brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0.post20241122__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. benchmark/COBA_2005.py +125 -0
  2. benchmark/CUBA_2005.py +149 -0
  3. brainstate/__init__.py +31 -11
  4. brainstate/_state.py +760 -316
  5. brainstate/_state_test.py +41 -12
  6. brainstate/_utils.py +31 -4
  7. brainstate/augment/__init__.py +40 -0
  8. brainstate/augment/_autograd.py +611 -0
  9. brainstate/augment/_autograd_test.py +1193 -0
  10. brainstate/augment/_eval_shape.py +102 -0
  11. brainstate/augment/_eval_shape_test.py +40 -0
  12. brainstate/augment/_mapping.py +525 -0
  13. brainstate/augment/_mapping_test.py +210 -0
  14. brainstate/augment/_random.py +99 -0
  15. brainstate/{transform → compile}/__init__.py +25 -13
  16. brainstate/compile/_ad_checkpoint.py +204 -0
  17. brainstate/compile/_ad_checkpoint_test.py +51 -0
  18. brainstate/compile/_conditions.py +259 -0
  19. brainstate/compile/_conditions_test.py +221 -0
  20. brainstate/compile/_error_if.py +94 -0
  21. brainstate/compile/_error_if_test.py +54 -0
  22. brainstate/compile/_jit.py +314 -0
  23. brainstate/compile/_jit_test.py +143 -0
  24. brainstate/compile/_loop_collect_return.py +516 -0
  25. brainstate/compile/_loop_collect_return_test.py +59 -0
  26. brainstate/compile/_loop_no_collection.py +185 -0
  27. brainstate/compile/_loop_no_collection_test.py +51 -0
  28. brainstate/compile/_make_jaxpr.py +756 -0
  29. brainstate/compile/_make_jaxpr_test.py +134 -0
  30. brainstate/compile/_progress_bar.py +111 -0
  31. brainstate/compile/_unvmap.py +159 -0
  32. brainstate/compile/_util.py +147 -0
  33. brainstate/environ.py +408 -381
  34. brainstate/environ_test.py +34 -32
  35. brainstate/event/__init__.py +27 -0
  36. brainstate/event/_csr.py +316 -0
  37. brainstate/event/_csr_benchmark.py +14 -0
  38. brainstate/event/_csr_test.py +118 -0
  39. brainstate/event/_fixed_probability.py +708 -0
  40. brainstate/event/_fixed_probability_benchmark.py +128 -0
  41. brainstate/event/_fixed_probability_test.py +131 -0
  42. brainstate/event/_linear.py +359 -0
  43. brainstate/event/_linear_benckmark.py +82 -0
  44. brainstate/event/_linear_test.py +117 -0
  45. brainstate/{nn/event → event}/_misc.py +7 -7
  46. brainstate/event/_xla_custom_op.py +312 -0
  47. brainstate/event/_xla_custom_op_test.py +55 -0
  48. brainstate/functional/_activations.py +521 -511
  49. brainstate/functional/_activations_test.py +300 -300
  50. brainstate/functional/_normalization.py +43 -43
  51. brainstate/functional/_others.py +15 -15
  52. brainstate/functional/_spikes.py +49 -49
  53. brainstate/graph/__init__.py +33 -0
  54. brainstate/graph/_graph_context.py +443 -0
  55. brainstate/graph/_graph_context_test.py +65 -0
  56. brainstate/graph/_graph_convert.py +246 -0
  57. brainstate/graph/_graph_node.py +300 -0
  58. brainstate/graph/_graph_node_test.py +75 -0
  59. brainstate/graph/_graph_operation.py +1746 -0
  60. brainstate/graph/_graph_operation_test.py +724 -0
  61. brainstate/init/_base.py +28 -10
  62. brainstate/init/_generic.py +175 -172
  63. brainstate/init/_random_inits.py +470 -415
  64. brainstate/init/_random_inits_test.py +150 -0
  65. brainstate/init/_regular_inits.py +66 -69
  66. brainstate/init/_regular_inits_test.py +51 -0
  67. brainstate/mixin.py +236 -244
  68. brainstate/mixin_test.py +44 -46
  69. brainstate/nn/__init__.py +26 -51
  70. brainstate/nn/_collective_ops.py +199 -0
  71. brainstate/nn/_dyn_impl/__init__.py +46 -0
  72. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  73. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  74. brainstate/nn/_dyn_impl/_dynamics_synapse.py +315 -0
  75. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  76. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  77. brainstate/nn/{event/__init__.py → _dyn_impl/_projection_alignpost.py} +8 -8
  78. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  79. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  80. brainstate/nn/_dyn_impl/_readout.py +128 -0
  81. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  82. brainstate/nn/_dynamics/__init__.py +37 -0
  83. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  84. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  85. brainstate/nn/_dynamics/_projection_base.py +346 -0
  86. brainstate/nn/_dynamics/_state_delay.py +453 -0
  87. brainstate/nn/_dynamics/_synouts.py +161 -0
  88. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  89. brainstate/nn/_elementwise/__init__.py +22 -0
  90. brainstate/nn/_elementwise/_dropout.py +418 -0
  91. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  92. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  93. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  94. brainstate/nn/_exp_euler.py +97 -0
  95. brainstate/nn/_exp_euler_test.py +36 -0
  96. brainstate/nn/_interaction/__init__.py +41 -0
  97. brainstate/nn/_interaction/_conv.py +499 -0
  98. brainstate/nn/_interaction/_conv_test.py +239 -0
  99. brainstate/nn/_interaction/_embedding.py +59 -0
  100. brainstate/nn/_interaction/_linear.py +582 -0
  101. brainstate/nn/_interaction/_linear_test.py +42 -0
  102. brainstate/nn/_interaction/_normalizations.py +388 -0
  103. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  104. brainstate/nn/_interaction/_poolings.py +1179 -0
  105. brainstate/nn/_interaction/_poolings_test.py +219 -0
  106. brainstate/nn/_module.py +328 -0
  107. brainstate/nn/_module_test.py +211 -0
  108. brainstate/nn/metrics.py +309 -309
  109. brainstate/optim/__init__.py +14 -2
  110. brainstate/optim/_base.py +66 -0
  111. brainstate/optim/_lr_scheduler.py +363 -400
  112. brainstate/optim/_lr_scheduler_test.py +25 -24
  113. brainstate/optim/_optax_optimizer.py +121 -176
  114. brainstate/optim/_optax_optimizer_test.py +41 -1
  115. brainstate/optim/_sgd_optimizer.py +950 -1025
  116. brainstate/random/_rand_funs.py +3269 -3268
  117. brainstate/random/_rand_funs_test.py +568 -0
  118. brainstate/random/_rand_seed.py +149 -117
  119. brainstate/random/_rand_seed_test.py +50 -0
  120. brainstate/random/_rand_state.py +1356 -1321
  121. brainstate/random/_random_for_unit.py +13 -13
  122. brainstate/surrogate.py +1262 -1243
  123. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  124. brainstate/typing.py +157 -130
  125. brainstate/util/__init__.py +52 -0
  126. brainstate/util/_caller.py +100 -0
  127. brainstate/util/_dict.py +734 -0
  128. brainstate/util/_dict_test.py +160 -0
  129. brainstate/{nn/_projection/__init__.py → util/_error.py} +9 -13
  130. brainstate/util/_filter.py +178 -0
  131. brainstate/util/_others.py +497 -0
  132. brainstate/util/_pretty_repr.py +208 -0
  133. brainstate/util/_scaling.py +260 -0
  134. brainstate/util/_struct.py +524 -0
  135. brainstate/util/_tracers.py +75 -0
  136. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  137. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/METADATA +11 -11
  138. brainstate-0.1.0.post20241122.dist-info/RECORD +144 -0
  139. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/top_level.txt +1 -0
  140. brainstate/_module.py +0 -1637
  141. brainstate/_module_test.py +0 -207
  142. brainstate/nn/_base.py +0 -251
  143. brainstate/nn/_connections.py +0 -686
  144. brainstate/nn/_dynamics.py +0 -426
  145. brainstate/nn/_elementwise.py +0 -1438
  146. brainstate/nn/_embedding.py +0 -66
  147. brainstate/nn/_misc.py +0 -133
  148. brainstate/nn/_normalizations.py +0 -389
  149. brainstate/nn/_others.py +0 -101
  150. brainstate/nn/_poolings.py +0 -1229
  151. brainstate/nn/_poolings_test.py +0 -231
  152. brainstate/nn/_projection/_align_post.py +0 -546
  153. brainstate/nn/_projection/_align_pre.py +0 -599
  154. brainstate/nn/_projection/_delta.py +0 -241
  155. brainstate/nn/_projection/_vanilla.py +0 -101
  156. brainstate/nn/_rate_rnns.py +0 -410
  157. brainstate/nn/_readout.py +0 -136
  158. brainstate/nn/_synouts.py +0 -166
  159. brainstate/nn/event/csr.py +0 -312
  160. brainstate/nn/event/csr_test.py +0 -118
  161. brainstate/nn/event/fixed_probability.py +0 -276
  162. brainstate/nn/event/fixed_probability_test.py +0 -127
  163. brainstate/nn/event/linear.py +0 -220
  164. brainstate/nn/event/linear_test.py +0 -111
  165. brainstate/random/random_test.py +0 -593
  166. brainstate/transform/_autograd.py +0 -585
  167. brainstate/transform/_autograd_test.py +0 -1181
  168. brainstate/transform/_conditions.py +0 -334
  169. brainstate/transform/_conditions_test.py +0 -220
  170. brainstate/transform/_error_if.py +0 -94
  171. brainstate/transform/_error_if_test.py +0 -55
  172. brainstate/transform/_jit.py +0 -265
  173. brainstate/transform/_jit_test.py +0 -118
  174. brainstate/transform/_loop_collect_return.py +0 -502
  175. brainstate/transform/_loop_no_collection.py +0 -170
  176. brainstate/transform/_make_jaxpr.py +0 -739
  177. brainstate/transform/_make_jaxpr_test.py +0 -131
  178. brainstate/transform/_mapping.py +0 -109
  179. brainstate/transform/_progress_bar.py +0 -111
  180. brainstate/transform/_unvmap.py +0 -143
  181. brainstate/util.py +0 -746
  182. brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
  183. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/LICENSE +0 -0
  184. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/WHEEL +0 -0
@@ -1,410 +0,0 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- from __future__ import annotations
19
-
20
- from typing import Callable, Union
21
-
22
- import jax.numpy as jnp
23
-
24
- from ._base import ExplicitInOutSize
25
- from ._connections import Linear
26
- from .. import random, init, functional
27
- from .._module import Module
28
- from .._state import ShortTermState, ParamState
29
- from ..mixin import DelayedInit, Mode
30
- from brainstate.typing import ArrayLike
31
-
32
- __all__ = [
33
- 'RNNCell', 'ValinaRNNCell', 'GRUCell', 'MGUCell', 'LSTMCell', 'URLSTMCell',
34
- ]
35
-
36
-
37
- class RNNCell(Module, ExplicitInOutSize, DelayedInit):
38
- """
39
- Base class for RNN cells.
40
- """
41
- pass
42
-
43
-
44
- class ValinaRNNCell(RNNCell):
45
- """
46
- Vanilla RNN cell.
47
-
48
- Args:
49
- num_in: int. The number of input units.
50
- num_out: int. The number of hidden units.
51
- state_init: callable, ArrayLike. The state initializer.
52
- w_init: callable, ArrayLike. The input weight initializer.
53
- b_init: optional, callable, ArrayLike. The bias weight initializer.
54
- activation: str, callable. The activation function. It can be a string or a callable function.
55
- mode: optional, Mode. The mode of the module.
56
- name: optional, str. The name of the module.
57
- """
58
- __module__ = 'brainstate.nn'
59
-
60
- def __init__(
61
- self,
62
- num_in: int,
63
- num_out: int,
64
- state_init: Union[ArrayLike, Callable] = init.ZeroInit(),
65
- w_init: Union[ArrayLike, Callable] = init.XavierNormal(),
66
- b_init: Union[ArrayLike, Callable] = init.ZeroInit(),
67
- activation: str | Callable = 'relu',
68
- mode: Mode = None,
69
- name: str = None,
70
- ):
71
- super().__init__(mode=mode, name=name)
72
-
73
- # parameters
74
- self._state_initializer = state_init
75
- self.num_out = num_out
76
- self.num_in = num_in
77
- self.in_size = (num_in,)
78
- self.out_size = (num_out,)
79
-
80
- # activation function
81
- if isinstance(activation, str):
82
- self.activation = getattr(functional, activation)
83
- else:
84
- assert callable(activation), "The activation function should be a string or a callable function. "
85
- self.activation = activation
86
-
87
- # weights
88
- self.W = Linear(num_in + num_out, num_out, w_init=w_init, b_init=b_init, name=self.name + '_W')
89
-
90
- def init_state(self, batch_size: int = None, **kwargs):
91
- self.h = ShortTermState(init.param(self._state_initializer, self.num_out, batch_size))
92
-
93
- def reset_state(self, batch_size: int = None, **kwargs):
94
- self.h.value = init.param(self._state_initializer, self.num_out, batch_size)
95
-
96
- def update(self, x):
97
- xh = jnp.concatenate([x, self.h.value], axis=-1)
98
- h = self.W(xh)
99
- self.h.value = self.activation(h)
100
- return self.h.value
101
-
102
-
103
- class GRUCell(RNNCell):
104
- """
105
- Gated Recurrent Unit (GRU) cell.
106
-
107
- Args:
108
- num_in: int. The number of input units.
109
- num_out: int. The number of hidden units.
110
- state_init: callable, ArrayLike. The state initializer.
111
- w_init: callable, ArrayLike. The input weight initializer.
112
- b_init: optional, callable, ArrayLike. The bias weight initializer.
113
- activation: str, callable. The activation function. It can be a string or a callable function.
114
- mode: optional, Mode. The mode of the module.
115
- name: optional, str. The name of the module.
116
- """
117
- __module__ = 'brainstate.nn'
118
-
119
- def __init__(
120
- self,
121
- num_in: int,
122
- num_out: int,
123
- w_init: Union[ArrayLike, Callable] = init.Orthogonal(),
124
- b_init: Union[ArrayLike, Callable] = init.ZeroInit(),
125
- state_init: Union[ArrayLike, Callable] = init.ZeroInit(),
126
- activation: str | Callable = 'tanh',
127
- mode: Mode = None,
128
- name: str = None,
129
- ):
130
- super().__init__(mode=mode, name=name)
131
-
132
- # parameters
133
- self._state_initializer = state_init
134
- self.num_out = num_out
135
- self.num_in = num_in
136
- self.in_size = (num_in,)
137
- self.out_size = (num_out,)
138
-
139
- # activation function
140
- if isinstance(activation, str):
141
- self.activation = getattr(functional, activation)
142
- else:
143
- assert callable(activation), "The activation function should be a string or a callable function. "
144
- self.activation = activation
145
-
146
- # weights
147
- self.Wrz = Linear(num_in + num_out, num_out * 2, w_init=w_init, b_init=b_init, name=self.name + '_Wrz')
148
- self.Wh = Linear(num_in + num_out, num_out, w_init=w_init, b_init=b_init, name=self.name + '_Wh')
149
-
150
- def init_state(self, batch_size: int = None, **kwargs):
151
- self.h = ShortTermState(init.param(self._state_initializer, [self.num_out], batch_size))
152
-
153
- def reset_state(self, batch_size: int = None, **kwargs):
154
- self.h.value = init.param(self._state_initializer, [self.num_out], batch_size)
155
-
156
- def update(self, x):
157
- old_h = self.h.value
158
- xh = jnp.concatenate([x, old_h], axis=-1)
159
- r, z = jnp.split(functional.sigmoid(self.Wrz(xh)), indices_or_sections=2, axis=-1)
160
- rh = r * old_h
161
- h = self.activation(self.Wh(jnp.concatenate([x, rh], axis=-1)))
162
- h = (1 - z) * old_h + z * h
163
- self.h.value = h
164
- return h
165
-
166
-
167
- class MGUCell(RNNCell):
168
- r"""
169
- Minimal Gated Recurrent Unit (MGU) cell.
170
-
171
- .. math::
172
-
173
- \begin{aligned}
174
- f_{t}&=\sigma (W_{f}x_{t}+U_{f}h_{t-1}+b_{f})\\
175
- {\hat {h}}_{t}&=\phi (W_{h}x_{t}+U_{h}(f_{t}\odot h_{t-1})+b_{h})\\
176
- h_{t}&=(1-f_{t})\odot h_{t-1}+f_{t}\odot {\hat {h}}_{t}
177
- \end{aligned}
178
-
179
- where:
180
-
181
- - :math:`x_{t}`: input vector
182
- - :math:`h_{t}`: output vector
183
- - :math:`{\hat {h}}_{t}`: candidate activation vector
184
- - :math:`f_{t}`: forget vector
185
- - :math:`W, U, b`: parameter matrices and vector
186
-
187
- Args:
188
- num_in: int. The number of input units.
189
- num_out: int. The number of hidden units.
190
- state_init: callable, ArrayLike. The state initializer.
191
- w_init: callable, ArrayLike. The input weight initializer.
192
- b_init: optional, callable, ArrayLike. The bias weight initializer.
193
- activation: str, callable. The activation function. It can be a string or a callable function.
194
- mode: optional, Mode. The mode of the module.
195
- name: optional, str. The name of the module.
196
- """
197
- __module__ = 'brainstate.nn'
198
-
199
- def __init__(
200
- self,
201
- num_in: int,
202
- num_out: int,
203
- w_init: Union[ArrayLike, Callable] = init.Orthogonal(),
204
- b_init: Union[ArrayLike, Callable] = init.ZeroInit(),
205
- state_init: Union[ArrayLike, Callable] = init.ZeroInit(),
206
- activation: str | Callable = 'tanh',
207
- mode: Mode = None,
208
- name: str = None,
209
- ):
210
- super().__init__(mode=mode, name=name)
211
-
212
- # parameters
213
- self._state_initializer = state_init
214
- self.num_out = num_out
215
- self.num_in = num_in
216
- self.in_size = (num_in,)
217
- self.out_size = (num_out,)
218
-
219
- # activation function
220
- if isinstance(activation, str):
221
- self.activation = getattr(functional, activation)
222
- else:
223
- assert callable(activation), "The activation function should be a string or a callable function. "
224
- self.activation = activation
225
-
226
- # weights
227
- self.Wf = Linear(num_in + num_out, num_out, w_init=w_init, b_init=b_init, name=self.name + '_Wf')
228
- self.Wh = Linear(num_in + num_out, num_out, w_init=w_init, b_init=b_init, name=self.name + '_Wh')
229
-
230
- def init_state(self, batch_size: int = None, **kwargs):
231
- self.h = ShortTermState(init.param(self._state_initializer, [self.num_out], batch_size))
232
-
233
- def reset_state(self, batch_size: int = None, **kwargs):
234
- self.h.value = init.param(self._state_initializer, [self.num_out], batch_size)
235
-
236
- def update(self, x):
237
- old_h = self.h.value
238
- xh = jnp.concatenate([x, old_h], axis=-1)
239
- f = functional.sigmoid(self.Wf(xh))
240
- fh = f * old_h
241
- h = self.activation(self.Wh(jnp.concatenate([x, fh], axis=-1)))
242
- self.h.value = (1 - f) * self.h.value + f * h
243
- return self.h.value
244
-
245
-
246
- class LSTMCell(RNNCell):
247
- r"""Long short-term memory (LSTM) RNN core.
248
-
249
- The implementation is based on (zaremba, et al., 2014) [1]_. Given
250
- :math:`x_t` and the previous state :math:`(h_{t-1}, c_{t-1})` the core
251
- computes
252
-
253
- .. math::
254
-
255
- \begin{array}{ll}
256
- i_t = \sigma(W_{ii} x_t + W_{hi} h_{t-1} + b_i) \\
257
- f_t = \sigma(W_{if} x_t + W_{hf} h_{t-1} + b_f) \\
258
- g_t = \tanh(W_{ig} x_t + W_{hg} h_{t-1} + b_g) \\
259
- o_t = \sigma(W_{io} x_t + W_{ho} h_{t-1} + b_o) \\
260
- c_t = f_t c_{t-1} + i_t g_t \\
261
- h_t = o_t \tanh(c_t)
262
- \end{array}
263
-
264
- where :math:`i_t`, :math:`f_t`, :math:`o_t` are input, forget and
265
- output gate activations, and :math:`g_t` is a vector of cell updates.
266
-
267
- The output is equal to the new hidden, :math:`h_t`.
268
-
269
- Notes
270
- -----
271
-
272
- Forget gate initialization: Following (Jozefowicz, et al., 2015) [2]_ we add 1.0
273
- to :math:`b_f` after initialization in order to reduce the scale of forgetting in
274
- the beginning of the training.
275
-
276
-
277
- Parameters
278
- ----------
279
- num_in: int
280
- The dimension of the input vector
281
- num_out: int
282
- The number of hidden unit in the node.
283
- state_init: callable, ArrayLike
284
- The state initializer.
285
- w_init: callable, ArrayLike
286
- The input weight initializer.
287
- b_init: optional, callable, ArrayLike
288
- The bias weight initializer.
289
- activation: str, callable
290
- The activation function. It can be a string or a callable function.
291
-
292
- References
293
- ----------
294
-
295
- .. [1] Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals. "Recurrent neural
296
- network regularization." arXiv preprint arXiv:1409.2329 (2014).
297
- .. [2] Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. "An empirical
298
- exploration of recurrent network architectures." In International conference
299
- on machine learning, pp. 2342-2350. PMLR, 2015.
300
- """
301
- __module__ = 'brainstate.nn'
302
-
303
- def __init__(
304
- self,
305
- num_in: int,
306
- num_out: int,
307
- w_init: Union[ArrayLike, Callable] = init.XavierNormal(),
308
- b_init: Union[ArrayLike, Callable] = init.ZeroInit(),
309
- state_init: Union[ArrayLike, Callable] = init.ZeroInit(),
310
- activation: str | Callable = 'tanh',
311
- mode: Mode = None,
312
- name: str = None,
313
- ):
314
- super().__init__(mode=mode, name=name)
315
-
316
- # parameters
317
- self.num_out = num_out
318
- self.num_in = num_in
319
- self.in_size = (num_in,)
320
- self.out_size = (num_out,)
321
-
322
- # initializers
323
- self._state_initializer = state_init
324
-
325
- # activation function
326
- if isinstance(activation, str):
327
- self.activation = getattr(functional, activation)
328
- else:
329
- assert callable(activation), "The activation function should be a string or a callable function. "
330
- self.activation = activation
331
-
332
- # weights
333
- self.W = Linear(num_in + num_out, num_out * 4, w_init=w_init, b_init=b_init, name=self.name + '_W')
334
-
335
- def init_state(self, batch_size: int = None, **kwargs):
336
- self.c = ShortTermState(init.param(self._state_initializer, [self.num_out], batch_size))
337
- self.h = ShortTermState(init.param(self._state_initializer, [self.num_out], batch_size))
338
-
339
- def reset_state(self, batch_size: int = None, **kwargs):
340
- self.c.value = init.param(self._state_initializer, [self.num_out], batch_size)
341
- self.h.value = init.param(self._state_initializer, [self.num_out], batch_size)
342
-
343
- def update(self, x):
344
- h, c = self.h.value, self.c.value
345
- xh = jnp.concat([x, h], axis=-1)
346
- i, g, f, o = jnp.split(self.W(xh), indices_or_sections=4, axis=-1)
347
- c = functional.sigmoid(f + 1.) * c + functional.sigmoid(i) * self.activation(g)
348
- h = functional.sigmoid(o) * self.activation(c)
349
- self.h.value = h
350
- self.c.value = c
351
- return h
352
-
353
-
354
- class URLSTMCell(RNNCell):
355
- def __init__(
356
- self,
357
- num_in: int,
358
- num_out: int,
359
- w_init: Union[ArrayLike, Callable] = init.XavierNormal(),
360
- state_init: Union[ArrayLike, Callable] = init.ZeroInit(),
361
- activation: str | Callable = 'tanh',
362
- mode: Mode = None,
363
- name: str = None,
364
- ):
365
- super().__init__(mode=mode, name=name)
366
-
367
- # parameters
368
- self.num_out = num_out
369
- self.num_in = num_in
370
- self.in_size = (num_in,)
371
- self.out_size = (num_out,)
372
-
373
- # initializers
374
- self._state_initializer = state_init
375
-
376
- # activation function
377
- if isinstance(activation, str):
378
- self.activation = getattr(functional, activation)
379
- else:
380
- assert callable(activation), "The activation function should be a string or a callable function. "
381
- self.activation = activation
382
-
383
- # weights
384
- self.W = Linear(num_in + num_out, num_out * 4, w_init=w_init, b_init=None, name=self.name + '_Wg')
385
- self.bias = ParamState(self._forget_bias())
386
-
387
- def _forget_bias(self):
388
- u = random.uniform(1 / self.num_out, 1 - 1 / self.num_out, (self.num_out,))
389
- return -jnp.log(1 / u - 1)
390
-
391
- def init_state(self, batch_size: int = None, **kwargs):
392
- self.c = ShortTermState(init.param(self._state_initializer, [self.num_out], batch_size))
393
- self.h = ShortTermState(init.param(self._state_initializer, [self.num_out], batch_size))
394
-
395
- def reset_state(self, batch_size: int = None, **kwargs):
396
- self.c.value = init.param(self._state_initializer, [self.num_out], batch_size)
397
- self.h.value = init.param(self._state_initializer, [self.num_out], batch_size)
398
-
399
- def update(self, x: ArrayLike) -> ArrayLike:
400
- h, c = self.h.value, self.c.value
401
- xh = jnp.concat([x, h], axis=-1)
402
- f, r, u, o = jnp.split(self.W(xh), indices_or_sections=4, axis=-1)
403
- f_ = functional.sigmoid(f + self.bias.value)
404
- r_ = functional.sigmoid(r - self.bias.value)
405
- g = 2 * r_ * f_ + (1 - 2 * r_) * f_ ** 2
406
- next_cell = g * c + (1 - g) * self.activation(u)
407
- next_hidden = functional.sigmoid(o) * self.activation(next_cell)
408
- self.h.value = next_hidden
409
- self.c.value = next_cell
410
- return next_hidden
brainstate/nn/_readout.py DELETED
@@ -1,136 +0,0 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- from __future__ import annotations
19
-
20
- import numbers
21
- from typing import Callable
22
-
23
- import jax
24
- import jax.numpy as jnp
25
-
26
- from ._base import DnnLayer
27
- from ._dynamics import Neuron
28
- from ._misc import exp_euler_step
29
- from .. import environ, init, surrogate
30
- from .._state import ShortTermState, ParamState
31
- from ..mixin import Mode
32
- from brainstate.typing import Size, ArrayLike, DTypeLike
33
-
34
- __all__ = [
35
- 'LeakyRateReadout',
36
- 'LeakySpikeReadout',
37
- ]
38
-
39
-
40
- class LeakyRateReadout(DnnLayer):
41
- """
42
- Leaky dynamics for the read-out module used in the Real-Time Recurrent Learning.
43
- """
44
- __module__ = 'brainstate.nn'
45
-
46
- def __init__(
47
- self,
48
- in_size: Size,
49
- out_size: Size,
50
- tau: ArrayLike = 5.,
51
- w_init: Callable = init.KaimingNormal(),
52
- mode: Mode = None,
53
- name: str = None,
54
- ):
55
- super().__init__(mode=mode, name=name)
56
-
57
- # parameters
58
- self.in_size = (in_size,) if isinstance(in_size, numbers.Integral) else tuple(in_size)
59
- self.out_size = (out_size,) if isinstance(out_size, numbers.Integral) else tuple(out_size)
60
- self.tau = init.param(tau, self.in_size)
61
- self.decay = jnp.exp(-environ.get_dt() / self.tau)
62
-
63
- # weights
64
- self.weight = ParamState(init.param(w_init, (self.in_size[0], self.out_size[0])))
65
-
66
- def init_state(self, batch_size=None, **kwargs):
67
- self.r = ShortTermState(init.param(init.Constant(0.), self.out_size, batch_size))
68
-
69
- def reset_state(self, batch_size=None, **kwargs):
70
- self.r.value = init.param(init.Constant(0.), self.out_size, batch_size)
71
-
72
- def update(self, x):
73
- r = self.decay * self.r.value + x @ self.weight.value
74
- self.r.value = r
75
- return r
76
-
77
-
78
- class LeakySpikeReadout(Neuron):
79
- """
80
- Integrate-and-fire neuron model.
81
- """
82
-
83
- __module__ = 'brainstate.nn'
84
-
85
- def __init__(
86
- self,
87
- in_size: Size,
88
- keep_size: bool = False,
89
- tau: ArrayLike = 5.,
90
- V_th: ArrayLike = 1.,
91
- w_init: Callable = init.KaimingNormal(),
92
- spk_fun: Callable = surrogate.ReluGrad(),
93
- spk_dtype: DTypeLike = None,
94
- spk_reset: str = 'soft',
95
- mode: Mode = None,
96
- name: str = None,
97
- ):
98
- super().__init__(in_size, keep_size=keep_size, name=name, mode=mode,
99
- spk_fun=spk_fun, spk_dtype=spk_dtype, spk_reset=spk_reset)
100
-
101
- # parameters
102
- self.tau = init.param(tau, (self.num,))
103
- self.V_th = init.param(V_th, (self.num,))
104
-
105
- # weights
106
- self.weight = ParamState(init.param(w_init, (self.in_size[0], self.out_size[0])))
107
-
108
- def dv(self, v, t, x):
109
- x = self.sum_current_inputs(v, init=x)
110
- return (-v + x) / self.tau
111
-
112
- def init_state(self, batch_size, **kwargs):
113
- self.V = ShortTermState(init.param(init.Constant(0.), self.varshape, batch_size))
114
-
115
- def reset_state(self, batch_size, **kwargs):
116
- self.V.value = init.param(init.Constant(0.), self.varshape, batch_size)
117
-
118
- @property
119
- def spike(self):
120
- return self.get_spike(self.V.value)
121
-
122
- def get_spike(self, V):
123
- v_scaled = (V - self.V_th) / self.V_th
124
- return self.spk_fun(v_scaled)
125
-
126
- def update(self, x):
127
- # reset
128
- last_V = self.V.value
129
- last_spike = self.get_spike(last_V)
130
- V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_V)
131
- V = last_V - V_th * last_spike
132
- # membrane potential
133
- V = exp_euler_step(self.dv, V, environ.get('t'), x @ self.weight.value)
134
- V = V + self.sum_delta_inputs()
135
- self.V.value = V
136
- return self.get_spike(V)
brainstate/nn/_synouts.py DELETED
@@ -1,166 +0,0 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- from __future__ import annotations
19
-
20
- from typing import Optional
21
-
22
- import jax.numpy as jnp
23
-
24
- from .._module import Module
25
- from ..mixin import DelayedInit, BindCondData
26
- from brainstate.typing import ArrayLike
27
-
28
- __all__ = [
29
- 'SynOut', 'COBA', 'CUBA', 'MgBlock',
30
- ]
31
-
32
-
33
- class SynOut(Module, DelayedInit, BindCondData):
34
- """
35
- Base class for synaptic outputs.
36
-
37
- :py:class:`~.SynOut` is also subclass of :py:class:`~.ParamDesc` and :py:class:`~.BindCondData`.
38
- """
39
-
40
- __module__ = 'brainstate.nn'
41
-
42
- def __init__(self, name: Optional[str] = None):
43
- super().__init__(name=name)
44
- self._conductance = None
45
-
46
- def __call__(self, *args, **kwargs):
47
- if self._conductance is None:
48
- raise ValueError(f'Please first pack conductance data at the current step using '
49
- f'".{BindCondData.bind_cond.__name__}(data)". {self}')
50
- ret = self.update(self._conductance, *args, **kwargs)
51
- return ret
52
-
53
-
54
- class COBA(SynOut):
55
- r"""
56
- Conductance-based synaptic output.
57
-
58
- Given the synaptic conductance, the model output the post-synaptic current with
59
-
60
- .. math::
61
-
62
- I_{syn}(t) = g_{\mathrm{syn}}(t) (E - V(t))
63
-
64
- Parameters
65
- ----------
66
- E: ArrayLike
67
- The reversal potential.
68
- name: str
69
- The model name.
70
-
71
- See Also
72
- --------
73
- CUBA
74
- """
75
- __module__ = 'brainstate.nn'
76
-
77
- def __init__(self, E: ArrayLike, name: Optional[str] = None):
78
- super().__init__(name=name)
79
-
80
- self.E = E
81
-
82
- def update(self, conductance, potential):
83
- return conductance * (self.E - potential)
84
-
85
-
86
- class CUBA(SynOut):
87
- r"""Current-based synaptic output.
88
-
89
- Given the conductance, this model outputs the post-synaptic current with a identity function:
90
-
91
- .. math::
92
-
93
- I_{\mathrm{syn}}(t) = g_{\mathrm{syn}}(t)
94
-
95
- Parameters
96
- ----------
97
- name: str
98
- The model name.
99
-
100
- See Also
101
- --------
102
- COBA
103
- """
104
- __module__ = 'brainstate.nn'
105
-
106
- def __init__(self, name: Optional[str] = None, ):
107
- super().__init__(name=name)
108
-
109
- def update(self, conductance, potential=None):
110
- return conductance
111
-
112
-
113
- class MgBlock(SynOut):
114
- r"""Synaptic output based on Magnesium blocking.
115
-
116
- Given the synaptic conductance, the model output the post-synaptic current with
117
-
118
- .. math::
119
-
120
- I_{syn}(t) = g_{\mathrm{syn}}(t) (E - V(t)) g_{\infty}(V,[{Mg}^{2+}]_{o})
121
-
122
- where The fraction of channels :math:`g_{\infty}` that are not blocked by magnesium can be fitted to
123
-
124
- .. math::
125
-
126
- g_{\infty}(V,[{Mg}^{2+}]_{o}) = (1+{e}^{-\alpha V} \frac{[{Mg}^{2+}]_{o}} {\beta})^{-1}
127
-
128
- Here :math:`[{Mg}^{2+}]_{o}` is the extracellular magnesium concentration.
129
-
130
- Parameters
131
- ----------
132
- E: ArrayLike
133
- The reversal potential for the synaptic current. [mV]
134
- alpha: ArrayLike
135
- Binding constant. Default 0.062
136
- beta: ArrayLike
137
- Unbinding constant. Default 3.57
138
- cc_Mg: ArrayLike
139
- Concentration of Magnesium ion. Default 1.2 [mM].
140
- V_offset: ArrayLike
141
- The offset potential. Default 0. [mV]
142
- name: str
143
- The model name.
144
- """
145
- __module__ = 'brainstate.nn'
146
-
147
- def __init__(
148
- self,
149
- E: ArrayLike = 0.,
150
- cc_Mg: ArrayLike = 1.2,
151
- alpha: ArrayLike = 0.062,
152
- beta: ArrayLike = 3.57,
153
- V_offset: ArrayLike = 0.,
154
- name: Optional[str] = None,
155
- ):
156
- super().__init__(name=name)
157
-
158
- self.E = E
159
- self.V_offset = V_offset
160
- self.cc_Mg = cc_Mg
161
- self.alpha = alpha
162
- self.beta = beta
163
-
164
- def update(self, conductance, potential):
165
- norm = (1 + self.cc_Mg / self.beta * jnp.exp(self.alpha * (self.V_offset - potential)))
166
- return conductance * (self.E - potential) / norm