brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0.post20241122__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. benchmark/COBA_2005.py +125 -0
  2. benchmark/CUBA_2005.py +149 -0
  3. brainstate/__init__.py +31 -11
  4. brainstate/_state.py +760 -316
  5. brainstate/_state_test.py +41 -12
  6. brainstate/_utils.py +31 -4
  7. brainstate/augment/__init__.py +40 -0
  8. brainstate/augment/_autograd.py +611 -0
  9. brainstate/augment/_autograd_test.py +1193 -0
  10. brainstate/augment/_eval_shape.py +102 -0
  11. brainstate/augment/_eval_shape_test.py +40 -0
  12. brainstate/augment/_mapping.py +525 -0
  13. brainstate/augment/_mapping_test.py +210 -0
  14. brainstate/augment/_random.py +99 -0
  15. brainstate/{transform → compile}/__init__.py +25 -13
  16. brainstate/compile/_ad_checkpoint.py +204 -0
  17. brainstate/compile/_ad_checkpoint_test.py +51 -0
  18. brainstate/compile/_conditions.py +259 -0
  19. brainstate/compile/_conditions_test.py +221 -0
  20. brainstate/compile/_error_if.py +94 -0
  21. brainstate/compile/_error_if_test.py +54 -0
  22. brainstate/compile/_jit.py +314 -0
  23. brainstate/compile/_jit_test.py +143 -0
  24. brainstate/compile/_loop_collect_return.py +516 -0
  25. brainstate/compile/_loop_collect_return_test.py +59 -0
  26. brainstate/compile/_loop_no_collection.py +185 -0
  27. brainstate/compile/_loop_no_collection_test.py +51 -0
  28. brainstate/compile/_make_jaxpr.py +756 -0
  29. brainstate/compile/_make_jaxpr_test.py +134 -0
  30. brainstate/compile/_progress_bar.py +111 -0
  31. brainstate/compile/_unvmap.py +159 -0
  32. brainstate/compile/_util.py +147 -0
  33. brainstate/environ.py +408 -381
  34. brainstate/environ_test.py +34 -32
  35. brainstate/event/__init__.py +27 -0
  36. brainstate/event/_csr.py +316 -0
  37. brainstate/event/_csr_benchmark.py +14 -0
  38. brainstate/event/_csr_test.py +118 -0
  39. brainstate/event/_fixed_probability.py +708 -0
  40. brainstate/event/_fixed_probability_benchmark.py +128 -0
  41. brainstate/event/_fixed_probability_test.py +131 -0
  42. brainstate/event/_linear.py +359 -0
  43. brainstate/event/_linear_benckmark.py +82 -0
  44. brainstate/event/_linear_test.py +117 -0
  45. brainstate/{nn/event → event}/_misc.py +7 -7
  46. brainstate/event/_xla_custom_op.py +312 -0
  47. brainstate/event/_xla_custom_op_test.py +55 -0
  48. brainstate/functional/_activations.py +521 -511
  49. brainstate/functional/_activations_test.py +300 -300
  50. brainstate/functional/_normalization.py +43 -43
  51. brainstate/functional/_others.py +15 -15
  52. brainstate/functional/_spikes.py +49 -49
  53. brainstate/graph/__init__.py +33 -0
  54. brainstate/graph/_graph_context.py +443 -0
  55. brainstate/graph/_graph_context_test.py +65 -0
  56. brainstate/graph/_graph_convert.py +246 -0
  57. brainstate/graph/_graph_node.py +300 -0
  58. brainstate/graph/_graph_node_test.py +75 -0
  59. brainstate/graph/_graph_operation.py +1746 -0
  60. brainstate/graph/_graph_operation_test.py +724 -0
  61. brainstate/init/_base.py +28 -10
  62. brainstate/init/_generic.py +175 -172
  63. brainstate/init/_random_inits.py +470 -415
  64. brainstate/init/_random_inits_test.py +150 -0
  65. brainstate/init/_regular_inits.py +66 -69
  66. brainstate/init/_regular_inits_test.py +51 -0
  67. brainstate/mixin.py +236 -244
  68. brainstate/mixin_test.py +44 -46
  69. brainstate/nn/__init__.py +26 -51
  70. brainstate/nn/_collective_ops.py +199 -0
  71. brainstate/nn/_dyn_impl/__init__.py +46 -0
  72. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  73. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  74. brainstate/nn/_dyn_impl/_dynamics_synapse.py +315 -0
  75. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  76. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  77. brainstate/nn/{event/__init__.py → _dyn_impl/_projection_alignpost.py} +8 -8
  78. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  79. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  80. brainstate/nn/_dyn_impl/_readout.py +128 -0
  81. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  82. brainstate/nn/_dynamics/__init__.py +37 -0
  83. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  84. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  85. brainstate/nn/_dynamics/_projection_base.py +346 -0
  86. brainstate/nn/_dynamics/_state_delay.py +453 -0
  87. brainstate/nn/_dynamics/_synouts.py +161 -0
  88. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  89. brainstate/nn/_elementwise/__init__.py +22 -0
  90. brainstate/nn/_elementwise/_dropout.py +418 -0
  91. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  92. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  93. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  94. brainstate/nn/_exp_euler.py +97 -0
  95. brainstate/nn/_exp_euler_test.py +36 -0
  96. brainstate/nn/_interaction/__init__.py +41 -0
  97. brainstate/nn/_interaction/_conv.py +499 -0
  98. brainstate/nn/_interaction/_conv_test.py +239 -0
  99. brainstate/nn/_interaction/_embedding.py +59 -0
  100. brainstate/nn/_interaction/_linear.py +582 -0
  101. brainstate/nn/_interaction/_linear_test.py +42 -0
  102. brainstate/nn/_interaction/_normalizations.py +388 -0
  103. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  104. brainstate/nn/_interaction/_poolings.py +1179 -0
  105. brainstate/nn/_interaction/_poolings_test.py +219 -0
  106. brainstate/nn/_module.py +328 -0
  107. brainstate/nn/_module_test.py +211 -0
  108. brainstate/nn/metrics.py +309 -309
  109. brainstate/optim/__init__.py +14 -2
  110. brainstate/optim/_base.py +66 -0
  111. brainstate/optim/_lr_scheduler.py +363 -400
  112. brainstate/optim/_lr_scheduler_test.py +25 -24
  113. brainstate/optim/_optax_optimizer.py +121 -176
  114. brainstate/optim/_optax_optimizer_test.py +41 -1
  115. brainstate/optim/_sgd_optimizer.py +950 -1025
  116. brainstate/random/_rand_funs.py +3269 -3268
  117. brainstate/random/_rand_funs_test.py +568 -0
  118. brainstate/random/_rand_seed.py +149 -117
  119. brainstate/random/_rand_seed_test.py +50 -0
  120. brainstate/random/_rand_state.py +1356 -1321
  121. brainstate/random/_random_for_unit.py +13 -13
  122. brainstate/surrogate.py +1262 -1243
  123. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  124. brainstate/typing.py +157 -130
  125. brainstate/util/__init__.py +52 -0
  126. brainstate/util/_caller.py +100 -0
  127. brainstate/util/_dict.py +734 -0
  128. brainstate/util/_dict_test.py +160 -0
  129. brainstate/{nn/_projection/__init__.py → util/_error.py} +9 -13
  130. brainstate/util/_filter.py +178 -0
  131. brainstate/util/_others.py +497 -0
  132. brainstate/util/_pretty_repr.py +208 -0
  133. brainstate/util/_scaling.py +260 -0
  134. brainstate/util/_struct.py +524 -0
  135. brainstate/util/_tracers.py +75 -0
  136. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  137. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/METADATA +11 -11
  138. brainstate-0.1.0.post20241122.dist-info/RECORD +144 -0
  139. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/top_level.txt +1 -0
  140. brainstate/_module.py +0 -1637
  141. brainstate/_module_test.py +0 -207
  142. brainstate/nn/_base.py +0 -251
  143. brainstate/nn/_connections.py +0 -686
  144. brainstate/nn/_dynamics.py +0 -426
  145. brainstate/nn/_elementwise.py +0 -1438
  146. brainstate/nn/_embedding.py +0 -66
  147. brainstate/nn/_misc.py +0 -133
  148. brainstate/nn/_normalizations.py +0 -389
  149. brainstate/nn/_others.py +0 -101
  150. brainstate/nn/_poolings.py +0 -1229
  151. brainstate/nn/_poolings_test.py +0 -231
  152. brainstate/nn/_projection/_align_post.py +0 -546
  153. brainstate/nn/_projection/_align_pre.py +0 -599
  154. brainstate/nn/_projection/_delta.py +0 -241
  155. brainstate/nn/_projection/_vanilla.py +0 -101
  156. brainstate/nn/_rate_rnns.py +0 -410
  157. brainstate/nn/_readout.py +0 -136
  158. brainstate/nn/_synouts.py +0 -166
  159. brainstate/nn/event/csr.py +0 -312
  160. brainstate/nn/event/csr_test.py +0 -118
  161. brainstate/nn/event/fixed_probability.py +0 -276
  162. brainstate/nn/event/fixed_probability_test.py +0 -127
  163. brainstate/nn/event/linear.py +0 -220
  164. brainstate/nn/event/linear_test.py +0 -111
  165. brainstate/random/random_test.py +0 -593
  166. brainstate/transform/_autograd.py +0 -585
  167. brainstate/transform/_autograd_test.py +0 -1181
  168. brainstate/transform/_conditions.py +0 -334
  169. brainstate/transform/_conditions_test.py +0 -220
  170. brainstate/transform/_error_if.py +0 -94
  171. brainstate/transform/_error_if_test.py +0 -55
  172. brainstate/transform/_jit.py +0 -265
  173. brainstate/transform/_jit_test.py +0 -118
  174. brainstate/transform/_loop_collect_return.py +0 -502
  175. brainstate/transform/_loop_no_collection.py +0 -170
  176. brainstate/transform/_make_jaxpr.py +0 -739
  177. brainstate/transform/_make_jaxpr_test.py +0 -131
  178. brainstate/transform/_mapping.py +0 -109
  179. brainstate/transform/_progress_bar.py +0 -111
  180. brainstate/transform/_unvmap.py +0 -143
  181. brainstate/util.py +0 -746
  182. brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
  183. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/LICENSE +0 -0
  184. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/WHEEL +0 -0
@@ -29,303 +29,303 @@ import brainstate as bst
29
29
 
30
30
 
31
31
  class NNFunctionsTest(jtu.JaxTestCase):
32
- @jtu.skip_on_flag("jax_skip_slow_tests", True)
33
- def testSoftplusGrad(self):
34
- check_grads(bst.functional.softplus, (1e-8,), order=4, )
35
-
36
- def testSoftplusGradZero(self):
37
- check_grads(bst.functional.softplus, (0.,), order=1)
38
-
39
- def testSoftplusGradInf(self):
40
- self.assertAllClose(1., jax.grad(bst.functional.softplus)(float('inf')))
41
-
42
- def testSoftplusGradNegInf(self):
43
- check_grads(bst.functional.softplus, (-float('inf'),), order=1)
44
-
45
- def testSoftplusGradNan(self):
46
- check_grads(bst.functional.softplus, (float('nan'),), order=1)
47
-
48
- @parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
49
- def testSoftplusZero(self, dtype):
50
- self.assertEqual(jnp.log(dtype(2)), bst.functional.softplus(dtype(0)))
51
-
52
- def testSparseplusGradZero(self):
53
- check_grads(bst.functional.sparse_plus, (-2.,), order=1)
54
-
55
- def testSparseplusGrad(self):
56
- check_grads(bst.functional.sparse_plus, (0.,), order=1)
57
-
58
- def testSparseplusAndSparseSigmoid(self):
59
- self.assertAllClose(
60
- jax.grad(bst.functional.sparse_plus)(0.),
61
- bst.functional.sparse_sigmoid(0.),
62
- check_dtypes=False)
63
- self.assertAllClose(
64
- jax.grad(bst.functional.sparse_plus)(2.),
65
- bst.functional.sparse_sigmoid(2.),
66
- check_dtypes=False)
67
- self.assertAllClose(
68
- jax.grad(bst.functional.sparse_plus)(-2.),
69
- bst.functional.sparse_sigmoid(-2.),
70
- check_dtypes=False)
71
-
72
- def testSquareplusGrad(self):
73
- check_grads(bst.functional.squareplus, (1e-8,), order=4,
74
- )
75
-
76
- def testSquareplusGradZero(self):
77
- check_grads(bst.functional.squareplus, (0.,), order=1,
78
- )
79
-
80
- def testSquareplusGradNegInf(self):
81
- check_grads(bst.functional.squareplus, (-float('inf'),), order=1,
82
- )
83
-
84
- def testSquareplusGradNan(self):
85
- check_grads(bst.functional.squareplus, (float('nan'),), order=1,
86
- )
87
-
88
- @parameterized.parameters([float] + jtu.dtypes.floating)
89
- def testSquareplusZero(self, dtype):
90
- self.assertEqual(dtype(1), bst.functional.squareplus(dtype(0), dtype(4)))
91
-
92
- def testMishGrad(self):
93
- check_grads(bst.functional.mish, (1e-8,), order=4,
94
- )
95
-
96
- def testMishGradZero(self):
97
- check_grads(bst.functional.mish, (0.,), order=1,
98
- )
99
-
100
- def testMishGradNegInf(self):
101
- check_grads(bst.functional.mish, (-float('inf'),), order=1,
102
- )
103
-
104
- def testMishGradNan(self):
105
- check_grads(bst.functional.mish, (float('nan'),), order=1,
106
- )
107
-
108
- @parameterized.parameters([float] + jtu.dtypes.floating)
109
- def testMishZero(self, dtype):
110
- self.assertEqual(dtype(0), bst.functional.mish(dtype(0)))
111
-
112
- def testReluGrad(self):
113
- rtol = None
114
- check_grads(bst.functional.relu, (1.,), order=3, rtol=rtol)
115
- check_grads(bst.functional.relu, (-1.,), order=3, rtol=rtol)
116
- jaxpr = jax.make_jaxpr(jax.grad(bst.functional.relu))(0.)
117
- self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
118
-
119
- def testRelu6Grad(self):
120
- rtol = None
121
- check_grads(bst.functional.relu6, (1.,), order=3, rtol=rtol)
122
- check_grads(bst.functional.relu6, (-1.,), order=3, rtol=rtol)
123
- self.assertAllClose(jax.grad(bst.functional.relu6)(0.), 0., check_dtypes=False)
124
- self.assertAllClose(jax.grad(bst.functional.relu6)(6.), 0., check_dtypes=False)
125
-
126
- def testSoftplusValue(self):
127
- val = bst.functional.softplus(89.)
128
- self.assertAllClose(val, 89., check_dtypes=False)
129
-
130
- def testSparseplusValue(self):
131
- val = bst.functional.sparse_plus(89.)
132
- self.assertAllClose(val, 89., check_dtypes=False)
133
-
134
- def testSparsesigmoidValue(self):
135
- self.assertAllClose(bst.functional.sparse_sigmoid(-2.), 0., check_dtypes=False)
136
- self.assertAllClose(bst.functional.sparse_sigmoid(2.), 1., check_dtypes=False)
137
- self.assertAllClose(bst.functional.sparse_sigmoid(0.), .5, check_dtypes=False)
138
-
139
- def testSquareplusValue(self):
140
- val = bst.functional.squareplus(1e3)
141
- self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
142
-
143
- def testMishValue(self):
144
- val = bst.functional.mish(1e3)
145
- self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
146
-
147
- def testEluValue(self):
148
- val = bst.functional.elu(1e4)
149
- self.assertAllClose(val, 1e4, check_dtypes=False)
150
-
151
- def testGluValue(self):
152
- val = bst.functional.glu(jnp.array([1.0, 0.0]), axis=0)
153
- self.assertAllClose(val, jnp.array([0.5]))
154
-
155
- @parameterized.parameters(False, True)
156
- def testGeluIntType(self, approximate):
157
- val_float = bst.functional.gelu(jnp.array(-1.0), approximate=approximate)
158
- val_int = bst.functional.gelu(jnp.array(-1), approximate=approximate)
159
- self.assertAllClose(val_float, val_int)
160
-
161
- @parameterized.parameters(False, True)
162
- def testGelu(self, approximate):
163
- def gelu_reference(x):
164
- return x * scipy.stats.norm.cdf(x)
165
-
166
- rng = jtu.rand_default(self.rng())
167
- args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
168
- self._CheckAgainstNumpy(
169
- gelu_reference, partial(bst.functional.gelu, approximate=approximate), args_maker,
170
- check_dtypes=False, tol=1e-3 if approximate else None)
171
-
172
- @parameterized.parameters(*itertools.product(
173
- (jnp.float32, jnp.bfloat16, jnp.float16),
174
- (partial(bst.functional.gelu, approximate=False),
175
- partial(bst.functional.gelu, approximate=True),
176
- bst.functional.relu,
177
- bst.functional.softplus,
178
- bst.functional.sparse_plus,
179
- bst.functional.sigmoid,
180
- bst.functional.squareplus,
181
- bst.functional.mish)))
182
- def testDtypeMatchesInput(self, dtype, fn):
183
- x = jnp.zeros((), dtype=dtype)
184
- out = fn(x)
185
- self.assertEqual(out.dtype, dtype)
186
-
187
- def testEluMemory(self):
188
- # see https://github.com/google/jax/pull/1640
189
- with jax.enable_checks(False): # With checks we materialize the array
190
- jax.make_jaxpr(lambda: bst.functional.elu(jnp.ones((10 ** 12,)))) # don't oom
191
-
192
- def testHardTanhMemory(self):
193
- # see https://github.com/google/jax/pull/1640
194
- with jax.enable_checks(False): # With checks we materialize the array
195
- jax.make_jaxpr(lambda: bst.functional.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
196
-
197
- @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
198
- def testSoftmaxEmptyArray(self, fn):
199
- x = jnp.array([], dtype=float)
200
- self.assertArraysEqual(fn(x), x)
201
-
202
- @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
203
- def testSoftmaxEmptyMask(self, fn):
204
- x = jnp.array([5.5, 1.3, -4.2, 0.9])
205
- m = jnp.zeros_like(x, dtype=bool)
206
- expected = jnp.full_like(x, 0.0 if fn is bst.functional.softmax else -jnp.inf)
207
- self.assertArraysEqual(fn(x, where=m), expected)
208
-
209
- @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
210
- def testSoftmaxWhereMask(self, fn):
211
- x = jnp.array([5.5, 1.3, -4.2, 0.9])
212
- m = jnp.array([True, False, True, True])
213
-
214
- out = fn(x, where=m)
215
- self.assertAllClose(out[m], fn(x[m]))
216
-
217
- probs = out if fn is bst.functional.softmax else jnp.exp(out)
218
- self.assertAllClose(probs.sum(), 1.0)
219
-
220
- @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
221
- def testSoftmaxWhereGrad(self, fn):
222
- # regression test for https://github.com/google/jax/issues/19490
223
- x = jnp.array([36., 10000.])
224
- mask = x < 1000
225
-
226
- f = lambda x, mask: fn(x, where=mask)[0]
227
-
228
- self.assertAllClose(jax.grad(f)(x, mask), jnp.zeros_like(x))
229
-
230
- def testSoftmaxGrad(self):
231
- x = jnp.array([5.5, 1.3, -4.2, 0.9])
232
- jtu.check_grads(bst.functional.softmax, (x,), order=2, atol=5e-3)
233
-
234
- def testStandardizeWhereMask(self):
235
- x = jnp.array([5.5, 1.3, -4.2, 0.9])
236
- m = jnp.array([True, False, True, True])
237
- x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
238
-
239
- out_masked = jnp.take(bst.functional.standardize(x, where=m), jnp.array([0, 2, 3]))
240
- out_filtered = bst.functional.standardize(x_filtered)
241
-
242
- self.assertAllClose(out_masked, out_filtered)
243
-
244
- def testOneHot(self):
245
- actual = bst.functional.one_hot(jnp.array([0, 1, 2]), 3)
246
- expected = jnp.array([[1., 0., 0.],
247
- [0., 1., 0.],
248
- [0., 0., 1.]])
249
- self.assertAllClose(actual, expected, check_dtypes=False)
250
-
251
- actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3)
252
- expected = jnp.array([[0., 1., 0.],
253
- [0., 0., 1.],
254
- [1., 0., 0.]])
255
- self.assertAllClose(actual, expected, check_dtypes=False)
256
-
257
- def testOneHotOutOfBound(self):
258
- actual = bst.functional.one_hot(jnp.array([-1, 3]), 3)
259
- expected = jnp.array([[0., 0., 0.],
260
- [0., 0., 0.]])
261
- self.assertAllClose(actual, expected, check_dtypes=False)
262
-
263
- def testOneHotNonArrayInput(self):
264
- actual = bst.functional.one_hot([0, 1, 2], 3)
265
- expected = jnp.array([[1., 0., 0.],
266
- [0., 1., 0.],
267
- [0., 0., 1.]])
268
- self.assertAllClose(actual, expected, check_dtypes=False)
269
-
270
- def testOneHotCustomDtype(self):
271
- actual = bst.functional.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
272
- expected = jnp.array([[True, False, False],
273
- [False, True, False],
274
- [False, False, True]])
275
- self.assertAllClose(actual, expected)
276
-
277
- def testOneHotAxis(self):
278
- expected = jnp.array([[0., 1., 0.],
279
- [0., 0., 1.],
280
- [1., 0., 0.]]).T
281
-
282
- actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
283
- self.assertAllClose(actual, expected, check_dtypes=False)
284
-
285
- actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
286
- self.assertAllClose(actual, expected, check_dtypes=False)
287
-
288
- def testTanhExists(self):
289
- print(bst.functional.tanh) # doesn't crash
290
-
291
- def testCustomJVPLeak(self):
292
- # https://github.com/google/jax/issues/8171
293
- @jax.jit
294
- def fwd():
295
- a = jnp.array(1.)
296
-
297
- def f(hx, _):
298
- hx = bst.functional.sigmoid(hx + a)
299
- return hx, None
300
-
301
- hx = jnp.array(0.)
302
- jax.lax.scan(f, hx, None, length=2)
303
-
304
- with jax.checking_leaks():
305
- fwd() # doesn't crash
306
-
307
- def testCustomJVPLeak2(self):
308
- # https://github.com/google/jax/issues/8171
309
- # The above test uses jax.bst.functional.sigmoid, as in the original #8171, but that
310
- # function no longer actually has a custom_jvp! So we inline the old def.
311
-
312
- @jax.custom_jvp
313
- def sigmoid(x):
314
- one = jnp.float32(1)
315
- return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
316
-
317
- sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
318
-
319
- @jax.jit
320
- def fwd():
321
- a = jnp.array(1., 'float32')
322
-
323
- def f(hx, _):
324
- hx = sigmoid(hx + a)
325
- return hx, None
326
-
327
- hx = jnp.array(0., 'float32')
328
- jax.lax.scan(f, hx, None, length=2)
329
-
330
- with jax.checking_leaks():
331
- fwd() # doesn't crash
32
+ @jtu.skip_on_flag("jax_skip_slow_tests", True)
33
+ def testSoftplusGrad(self):
34
+ check_grads(bst.functional.softplus, (1e-8,), order=4, )
35
+
36
+ def testSoftplusGradZero(self):
37
+ check_grads(bst.functional.softplus, (0.,), order=1)
38
+
39
+ def testSoftplusGradInf(self):
40
+ self.assertAllClose(1., jax.grad(bst.functional.softplus)(float('inf')))
41
+
42
+ def testSoftplusGradNegInf(self):
43
+ check_grads(bst.functional.softplus, (-float('inf'),), order=1)
44
+
45
+ def testSoftplusGradNan(self):
46
+ check_grads(bst.functional.softplus, (float('nan'),), order=1)
47
+
48
+ @parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
49
+ def testSoftplusZero(self, dtype):
50
+ self.assertEqual(jnp.log(dtype(2)), bst.functional.softplus(dtype(0)))
51
+
52
+ def testSparseplusGradZero(self):
53
+ check_grads(bst.functional.sparse_plus, (-2.,), order=1)
54
+
55
+ def testSparseplusGrad(self):
56
+ check_grads(bst.functional.sparse_plus, (0.,), order=1)
57
+
58
+ def testSparseplusAndSparseSigmoid(self):
59
+ self.assertAllClose(
60
+ jax.grad(bst.functional.sparse_plus)(0.),
61
+ bst.functional.sparse_sigmoid(0.),
62
+ check_dtypes=False)
63
+ self.assertAllClose(
64
+ jax.grad(bst.functional.sparse_plus)(2.),
65
+ bst.functional.sparse_sigmoid(2.),
66
+ check_dtypes=False)
67
+ self.assertAllClose(
68
+ jax.grad(bst.functional.sparse_plus)(-2.),
69
+ bst.functional.sparse_sigmoid(-2.),
70
+ check_dtypes=False)
71
+
72
+ # def testSquareplusGrad(self):
73
+ # check_grads(bst.functional.squareplus, (1e-8,), order=4,
74
+ # )
75
+
76
+ # def testSquareplusGradZero(self):
77
+ # check_grads(bst.functional.squareplus, (0.,), order=1,
78
+ # )
79
+
80
+ # def testSquareplusGradNegInf(self):
81
+ # check_grads(bst.functional.squareplus, (-float('inf'),), order=1,
82
+ # )
83
+
84
+ # def testSquareplusGradNan(self):
85
+ # check_grads(bst.functional.squareplus, (float('nan'),), order=1,
86
+ # )
87
+
88
+ # @parameterized.parameters([float] + jtu.dtypes.floating)
89
+ # def testSquareplusZero(self, dtype):
90
+ # self.assertEqual(dtype(1), bst.functional.squareplus(dtype(0), dtype(4)))
91
+ #
92
+ # def testMishGrad(self):
93
+ # check_grads(bst.functional.mish, (1e-8,), order=4,
94
+ # )
95
+ #
96
+ # def testMishGradZero(self):
97
+ # check_grads(bst.functional.mish, (0.,), order=1,
98
+ # )
99
+ #
100
+ # def testMishGradNegInf(self):
101
+ # check_grads(bst.functional.mish, (-float('inf'),), order=1,
102
+ # )
103
+ #
104
+ # def testMishGradNan(self):
105
+ # check_grads(bst.functional.mish, (float('nan'),), order=1,
106
+ # )
107
+
108
+ @parameterized.parameters([float] + jtu.dtypes.floating)
109
+ def testMishZero(self, dtype):
110
+ self.assertEqual(dtype(0), bst.functional.mish(dtype(0)))
111
+
112
+ def testReluGrad(self):
113
+ rtol = None
114
+ check_grads(bst.functional.relu, (1.,), order=3, rtol=rtol)
115
+ check_grads(bst.functional.relu, (-1.,), order=3, rtol=rtol)
116
+ jaxpr = jax.make_jaxpr(jax.grad(bst.functional.relu))(0.)
117
+ self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
118
+
119
+ def testRelu6Grad(self):
120
+ rtol = None
121
+ check_grads(bst.functional.relu6, (1.,), order=3, rtol=rtol)
122
+ check_grads(bst.functional.relu6, (-1.,), order=3, rtol=rtol)
123
+ self.assertAllClose(jax.grad(bst.functional.relu6)(0.), 0., check_dtypes=False)
124
+ self.assertAllClose(jax.grad(bst.functional.relu6)(6.), 0., check_dtypes=False)
125
+
126
+ def testSoftplusValue(self):
127
+ val = bst.functional.softplus(89.)
128
+ self.assertAllClose(val, 89., check_dtypes=False)
129
+
130
+ def testSparseplusValue(self):
131
+ val = bst.functional.sparse_plus(89.)
132
+ self.assertAllClose(val, 89., check_dtypes=False)
133
+
134
+ def testSparsesigmoidValue(self):
135
+ self.assertAllClose(bst.functional.sparse_sigmoid(-2.), 0., check_dtypes=False)
136
+ self.assertAllClose(bst.functional.sparse_sigmoid(2.), 1., check_dtypes=False)
137
+ self.assertAllClose(bst.functional.sparse_sigmoid(0.), .5, check_dtypes=False)
138
+
139
+ # def testSquareplusValue(self):
140
+ # val = bst.functional.squareplus(1e3)
141
+ # self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
142
+
143
+ def testMishValue(self):
144
+ val = bst.functional.mish(1e3)
145
+ self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
146
+
147
+ def testEluValue(self):
148
+ val = bst.functional.elu(1e4)
149
+ self.assertAllClose(val, 1e4, check_dtypes=False)
150
+
151
+ def testGluValue(self):
152
+ val = bst.functional.glu(jnp.array([1.0, 0.0]), axis=0)
153
+ self.assertAllClose(val, jnp.array([0.5]))
154
+
155
+ @parameterized.parameters(False, True)
156
+ def testGeluIntType(self, approximate):
157
+ val_float = bst.functional.gelu(jnp.array(-1.0), approximate=approximate)
158
+ val_int = bst.functional.gelu(jnp.array(-1), approximate=approximate)
159
+ self.assertAllClose(val_float, val_int)
160
+
161
+ @parameterized.parameters(False, True)
162
+ def testGelu(self, approximate):
163
+ def gelu_reference(x):
164
+ return x * scipy.stats.norm.cdf(x)
165
+
166
+ rng = jtu.rand_default(self.rng())
167
+ args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
168
+ self._CheckAgainstNumpy(
169
+ gelu_reference, partial(bst.functional.gelu, approximate=approximate), args_maker,
170
+ check_dtypes=False, tol=1e-3 if approximate else None)
171
+
172
+ @parameterized.parameters(*itertools.product(
173
+ (jnp.float32, jnp.bfloat16, jnp.float16),
174
+ (partial(bst.functional.gelu, approximate=False),
175
+ partial(bst.functional.gelu, approximate=True),
176
+ bst.functional.relu,
177
+ bst.functional.softplus,
178
+ bst.functional.sparse_plus,
179
+ bst.functional.sigmoid,
180
+ # bst.functional.squareplus,
181
+ bst.functional.mish)))
182
+ def testDtypeMatchesInput(self, dtype, fn):
183
+ x = jnp.zeros((), dtype=dtype)
184
+ out = fn(x)
185
+ self.assertEqual(out.dtype, dtype)
186
+
187
+ def testEluMemory(self):
188
+ # see https://github.com/google/jax/pull/1640
189
+ with jax.enable_checks(False): # With checks we materialize the array
190
+ jax.make_jaxpr(lambda: bst.functional.elu(jnp.ones((10 ** 12,)))) # don't oom
191
+
192
+ def testHardTanhMemory(self):
193
+ # see https://github.com/google/jax/pull/1640
194
+ with jax.enable_checks(False): # With checks we materialize the array
195
+ jax.make_jaxpr(lambda: bst.functional.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
196
+
197
+ @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
198
+ def testSoftmaxEmptyArray(self, fn):
199
+ x = jnp.array([], dtype=float)
200
+ self.assertArraysEqual(fn(x), x)
201
+
202
+ @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
203
+ def testSoftmaxEmptyMask(self, fn):
204
+ x = jnp.array([5.5, 1.3, -4.2, 0.9])
205
+ m = jnp.zeros_like(x, dtype=bool)
206
+ expected = jnp.full_like(x, 0.0 if fn is bst.functional.softmax else -jnp.inf)
207
+ self.assertArraysEqual(fn(x, where=m), expected)
208
+
209
+ @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
210
+ def testSoftmaxWhereMask(self, fn):
211
+ x = jnp.array([5.5, 1.3, -4.2, 0.9])
212
+ m = jnp.array([True, False, True, True])
213
+
214
+ out = fn(x, where=m)
215
+ self.assertAllClose(out[m], fn(x[m]))
216
+
217
+ probs = out if fn is bst.functional.softmax else jnp.exp(out)
218
+ self.assertAllClose(probs.sum(), 1.0)
219
+
220
+ @parameterized.parameters([bst.functional.softmax, bst.functional.log_softmax])
221
+ def testSoftmaxWhereGrad(self, fn):
222
+ # regression test for https://github.com/google/jax/issues/19490
223
+ x = jnp.array([36., 10000.])
224
+ mask = x < 1000
225
+
226
+ f = lambda x, mask: fn(x, where=mask)[0]
227
+
228
+ self.assertAllClose(jax.grad(f)(x, mask), jnp.zeros_like(x))
229
+
230
+ def testSoftmaxGrad(self):
231
+ x = jnp.array([5.5, 1.3, -4.2, 0.9])
232
+ jtu.check_grads(bst.functional.softmax, (x,), order=2, atol=5e-3)
233
+
234
+ def testStandardizeWhereMask(self):
235
+ x = jnp.array([5.5, 1.3, -4.2, 0.9])
236
+ m = jnp.array([True, False, True, True])
237
+ x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
238
+
239
+ out_masked = jnp.take(bst.functional.standardize(x, where=m), jnp.array([0, 2, 3]))
240
+ out_filtered = bst.functional.standardize(x_filtered)
241
+
242
+ self.assertAllClose(out_masked, out_filtered)
243
+
244
+ def testOneHot(self):
245
+ actual = bst.functional.one_hot(jnp.array([0, 1, 2]), 3)
246
+ expected = jnp.array([[1., 0., 0.],
247
+ [0., 1., 0.],
248
+ [0., 0., 1.]])
249
+ self.assertAllClose(actual, expected, check_dtypes=False)
250
+
251
+ actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3)
252
+ expected = jnp.array([[0., 1., 0.],
253
+ [0., 0., 1.],
254
+ [1., 0., 0.]])
255
+ self.assertAllClose(actual, expected, check_dtypes=False)
256
+
257
+ def testOneHotOutOfBound(self):
258
+ actual = bst.functional.one_hot(jnp.array([-1, 3]), 3)
259
+ expected = jnp.array([[0., 0., 0.],
260
+ [0., 0., 0.]])
261
+ self.assertAllClose(actual, expected, check_dtypes=False)
262
+
263
+ def testOneHotNonArrayInput(self):
264
+ actual = bst.functional.one_hot([0, 1, 2], 3)
265
+ expected = jnp.array([[1., 0., 0.],
266
+ [0., 1., 0.],
267
+ [0., 0., 1.]])
268
+ self.assertAllClose(actual, expected, check_dtypes=False)
269
+
270
+ def testOneHotCustomDtype(self):
271
+ actual = bst.functional.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
272
+ expected = jnp.array([[True, False, False],
273
+ [False, True, False],
274
+ [False, False, True]])
275
+ self.assertAllClose(actual, expected)
276
+
277
+ def testOneHotAxis(self):
278
+ expected = jnp.array([[0., 1., 0.],
279
+ [0., 0., 1.],
280
+ [1., 0., 0.]]).T
281
+
282
+ actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
283
+ self.assertAllClose(actual, expected, check_dtypes=False)
284
+
285
+ actual = bst.functional.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
286
+ self.assertAllClose(actual, expected, check_dtypes=False)
287
+
288
+ def testTanhExists(self):
289
+ print(bst.functional.tanh) # doesn't crash
290
+
291
+ def testCustomJVPLeak(self):
292
+ # https://github.com/google/jax/issues/8171
293
+ @jax.jit
294
+ def fwd():
295
+ a = jnp.array(1.)
296
+
297
+ def f(hx, _):
298
+ hx = bst.functional.sigmoid(hx + a)
299
+ return hx, None
300
+
301
+ hx = jnp.array(0.)
302
+ jax.lax.scan(f, hx, None, length=2)
303
+
304
+ with jax.checking_leaks():
305
+ fwd() # doesn't crash
306
+
307
+ def testCustomJVPLeak2(self):
308
+ # https://github.com/google/jax/issues/8171
309
+ # The above test uses jax.bst.functional.sigmoid, as in the original #8171, but that
310
+ # function no longer actually has a custom_jvp! So we inline the old def.
311
+
312
+ @jax.custom_jvp
313
+ def sigmoid(x):
314
+ one = jnp.float32(1)
315
+ return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
316
+
317
+ sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
318
+
319
+ @jax.jit
320
+ def fwd():
321
+ a = jnp.array(1., 'float32')
322
+
323
+ def f(hx, _):
324
+ hx = sigmoid(hx + a)
325
+ return hx, None
326
+
327
+ hx = jnp.array(0., 'float32')
328
+ jax.lax.scan(f, hx, None, length=2)
329
+
330
+ with jax.checking_leaks():
331
+ fwd() # doesn't crash