brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0.post20241122__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmark/COBA_2005.py +125 -0
- benchmark/CUBA_2005.py +149 -0
- brainstate/__init__.py +31 -11
- brainstate/_state.py +760 -316
- brainstate/_state_test.py +41 -12
- brainstate/_utils.py +31 -4
- brainstate/augment/__init__.py +40 -0
- brainstate/augment/_autograd.py +611 -0
- brainstate/augment/_autograd_test.py +1193 -0
- brainstate/augment/_eval_shape.py +102 -0
- brainstate/augment/_eval_shape_test.py +40 -0
- brainstate/augment/_mapping.py +525 -0
- brainstate/augment/_mapping_test.py +210 -0
- brainstate/augment/_random.py +99 -0
- brainstate/{transform → compile}/__init__.py +25 -13
- brainstate/compile/_ad_checkpoint.py +204 -0
- brainstate/compile/_ad_checkpoint_test.py +51 -0
- brainstate/compile/_conditions.py +259 -0
- brainstate/compile/_conditions_test.py +221 -0
- brainstate/compile/_error_if.py +94 -0
- brainstate/compile/_error_if_test.py +54 -0
- brainstate/compile/_jit.py +314 -0
- brainstate/compile/_jit_test.py +143 -0
- brainstate/compile/_loop_collect_return.py +516 -0
- brainstate/compile/_loop_collect_return_test.py +59 -0
- brainstate/compile/_loop_no_collection.py +185 -0
- brainstate/compile/_loop_no_collection_test.py +51 -0
- brainstate/compile/_make_jaxpr.py +756 -0
- brainstate/compile/_make_jaxpr_test.py +134 -0
- brainstate/compile/_progress_bar.py +111 -0
- brainstate/compile/_unvmap.py +159 -0
- brainstate/compile/_util.py +147 -0
- brainstate/environ.py +408 -381
- brainstate/environ_test.py +34 -32
- brainstate/event/__init__.py +27 -0
- brainstate/event/_csr.py +316 -0
- brainstate/event/_csr_benchmark.py +14 -0
- brainstate/event/_csr_test.py +118 -0
- brainstate/event/_fixed_probability.py +708 -0
- brainstate/event/_fixed_probability_benchmark.py +128 -0
- brainstate/event/_fixed_probability_test.py +131 -0
- brainstate/event/_linear.py +359 -0
- brainstate/event/_linear_benckmark.py +82 -0
- brainstate/event/_linear_test.py +117 -0
- brainstate/{nn/event → event}/_misc.py +7 -7
- brainstate/event/_xla_custom_op.py +312 -0
- brainstate/event/_xla_custom_op_test.py +55 -0
- brainstate/functional/_activations.py +521 -511
- brainstate/functional/_activations_test.py +300 -300
- brainstate/functional/_normalization.py +43 -43
- brainstate/functional/_others.py +15 -15
- brainstate/functional/_spikes.py +49 -49
- brainstate/graph/__init__.py +33 -0
- brainstate/graph/_graph_context.py +443 -0
- brainstate/graph/_graph_context_test.py +65 -0
- brainstate/graph/_graph_convert.py +246 -0
- brainstate/graph/_graph_node.py +300 -0
- brainstate/graph/_graph_node_test.py +75 -0
- brainstate/graph/_graph_operation.py +1746 -0
- brainstate/graph/_graph_operation_test.py +724 -0
- brainstate/init/_base.py +28 -10
- brainstate/init/_generic.py +175 -172
- brainstate/init/_random_inits.py +470 -415
- brainstate/init/_random_inits_test.py +150 -0
- brainstate/init/_regular_inits.py +66 -69
- brainstate/init/_regular_inits_test.py +51 -0
- brainstate/mixin.py +236 -244
- brainstate/mixin_test.py +44 -46
- brainstate/nn/__init__.py +26 -51
- brainstate/nn/_collective_ops.py +199 -0
- brainstate/nn/_dyn_impl/__init__.py +46 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
- brainstate/nn/_dyn_impl/_dynamics_synapse.py +315 -0
- brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
- brainstate/nn/_dyn_impl/_inputs.py +154 -0
- brainstate/nn/{event/__init__.py → _dyn_impl/_projection_alignpost.py} +8 -8
- brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
- brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
- brainstate/nn/_dyn_impl/_readout.py +128 -0
- brainstate/nn/_dyn_impl/_readout_test.py +54 -0
- brainstate/nn/_dynamics/__init__.py +37 -0
- brainstate/nn/_dynamics/_dynamics_base.py +631 -0
- brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
- brainstate/nn/_dynamics/_projection_base.py +346 -0
- brainstate/nn/_dynamics/_state_delay.py +453 -0
- brainstate/nn/_dynamics/_synouts.py +161 -0
- brainstate/nn/_dynamics/_synouts_test.py +58 -0
- brainstate/nn/_elementwise/__init__.py +22 -0
- brainstate/nn/_elementwise/_dropout.py +418 -0
- brainstate/nn/_elementwise/_dropout_test.py +100 -0
- brainstate/nn/_elementwise/_elementwise.py +1122 -0
- brainstate/nn/_elementwise/_elementwise_test.py +171 -0
- brainstate/nn/_exp_euler.py +97 -0
- brainstate/nn/_exp_euler_test.py +36 -0
- brainstate/nn/_interaction/__init__.py +41 -0
- brainstate/nn/_interaction/_conv.py +499 -0
- brainstate/nn/_interaction/_conv_test.py +239 -0
- brainstate/nn/_interaction/_embedding.py +59 -0
- brainstate/nn/_interaction/_linear.py +582 -0
- brainstate/nn/_interaction/_linear_test.py +42 -0
- brainstate/nn/_interaction/_normalizations.py +388 -0
- brainstate/nn/_interaction/_normalizations_test.py +75 -0
- brainstate/nn/_interaction/_poolings.py +1179 -0
- brainstate/nn/_interaction/_poolings_test.py +219 -0
- brainstate/nn/_module.py +328 -0
- brainstate/nn/_module_test.py +211 -0
- brainstate/nn/metrics.py +309 -309
- brainstate/optim/__init__.py +14 -2
- brainstate/optim/_base.py +66 -0
- brainstate/optim/_lr_scheduler.py +363 -400
- brainstate/optim/_lr_scheduler_test.py +25 -24
- brainstate/optim/_optax_optimizer.py +121 -176
- brainstate/optim/_optax_optimizer_test.py +41 -1
- brainstate/optim/_sgd_optimizer.py +950 -1025
- brainstate/random/_rand_funs.py +3269 -3268
- brainstate/random/_rand_funs_test.py +568 -0
- brainstate/random/_rand_seed.py +149 -117
- brainstate/random/_rand_seed_test.py +50 -0
- brainstate/random/_rand_state.py +1356 -1321
- brainstate/random/_random_for_unit.py +13 -13
- brainstate/surrogate.py +1262 -1243
- brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
- brainstate/typing.py +157 -130
- brainstate/util/__init__.py +52 -0
- brainstate/util/_caller.py +100 -0
- brainstate/util/_dict.py +734 -0
- brainstate/util/_dict_test.py +160 -0
- brainstate/{nn/_projection/__init__.py → util/_error.py} +9 -13
- brainstate/util/_filter.py +178 -0
- brainstate/util/_others.py +497 -0
- brainstate/util/_pretty_repr.py +208 -0
- brainstate/util/_scaling.py +260 -0
- brainstate/util/_struct.py +524 -0
- brainstate/util/_tracers.py +75 -0
- brainstate/{_visualization.py → util/_visualization.py} +16 -16
- {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/METADATA +11 -11
- brainstate-0.1.0.post20241122.dist-info/RECORD +144 -0
- {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/top_level.txt +1 -0
- brainstate/_module.py +0 -1637
- brainstate/_module_test.py +0 -207
- brainstate/nn/_base.py +0 -251
- brainstate/nn/_connections.py +0 -686
- brainstate/nn/_dynamics.py +0 -426
- brainstate/nn/_elementwise.py +0 -1438
- brainstate/nn/_embedding.py +0 -66
- brainstate/nn/_misc.py +0 -133
- brainstate/nn/_normalizations.py +0 -389
- brainstate/nn/_others.py +0 -101
- brainstate/nn/_poolings.py +0 -1229
- brainstate/nn/_poolings_test.py +0 -231
- brainstate/nn/_projection/_align_post.py +0 -546
- brainstate/nn/_projection/_align_pre.py +0 -599
- brainstate/nn/_projection/_delta.py +0 -241
- brainstate/nn/_projection/_vanilla.py +0 -101
- brainstate/nn/_rate_rnns.py +0 -410
- brainstate/nn/_readout.py +0 -136
- brainstate/nn/_synouts.py +0 -166
- brainstate/nn/event/csr.py +0 -312
- brainstate/nn/event/csr_test.py +0 -118
- brainstate/nn/event/fixed_probability.py +0 -276
- brainstate/nn/event/fixed_probability_test.py +0 -127
- brainstate/nn/event/linear.py +0 -220
- brainstate/nn/event/linear_test.py +0 -111
- brainstate/random/random_test.py +0 -593
- brainstate/transform/_autograd.py +0 -585
- brainstate/transform/_autograd_test.py +0 -1181
- brainstate/transform/_conditions.py +0 -334
- brainstate/transform/_conditions_test.py +0 -220
- brainstate/transform/_error_if.py +0 -94
- brainstate/transform/_error_if_test.py +0 -55
- brainstate/transform/_jit.py +0 -265
- brainstate/transform/_jit_test.py +0 -118
- brainstate/transform/_loop_collect_return.py +0 -502
- brainstate/transform/_loop_no_collection.py +0 -170
- brainstate/transform/_make_jaxpr.py +0 -739
- brainstate/transform/_make_jaxpr_test.py +0 -131
- brainstate/transform/_mapping.py +0 -109
- brainstate/transform/_progress_bar.py +0 -111
- brainstate/transform/_unvmap.py +0 -143
- brainstate/util.py +0 -746
- brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
- {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/LICENSE +0 -0
- {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/WHEEL +0 -0
@@ -0,0 +1,239 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
|
3
|
+
from __future__ import annotations
|
4
|
+
|
5
|
+
import jax.numpy as jnp
|
6
|
+
import pytest
|
7
|
+
from absl.testing import absltest
|
8
|
+
from absl.testing import parameterized
|
9
|
+
|
10
|
+
import brainstate as bst
|
11
|
+
|
12
|
+
|
13
|
+
class TestConv(parameterized.TestCase):
|
14
|
+
def test_Conv2D_img(self):
|
15
|
+
img = jnp.zeros((2, 200, 198, 4))
|
16
|
+
for k in range(4):
|
17
|
+
x = 30 + 60 * k
|
18
|
+
y = 20 + 60 * k
|
19
|
+
img = img.at[0, x:x + 10, y:y + 10, k].set(1.0)
|
20
|
+
img = img.at[1, x:x + 20, y:y + 20, k].set(3.0)
|
21
|
+
|
22
|
+
net = bst.nn.Conv2d((200, 198, 4), out_channels=32, kernel_size=(3, 3),
|
23
|
+
stride=(2, 1), padding='VALID', groups=4)
|
24
|
+
out = net(img)
|
25
|
+
print("out shape: ", out.shape)
|
26
|
+
self.assertEqual(out.shape, (2, 99, 196, 32))
|
27
|
+
# print("First output channel:")
|
28
|
+
# plt.figure(figsize=(10, 10))
|
29
|
+
# plt.imshow(np.array(img)[0, :, :, 0])
|
30
|
+
# plt.show()
|
31
|
+
|
32
|
+
def test_conv1D(self):
|
33
|
+
model = bst.nn.Conv1d((5, 3), out_channels=32, kernel_size=(3,))
|
34
|
+
input = jnp.ones((2, 5, 3))
|
35
|
+
out = model(input)
|
36
|
+
print("out shape: ", out.shape)
|
37
|
+
self.assertEqual(out.shape, (2, 5, 32))
|
38
|
+
# print("First output channel:")
|
39
|
+
# plt.figure(figsize=(10, 10))
|
40
|
+
# plt.imshow(np.array(out)[0, :, :])
|
41
|
+
# plt.show()
|
42
|
+
|
43
|
+
def test_conv2D(self):
|
44
|
+
model = bst.nn.Conv2d((5, 5, 3), out_channels=32, kernel_size=(3, 3))
|
45
|
+
input = jnp.ones((2, 5, 5, 3))
|
46
|
+
|
47
|
+
out = model(input)
|
48
|
+
print("out shape: ", out.shape)
|
49
|
+
self.assertEqual(out.shape, (2, 5, 5, 32))
|
50
|
+
|
51
|
+
def test_conv3D(self):
|
52
|
+
model = bst.nn.Conv3d((5, 5, 5, 3), out_channels=32, kernel_size=(3, 3, 3))
|
53
|
+
input = jnp.ones((2, 5, 5, 5, 3))
|
54
|
+
out = model(input)
|
55
|
+
print("out shape: ", out.shape)
|
56
|
+
self.assertEqual(out.shape, (2, 5, 5, 5, 32))
|
57
|
+
|
58
|
+
|
59
|
+
@pytest.mark.skip(reason="not implemented yet")
|
60
|
+
class TestConvTranspose1d(parameterized.TestCase):
|
61
|
+
def test_conv_transpose(self):
|
62
|
+
|
63
|
+
x = jnp.ones((1, 8, 3))
|
64
|
+
for use_bias in [True, False]:
|
65
|
+
conv_transpose_module = bst.nn.ConvTranspose1d(
|
66
|
+
in_channels=3,
|
67
|
+
out_channels=4,
|
68
|
+
kernel_size=(3,),
|
69
|
+
padding='VALID',
|
70
|
+
w_initializer=bst.init.Constant(1.),
|
71
|
+
b_initializer=bst.init.Constant(1.) if use_bias else None,
|
72
|
+
)
|
73
|
+
self.assertEqual(conv_transpose_module.w.shape, (3, 3, 4))
|
74
|
+
y = conv_transpose_module(x)
|
75
|
+
print(y.shape)
|
76
|
+
correct_ans = jnp.array([[[4., 4., 4., 4.],
|
77
|
+
[7., 7., 7., 7.],
|
78
|
+
[10., 10., 10., 10.],
|
79
|
+
[10., 10., 10., 10.],
|
80
|
+
[10., 10., 10., 10.],
|
81
|
+
[10., 10., 10., 10.],
|
82
|
+
[10., 10., 10., 10.],
|
83
|
+
[10., 10., 10., 10.],
|
84
|
+
[7., 7., 7., 7.],
|
85
|
+
[4., 4., 4., 4.]]])
|
86
|
+
if not use_bias:
|
87
|
+
correct_ans -= 1.
|
88
|
+
self.assertTrue(jnp.allclose(y, correct_ans))
|
89
|
+
|
90
|
+
def test_single_input_masked_conv_transpose(self):
|
91
|
+
|
92
|
+
x = jnp.ones((1, 8, 3))
|
93
|
+
m = jnp.tril(jnp.ones((3, 3, 4)))
|
94
|
+
conv_transpose_module = bst.nn.ConvTranspose1d(
|
95
|
+
in_channels=3,
|
96
|
+
out_channels=4,
|
97
|
+
kernel_size=(3,),
|
98
|
+
padding='VALID',
|
99
|
+
mask=m,
|
100
|
+
w_initializer=bst.init.Constant(),
|
101
|
+
b_initializer=bst.init.Constant(),
|
102
|
+
)
|
103
|
+
self.assertEqual(conv_transpose_module.w.shape, (3, 3, 4))
|
104
|
+
y = conv_transpose_module(x)
|
105
|
+
print(y.shape)
|
106
|
+
correct_ans = jnp.array([[[4., 3., 2., 1.],
|
107
|
+
[7., 5., 3., 1.],
|
108
|
+
[10., 7., 4., 1.],
|
109
|
+
[10., 7., 4., 1.],
|
110
|
+
[10., 7., 4., 1.],
|
111
|
+
[10., 7., 4., 1.],
|
112
|
+
[10., 7., 4., 1.],
|
113
|
+
[10., 7., 4., 1.],
|
114
|
+
[7., 5., 3., 1.],
|
115
|
+
[4., 3., 2., 1.]]])
|
116
|
+
self.assertTrue(jnp.allclose(y, correct_ans))
|
117
|
+
|
118
|
+
def test_computation_padding_same(self):
|
119
|
+
|
120
|
+
data = jnp.ones([1, 3, 1])
|
121
|
+
for use_bias in [True, False]:
|
122
|
+
net = bst.nn.ConvTranspose1d(
|
123
|
+
in_channels=1,
|
124
|
+
out_channels=1,
|
125
|
+
kernel_size=3,
|
126
|
+
stride=1,
|
127
|
+
padding="SAME",
|
128
|
+
w_initializer=bst.init.Constant(),
|
129
|
+
b_initializer=bst.init.Constant() if use_bias else None,
|
130
|
+
)
|
131
|
+
out = net(data)
|
132
|
+
self.assertEqual(out.shape, (1, 3, 1))
|
133
|
+
out = jnp.squeeze(out, axis=(0, 2))
|
134
|
+
expected_out = jnp.asarray([2, 3, 2])
|
135
|
+
if use_bias:
|
136
|
+
expected_out += 1
|
137
|
+
self.assertTrue(jnp.allclose(out, expected_out, rtol=1e-5))
|
138
|
+
|
139
|
+
|
140
|
+
@pytest.mark.skip(reason="not implemented yet")
|
141
|
+
class TestConvTranspose2d(parameterized.TestCase):
|
142
|
+
def test_conv_transpose(self):
|
143
|
+
|
144
|
+
x = jnp.ones((1, 8, 8, 3))
|
145
|
+
for use_bias in [True, False]:
|
146
|
+
conv_transpose_module = bst.nn.ConvTranspose2d(
|
147
|
+
in_channels=3,
|
148
|
+
out_channels=4,
|
149
|
+
kernel_size=(3, 3),
|
150
|
+
padding='VALID',
|
151
|
+
w_initializer=bst.init.Constant(),
|
152
|
+
b_initializer=bst.init.Constant() if use_bias else None,
|
153
|
+
)
|
154
|
+
self.assertEqual(conv_transpose_module.w.shape, (3, 3, 3, 4))
|
155
|
+
y = conv_transpose_module(x)
|
156
|
+
print(y.shape)
|
157
|
+
|
158
|
+
def test_single_input_masked_conv_transpose(self):
|
159
|
+
|
160
|
+
x = jnp.ones((1, 8, 8, 3))
|
161
|
+
m = jnp.tril(jnp.ones((3, 3, 3, 4)))
|
162
|
+
conv_transpose_module = bst.nn.ConvTranspose2d(
|
163
|
+
in_channels=3,
|
164
|
+
out_channels=4,
|
165
|
+
kernel_size=(3, 3),
|
166
|
+
padding='VALID',
|
167
|
+
mask=m,
|
168
|
+
w_initializer=bst.init.Constant(),
|
169
|
+
)
|
170
|
+
y = conv_transpose_module(x)
|
171
|
+
print(y.shape)
|
172
|
+
|
173
|
+
def test_computation_padding_same(self):
|
174
|
+
|
175
|
+
x = jnp.ones((1, 8, 8, 3))
|
176
|
+
for use_bias in [True, False]:
|
177
|
+
conv_transpose_module = bst.nn.ConvTranspose2d(
|
178
|
+
in_channels=3,
|
179
|
+
out_channels=4,
|
180
|
+
kernel_size=(3, 3),
|
181
|
+
stride=1,
|
182
|
+
padding='SAME',
|
183
|
+
w_initializer=bst.init.Constant(),
|
184
|
+
b_initializer=bst.init.Constant() if use_bias else None,
|
185
|
+
)
|
186
|
+
y = conv_transpose_module(x)
|
187
|
+
print(y.shape)
|
188
|
+
|
189
|
+
|
190
|
+
@pytest.mark.skip(reason="not implemented yet")
|
191
|
+
class TestConvTranspose3d(parameterized.TestCase):
|
192
|
+
def test_conv_transpose(self):
|
193
|
+
|
194
|
+
x = jnp.ones((1, 8, 8, 8, 3))
|
195
|
+
for use_bias in [True, False]:
|
196
|
+
conv_transpose_module = bst.nn.ConvTranspose3d(
|
197
|
+
in_channels=3,
|
198
|
+
out_channels=4,
|
199
|
+
kernel_size=(3, 3, 3),
|
200
|
+
padding='VALID',
|
201
|
+
w_initializer=bst.init.Constant(),
|
202
|
+
b_initializer=bst.init.Constant() if use_bias else None,
|
203
|
+
)
|
204
|
+
y = conv_transpose_module(x)
|
205
|
+
print(y.shape)
|
206
|
+
|
207
|
+
def test_single_input_masked_conv_transpose(self):
|
208
|
+
|
209
|
+
x = jnp.ones((1, 8, 8, 8, 3))
|
210
|
+
m = jnp.tril(jnp.ones((3, 3, 3, 3, 4)))
|
211
|
+
conv_transpose_module = bst.nn.ConvTranspose3d(
|
212
|
+
in_channels=3,
|
213
|
+
out_channels=4,
|
214
|
+
kernel_size=(3, 3, 3),
|
215
|
+
padding='VALID',
|
216
|
+
mask=m,
|
217
|
+
w_initializer=bst.init.Constant(),
|
218
|
+
)
|
219
|
+
y = conv_transpose_module(x)
|
220
|
+
print(y.shape)
|
221
|
+
|
222
|
+
def test_computation_padding_same(self):
|
223
|
+
|
224
|
+
x = jnp.ones((1, 8, 8, 8, 3))
|
225
|
+
for use_bias in [True, False]:
|
226
|
+
conv_transpose_module = bst.nn.ConvTranspose3d(
|
227
|
+
in_channels=3,
|
228
|
+
out_channels=4,
|
229
|
+
kernel_size=(3, 3, 3),
|
230
|
+
stride=1,
|
231
|
+
padding='SAME',
|
232
|
+
w_initializer=bst.init.Constant(),
|
233
|
+
b_initializer=bst.init.Constant() if use_bias else None,
|
234
|
+
)
|
235
|
+
y = conv_transpose_module(x)
|
236
|
+
print(y.shape)
|
237
|
+
|
238
|
+
if __name__ == '__main__':
|
239
|
+
absltest.main()
|
@@ -0,0 +1,59 @@
|
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from __future__ import annotations
|
16
|
+
|
17
|
+
from typing import Optional, Callable, Union
|
18
|
+
|
19
|
+
from brainstate import init
|
20
|
+
from brainstate._state import ParamState
|
21
|
+
from brainstate.nn._module import Module
|
22
|
+
from brainstate.typing import ArrayLike
|
23
|
+
|
24
|
+
__all__ = [
|
25
|
+
'Embedding',
|
26
|
+
]
|
27
|
+
|
28
|
+
|
29
|
+
class Embedding(Module):
|
30
|
+
r"""
|
31
|
+
A simple lookup table that stores embeddings of a fixed size.
|
32
|
+
|
33
|
+
Args:
|
34
|
+
num_embeddings: Size of embedding dictionary. Must be non-negative.
|
35
|
+
embedding_size: Size of each embedding vector. Must be non-negative.
|
36
|
+
embedding_init: The initializer for the embedding lookup table, of shape `(num_embeddings, embedding_size)`.
|
37
|
+
"""
|
38
|
+
|
39
|
+
def __init__(
|
40
|
+
self,
|
41
|
+
num_embeddings: int,
|
42
|
+
embedding_size: int,
|
43
|
+
embedding_init: Union[Callable, ArrayLike] = init.LecunUniform(),
|
44
|
+
name: Optional[str] = None,
|
45
|
+
):
|
46
|
+
super().__init__(name=name)
|
47
|
+
if num_embeddings < 0:
|
48
|
+
raise ValueError("num_embeddings must not be negative.")
|
49
|
+
if embedding_size < 0:
|
50
|
+
raise ValueError("embedding_size must not be negative.")
|
51
|
+
self.num_embeddings = num_embeddings
|
52
|
+
self.embedding_size = embedding_size
|
53
|
+
self.out_size = (embedding_size,)
|
54
|
+
|
55
|
+
weight = init.param(embedding_init, (self.num_embeddings, self.embedding_size))
|
56
|
+
self.weight = ParamState(weight)
|
57
|
+
|
58
|
+
def update(self, indices: ArrayLike):
|
59
|
+
return self.weight.value[indices]
|