__.py +6 -6
- brainstate/event/_csr.py +308 -0
- brainstate/event/_csr_test.py +118 -0
- brainstate/event/_fixed_probability.py +271 -0
- brainstate/event/_fixed_probability_test.py +128 -0
- brainstate/event/_linear.py +219 -0
- brainstate/event/_linear_test.py +112 -0
- brainstate/{nn/event → event}/_misc.py +7 -7
- brainstate/functional/_activations.py +521 -511
- brainstate/functional/_activations_test.py +300 -300
- brainstate/functional/_normalization.py +43 -43
- brainstate/functional/_others.py +15 -15
- brainstate/functional/_spikes.py +49 -49
- brainstate/graph/__init__.py +33 -0
- brainstate/graph/_graph_context.py +443 -0
- brainstate/graph/_graph_context_test.py +65 -0
- brainstate/graph/_graph_convert.py +246 -0
- brainstate/graph/_graph_node.py +300 -0
- brainstate/graph/_graph_node_test.py +75 -0
- brainstate/graph/_graph_operation.py +1746 -0
- brainstate/graph/_graph_operation_test.py +724 -0
- brainstate/init/_base.py +28 -10
- brainstate/init/_generic.py +175 -172
- brainstate/init/_random_inits.py +470 -415
- brainstate/init/_random_inits_test.py +150 -0
- brainstate/init/_regular_inits.py +66 -69
- brainstate/init/_regular_inits_test.py +51 -0
- brainstate/mixin.py +236 -244
- brainstate/mixin_test.py +44 -46
- brainstate/nn/__init__.py +26 -51
- brainstate/nn/_collective_ops.py +199 -0
- brainstate/nn/_dyn_impl/__init__.py +46 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
- brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
- brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
- brainstate/nn/_dyn_impl/_inputs.py +154 -0
- brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
- brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
- brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
- brainstate/nn/_dyn_impl/_readout.py +128 -0
- brainstate/nn/_dyn_impl/_readout_test.py +54 -0
- brainstate/nn/_dynamics/__init__.py +37 -0
- brainstate/nn/_dynamics/_dynamics_base.py +631 -0
- brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
- brainstate/nn/_dynamics/_projection_base.py +346 -0
- brainstate/nn/_dynamics/_state_delay.py +453 -0
- brainstate/nn/_dynamics/_synouts.py +161 -0
- brainstate/nn/_dynamics/_synouts_test.py +58 -0
- brainstate/nn/_elementwise/__init__.py +22 -0
- brainstate/nn/_elementwise/_dropout.py +418 -0
- brainstate/nn/_elementwise/_dropout_test.py +100 -0
- brainstate/nn/_elementwise/_elementwise.py +1122 -0
- brainstate/nn/_elementwise/_elementwise_test.py +171 -0
- brainstate/nn/_exp_euler.py +97 -0
- brainstate/nn/_exp_euler_test.py +36 -0
- brainstate/nn/_interaction/__init__.py +32 -0
- brainstate/nn/_interaction/_connections.py +726 -0
- brainstate/nn/_interaction/_connections_test.py +254 -0
- brainstate/nn/_interaction/_embedding.py +59 -0
- brainstate/nn/_interaction/_normalizations.py +388 -0
- brainstate/nn/_interaction/_normalizations_test.py +75 -0
- brainstate/nn/_interaction/_poolings.py +1179 -0
- brainstate/nn/_interaction/_poolings_test.py +219 -0
- brainstate/nn/_module.py +328 -0
- brainstate/nn/_module_test.py +211 -0
- brainstate/nn/metrics.py +309 -309
- brainstate/optim/__init__.py +14 -2
- brainstate/optim/_base.py +66 -0
- brainstate/optim/_lr_scheduler.py +363 -400
- brainstate/optim/_lr_scheduler_test.py +25 -24
- brainstate/optim/_optax_optimizer.py +103 -176
- brainstate/optim/_optax_optimizer_test.py +41 -1
- brainstate/optim/_sgd_optimizer.py +950 -1025
- brainstate/random/_rand_funs.py +3269 -3268
- brainstate/random/_rand_funs_test.py +568 -0
- brainstate/random/_rand_seed.py +149 -117
- brainstate/random/_rand_seed_test.py +50 -0
- brainstate/random/_rand_state.py +1356 -1321
- brainstate/random/_random_for_unit.py +13 -13
- brainstate/surrogate.py +1262 -1243
- brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
- brainstate/typing.py +157 -130
- brainstate/util/__init__.py +52 -0
- brainstate/util/_caller.py +100 -0
- brainstate/util/_dict.py +734 -0
- brainstate/util/_dict_test.py +160 -0
- brainstate/util/_error.py +28 -0
- brainstate/util/_filter.py +178 -0
- brainstate/util/_others.py +497 -0
- brainstate/util/_pretty_repr.py +208 -0
- brainstate/util/_scaling.py +260 -0
- brainstate/util/_struct.py +524 -0
- brainstate/util/_tracers.py +75 -0
- brainstate/{_visualization.py → util/_visualization.py} +16 -16
- {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
- brainstate-0.1.0.dist-info/RECORD +135 -0
- brainstate/_module.py +0 -1637
- brainstate/_module_test.py +0 -207
- brainstate/nn/_base.py +0 -251
- brainstate/nn/_connections.py +0 -686
- brainstate/nn/_dynamics.py +0 -426
- brainstate/nn/_elementwise.py +0 -1438
- brainstate/nn/_embedding.py +0 -66
- brainstate/nn/_misc.py +0 -133
- brainstate/nn/_normalizations.py +0 -389
- brainstate/nn/_others.py +0 -101
- brainstate/nn/_poolings.py +0 -1229
- brainstate/nn/_poolings_test.py +0 -231
- brainstate/nn/_projection/_align_post.py +0 -546
- brainstate/nn/_projection/_align_pre.py +0 -599
- brainstate/nn/_projection/_delta.py +0 -241
- brainstate/nn/_projection/_vanilla.py +0 -101
- brainstate/nn/_rate_rnns.py +0 -410
- brainstate/nn/_readout.py +0 -136
- brainstate/nn/_synouts.py +0 -166
- brainstate/nn/event/csr.py +0 -312
- brainstate/nn/event/csr_test.py +0 -118
- brainstate/nn/event/fixed_probability.py +0 -276
- brainstate/nn/event/fixed_probability_test.py +0 -127
- brainstate/nn/event/linear.py +0 -220
- brainstate/nn/event/linear_test.py +0 -111
- brainstate/random/random_test.py +0 -593
- brainstate/transform/_autograd.py +0 -585
- brainstate/transform/_autograd_test.py +0 -1181
- brainstate/transform/_conditions.py +0 -334
- brainstate/transform/_conditions_test.py +0 -220
- brainstate/transform/_error_if.py +0 -94
- brainstate/transform/_error_if_test.py +0 -55
- brainstate/transform/_jit.py +0 -265
- brainstate/transform/_jit_test.py +0 -118
- brainstate/transform/_loop_collect_return.py +0 -502
- brainstate/transform/_loop_no_collection.py +0 -170
- brainstate/transform/_make_jaxpr.py +0 -739
- brainstate/transform/_make_jaxpr_test.py +0 -131
- brainstate/transform/_mapping.py +0 -109
- brainstate/transform/_progress_bar.py +0 -111
- brainstate/transform/_unvmap.py +0 -143
- brainstate/util.py +0 -746
- brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
- {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
- {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
- {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,219 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
|
3
|
+
from __future__ import annotations
|
4
|
+
|
5
|
+
import jax
|
6
|
+
import numpy as np
|
7
|
+
from absl.testing import absltest
|
8
|
+
from absl.testing import parameterized
|
9
|
+
|
10
|
+
import brainstate as bst
|
11
|
+
import brainstate.nn as nn
|
12
|
+
|
13
|
+
|
14
|
+
class TestFlatten(parameterized.TestCase):
|
15
|
+
def test_flatten1(self):
|
16
|
+
for size in [
|
17
|
+
(16, 32, 32, 8),
|
18
|
+
(32, 8),
|
19
|
+
(10, 20, 30),
|
20
|
+
]:
|
21
|
+
arr = bst.random.rand(*size)
|
22
|
+
f = nn.Flatten(start_axis=0)
|
23
|
+
out = f(arr)
|
24
|
+
self.assertTrue(out.shape == (np.prod(size),))
|
25
|
+
|
26
|
+
def test_flatten2(self):
|
27
|
+
for size in [
|
28
|
+
(16, 32, 32, 8),
|
29
|
+
(32, 8),
|
30
|
+
(10, 20, 30),
|
31
|
+
]:
|
32
|
+
arr = bst.random.rand(*size)
|
33
|
+
f = nn.Flatten(start_axis=1)
|
34
|
+
out = f(arr)
|
35
|
+
self.assertTrue(out.shape == (size[0], np.prod(size[1:])))
|
36
|
+
|
37
|
+
def test_flatten3(self):
|
38
|
+
size = (16, 32, 32, 8)
|
39
|
+
arr = bst.random.rand(*size)
|
40
|
+
f = nn.Flatten(start_axis=0, in_size=(32, 8))
|
41
|
+
out = f(arr)
|
42
|
+
self.assertTrue(out.shape == (16, 32, 32 * 8))
|
43
|
+
|
44
|
+
def test_flatten4(self):
|
45
|
+
size = (16, 32, 32, 8)
|
46
|
+
arr = bst.random.rand(*size)
|
47
|
+
f = nn.Flatten(start_axis=1, in_size=(32, 32, 8))
|
48
|
+
out = f(arr)
|
49
|
+
self.assertTrue(out.shape == (16, 32, 32 * 8))
|
50
|
+
|
51
|
+
|
52
|
+
class TestUnflatten(parameterized.TestCase):
|
53
|
+
pass
|
54
|
+
|
55
|
+
|
56
|
+
class TestPool(parameterized.TestCase):
|
57
|
+
def __init__(self, *args, **kwargs):
|
58
|
+
super().__init__(*args, **kwargs)
|
59
|
+
|
60
|
+
def test_MaxPool2d_v1(self):
|
61
|
+
arr = bst.random.rand(16, 32, 32, 8)
|
62
|
+
|
63
|
+
out = nn.MaxPool2d(2, 2, channel_axis=-1)(arr)
|
64
|
+
self.assertTrue(out.shape == (16, 16, 16, 8))
|
65
|
+
|
66
|
+
out = nn.MaxPool2d(2, 2, channel_axis=None)(arr)
|
67
|
+
self.assertTrue(out.shape == (16, 32, 16, 4))
|
68
|
+
|
69
|
+
out = nn.MaxPool2d(2, 2, channel_axis=None, padding=1)(arr)
|
70
|
+
self.assertTrue(out.shape == (16, 32, 17, 5))
|
71
|
+
|
72
|
+
out = nn.MaxPool2d(2, 2, channel_axis=None, padding=(2, 1))(arr)
|
73
|
+
self.assertTrue(out.shape == (16, 32, 18, 5))
|
74
|
+
|
75
|
+
out = nn.MaxPool2d(2, 2, channel_axis=-1, padding=(1, 1))(arr)
|
76
|
+
self.assertTrue(out.shape == (16, 17, 17, 8))
|
77
|
+
|
78
|
+
out = nn.MaxPool2d(2, 2, channel_axis=2, padding=(1, 1))(arr)
|
79
|
+
self.assertTrue(out.shape == (16, 17, 32, 5))
|
80
|
+
|
81
|
+
def test_AvgPool2d_v1(self):
|
82
|
+
arr = bst.random.rand(16, 32, 32, 8)
|
83
|
+
|
84
|
+
out = nn.AvgPool2d(2, 2, channel_axis=-1)(arr)
|
85
|
+
self.assertTrue(out.shape == (16, 16, 16, 8))
|
86
|
+
|
87
|
+
out = nn.AvgPool2d(2, 2, channel_axis=None)(arr)
|
88
|
+
self.assertTrue(out.shape == (16, 32, 16, 4))
|
89
|
+
|
90
|
+
out = nn.AvgPool2d(2, 2, channel_axis=None, padding=1)(arr)
|
91
|
+
self.assertTrue(out.shape == (16, 32, 17, 5))
|
92
|
+
|
93
|
+
out = nn.AvgPool2d(2, 2, channel_axis=None, padding=(2, 1))(arr)
|
94
|
+
self.assertTrue(out.shape == (16, 32, 18, 5))
|
95
|
+
|
96
|
+
out = nn.AvgPool2d(2, 2, channel_axis=-1, padding=(1, 1))(arr)
|
97
|
+
self.assertTrue(out.shape == (16, 17, 17, 8))
|
98
|
+
|
99
|
+
out = nn.AvgPool2d(2, 2, channel_axis=2, padding=(1, 1))(arr)
|
100
|
+
self.assertTrue(out.shape == (16, 17, 32, 5))
|
101
|
+
|
102
|
+
@parameterized.named_parameters(
|
103
|
+
dict(testcase_name=f'target_size={target_size}',
|
104
|
+
target_size=target_size)
|
105
|
+
for target_size in [10, 9, 8, 7, 6]
|
106
|
+
)
|
107
|
+
def test_adaptive_pool1d(self, target_size):
|
108
|
+
from brainstate.nn._interaction._poolings import _adaptive_pool1d
|
109
|
+
|
110
|
+
arr = bst.random.rand(100)
|
111
|
+
op = jax.numpy.mean
|
112
|
+
|
113
|
+
out = _adaptive_pool1d(arr, target_size, op)
|
114
|
+
print(out.shape)
|
115
|
+
self.assertTrue(out.shape == (target_size,))
|
116
|
+
|
117
|
+
out = _adaptive_pool1d(arr, target_size, op)
|
118
|
+
print(out.shape)
|
119
|
+
self.assertTrue(out.shape == (target_size,))
|
120
|
+
|
121
|
+
def test_AdaptiveAvgPool2d_v1(self):
|
122
|
+
input = bst.random.randn(64, 8, 9)
|
123
|
+
|
124
|
+
output = nn.AdaptiveAvgPool2d((5, 7), channel_axis=0)(input)
|
125
|
+
self.assertTrue(output.shape == (64, 5, 7))
|
126
|
+
|
127
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=0)(input)
|
128
|
+
self.assertTrue(output.shape == (64, 2, 3))
|
129
|
+
|
130
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=-1)(input)
|
131
|
+
self.assertTrue(output.shape == (2, 3, 9))
|
132
|
+
|
133
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=1)(input)
|
134
|
+
self.assertTrue(output.shape == (2, 8, 3))
|
135
|
+
|
136
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=None)(input)
|
137
|
+
self.assertTrue(output.shape == (64, 2, 3))
|
138
|
+
|
139
|
+
def test_AdaptiveAvgPool2d_v2(self):
|
140
|
+
bst.random.seed()
|
141
|
+
input = bst.random.randn(128, 64, 32, 16)
|
142
|
+
|
143
|
+
output = nn.AdaptiveAvgPool2d((5, 7), channel_axis=0)(input)
|
144
|
+
self.assertTrue(output.shape == (128, 64, 5, 7))
|
145
|
+
|
146
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=0)(input)
|
147
|
+
self.assertTrue(output.shape == (128, 64, 2, 3))
|
148
|
+
|
149
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=-1)(input)
|
150
|
+
self.assertTrue(output.shape == (128, 2, 3, 16))
|
151
|
+
|
152
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=1)(input)
|
153
|
+
self.assertTrue(output.shape == (128, 64, 2, 3))
|
154
|
+
print()
|
155
|
+
|
156
|
+
def test_AdaptiveAvgPool3d_v1(self):
|
157
|
+
input = bst.random.randn(10, 128, 64, 32)
|
158
|
+
net = nn.AdaptiveAvgPool3d(target_size=[6, 5, 3], channel_axis=0)
|
159
|
+
output = net(input)
|
160
|
+
self.assertTrue(output.shape == (10, 6, 5, 3))
|
161
|
+
|
162
|
+
def test_AdaptiveAvgPool3d_v2(self):
|
163
|
+
input = bst.random.randn(10, 20, 128, 64, 32)
|
164
|
+
net = nn.AdaptiveAvgPool3d(target_size=[6, 5, 3])
|
165
|
+
output = net(input)
|
166
|
+
self.assertTrue(output.shape == (10, 6, 5, 3, 32))
|
167
|
+
|
168
|
+
@parameterized.product(
|
169
|
+
axis=(-1, 0, 1)
|
170
|
+
)
|
171
|
+
def test_AdaptiveMaxPool1d_v1(self, axis):
|
172
|
+
input = bst.random.randn(32, 16)
|
173
|
+
net = nn.AdaptiveMaxPool1d(target_size=4, channel_axis=axis)
|
174
|
+
output = net(input)
|
175
|
+
|
176
|
+
@parameterized.product(
|
177
|
+
axis=(-1, 0, 1, 2)
|
178
|
+
)
|
179
|
+
def test_AdaptiveMaxPool1d_v2(self, axis):
|
180
|
+
input = bst.random.randn(2, 32, 16)
|
181
|
+
net = nn.AdaptiveMaxPool1d(target_size=4, channel_axis=axis)
|
182
|
+
output = net(input)
|
183
|
+
|
184
|
+
@parameterized.product(
|
185
|
+
axis=(-1, 0, 1, 2)
|
186
|
+
)
|
187
|
+
def test_AdaptiveMaxPool2d_v1(self, axis):
|
188
|
+
input = bst.random.randn(32, 16, 12)
|
189
|
+
net = nn.AdaptiveAvgPool2d(target_size=[5, 4], channel_axis=axis)
|
190
|
+
output = net(input)
|
191
|
+
|
192
|
+
@parameterized.product(
|
193
|
+
axis=(-1, 0, 1, 2, 3)
|
194
|
+
)
|
195
|
+
def test_AdaptiveMaxPool2d_v2(self, axis):
|
196
|
+
input = bst.random.randn(2, 32, 16, 12)
|
197
|
+
net = nn.AdaptiveAvgPool2d(target_size=[5, 4], channel_axis=axis)
|
198
|
+
output = net(input)
|
199
|
+
|
200
|
+
@parameterized.product(
|
201
|
+
axis=(-1, 0, 1, 2, 3)
|
202
|
+
)
|
203
|
+
def test_AdaptiveMaxPool3d_v1(self, axis):
|
204
|
+
input = bst.random.randn(2, 128, 64, 32)
|
205
|
+
net = nn.AdaptiveMaxPool3d(target_size=[6, 5, 4], channel_axis=axis)
|
206
|
+
output = net(input)
|
207
|
+
print()
|
208
|
+
|
209
|
+
@parameterized.product(
|
210
|
+
axis=(-1, 0, 1, 2, 3, 4)
|
211
|
+
)
|
212
|
+
def test_AdaptiveMaxPool3d_v1(self, axis):
|
213
|
+
input = bst.random.randn(2, 128, 64, 32, 16)
|
214
|
+
net = nn.AdaptiveMaxPool3d(target_size=[6, 5, 4], channel_axis=axis)
|
215
|
+
output = net(input)
|
216
|
+
|
217
|
+
|
218
|
+
if __name__ == '__main__':
|
219
|
+
absltest.main()
|
brainstate/nn/_module.py
ADDED
@@ -0,0 +1,328 @@
|
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# -*- coding: utf-8 -*-
|
17
|
+
|
18
|
+
|
19
|
+
"""
|
20
|
+
All the basic classes for neural networks in ``brainstate``.
|
21
|
+
|
22
|
+
The basic classes include:
|
23
|
+
|
24
|
+
- ``Module``: The base class for all the objects in the ecosystem.
|
25
|
+
- ``Sequential``: The class for a sequential of modules, which update the modules sequentially.
|
26
|
+
|
27
|
+
"""
|
28
|
+
from __future__ import annotations
|
29
|
+
|
30
|
+
import warnings
|
31
|
+
from typing import Sequence, Optional, Tuple, Union, TYPE_CHECKING
|
32
|
+
|
33
|
+
import numpy as np
|
34
|
+
|
35
|
+
from brainstate._state import State
|
36
|
+
from brainstate.graph import Node, states, nodes, flatten
|
37
|
+
from brainstate.mixin import ParamDescriber, ParamDesc
|
38
|
+
from brainstate.typing import PathParts
|
39
|
+
from brainstate.util import FlattedDict, NestedDict
|
40
|
+
|
41
|
+
# maximum integer
|
42
|
+
max_int = np.iinfo(np.int32).max
|
43
|
+
|
44
|
+
__all__ = [
|
45
|
+
'Module', 'ElementWiseBlock', 'Sequential',
|
46
|
+
]
|
47
|
+
|
48
|
+
|
49
|
+
class Module(Node, ParamDesc):
|
50
|
+
"""
|
51
|
+
The Module class for the whole ecosystem.
|
52
|
+
|
53
|
+
The ``Module`` is the base class for all the objects in the ecosystem. It
|
54
|
+
provides the basic functionalities for the objects, including:
|
55
|
+
|
56
|
+
- ``states()``: Collect all states in this node and the children nodes.
|
57
|
+
- ``nodes()``: Collect all children nodes.
|
58
|
+
- ``update()``: The function to specify the updating rule.
|
59
|
+
- ``init_state()``: State initialization function.
|
60
|
+
- ``reset_state()``: State resetting function.
|
61
|
+
|
62
|
+
"""
|
63
|
+
|
64
|
+
__module__ = 'brainstate.nn'
|
65
|
+
|
66
|
+
_in_size: Optional[Tuple[int, ...]]
|
67
|
+
_out_size: Optional[Tuple[int, ...]]
|
68
|
+
_name: Optional[str]
|
69
|
+
|
70
|
+
if not TYPE_CHECKING:
|
71
|
+
def __init__(self, name: str = None):
|
72
|
+
# check the name
|
73
|
+
if name is not None:
|
74
|
+
assert isinstance(name, str), f'The name must be a string, but we got {type(name)}: {name}'
|
75
|
+
self._name = name
|
76
|
+
|
77
|
+
# input and output size
|
78
|
+
self._in_size = None
|
79
|
+
self._out_size = None
|
80
|
+
|
81
|
+
@property
|
82
|
+
def name(self):
|
83
|
+
"""Name of the model."""
|
84
|
+
return self._name
|
85
|
+
|
86
|
+
@name.setter
|
87
|
+
def name(self, name: str = None):
|
88
|
+
raise AttributeError('The name of the model is read-only.')
|
89
|
+
|
90
|
+
@property
|
91
|
+
def in_size(self) -> Tuple[int, ...]:
|
92
|
+
return self._in_size
|
93
|
+
|
94
|
+
@in_size.setter
|
95
|
+
def in_size(self, in_size: Sequence[int] | int):
|
96
|
+
if isinstance(in_size, int):
|
97
|
+
in_size = (in_size,)
|
98
|
+
assert isinstance(in_size, (tuple, list)), f"Invalid type of in_size: {type(in_size)}"
|
99
|
+
self._in_size = tuple(in_size)
|
100
|
+
|
101
|
+
@property
|
102
|
+
def out_size(self) -> Tuple[int, ...]:
|
103
|
+
return self._out_size
|
104
|
+
|
105
|
+
@out_size.setter
|
106
|
+
def out_size(self, out_size: Sequence[int] | int):
|
107
|
+
if isinstance(out_size, int):
|
108
|
+
out_size = (out_size,)
|
109
|
+
assert isinstance(out_size, (tuple, list)), f"Invalid type of out_size: {type(out_size)}"
|
110
|
+
self._out_size = tuple(out_size)
|
111
|
+
|
112
|
+
def update(self, *args, **kwargs):
|
113
|
+
"""
|
114
|
+
The function to specify the updating rule.
|
115
|
+
"""
|
116
|
+
raise NotImplementedError(f'Subclass of {self.__class__.__name__} must implement "update" function.')
|
117
|
+
|
118
|
+
def __call__(self, *args, **kwargs):
|
119
|
+
return self.update(*args, **kwargs)
|
120
|
+
|
121
|
+
def __rrshift__(self, other):
|
122
|
+
"""
|
123
|
+
Support using right shift operator to call modules.
|
124
|
+
|
125
|
+
Examples
|
126
|
+
--------
|
127
|
+
|
128
|
+
>>> import brainstate as bst
|
129
|
+
>>> x = bst.random.rand((10, 10))
|
130
|
+
>>> l = bst.nn.Dropout(0.5)
|
131
|
+
>>> y = x >> l
|
132
|
+
"""
|
133
|
+
return self.__call__(other)
|
134
|
+
|
135
|
+
def states(
|
136
|
+
self,
|
137
|
+
*filters,
|
138
|
+
allowed_hierarchy: Tuple[int, int] = (0, max_int),
|
139
|
+
level: int = None,
|
140
|
+
) -> FlattedDict[PathParts, State] | Tuple[FlattedDict[PathParts, State], ...]:
|
141
|
+
"""
|
142
|
+
Collect all states in this node and the children nodes.
|
143
|
+
|
144
|
+
Parameters
|
145
|
+
----------
|
146
|
+
filters : Any
|
147
|
+
The filters to select the states.
|
148
|
+
allowed_hierarchy : tuple of int
|
149
|
+
The hierarchy of the states to be collected.
|
150
|
+
level : int
|
151
|
+
The level of the states to be collected. Has been deprecated.
|
152
|
+
|
153
|
+
Returns
|
154
|
+
-------
|
155
|
+
states : FlattedDict, tuple of FlattedDict
|
156
|
+
The collection contained (the path, the state).
|
157
|
+
"""
|
158
|
+
if level is not None:
|
159
|
+
allowed_hierarchy = (0, level)
|
160
|
+
warnings.warn('The "level" argument is deprecated. Please use "allowed_hierarchy" instead.',
|
161
|
+
DeprecationWarning)
|
162
|
+
|
163
|
+
return states(self, *filters, allowed_hierarchy=allowed_hierarchy)
|
164
|
+
|
165
|
+
def state_trees(
|
166
|
+
self,
|
167
|
+
*filters,
|
168
|
+
) -> NestedDict[PathParts, State] | Tuple[NestedDict[PathParts, State], ...]:
|
169
|
+
"""
|
170
|
+
Collect all states in this node and the children nodes.
|
171
|
+
|
172
|
+
Parameters
|
173
|
+
----------
|
174
|
+
filters : tuple
|
175
|
+
The filters to select the states.
|
176
|
+
|
177
|
+
Returns
|
178
|
+
-------
|
179
|
+
states : FlattedDict, tuple of FlattedDict
|
180
|
+
The collection contained (the path, the state).
|
181
|
+
"""
|
182
|
+
graph_def, state_tree = flatten(self)
|
183
|
+
if len(filters):
|
184
|
+
return state_tree.filter(*filters)
|
185
|
+
return state_tree
|
186
|
+
|
187
|
+
def nodes(
|
188
|
+
self,
|
189
|
+
*filters,
|
190
|
+
allowed_hierarchy: Tuple[int, int] = (0, max_int),
|
191
|
+
level: int = None,
|
192
|
+
) -> FlattedDict[PathParts, Node] | Tuple[FlattedDict[PathParts, Node], ...]:
|
193
|
+
"""
|
194
|
+
Collect all children nodes.
|
195
|
+
|
196
|
+
Parameters
|
197
|
+
----------
|
198
|
+
filters : Any
|
199
|
+
The filters to select the states.
|
200
|
+
allowed_hierarchy : tuple of int
|
201
|
+
The hierarchy of the states to be collected.
|
202
|
+
level : int
|
203
|
+
The level of the states to be collected. Has been deprecated.
|
204
|
+
|
205
|
+
Returns
|
206
|
+
-------
|
207
|
+
nodes : FlattedDict, tuple of FlattedDict
|
208
|
+
The collection contained (the path, the node).
|
209
|
+
"""
|
210
|
+
if level is not None:
|
211
|
+
allowed_hierarchy = (0, level)
|
212
|
+
warnings.warn('The "level" argument is deprecated. Please use "allowed_hierarchy" instead.',
|
213
|
+
DeprecationWarning)
|
214
|
+
|
215
|
+
return nodes(self, *filters, allowed_hierarchy=allowed_hierarchy)
|
216
|
+
|
217
|
+
def init_state(self, *args, **kwargs):
|
218
|
+
"""
|
219
|
+
State initialization function.
|
220
|
+
"""
|
221
|
+
pass
|
222
|
+
|
223
|
+
def reset_state(self, *args, **kwargs):
|
224
|
+
"""
|
225
|
+
State resetting function.
|
226
|
+
"""
|
227
|
+
pass
|
228
|
+
|
229
|
+
def __leaf_fn__(self, name, value):
|
230
|
+
if name in ['_in_size', '_out_size', '_name']:
|
231
|
+
return (name, value) if value is None else (name[1:], value) # skip the first `_`
|
232
|
+
return name, value
|
233
|
+
|
234
|
+
|
235
|
+
class ElementWiseBlock(Module):
|
236
|
+
__module__ = 'brainstate.nn'
|
237
|
+
|
238
|
+
|
239
|
+
class Sequential(Module):
|
240
|
+
"""
|
241
|
+
A sequential `input-output` module.
|
242
|
+
|
243
|
+
Modules will be added to it in the order they are passed in the
|
244
|
+
constructor. Alternatively, an ``dict`` of modules can be
|
245
|
+
passed in. The ``update()`` method of ``Sequential`` accepts any
|
246
|
+
input and forwards it to the first module it contains. It then
|
247
|
+
"chains" outputs to inputs sequentially for each subsequent module,
|
248
|
+
finally returning the output of the last module.
|
249
|
+
|
250
|
+
The value a ``Sequential`` provides over manually calling a sequence
|
251
|
+
of modules is that it allows treating the whole container as a
|
252
|
+
single module, such that performing a transformation on the
|
253
|
+
``Sequential`` applies to each of the modules it stores (which are
|
254
|
+
each a registered submodule of the ``Sequential``).
|
255
|
+
|
256
|
+
What's the difference between a ``Sequential`` and a
|
257
|
+
:py:class:`Container`? A ``Container`` is exactly what it
|
258
|
+
sounds like--a container to store :py:class:`DynamicalSystem` s!
|
259
|
+
On the other hand, the layers in a ``Sequential`` are connected
|
260
|
+
in a cascading way.
|
261
|
+
|
262
|
+
Examples
|
263
|
+
--------
|
264
|
+
|
265
|
+
>>> import jax
|
266
|
+
>>> import brainstate as bst
|
267
|
+
>>> import brainstate.nn as nn
|
268
|
+
>>>
|
269
|
+
>>> # composing ANN models
|
270
|
+
>>> l = nn.Sequential(nn.Linear(100, 10),
|
271
|
+
>>> jax.nn.relu,
|
272
|
+
>>> nn.Linear(10, 2))
|
273
|
+
>>> l(bst.random.random((256, 100)))
|
274
|
+
|
275
|
+
Args:
|
276
|
+
modules_as_tuple: The children modules.
|
277
|
+
modules_as_dict: The children modules.
|
278
|
+
name: The object name.
|
279
|
+
"""
|
280
|
+
__module__ = 'brainstate.nn'
|
281
|
+
|
282
|
+
def __init__(self, first: Module, *layers):
|
283
|
+
super().__init__()
|
284
|
+
self.layers = []
|
285
|
+
|
286
|
+
# add all modules
|
287
|
+
assert isinstance(first, Module), 'The first module should be an instance of Module.'
|
288
|
+
in_size = first.out_size
|
289
|
+
self.layers.append(first)
|
290
|
+
for module in layers:
|
291
|
+
module, in_size = _format_module(module, in_size)
|
292
|
+
self.layers.append(module)
|
293
|
+
|
294
|
+
# the input and output shape
|
295
|
+
if first.in_size is not None:
|
296
|
+
self.in_size = first.in_size
|
297
|
+
self.out_size = tuple(in_size)
|
298
|
+
|
299
|
+
def update(self, x):
|
300
|
+
"""Update function of a sequential model.
|
301
|
+
"""
|
302
|
+
for m in self.layers:
|
303
|
+
x = m(x)
|
304
|
+
return x
|
305
|
+
|
306
|
+
def __getitem__(self, key: Union[int, slice]):
|
307
|
+
if isinstance(key, slice):
|
308
|
+
return Sequential(*self.layers[key])
|
309
|
+
elif isinstance(key, int):
|
310
|
+
return self.layers[key]
|
311
|
+
elif isinstance(key, (tuple, list)):
|
312
|
+
return Sequential(*[self.layers[k] for k in key])
|
313
|
+
else:
|
314
|
+
raise KeyError(f'Unknown type of key: {type(key)}')
|
315
|
+
|
316
|
+
|
317
|
+
def _format_module(module, in_size):
|
318
|
+
if isinstance(module, ParamDescriber):
|
319
|
+
module = module(in_size=in_size)
|
320
|
+
assert isinstance(module, Module), 'The module should be an instance of Module.'
|
321
|
+
out_size = module.out_size
|
322
|
+
elif isinstance(module, ElementWiseBlock):
|
323
|
+
out_size = in_size
|
324
|
+
elif isinstance(module, Module):
|
325
|
+
out_size = module.out_size
|
326
|
+
else:
|
327
|
+
raise TypeError(f"Unsupported type {type(module)}. ")
|
328
|
+
return module, out_size
|