brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. brainstate/__init__.py +31 -11
  2. brainstate/_state.py +760 -316
  3. brainstate/_state_test.py +41 -12
  4. brainstate/_utils.py +31 -4
  5. brainstate/augment/__init__.py +40 -0
  6. brainstate/augment/_autograd.py +608 -0
  7. brainstate/augment/_autograd_test.py +1193 -0
  8. brainstate/augment/_eval_shape.py +102 -0
  9. brainstate/augment/_eval_shape_test.py +40 -0
  10. brainstate/augment/_mapping.py +525 -0
  11. brainstate/augment/_mapping_test.py +210 -0
  12. brainstate/augment/_random.py +99 -0
  13. brainstate/{transform → compile}/__init__.py +25 -13
  14. brainstate/compile/_ad_checkpoint.py +204 -0
  15. brainstate/compile/_ad_checkpoint_test.py +51 -0
  16. brainstate/compile/_conditions.py +259 -0
  17. brainstate/compile/_conditions_test.py +221 -0
  18. brainstate/compile/_error_if.py +94 -0
  19. brainstate/compile/_error_if_test.py +54 -0
  20. brainstate/compile/_jit.py +314 -0
  21. brainstate/compile/_jit_test.py +143 -0
  22. brainstate/compile/_loop_collect_return.py +516 -0
  23. brainstate/compile/_loop_collect_return_test.py +59 -0
  24. brainstate/compile/_loop_no_collection.py +185 -0
  25. brainstate/compile/_loop_no_collection_test.py +51 -0
  26. brainstate/compile/_make_jaxpr.py +756 -0
  27. brainstate/compile/_make_jaxpr_test.py +134 -0
  28. brainstate/compile/_progress_bar.py +111 -0
  29. brainstate/compile/_unvmap.py +159 -0
  30. brainstate/compile/_util.py +147 -0
  31. brainstate/environ.py +408 -381
  32. brainstate/environ_test.py +34 -32
  33. brainstate/{nn/event → event}/__init__.py +6 -6
  34. brainstate/event/_csr.py +308 -0
  35. brainstate/event/_csr_test.py +118 -0
  36. brainstate/event/_fixed_probability.py +271 -0
  37. brainstate/event/_fixed_probability_test.py +128 -0
  38. brainstate/event/_linear.py +219 -0
  39. brainstate/event/_linear_test.py +112 -0
  40. brainstate/{nn/event → event}/_misc.py +7 -7
  41. brainstate/functional/_activations.py +521 -511
  42. brainstate/functional/_activations_test.py +300 -300
  43. brainstate/functional/_normalization.py +43 -43
  44. brainstate/functional/_others.py +15 -15
  45. brainstate/functional/_spikes.py +49 -49
  46. brainstate/graph/__init__.py +33 -0
  47. brainstate/graph/_graph_context.py +443 -0
  48. brainstate/graph/_graph_context_test.py +65 -0
  49. brainstate/graph/_graph_convert.py +246 -0
  50. brainstate/graph/_graph_node.py +300 -0
  51. brainstate/graph/_graph_node_test.py +75 -0
  52. brainstate/graph/_graph_operation.py +1746 -0
  53. brainstate/graph/_graph_operation_test.py +724 -0
  54. brainstate/init/_base.py +28 -10
  55. brainstate/init/_generic.py +175 -172
  56. brainstate/init/_random_inits.py +470 -415
  57. brainstate/init/_random_inits_test.py +150 -0
  58. brainstate/init/_regular_inits.py +66 -69
  59. brainstate/init/_regular_inits_test.py +51 -0
  60. brainstate/mixin.py +236 -244
  61. brainstate/mixin_test.py +44 -46
  62. brainstate/nn/__init__.py +26 -51
  63. brainstate/nn/_collective_ops.py +199 -0
  64. brainstate/nn/_dyn_impl/__init__.py +46 -0
  65. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  66. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  67. brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
  68. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  69. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  70. brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
  71. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  72. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  73. brainstate/nn/_dyn_impl/_readout.py +128 -0
  74. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  75. brainstate/nn/_dynamics/__init__.py +37 -0
  76. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  77. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  78. brainstate/nn/_dynamics/_projection_base.py +346 -0
  79. brainstate/nn/_dynamics/_state_delay.py +453 -0
  80. brainstate/nn/_dynamics/_synouts.py +161 -0
  81. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  82. brainstate/nn/_elementwise/__init__.py +22 -0
  83. brainstate/nn/_elementwise/_dropout.py +418 -0
  84. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  85. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  86. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  87. brainstate/nn/_exp_euler.py +97 -0
  88. brainstate/nn/_exp_euler_test.py +36 -0
  89. brainstate/nn/_interaction/__init__.py +32 -0
  90. brainstate/nn/_interaction/_connections.py +726 -0
  91. brainstate/nn/_interaction/_connections_test.py +254 -0
  92. brainstate/nn/_interaction/_embedding.py +59 -0
  93. brainstate/nn/_interaction/_normalizations.py +388 -0
  94. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  95. brainstate/nn/_interaction/_poolings.py +1179 -0
  96. brainstate/nn/_interaction/_poolings_test.py +219 -0
  97. brainstate/nn/_module.py +328 -0
  98. brainstate/nn/_module_test.py +211 -0
  99. brainstate/nn/metrics.py +309 -309
  100. brainstate/optim/__init__.py +14 -2
  101. brainstate/optim/_base.py +66 -0
  102. brainstate/optim/_lr_scheduler.py +363 -400
  103. brainstate/optim/_lr_scheduler_test.py +25 -24
  104. brainstate/optim/_optax_optimizer.py +103 -176
  105. brainstate/optim/_optax_optimizer_test.py +41 -1
  106. brainstate/optim/_sgd_optimizer.py +950 -1025
  107. brainstate/random/_rand_funs.py +3269 -3268
  108. brainstate/random/_rand_funs_test.py +568 -0
  109. brainstate/random/_rand_seed.py +149 -117
  110. brainstate/random/_rand_seed_test.py +50 -0
  111. brainstate/random/_rand_state.py +1356 -1321
  112. brainstate/random/_random_for_unit.py +13 -13
  113. brainstate/surrogate.py +1262 -1243
  114. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  115. brainstate/typing.py +157 -130
  116. brainstate/util/__init__.py +52 -0
  117. brainstate/util/_caller.py +100 -0
  118. brainstate/util/_dict.py +734 -0
  119. brainstate/util/_dict_test.py +160 -0
  120. brainstate/util/_error.py +28 -0
  121. brainstate/util/_filter.py +178 -0
  122. brainstate/util/_others.py +497 -0
  123. brainstate/util/_pretty_repr.py +208 -0
  124. brainstate/util/_scaling.py +260 -0
  125. brainstate/util/_struct.py +524 -0
  126. brainstate/util/_tracers.py +75 -0
  127. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  128. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
  129. brainstate-0.1.0.dist-info/RECORD +135 -0
  130. brainstate/_module.py +0 -1637
  131. brainstate/_module_test.py +0 -207
  132. brainstate/nn/_base.py +0 -251
  133. brainstate/nn/_connections.py +0 -686
  134. brainstate/nn/_dynamics.py +0 -426
  135. brainstate/nn/_elementwise.py +0 -1438
  136. brainstate/nn/_embedding.py +0 -66
  137. brainstate/nn/_misc.py +0 -133
  138. brainstate/nn/_normalizations.py +0 -389
  139. brainstate/nn/_others.py +0 -101
  140. brainstate/nn/_poolings.py +0 -1229
  141. brainstate/nn/_poolings_test.py +0 -231
  142. brainstate/nn/_projection/_align_post.py +0 -546
  143. brainstate/nn/_projection/_align_pre.py +0 -599
  144. brainstate/nn/_projection/_delta.py +0 -241
  145. brainstate/nn/_projection/_vanilla.py +0 -101
  146. brainstate/nn/_rate_rnns.py +0 -410
  147. brainstate/nn/_readout.py +0 -136
  148. brainstate/nn/_synouts.py +0 -166
  149. brainstate/nn/event/csr.py +0 -312
  150. brainstate/nn/event/csr_test.py +0 -118
  151. brainstate/nn/event/fixed_probability.py +0 -276
  152. brainstate/nn/event/fixed_probability_test.py +0 -127
  153. brainstate/nn/event/linear.py +0 -220
  154. brainstate/nn/event/linear_test.py +0 -111
  155. brainstate/random/random_test.py +0 -593
  156. brainstate/transform/_autograd.py +0 -585
  157. brainstate/transform/_autograd_test.py +0 -1181
  158. brainstate/transform/_conditions.py +0 -334
  159. brainstate/transform/_conditions_test.py +0 -220
  160. brainstate/transform/_error_if.py +0 -94
  161. brainstate/transform/_error_if_test.py +0 -55
  162. brainstate/transform/_jit.py +0 -265
  163. brainstate/transform/_jit_test.py +0 -118
  164. brainstate/transform/_loop_collect_return.py +0 -502
  165. brainstate/transform/_loop_no_collection.py +0 -170
  166. brainstate/transform/_make_jaxpr.py +0 -739
  167. brainstate/transform/_make_jaxpr_test.py +0 -131
  168. brainstate/transform/_mapping.py +0 -109
  169. brainstate/transform/_progress_bar.py +0 -111
  170. brainstate/transform/_unvmap.py +0 -143
  171. brainstate/util.py +0 -746
  172. brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
  173. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
  174. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
  175. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,290 @@
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+ from __future__ import annotations
19
+
20
+ from typing import Callable, Optional
21
+
22
+ import brainunit as u
23
+ import jax
24
+
25
+ from brainstate import init, surrogate, environ
26
+ from brainstate._state import HiddenState, ShortTermState
27
+ from brainstate.nn._dynamics._dynamics_base import Dynamics
28
+ from brainstate.nn._exp_euler import exp_euler_step
29
+ from brainstate.typing import ArrayLike, Size
30
+
31
+ __all__ = [
32
+ 'Neuron', 'IF', 'LIF', 'LIFRef', 'ALIF',
33
+ ]
34
+
35
+
36
+ class Neuron(Dynamics):
37
+ """
38
+ Base class for neuronal dynamics.
39
+
40
+ All neuron models are differentiable since they use surrogate gradient functions to
41
+ generate the spiking state.
42
+ """
43
+ __module__ = 'brainstate.nn'
44
+
45
+ def __init__(
46
+ self,
47
+ in_size: Size,
48
+ spk_fun: Callable = surrogate.InvSquareGrad(),
49
+ spk_reset: str = 'soft',
50
+ name: Optional[str] = None,
51
+ ):
52
+ super().__init__(in_size, name=name)
53
+ self.spk_reset = spk_reset
54
+ self.spk_fun = spk_fun
55
+
56
+ def get_spike(self, *args, **kwargs):
57
+ raise NotImplementedError
58
+
59
+
60
+ class IF(Neuron):
61
+ """
62
+ Integrate-and-fire neuron model.
63
+ """
64
+
65
+ __module__ = 'brainstate.nn'
66
+
67
+ def __init__(
68
+ self,
69
+ in_size: Size,
70
+ R: ArrayLike = 1. * u.ohm,
71
+ tau: ArrayLike = 5. * u.ms,
72
+ V_th: ArrayLike = 1. * u.mV, # should be positive
73
+ V_initializer: Callable = init.Constant(0. * u.mV),
74
+ spk_fun: Callable = surrogate.ReluGrad(),
75
+ spk_reset: str = 'soft',
76
+ name: str = None,
77
+ ):
78
+ super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
79
+
80
+ # parameters
81
+ self.R = init.param(R, self.varshape)
82
+ self.tau = init.param(tau, self.varshape)
83
+ self.V_th = init.param(V_th, self.varshape)
84
+ self.V_initializer = V_initializer
85
+
86
+ def init_state(self, batch_size: int = None, **kwargs):
87
+ self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
88
+
89
+ def reset_state(self, batch_size: int = None, **kwargs):
90
+ self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
91
+
92
+ def get_spike(self, V=None):
93
+ V = self.V.value if V is None else V
94
+ v_scaled = (V - self.V_th) / self.V_th
95
+ return self.spk_fun(v_scaled)
96
+
97
+ def update(self, x=0. * u.mA):
98
+ # reset
99
+ last_V = self.V.value
100
+ last_spike = self.get_spike(self.V.value)
101
+ V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_V)
102
+ V = last_V - V_th * last_spike
103
+ # membrane potential
104
+ dv = lambda v: (-v + self.R * self.sum_current_inputs(x, v)) / self.tau
105
+ V = exp_euler_step(dv, V)
106
+ V = self.sum_delta_inputs(V)
107
+ self.V.value = V
108
+ return self.get_spike(V)
109
+
110
+
111
+ class LIF(Neuron):
112
+ """
113
+ Leaky integrate-and-fire neuron model.
114
+ """
115
+ __module__ = 'brainstate.nn'
116
+
117
+ def __init__(
118
+ self,
119
+ in_size: Size,
120
+ R: ArrayLike = 1. * u.ohm,
121
+ tau: ArrayLike = 5. * u.ms,
122
+ V_th: ArrayLike = 1. * u.mV,
123
+ V_reset: ArrayLike = 0. * u.mV,
124
+ V_rest: ArrayLike = 0. * u.mV,
125
+ V_initializer: Callable = init.Constant(0. * u.mV),
126
+ spk_fun: Callable = surrogate.ReluGrad(),
127
+ spk_reset: str = 'soft',
128
+ name: str = None,
129
+ ):
130
+ super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
131
+
132
+ # parameters
133
+ self.R = init.param(R, self.varshape)
134
+ self.tau = init.param(tau, self.varshape)
135
+ self.V_th = init.param(V_th, self.varshape)
136
+ self.V_rest = init.param(V_rest, self.varshape)
137
+ self.V_reset = init.param(V_reset, self.varshape)
138
+ self.V_initializer = V_initializer
139
+
140
+ def init_state(self, batch_size: int = None, **kwargs):
141
+ self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
142
+
143
+ def reset_state(self, batch_size: int = None, **kwargs):
144
+ self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
145
+
146
+ def get_spike(self, V: ArrayLike = None):
147
+ V = self.V.value if V is None else V
148
+ v_scaled = (V - self.V_th) / (self.V_th - self.V_reset)
149
+ return self.spk_fun(v_scaled)
150
+
151
+ def update(self, x=0. * u.mA):
152
+ last_v = self.V.value
153
+ lst_spk = self.get_spike(last_v)
154
+ V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
155
+ V = last_v - (V_th - self.V_reset) * lst_spk
156
+ # membrane potential
157
+ dv = lambda v: (-v + self.V_rest + self.R * self.sum_current_inputs(x, v)) / self.tau
158
+ V = exp_euler_step(dv, V)
159
+ V = self.sum_delta_inputs(V)
160
+ self.V.value = V
161
+ return self.get_spike(V)
162
+
163
+
164
+ class LIFRef(Neuron):
165
+ """
166
+ Leaky integrate-and-fire neuron model with refractory period.
167
+ """
168
+ __module__ = 'brainstate.nn'
169
+
170
+ def __init__(
171
+ self,
172
+ in_size: Size,
173
+ R: ArrayLike = 1. * u.ohm,
174
+ tau: ArrayLike = 5. * u.ms,
175
+ tau_ref: ArrayLike = 5. * u.ms,
176
+ V_th: ArrayLike = 1. * u.mV,
177
+ V_reset: ArrayLike = 0. * u.mV,
178
+ V_rest: ArrayLike = 0. * u.mV,
179
+ V_initializer: Callable = init.Constant(0. * u.mV),
180
+ spk_fun: Callable = surrogate.ReluGrad(),
181
+ spk_reset: str = 'soft',
182
+ name: str = None,
183
+ ):
184
+ super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
185
+
186
+ # parameters
187
+ self.R = init.param(R, self.varshape)
188
+ self.tau = init.param(tau, self.varshape)
189
+ self.tau_ref = init.param(tau_ref, self.varshape)
190
+ self.V_th = init.param(V_th, self.varshape)
191
+ self.V_rest = init.param(V_rest, self.varshape)
192
+ self.V_reset = init.param(V_reset, self.varshape)
193
+ self.V_initializer = V_initializer
194
+
195
+ def init_state(self, batch_size: int = None, **kwargs):
196
+ self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
197
+ self.last_spike_time = ShortTermState(init.param(init.Constant(-1e7 * u.ms), self.varshape, batch_size))
198
+
199
+ def reset_state(self, batch_size: int = None, **kwargs):
200
+ self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
201
+ self.last_spike_time.value = init.param(init.Constant(-1e7 * u.ms), self.varshape, batch_size)
202
+
203
+ def get_spike(self, V: ArrayLike = None):
204
+ V = self.V.value if V is None else V
205
+ v_scaled = (V - self.V_th) / (self.V_th - self.V_reset)
206
+ return self.spk_fun(v_scaled)
207
+
208
+ def update(self, x=0. * u.mA):
209
+ t = environ.get('t')
210
+ last_v = self.V.value
211
+ lst_spk = self.get_spike(last_v)
212
+ V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
213
+ last_v = last_v - (V_th - self.V_reset) * lst_spk
214
+ # membrane potential
215
+ dv = lambda v: (-v + self.V_rest + self.R * self.sum_current_inputs(x, v)) / self.tau
216
+ V = exp_euler_step(dv, last_v)
217
+ V = self.sum_delta_inputs(V)
218
+ self.V.value = u.math.where(t - self.last_spike_time.value < self.tau_ref, last_v, V)
219
+ # spike time evaluation
220
+ lst_spk_time = u.math.where(self.V.value >= self.V_th, environ.get('t'), self.last_spike_time.value)
221
+ self.last_spike_time.value = jax.lax.stop_gradient(lst_spk_time)
222
+ return self.get_spike()
223
+
224
+
225
+ class ALIF(Neuron):
226
+ """
227
+ Adaptive Leaky Integrate-and-Fire (LIF) neuron model.
228
+ """
229
+ __module__ = 'brainstate.nn'
230
+
231
+ def __init__(
232
+ self,
233
+ in_size: Size,
234
+ R: ArrayLike = 1. * u.ohm,
235
+ tau: ArrayLike = 5. * u.ms,
236
+ tau_a: ArrayLike = 100. * u.ms,
237
+ V_th: ArrayLike = 1. * u.mV,
238
+ V_reset: ArrayLike = 0. * u.mV,
239
+ V_rest: ArrayLike = 0. * u.mV,
240
+ beta: ArrayLike = 0.1 * u.mV,
241
+ spk_fun: Callable = surrogate.ReluGrad(),
242
+ spk_reset: str = 'soft',
243
+ V_initializer: Callable = init.Constant(0. * u.mV),
244
+ a_initializer: Callable = init.Constant(0.),
245
+ name: str = None,
246
+ ):
247
+ super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
248
+
249
+ # parameters
250
+ self.R = init.param(R, self.varshape)
251
+ self.tau = init.param(tau, self.varshape)
252
+ self.tau_a = init.param(tau_a, self.varshape)
253
+ self.V_th = init.param(V_th, self.varshape)
254
+ self.V_reset = init.param(V_reset, self.varshape)
255
+ self.V_rest = init.param(V_rest, self.varshape)
256
+ self.beta = init.param(beta, self.varshape)
257
+
258
+ # functions
259
+ self.V_initializer = V_initializer
260
+ self.a_initializer = a_initializer
261
+
262
+ def init_state(self, batch_size: int = None, **kwargs):
263
+ self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
264
+ self.a = HiddenState(init.param(self.a_initializer, self.varshape, batch_size))
265
+
266
+ def reset_state(self, batch_size: int = None, **kwargs):
267
+ self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
268
+ self.a.value = init.param(self.a_initializer, self.varshape, batch_size)
269
+
270
+ def get_spike(self, V=None, a=None):
271
+ V = self.V.value if V is None else V
272
+ a = self.a.value if a is None else a
273
+ v_scaled = (V - self.V_th - self.beta * a) / (self.V_th - self.V_reset)
274
+ return self.spk_fun(v_scaled)
275
+
276
+ def update(self, x=0. * u.mA):
277
+ last_v = self.V.value
278
+ last_a = self.a.value
279
+ lst_spk = self.get_spike(last_v, last_a)
280
+ V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
281
+ V = last_v - (V_th - self.V_reset) * lst_spk
282
+ a = last_a + lst_spk
283
+ # membrane potential
284
+ dv = lambda v: (-v + self.V_rest + self.R * self.sum_current_inputs(x, v)) / self.tau
285
+ da = lambda a: -a / self.tau_a
286
+ V = exp_euler_step(dv, V)
287
+ a = exp_euler_step(da, a)
288
+ self.V.value = self.sum_delta_inputs(V)
289
+ self.a.value = a
290
+ return self.get_spike(self.V.value, self.a.value)
@@ -0,0 +1,162 @@
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+ from __future__ import annotations
19
+
20
+ import unittest
21
+
22
+ import brainunit as u
23
+ import jax
24
+ import jax.numpy as jnp
25
+
26
+ import brainstate as bst
27
+ from brainstate.nn import IF, LIF, ALIF
28
+
29
+
30
+ class TestNeuron(unittest.TestCase):
31
+ def setUp(self):
32
+ self.in_size = 10
33
+ self.batch_size = 5
34
+ self.time_steps = 100
35
+
36
+ def test_neuron_base_class(self):
37
+ with self.assertRaises(NotImplementedError):
38
+ bst.nn.Neuron(self.in_size).get_spike() # Neuron is an abstract base class
39
+
40
+ def generate_input(self):
41
+ return bst.random.randn(self.time_steps, self.batch_size, self.in_size) * u.mA
42
+
43
+ def test_if_neuron(self):
44
+ with bst.environ.context(dt=0.1 * u.ms):
45
+ neuron = IF(self.in_size)
46
+ inputs = self.generate_input()
47
+
48
+ # Test initialization
49
+ self.assertEqual(neuron.in_size, (self.in_size,))
50
+ self.assertEqual(neuron.out_size, (self.in_size,))
51
+
52
+ # Test forward pass
53
+ state = neuron.init_state(self.batch_size)
54
+
55
+ for t in range(self.time_steps):
56
+ out = neuron(inputs[t])
57
+ self.assertEqual(out.shape, (self.batch_size, self.in_size))
58
+
59
+ # Test spike generation
60
+ v = jnp.linspace(-1, 1, 100) * u.mV
61
+ spikes = neuron.get_spike(v)
62
+ self.assertTrue(jnp.all((spikes >= 0) & (spikes <= 1)))
63
+
64
+ def test_lif_neuron(self):
65
+ with bst.environ.context(dt=0.1 * u.ms):
66
+ tau = 20.0 * u.ms
67
+ neuron = LIF(self.in_size, tau=tau)
68
+ inputs = self.generate_input()
69
+
70
+ # Test initialization
71
+ self.assertEqual(neuron.in_size, (self.in_size,))
72
+ self.assertEqual(neuron.out_size, (self.in_size,))
73
+ self.assertEqual(neuron.tau, tau)
74
+
75
+ # Test forward pass
76
+ state = neuron.init_state(self.batch_size)
77
+ call = bst.compile.jit(neuron)
78
+
79
+ for t in range(self.time_steps):
80
+ out = call(inputs[t])
81
+ self.assertEqual(out.shape, (self.batch_size, self.in_size))
82
+
83
+ def test_alif_neuron(self):
84
+ tau = 20.0 * u.ms
85
+ tau_ada = 100.0 * u.ms
86
+ neuron = ALIF(self.in_size, tau=tau, tau_a=tau_ada)
87
+ inputs = self.generate_input()
88
+
89
+ # Test initialization
90
+ self.assertEqual(neuron.in_size, (self.in_size,))
91
+ self.assertEqual(neuron.out_size, (self.in_size,))
92
+ self.assertEqual(neuron.tau, tau)
93
+ self.assertEqual(neuron.tau_a, tau_ada)
94
+
95
+ # Test forward pass
96
+ neuron.init_state(self.batch_size)
97
+ call = bst.compile.jit(neuron)
98
+ with bst.environ.context(dt=0.1 * u.ms):
99
+ for t in range(self.time_steps):
100
+ out = call(inputs[t])
101
+ self.assertEqual(out.shape, (self.batch_size, self.in_size))
102
+
103
+ def test_spike_function(self):
104
+ for NeuronClass in [IF, LIF, ALIF]:
105
+ neuron = NeuronClass(self.in_size)
106
+ neuron.init_state()
107
+ v = jnp.linspace(-1, 1, self.in_size) * u.mV
108
+ spikes = neuron.get_spike(v)
109
+ self.assertTrue(jnp.all((spikes >= 0) & (spikes <= 1)))
110
+
111
+ def test_soft_reset(self):
112
+ for NeuronClass in [IF, LIF, ALIF]:
113
+ neuron = NeuronClass(self.in_size, spk_reset='soft')
114
+ inputs = self.generate_input()
115
+ state = neuron.init_state(self.batch_size)
116
+ call = bst.compile.jit(neuron)
117
+ with bst.environ.context(dt=0.1 * u.ms):
118
+ for t in range(self.time_steps):
119
+ out = call(inputs[t])
120
+ self.assertTrue(jnp.all(neuron.V.value <= neuron.V_th))
121
+
122
+ def test_hard_reset(self):
123
+ for NeuronClass in [IF, LIF, ALIF]:
124
+ neuron = NeuronClass(self.in_size, spk_reset='hard')
125
+ inputs = self.generate_input()
126
+ state = neuron.init_state(self.batch_size)
127
+ call = bst.compile.jit(neuron)
128
+ with bst.environ.context(dt=0.1 * u.ms):
129
+ for t in range(self.time_steps):
130
+ out = call(inputs[t])
131
+ self.assertTrue(jnp.all((neuron.V.value < neuron.V_th) | (neuron.V.value == 0. * u.mV)))
132
+
133
+ def test_detach_spike(self):
134
+ for NeuronClass in [IF, LIF, ALIF]:
135
+ neuron = NeuronClass(self.in_size)
136
+ inputs = self.generate_input()
137
+ state = neuron.init_state(self.batch_size)
138
+ call = bst.compile.jit(neuron)
139
+ with bst.environ.context(dt=0.1 * u.ms):
140
+ for t in range(self.time_steps):
141
+ out = call(inputs[t])
142
+ self.assertFalse(jax.tree_util.tree_leaves(out)[0].aval.weak_type)
143
+
144
+ def test_keep_size(self):
145
+ in_size = (2, 3)
146
+ for NeuronClass in [IF, LIF, ALIF]:
147
+ neuron = NeuronClass(in_size)
148
+ self.assertEqual(neuron.in_size, in_size)
149
+ self.assertEqual(neuron.out_size, in_size)
150
+
151
+ inputs = bst.random.randn(self.time_steps, self.batch_size, *in_size) * u.mA
152
+ state = neuron.init_state(self.batch_size)
153
+ call = bst.compile.jit(neuron)
154
+ with bst.environ.context(dt=0.1 * u.ms):
155
+ for t in range(self.time_steps):
156
+ out = call(inputs[t])
157
+ self.assertEqual(out.shape, (self.batch_size, *in_size))
158
+
159
+
160
+ if __name__ == '__main__':
161
+ with bst.environ.context(dt=0.1):
162
+ unittest.main()