brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0.post20241122__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. benchmark/COBA_2005.py +125 -0
  2. benchmark/CUBA_2005.py +149 -0
  3. brainstate/__init__.py +31 -11
  4. brainstate/_state.py +760 -316
  5. brainstate/_state_test.py +41 -12
  6. brainstate/_utils.py +31 -4
  7. brainstate/augment/__init__.py +40 -0
  8. brainstate/augment/_autograd.py +611 -0
  9. brainstate/augment/_autograd_test.py +1193 -0
  10. brainstate/augment/_eval_shape.py +102 -0
  11. brainstate/augment/_eval_shape_test.py +40 -0
  12. brainstate/augment/_mapping.py +525 -0
  13. brainstate/augment/_mapping_test.py +210 -0
  14. brainstate/augment/_random.py +99 -0
  15. brainstate/{transform → compile}/__init__.py +25 -13
  16. brainstate/compile/_ad_checkpoint.py +204 -0
  17. brainstate/compile/_ad_checkpoint_test.py +51 -0
  18. brainstate/compile/_conditions.py +259 -0
  19. brainstate/compile/_conditions_test.py +221 -0
  20. brainstate/compile/_error_if.py +94 -0
  21. brainstate/compile/_error_if_test.py +54 -0
  22. brainstate/compile/_jit.py +314 -0
  23. brainstate/compile/_jit_test.py +143 -0
  24. brainstate/compile/_loop_collect_return.py +516 -0
  25. brainstate/compile/_loop_collect_return_test.py +59 -0
  26. brainstate/compile/_loop_no_collection.py +185 -0
  27. brainstate/compile/_loop_no_collection_test.py +51 -0
  28. brainstate/compile/_make_jaxpr.py +756 -0
  29. brainstate/compile/_make_jaxpr_test.py +134 -0
  30. brainstate/compile/_progress_bar.py +111 -0
  31. brainstate/compile/_unvmap.py +159 -0
  32. brainstate/compile/_util.py +147 -0
  33. brainstate/environ.py +408 -381
  34. brainstate/environ_test.py +34 -32
  35. brainstate/event/__init__.py +27 -0
  36. brainstate/event/_csr.py +316 -0
  37. brainstate/event/_csr_benchmark.py +14 -0
  38. brainstate/event/_csr_test.py +118 -0
  39. brainstate/event/_fixed_probability.py +708 -0
  40. brainstate/event/_fixed_probability_benchmark.py +128 -0
  41. brainstate/event/_fixed_probability_test.py +131 -0
  42. brainstate/event/_linear.py +359 -0
  43. brainstate/event/_linear_benckmark.py +82 -0
  44. brainstate/event/_linear_test.py +117 -0
  45. brainstate/{nn/event → event}/_misc.py +7 -7
  46. brainstate/event/_xla_custom_op.py +312 -0
  47. brainstate/event/_xla_custom_op_test.py +55 -0
  48. brainstate/functional/_activations.py +521 -511
  49. brainstate/functional/_activations_test.py +300 -300
  50. brainstate/functional/_normalization.py +43 -43
  51. brainstate/functional/_others.py +15 -15
  52. brainstate/functional/_spikes.py +49 -49
  53. brainstate/graph/__init__.py +33 -0
  54. brainstate/graph/_graph_context.py +443 -0
  55. brainstate/graph/_graph_context_test.py +65 -0
  56. brainstate/graph/_graph_convert.py +246 -0
  57. brainstate/graph/_graph_node.py +300 -0
  58. brainstate/graph/_graph_node_test.py +75 -0
  59. brainstate/graph/_graph_operation.py +1746 -0
  60. brainstate/graph/_graph_operation_test.py +724 -0
  61. brainstate/init/_base.py +28 -10
  62. brainstate/init/_generic.py +175 -172
  63. brainstate/init/_random_inits.py +470 -415
  64. brainstate/init/_random_inits_test.py +150 -0
  65. brainstate/init/_regular_inits.py +66 -69
  66. brainstate/init/_regular_inits_test.py +51 -0
  67. brainstate/mixin.py +236 -244
  68. brainstate/mixin_test.py +44 -46
  69. brainstate/nn/__init__.py +26 -51
  70. brainstate/nn/_collective_ops.py +199 -0
  71. brainstate/nn/_dyn_impl/__init__.py +46 -0
  72. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  73. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  74. brainstate/nn/_dyn_impl/_dynamics_synapse.py +315 -0
  75. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  76. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  77. brainstate/nn/{event/__init__.py → _dyn_impl/_projection_alignpost.py} +8 -8
  78. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  79. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  80. brainstate/nn/_dyn_impl/_readout.py +128 -0
  81. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  82. brainstate/nn/_dynamics/__init__.py +37 -0
  83. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  84. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  85. brainstate/nn/_dynamics/_projection_base.py +346 -0
  86. brainstate/nn/_dynamics/_state_delay.py +453 -0
  87. brainstate/nn/_dynamics/_synouts.py +161 -0
  88. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  89. brainstate/nn/_elementwise/__init__.py +22 -0
  90. brainstate/nn/_elementwise/_dropout.py +418 -0
  91. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  92. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  93. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  94. brainstate/nn/_exp_euler.py +97 -0
  95. brainstate/nn/_exp_euler_test.py +36 -0
  96. brainstate/nn/_interaction/__init__.py +41 -0
  97. brainstate/nn/_interaction/_conv.py +499 -0
  98. brainstate/nn/_interaction/_conv_test.py +239 -0
  99. brainstate/nn/_interaction/_embedding.py +59 -0
  100. brainstate/nn/_interaction/_linear.py +582 -0
  101. brainstate/nn/_interaction/_linear_test.py +42 -0
  102. brainstate/nn/_interaction/_normalizations.py +388 -0
  103. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  104. brainstate/nn/_interaction/_poolings.py +1179 -0
  105. brainstate/nn/_interaction/_poolings_test.py +219 -0
  106. brainstate/nn/_module.py +328 -0
  107. brainstate/nn/_module_test.py +211 -0
  108. brainstate/nn/metrics.py +309 -309
  109. brainstate/optim/__init__.py +14 -2
  110. brainstate/optim/_base.py +66 -0
  111. brainstate/optim/_lr_scheduler.py +363 -400
  112. brainstate/optim/_lr_scheduler_test.py +25 -24
  113. brainstate/optim/_optax_optimizer.py +121 -176
  114. brainstate/optim/_optax_optimizer_test.py +41 -1
  115. brainstate/optim/_sgd_optimizer.py +950 -1025
  116. brainstate/random/_rand_funs.py +3269 -3268
  117. brainstate/random/_rand_funs_test.py +568 -0
  118. brainstate/random/_rand_seed.py +149 -117
  119. brainstate/random/_rand_seed_test.py +50 -0
  120. brainstate/random/_rand_state.py +1356 -1321
  121. brainstate/random/_random_for_unit.py +13 -13
  122. brainstate/surrogate.py +1262 -1243
  123. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  124. brainstate/typing.py +157 -130
  125. brainstate/util/__init__.py +52 -0
  126. brainstate/util/_caller.py +100 -0
  127. brainstate/util/_dict.py +734 -0
  128. brainstate/util/_dict_test.py +160 -0
  129. brainstate/{nn/_projection/__init__.py → util/_error.py} +9 -13
  130. brainstate/util/_filter.py +178 -0
  131. brainstate/util/_others.py +497 -0
  132. brainstate/util/_pretty_repr.py +208 -0
  133. brainstate/util/_scaling.py +260 -0
  134. brainstate/util/_struct.py +524 -0
  135. brainstate/util/_tracers.py +75 -0
  136. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  137. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/METADATA +11 -11
  138. brainstate-0.1.0.post20241122.dist-info/RECORD +144 -0
  139. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/top_level.txt +1 -0
  140. brainstate/_module.py +0 -1637
  141. brainstate/_module_test.py +0 -207
  142. brainstate/nn/_base.py +0 -251
  143. brainstate/nn/_connections.py +0 -686
  144. brainstate/nn/_dynamics.py +0 -426
  145. brainstate/nn/_elementwise.py +0 -1438
  146. brainstate/nn/_embedding.py +0 -66
  147. brainstate/nn/_misc.py +0 -133
  148. brainstate/nn/_normalizations.py +0 -389
  149. brainstate/nn/_others.py +0 -101
  150. brainstate/nn/_poolings.py +0 -1229
  151. brainstate/nn/_poolings_test.py +0 -231
  152. brainstate/nn/_projection/_align_post.py +0 -546
  153. brainstate/nn/_projection/_align_pre.py +0 -599
  154. brainstate/nn/_projection/_delta.py +0 -241
  155. brainstate/nn/_projection/_vanilla.py +0 -101
  156. brainstate/nn/_rate_rnns.py +0 -410
  157. brainstate/nn/_readout.py +0 -136
  158. brainstate/nn/_synouts.py +0 -166
  159. brainstate/nn/event/csr.py +0 -312
  160. brainstate/nn/event/csr_test.py +0 -118
  161. brainstate/nn/event/fixed_probability.py +0 -276
  162. brainstate/nn/event/fixed_probability_test.py +0 -127
  163. brainstate/nn/event/linear.py +0 -220
  164. brainstate/nn/event/linear_test.py +0 -111
  165. brainstate/random/random_test.py +0 -593
  166. brainstate/transform/_autograd.py +0 -585
  167. brainstate/transform/_autograd_test.py +0 -1181
  168. brainstate/transform/_conditions.py +0 -334
  169. brainstate/transform/_conditions_test.py +0 -220
  170. brainstate/transform/_error_if.py +0 -94
  171. brainstate/transform/_error_if_test.py +0 -55
  172. brainstate/transform/_jit.py +0 -265
  173. brainstate/transform/_jit_test.py +0 -118
  174. brainstate/transform/_loop_collect_return.py +0 -502
  175. brainstate/transform/_loop_no_collection.py +0 -170
  176. brainstate/transform/_make_jaxpr.py +0 -739
  177. brainstate/transform/_make_jaxpr_test.py +0 -131
  178. brainstate/transform/_mapping.py +0 -109
  179. brainstate/transform/_progress_bar.py +0 -111
  180. brainstate/transform/_unvmap.py +0 -143
  181. brainstate/util.py +0 -746
  182. brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
  183. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/LICENSE +0 -0
  184. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/WHEEL +0 -0
@@ -1,426 +0,0 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- from __future__ import annotations
19
-
20
- from typing import Callable, Optional
21
-
22
- import jax
23
- import jax.numpy as jnp
24
-
25
- from ._base import ExplicitInOutSize
26
- from ._misc import exp_euler_step
27
- from brainstate import environ, init, surrogate
28
- from brainstate._module import Dynamics
29
- from brainstate._state import ShortTermState
30
- from brainstate.mixin import DelayedInit, Mode, AlignPost
31
- from brainstate.typing import DTypeLike, ArrayLike, Size
32
-
33
- __all__ = [
34
- # neuron models
35
- 'Neuron', 'IF', 'LIF', 'ALIF',
36
-
37
- # synapse models
38
- 'Synapse', 'Expon', 'STP', 'STD',
39
- ]
40
-
41
-
42
- class Neuron(Dynamics, ExplicitInOutSize, DelayedInit):
43
- """
44
- Base class for neuronal dynamics.
45
-
46
- Note here we use the ``ExplicitInOutSize`` mixin to explicitly specify the input and output shape.
47
-
48
- Moreover, all neuron models are differentiable since they use surrogate gradient functions to
49
- generate the spiking state.
50
- """
51
- __module__ = 'brainstate.nn'
52
-
53
- def __init__(
54
- self,
55
- in_size: Size,
56
- keep_size: bool = False,
57
- spk_fun: Callable = surrogate.InvSquareGrad(),
58
- spk_dtype: DTypeLike = None,
59
- spk_reset: str = 'soft',
60
- detach_spk: bool = False,
61
- mode: Optional[Mode] = None,
62
- name: Optional[str] = None,
63
- ):
64
- super().__init__(in_size, keep_size=keep_size, mode=mode, name=name)
65
- self.in_size = tuple(self.varshape)
66
- self.out_size = tuple(self.varshape)
67
- self.spk_reset = spk_reset
68
- self.spk_dtype = spk_dtype
69
- self.spk_fun = spk_fun
70
- self.detach_spk = detach_spk
71
-
72
- def get_spike(self, *args, **kwargs):
73
- raise NotImplementedError
74
-
75
-
76
- class IF(Neuron):
77
- """Integrate-and-fire neuron model."""
78
- __module__ = 'brainstate.nn'
79
-
80
- def __init__(
81
- self,
82
- in_size: Size,
83
- keep_size: bool = False,
84
- tau: ArrayLike = 5.,
85
- V_th: ArrayLike = 1.,
86
- spk_fun: Callable = surrogate.ReluGrad(),
87
- spk_dtype: DTypeLike = None,
88
- spk_reset: str = 'soft',
89
- mode: Mode = None,
90
- name: str = None,
91
- ):
92
- super().__init__(in_size, keep_size=keep_size, name=name, mode=mode,
93
- spk_fun=spk_fun, spk_dtype=spk_dtype, spk_reset=spk_reset)
94
-
95
- # parameters
96
- self.tau = init.param(tau, self.varshape)
97
- self.V_th = init.param(V_th, self.varshape)
98
-
99
- def dv(self, v, t, x):
100
- x = self.sum_current_inputs(v, init=x)
101
- return (-v + x) / self.tau
102
-
103
- def init_state(self, batch_size: int = None, **kwargs):
104
- self.V = ShortTermState(init.param(jnp.zeros, self.varshape, batch_size))
105
-
106
- def reset_state(self, batch_size: int = None, **kwargs):
107
- self.V.value = init.param(jnp.zeros, self.varshape, batch_size)
108
-
109
- def get_spike(self, V=None):
110
- V = self.V.value if V is None else V
111
- v_scaled = (V - self.V_th) / self.V_th
112
- return self.spk_fun(v_scaled)
113
-
114
- def update(self, x=0.):
115
- # reset
116
- last_V = self.V.value
117
- last_spike = self.get_spike(self.V.value)
118
- V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_V)
119
- V = last_V - V_th * last_spike
120
- # membrane potential
121
- V = exp_euler_step(self.dv, V, environ.get('t'), x)
122
- V = V + self.sum_delta_inputs()
123
- self.V.value = V
124
- return self.get_spike(V)
125
-
126
-
127
- class LIF(Neuron):
128
- """Leaky integrate-and-fire neuron model."""
129
- __module__ = 'brainstate.nn'
130
-
131
- def __init__(
132
- self,
133
- in_size: Size,
134
- keep_size: bool = False,
135
- tau: ArrayLike = 5.,
136
- V_th: ArrayLike = 1.,
137
- V_reset: ArrayLike = 0.,
138
- V_rest: ArrayLike = 0.,
139
- spk_fun: Callable = surrogate.ReluGrad(),
140
- spk_dtype: DTypeLike = None,
141
- spk_reset: str = 'soft',
142
- mode: Mode = None,
143
- name: str = None,
144
- ):
145
- super().__init__(in_size,
146
- keep_size=keep_size,
147
- name=name,
148
- mode=mode,
149
- spk_fun=spk_fun,
150
- spk_dtype=spk_dtype,
151
- spk_reset=spk_reset)
152
-
153
- # parameters
154
- self.tau = init.param(tau, self.varshape)
155
- self.V_th = init.param(V_th, self.varshape)
156
- self.V_rest = init.param(V_rest, self.varshape)
157
- self.V_reset = init.param(V_reset, self.varshape)
158
-
159
- def dv(self, v, t, x):
160
- x = self.sum_current_inputs(v, init=x)
161
- return (-v + self.V_rest + x) / self.tau
162
-
163
- def init_state(self, batch_size: int = None, **kwargs):
164
- self.V = ShortTermState(init.param(init.Constant(self.V_reset), self.varshape, batch_size))
165
-
166
- def reset_state(self, batch_size: int = None, **kwargs):
167
- self.V.value = init.param(init.Constant(self.V_reset), self.varshape, batch_size)
168
-
169
- def get_spike(self, V=None):
170
- V = self.V.value if V is None else V
171
- v_scaled = (V - self.V_th) / self.V_th
172
- return self.spk_fun(v_scaled)
173
-
174
- def update(self, x=0.):
175
- last_v = self.V.value
176
- lst_spk = self.get_spike(last_v)
177
- V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
178
- V = last_v - (V_th - self.V_reset) * lst_spk
179
- # membrane potential
180
- V = exp_euler_step(self.dv, V, environ.get('t'), x) + self.sum_delta_inputs()
181
- self.V.value = V
182
- return self.get_spike(V)
183
-
184
-
185
- class ALIF(Neuron):
186
- """Adaptive Leaky Integrate-and-Fire (LIF) neuron model."""
187
- __module__ = 'brainstate.nn'
188
-
189
- def __init__(
190
- self,
191
- in_size: Size,
192
- keep_size: bool = False,
193
- tau: ArrayLike = 5.,
194
- tau_a: ArrayLike = 100.,
195
- V_th: ArrayLike = 1.,
196
- beta: ArrayLike = 0.1,
197
- spk_fun: Callable = surrogate.ReluGrad(),
198
- spk_dtype: DTypeLike = None,
199
- spk_reset: str = 'soft',
200
- mode: Mode = None,
201
- name: str = None,
202
- ):
203
- super().__init__(in_size, keep_size=keep_size, name=name, mode=mode, spk_fun=spk_fun,
204
- spk_dtype=spk_dtype, spk_reset=spk_reset)
205
-
206
- # parameters
207
- self.tau = init.param(tau, self.varshape)
208
- self.tau_a = init.param(tau_a, self.varshape)
209
- self.V_th = init.param(V_th, self.varshape)
210
- self.beta = init.param(beta, self.varshape)
211
-
212
- def dv(self, v, t, x):
213
- x = self.sum_current_inputs(v, init=x)
214
- return (-v + x) / self.tau
215
-
216
- def da(self, a, t):
217
- return -a / self.tau_a
218
-
219
- def init_state(self, batch_size: int = None, **kwargs):
220
- self.V = ShortTermState(init.param(init.Constant(0.), self.varshape, batch_size))
221
- self.a = ShortTermState(init.param(init.Constant(0.), self.varshape, batch_size))
222
-
223
- def reset_state(self, batch_size: int = None, **kwargs):
224
- self.V.value = init.param(init.Constant(0.), self.varshape, batch_size)
225
- self.a.value = init.param(init.Constant(0.), self.varshape, batch_size)
226
-
227
- def get_spike(self, V=None, a=None):
228
- V = self.V.value if V is None else V
229
- a = self.a.value if a is None else a
230
- v_scaled = (V - self.V_th - self.beta * a) / self.V_th
231
- return self.spk_fun(v_scaled)
232
-
233
- def update(self, x=0.):
234
- last_v = self.V.value
235
- last_a = self.a.value
236
- lst_spk = self.get_spike(last_v, last_a)
237
- V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
238
- V = last_v - V_th * lst_spk
239
- a = last_a + lst_spk
240
- # membrane potential
241
- V = exp_euler_step(self.dv, V, environ.get('t'), x)
242
- a = exp_euler_step(self.da, a, environ.get('t'))
243
- self.V.value = V + self.sum_delta_inputs()
244
- self.a.value = a
245
- return self.get_spike(self.V.value, self.a.value)
246
-
247
-
248
- class Synapse(Dynamics, AlignPost, DelayedInit):
249
- """
250
- Base class for synapse dynamics.
251
- """
252
- __module__ = 'brainstate.nn'
253
-
254
-
255
- class Expon(Synapse):
256
- r"""Exponential decay synapse model.
257
-
258
- Args:
259
- tau: float. The time constant of decay. [ms]
260
- %s
261
- """
262
- __module__ = 'brainstate.nn'
263
-
264
- def __init__(
265
- self,
266
- size: Size,
267
- keep_size: bool = False,
268
- name: Optional[str] = None,
269
- mode: Optional[Mode] = None,
270
- tau: ArrayLike = 8.0,
271
- ):
272
- super().__init__(
273
- name=name,
274
- mode=mode,
275
- size=size,
276
- keep_size=keep_size
277
- )
278
-
279
- # parameters
280
- self.tau = init.param(tau, self.varshape)
281
-
282
- def dg(self, g, t):
283
- return -g / self.tau
284
-
285
- def init_state(self, batch_size: int = None, **kwargs):
286
- self.g = ShortTermState(init.param(init.Constant(0.), self.varshape, batch_size))
287
-
288
- def reset_state(self, batch_size: int = None, **kwargs):
289
- self.g.value = init.param(init.Constant(0.), self.varshape, batch_size)
290
-
291
- def update(self, x=None):
292
- self.g.value = exp_euler_step(self.dg, self.g.value, environ.get('t'))
293
- if x is not None:
294
- self.align_post_input_add(x)
295
- return self.g.value
296
-
297
- def align_post_input_add(self, x):
298
- self.g.value += x
299
-
300
- def return_info(self):
301
- return self.g
302
-
303
-
304
- class STP(Synapse):
305
- r"""Synaptic output with short-term plasticity.
306
-
307
- %s
308
-
309
- Args:
310
- tau_f: float, ArrayType, Callable. The time constant of short-term facilitation.
311
- tau_d: float, ArrayType, Callable. The time constant of short-term depression.
312
- U: float, ArrayType, Callable. The fraction of resources used per action potential.
313
- %s
314
- """
315
- __module__ = 'brainstate.nn'
316
-
317
- def __init__(
318
- self,
319
- size: Size,
320
- keep_size: bool = False,
321
- name: Optional[str] = None,
322
- mode: Optional[Mode] = None,
323
- U: ArrayLike = 0.15,
324
- tau_f: ArrayLike = 1500.,
325
- tau_d: ArrayLike = 200.,
326
- ):
327
- super().__init__(name=name,
328
- mode=mode,
329
- size=size,
330
- keep_size=keep_size)
331
-
332
- # parameters
333
- self.tau_f = init.param(tau_f, self.varshape)
334
- self.tau_d = init.param(tau_d, self.varshape)
335
- self.U = init.param(U, self.varshape)
336
-
337
- def init_state(self, batch_size: int = None, **kwargs):
338
- self.x = ShortTermState(init.param(init.Constant(1.), self.varshape, batch_size))
339
- self.u = ShortTermState(init.param(init.Constant(self.U), self.varshape, batch_size))
340
-
341
- def reset_state(self, batch_size: int = None, **kwargs):
342
- self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
343
- self.u.value = init.param(init.Constant(self.U), self.varshape, batch_size)
344
-
345
- def du(self, u, t):
346
- return self.U - u / self.tau_f
347
-
348
- def dx(self, x, t):
349
- return (1 - x) / self.tau_d
350
-
351
- def update(self, pre_spike):
352
- t = environ.get('t')
353
- u = exp_euler_step(self.du, self.u.value, t)
354
- x = exp_euler_step(self.dx, self.x.value, t)
355
-
356
- # --- original code:
357
- # if pre_spike.dtype == jax.numpy.bool_:
358
- # u = bm.where(pre_spike, u + self.U * (1 - self.u), u)
359
- # x = bm.where(pre_spike, x - u * self.x, x)
360
- # else:
361
- # u = pre_spike * (u + self.U * (1 - self.u)) + (1 - pre_spike) * u
362
- # x = pre_spike * (x - u * self.x) + (1 - pre_spike) * x
363
-
364
- # --- simplified code:
365
- u = u + pre_spike * self.U * (1 - self.u.value)
366
- x = x - pre_spike * u * self.x.value
367
-
368
- self.u.value = u
369
- self.x.value = x
370
- return u * x
371
-
372
-
373
- class STD(Synapse):
374
- r"""Synaptic output with short-term depression.
375
-
376
- %s
377
-
378
- Args:
379
- tau: float, ArrayType, Callable. The time constant of recovery of the synaptic vesicles.
380
- U: float, ArrayType, Callable. The fraction of resources used per action potential.
381
- %s
382
- """
383
- __module__ = 'brainstate.nn'
384
-
385
- def __init__(
386
- self,
387
- size: Size,
388
- keep_size: bool = False,
389
- name: Optional[str] = None,
390
- mode: Optional[Mode] = None,
391
- # synapse parameters
392
- tau: ArrayLike = 200.,
393
- U: ArrayLike = 0.07,
394
- ):
395
- super().__init__(name=name,
396
- mode=mode,
397
- size=size,
398
- keep_size=keep_size)
399
-
400
- # parameters
401
- self.tau = init.param(tau, self.varshape)
402
- self.U = init.param(U, self.varshape)
403
-
404
- def dx(self, x, t):
405
- return (1 - x) / self.tau
406
-
407
- def init_state(self, batch_size: int = None, **kwargs):
408
- self.x = ShortTermState(init.param(init.Constant(1.), self.varshape, batch_size))
409
-
410
- def reset_state(self, batch_size: int = None, **kwargs):
411
- self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
412
-
413
- def update(self, pre_spike):
414
- t = environ.get('t')
415
- x = exp_euler_step(self.dx, self.x.value, t)
416
-
417
- # --- original code:
418
- # self.x.value = bm.where(pre_spike, x - self.U * self.x, x)
419
-
420
- # --- simplified code:
421
- self.x.value = x - pre_spike * self.U * self.x.value
422
-
423
- return self.x.value
424
-
425
- def return_info(self):
426
- return self.x