brainstate 0.0.2.post20241010__py2.py3-none-any.whl → 0.1.0.post20241122__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. benchmark/COBA_2005.py +125 -0
  2. benchmark/CUBA_2005.py +149 -0
  3. brainstate/__init__.py +31 -11
  4. brainstate/_state.py +760 -316
  5. brainstate/_state_test.py +41 -12
  6. brainstate/_utils.py +31 -4
  7. brainstate/augment/__init__.py +40 -0
  8. brainstate/augment/_autograd.py +611 -0
  9. brainstate/augment/_autograd_test.py +1193 -0
  10. brainstate/augment/_eval_shape.py +102 -0
  11. brainstate/augment/_eval_shape_test.py +40 -0
  12. brainstate/augment/_mapping.py +525 -0
  13. brainstate/augment/_mapping_test.py +210 -0
  14. brainstate/augment/_random.py +99 -0
  15. brainstate/{transform → compile}/__init__.py +25 -13
  16. brainstate/compile/_ad_checkpoint.py +204 -0
  17. brainstate/compile/_ad_checkpoint_test.py +51 -0
  18. brainstate/compile/_conditions.py +259 -0
  19. brainstate/compile/_conditions_test.py +221 -0
  20. brainstate/compile/_error_if.py +94 -0
  21. brainstate/compile/_error_if_test.py +54 -0
  22. brainstate/compile/_jit.py +314 -0
  23. brainstate/compile/_jit_test.py +143 -0
  24. brainstate/compile/_loop_collect_return.py +516 -0
  25. brainstate/compile/_loop_collect_return_test.py +59 -0
  26. brainstate/compile/_loop_no_collection.py +185 -0
  27. brainstate/compile/_loop_no_collection_test.py +51 -0
  28. brainstate/compile/_make_jaxpr.py +756 -0
  29. brainstate/compile/_make_jaxpr_test.py +134 -0
  30. brainstate/compile/_progress_bar.py +111 -0
  31. brainstate/compile/_unvmap.py +159 -0
  32. brainstate/compile/_util.py +147 -0
  33. brainstate/environ.py +408 -381
  34. brainstate/environ_test.py +34 -32
  35. brainstate/event/__init__.py +27 -0
  36. brainstate/event/_csr.py +316 -0
  37. brainstate/event/_csr_benchmark.py +14 -0
  38. brainstate/event/_csr_test.py +118 -0
  39. brainstate/event/_fixed_probability.py +708 -0
  40. brainstate/event/_fixed_probability_benchmark.py +128 -0
  41. brainstate/event/_fixed_probability_test.py +131 -0
  42. brainstate/event/_linear.py +359 -0
  43. brainstate/event/_linear_benckmark.py +82 -0
  44. brainstate/event/_linear_test.py +117 -0
  45. brainstate/{nn/event → event}/_misc.py +7 -7
  46. brainstate/event/_xla_custom_op.py +312 -0
  47. brainstate/event/_xla_custom_op_test.py +55 -0
  48. brainstate/functional/_activations.py +521 -511
  49. brainstate/functional/_activations_test.py +300 -300
  50. brainstate/functional/_normalization.py +43 -43
  51. brainstate/functional/_others.py +15 -15
  52. brainstate/functional/_spikes.py +49 -49
  53. brainstate/graph/__init__.py +33 -0
  54. brainstate/graph/_graph_context.py +443 -0
  55. brainstate/graph/_graph_context_test.py +65 -0
  56. brainstate/graph/_graph_convert.py +246 -0
  57. brainstate/graph/_graph_node.py +300 -0
  58. brainstate/graph/_graph_node_test.py +75 -0
  59. brainstate/graph/_graph_operation.py +1746 -0
  60. brainstate/graph/_graph_operation_test.py +724 -0
  61. brainstate/init/_base.py +28 -10
  62. brainstate/init/_generic.py +175 -172
  63. brainstate/init/_random_inits.py +470 -415
  64. brainstate/init/_random_inits_test.py +150 -0
  65. brainstate/init/_regular_inits.py +66 -69
  66. brainstate/init/_regular_inits_test.py +51 -0
  67. brainstate/mixin.py +236 -244
  68. brainstate/mixin_test.py +44 -46
  69. brainstate/nn/__init__.py +26 -51
  70. brainstate/nn/_collective_ops.py +199 -0
  71. brainstate/nn/_dyn_impl/__init__.py +46 -0
  72. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  73. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  74. brainstate/nn/_dyn_impl/_dynamics_synapse.py +315 -0
  75. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  76. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  77. brainstate/nn/{event/__init__.py → _dyn_impl/_projection_alignpost.py} +8 -8
  78. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  79. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  80. brainstate/nn/_dyn_impl/_readout.py +128 -0
  81. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  82. brainstate/nn/_dynamics/__init__.py +37 -0
  83. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  84. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  85. brainstate/nn/_dynamics/_projection_base.py +346 -0
  86. brainstate/nn/_dynamics/_state_delay.py +453 -0
  87. brainstate/nn/_dynamics/_synouts.py +161 -0
  88. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  89. brainstate/nn/_elementwise/__init__.py +22 -0
  90. brainstate/nn/_elementwise/_dropout.py +418 -0
  91. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  92. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  93. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  94. brainstate/nn/_exp_euler.py +97 -0
  95. brainstate/nn/_exp_euler_test.py +36 -0
  96. brainstate/nn/_interaction/__init__.py +41 -0
  97. brainstate/nn/_interaction/_conv.py +499 -0
  98. brainstate/nn/_interaction/_conv_test.py +239 -0
  99. brainstate/nn/_interaction/_embedding.py +59 -0
  100. brainstate/nn/_interaction/_linear.py +582 -0
  101. brainstate/nn/_interaction/_linear_test.py +42 -0
  102. brainstate/nn/_interaction/_normalizations.py +388 -0
  103. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  104. brainstate/nn/_interaction/_poolings.py +1179 -0
  105. brainstate/nn/_interaction/_poolings_test.py +219 -0
  106. brainstate/nn/_module.py +328 -0
  107. brainstate/nn/_module_test.py +211 -0
  108. brainstate/nn/metrics.py +309 -309
  109. brainstate/optim/__init__.py +14 -2
  110. brainstate/optim/_base.py +66 -0
  111. brainstate/optim/_lr_scheduler.py +363 -400
  112. brainstate/optim/_lr_scheduler_test.py +25 -24
  113. brainstate/optim/_optax_optimizer.py +121 -176
  114. brainstate/optim/_optax_optimizer_test.py +41 -1
  115. brainstate/optim/_sgd_optimizer.py +950 -1025
  116. brainstate/random/_rand_funs.py +3269 -3268
  117. brainstate/random/_rand_funs_test.py +568 -0
  118. brainstate/random/_rand_seed.py +149 -117
  119. brainstate/random/_rand_seed_test.py +50 -0
  120. brainstate/random/_rand_state.py +1356 -1321
  121. brainstate/random/_random_for_unit.py +13 -13
  122. brainstate/surrogate.py +1262 -1243
  123. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  124. brainstate/typing.py +157 -130
  125. brainstate/util/__init__.py +52 -0
  126. brainstate/util/_caller.py +100 -0
  127. brainstate/util/_dict.py +734 -0
  128. brainstate/util/_dict_test.py +160 -0
  129. brainstate/{nn/_projection/__init__.py → util/_error.py} +9 -13
  130. brainstate/util/_filter.py +178 -0
  131. brainstate/util/_others.py +497 -0
  132. brainstate/util/_pretty_repr.py +208 -0
  133. brainstate/util/_scaling.py +260 -0
  134. brainstate/util/_struct.py +524 -0
  135. brainstate/util/_tracers.py +75 -0
  136. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  137. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/METADATA +11 -11
  138. brainstate-0.1.0.post20241122.dist-info/RECORD +144 -0
  139. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/top_level.txt +1 -0
  140. brainstate/_module.py +0 -1637
  141. brainstate/_module_test.py +0 -207
  142. brainstate/nn/_base.py +0 -251
  143. brainstate/nn/_connections.py +0 -686
  144. brainstate/nn/_dynamics.py +0 -426
  145. brainstate/nn/_elementwise.py +0 -1438
  146. brainstate/nn/_embedding.py +0 -66
  147. brainstate/nn/_misc.py +0 -133
  148. brainstate/nn/_normalizations.py +0 -389
  149. brainstate/nn/_others.py +0 -101
  150. brainstate/nn/_poolings.py +0 -1229
  151. brainstate/nn/_poolings_test.py +0 -231
  152. brainstate/nn/_projection/_align_post.py +0 -546
  153. brainstate/nn/_projection/_align_pre.py +0 -599
  154. brainstate/nn/_projection/_delta.py +0 -241
  155. brainstate/nn/_projection/_vanilla.py +0 -101
  156. brainstate/nn/_rate_rnns.py +0 -410
  157. brainstate/nn/_readout.py +0 -136
  158. brainstate/nn/_synouts.py +0 -166
  159. brainstate/nn/event/csr.py +0 -312
  160. brainstate/nn/event/csr_test.py +0 -118
  161. brainstate/nn/event/fixed_probability.py +0 -276
  162. brainstate/nn/event/fixed_probability_test.py +0 -127
  163. brainstate/nn/event/linear.py +0 -220
  164. brainstate/nn/event/linear_test.py +0 -111
  165. brainstate/random/random_test.py +0 -593
  166. brainstate/transform/_autograd.py +0 -585
  167. brainstate/transform/_autograd_test.py +0 -1181
  168. brainstate/transform/_conditions.py +0 -334
  169. brainstate/transform/_conditions_test.py +0 -220
  170. brainstate/transform/_error_if.py +0 -94
  171. brainstate/transform/_error_if_test.py +0 -55
  172. brainstate/transform/_jit.py +0 -265
  173. brainstate/transform/_jit_test.py +0 -118
  174. brainstate/transform/_loop_collect_return.py +0 -502
  175. brainstate/transform/_loop_no_collection.py +0 -170
  176. brainstate/transform/_make_jaxpr.py +0 -739
  177. brainstate/transform/_make_jaxpr_test.py +0 -131
  178. brainstate/transform/_mapping.py +0 -109
  179. brainstate/transform/_progress_bar.py +0 -111
  180. brainstate/transform/_unvmap.py +0 -143
  181. brainstate/util.py +0 -746
  182. brainstate-0.0.2.post20241010.dist-info/RECORD +0 -87
  183. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/LICENSE +0 -0
  184. {brainstate-0.0.2.post20241010.dist-info → brainstate-0.1.0.post20241122.dist-info}/WHEEL +0 -0
@@ -0,0 +1,734 @@
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from __future__ import annotations
16
+
17
+ from collections import abc
18
+ from typing import TypeVar, Hashable, Union, Iterable, Any, Optional, Tuple, Dict
19
+
20
+ import jax
21
+
22
+ from brainstate.typing import Filter, PathParts
23
+ from ._filter import to_predicate
24
+ from ._pretty_repr import PrettyRepr, PrettyType, PrettyAttr, pretty_repr_avoid_duplicate, get_repr
25
+ from ._struct import dataclass
26
+
27
+ __all__ = [
28
+ 'NestedDict', 'FlattedDict', 'flat_mapping', 'nest_mapping',
29
+ ]
30
+
31
+ A = TypeVar('A')
32
+ K = TypeVar('K', bound=Hashable)
33
+ V = TypeVar('V')
34
+
35
+ FlattedStateMapping = dict[PathParts, V]
36
+ ExtractValueFn = abc.Callable[[Any], Any]
37
+ SetValueFn = abc.Callable[[V, Any], V]
38
+
39
+
40
+ # the empty node is a struct.dataclass to be compatible with JAX.
41
+ @dataclass
42
+ class _EmptyNode:
43
+ pass
44
+
45
+
46
+ _default_leaf = lambda *args: False
47
+ empty_node = _EmptyNode()
48
+ IsLeafCallable = abc.Callable[[Tuple[Any, ...], abc.Mapping[Any, Any]], bool]
49
+
50
+
51
+ def flat_mapping(
52
+ xs: abc.Mapping[Any, Any],
53
+ /,
54
+ *,
55
+ keep_empty_nodes: bool = False,
56
+ is_leaf: Optional[IsLeafCallable] = _default_leaf,
57
+ sep: Optional[str] = None
58
+ ) -> 'FlattedDict':
59
+ """Flatten a nested mapping.
60
+
61
+ The nested keys are flattened to a tuple. See ``unflatten_mapping`` on how to
62
+ restore the nested mapping.
63
+
64
+ Example::
65
+
66
+ >>> xs = {'foo': 1, 'bar': {'a': 2, 'b': {}}}
67
+ >>> flat_xs = flat_mapping(xs)
68
+ >>> flat_xs
69
+ {('foo',): 1, ('bar', 'a'): 2}
70
+
71
+ Note that empty mappings are ignored and will not be restored by
72
+ ``unflatten_mapping``.
73
+
74
+ Args:
75
+ xs: A nested mapping.
76
+ keep_empty_nodes: replaces empty mappings with ``empty_node``.
77
+ is_leaf: An optional function that takes the next nested mapping and nested
78
+ keys and returns True if the nested mapping is a leaf (i.e., should not be
79
+ flattened further).
80
+ sep: If specified, then the keys of the returned mapping will be
81
+ ``sep``-joined strings (if ``None``, then keys will be tuples).
82
+
83
+ Returns:
84
+ The flattened mapping.
85
+ """
86
+ assert isinstance(xs, abc.Mapping), f'expected Mapping; got {type(xs).__qualname__}'
87
+
88
+ if sep is None:
89
+ def _key(path: Tuple[Any, ...]) -> Tuple[Any, ...] | str:
90
+ return path
91
+ else:
92
+
93
+ def _key(path: Tuple[Any, ...]) -> Tuple[Any, ...] | str:
94
+ return sep.join(path)
95
+
96
+ def _flatten(xs: Any, prefix: Tuple[Any, ...]) -> Dict[Any, Any]:
97
+ if not isinstance(xs, abc.Mapping) or is_leaf(prefix, xs):
98
+ return {_key(prefix): xs}
99
+
100
+ result = {}
101
+ is_empty = True
102
+ for key, value in xs.items():
103
+ is_empty = False
104
+ result.update(_flatten(value, prefix + (key,)))
105
+ if keep_empty_nodes and is_empty:
106
+ if prefix == (): # when the whole input is empty
107
+ return {}
108
+ return {_key(prefix): empty_node}
109
+ return result
110
+
111
+ return FlattedDict(_flatten(xs, ()))
112
+
113
+
114
+ def nest_mapping(
115
+ xs: Any,
116
+ /,
117
+ *,
118
+ sep: str | None = None
119
+ ) -> 'NestedDict':
120
+ """Unflatten a mapping.
121
+
122
+ See ``flatten_mapping``
123
+
124
+ Example::
125
+
126
+ >>> flat_xs = {
127
+ ... ('foo',): 1,
128
+ ... ('bar', 'a'): 2,
129
+ ... }
130
+ >>> xs = nest_mapping(flat_xs)
131
+ >>> xs
132
+ {'foo': 1, 'bar': {'a': 2}}
133
+
134
+ Args:
135
+ xs: a flattened mapping.
136
+ sep: separator (same as used with ``flatten_mapping()``).
137
+
138
+ Returns:
139
+ The nested mapping.
140
+ """
141
+ assert isinstance(xs, abc.Mapping), f'expected Mapping; got {type(xs).__qualname__}'
142
+ result: Dict[Any, Any] = {}
143
+ for path, value in xs.items():
144
+ if sep is not None:
145
+ path = path.split(sep)
146
+ if value is empty_node:
147
+ value = {}
148
+ cursor = result
149
+ for key in path[:-1]:
150
+ if key not in cursor:
151
+ cursor[key] = {}
152
+ cursor = cursor[key]
153
+ cursor[path[-1]] = value
154
+ return NestedDict(result)
155
+
156
+
157
+ def _default_compare(x, values):
158
+ return id(x) in values
159
+
160
+
161
+ def _default_process(x):
162
+ return id(x)
163
+
164
+
165
+ class NestedStateRepr(PrettyRepr):
166
+ def __init__(self, state: PrettyDict):
167
+ self.state = state
168
+
169
+ def __pretty_repr__(self):
170
+ yield PrettyType('', value_sep=': ', start='{', end='}')
171
+
172
+ for r in self.state.__pretty_repr__():
173
+ if isinstance(r, PrettyType):
174
+ continue
175
+ yield r
176
+
177
+ def __treescope_repr__(self, path, subtree_renderer):
178
+ children = {}
179
+ for k, v in self.state.items():
180
+ if isinstance(v, PrettyDict):
181
+ v = NestedStateRepr(v)
182
+ children[k] = v
183
+ # Render as the dictionary itself at the same path.
184
+ return subtree_renderer(children, path=path)
185
+
186
+
187
+ class PrettyDict(dict, PrettyRepr):
188
+ __module__ = 'brainstate.util'
189
+
190
+ def __getattr__(self, key: K) -> NestedMapping | V: # type: ignore[misc]
191
+ return self[key]
192
+
193
+ def treefy_state(self):
194
+ """
195
+ Convert the ``State`` objects to a reference tree of the state.
196
+ """
197
+ from brainstate._state import State
198
+ leaves, treedef = jax.tree.flatten(self)
199
+ leaves = jax.tree.map(lambda x: x.to_state_ref() if isinstance(x, State) else x, leaves)
200
+ return treedef.unflatten(leaves)
201
+
202
+ def to_dict(self) -> Dict[K, Dict[K, Any] | V]:
203
+ """
204
+ Convert the ``PrettyDict`` to a dictionary.
205
+
206
+ Returns:
207
+ The dictionary.
208
+ """
209
+ return dict(self) # type: ignore
210
+
211
+ def __repr__(self) -> str:
212
+ # repr the individual object with the pretty representation
213
+ return get_repr(self)
214
+
215
+ def __pretty_repr__(self):
216
+ yield from pretty_repr_avoid_duplicate(self, _default_repr_object, _default_repr_attr)
217
+
218
+ def split(self, *filters) -> Union[PrettyDict[K, V], Tuple[PrettyDict[K, V], ...]]:
219
+ raise NotImplementedError
220
+
221
+ def filter(self, *filters) -> Union[PrettyDict[K, V], Tuple[PrettyDict[K, V], ...]]:
222
+ raise NotImplementedError
223
+
224
+ def merge(self, *states) -> PrettyDict[K, V]:
225
+ raise NotImplementedError
226
+
227
+ def subset(self, *filters) -> Union[PrettyDict[K, V], Tuple[PrettyDict[K, V], ...]]:
228
+ """
229
+ Subset a ``PrettyDict`` into one or more ``PrettyDict``'s. The user must pass at least one
230
+ ``Filter`` (i.e. :class:`State`), and the filters must be exhaustive (i.e. they must cover all
231
+ :class:`State` types in the ``PrettyDict``).
232
+ """
233
+ return self.filter(*filters)
234
+
235
+
236
+ def _default_repr_object(node: PrettyDict):
237
+ yield PrettyType(type(node), value_sep=': ', start='({', end='})')
238
+
239
+
240
+ def _default_repr_attr(node: PrettyDict):
241
+ for k, v in node.items():
242
+ if isinstance(v, dict):
243
+ v = PrettyDict(v)
244
+ if isinstance(v, PrettyDict):
245
+ v = NestedStateRepr(v)
246
+ yield PrettyAttr(repr(k), v)
247
+
248
+
249
+ class NestedDict(PrettyDict):
250
+ """
251
+ A pytree-like structure that contains a ``Mapping`` from strings or integers to leaves.
252
+
253
+ A valid leaf type is either :class:`State`, ``jax.Array``, ``numpy.ndarray`` or nested
254
+ ``NestedDict`` and ``FlattedDict``.
255
+ """
256
+ __module__ = 'brainstate.util'
257
+
258
+ def __or__(self, other: NestedDict[K, V]) -> NestedDict[K, V]:
259
+ if not other:
260
+ return self
261
+ assert isinstance(other, NestedDict), f'expected NestedDict; got {type(other).__qualname__}'
262
+ return NestedDict.merge(self, other)
263
+
264
+ def __sub__(self, other: NestedDict[K, V]) -> NestedDict[K, V]:
265
+ if not other:
266
+ return self
267
+
268
+ assert isinstance(other, NestedDict), f'expected NestedDict; got {type(other).__qualname__}'
269
+ self_flat = self.to_flat()
270
+ other_flat = other.to_flat()
271
+ diff = {k: v for k, v in self_flat.items() if k not in other_flat}
272
+ return NestedDict.from_flat(diff)
273
+
274
+ def to_flat(self) -> FlattedDict:
275
+ """
276
+ Flatten the nested mapping into a flat mapping.
277
+
278
+ Returns:
279
+ The flattened mapping.
280
+ """
281
+ return flat_mapping(self)
282
+
283
+ @classmethod
284
+ def from_flat(cls, flat_dict: abc.Mapping[PathParts, V] | Iterable[tuple[PathParts, V]]) -> NestedDict:
285
+ """
286
+ Create a ``NestedDict`` from a flat mapping.
287
+
288
+ Args:
289
+ flat_dict: The flat mapping.
290
+
291
+ Returns:
292
+ The ``NestedDict``.
293
+ """
294
+ nested_state = nest_mapping(dict(flat_dict))
295
+ return cls(nested_state)
296
+
297
+ def split( # type: ignore[misc]
298
+ self,
299
+ first: Filter,
300
+ /,
301
+ *filters: Filter
302
+ ) -> Union[NestedDict[K, V], Tuple[NestedDict[K, V], ...]]:
303
+ """
304
+ Split a ``NestedDict`` into one or more ``NestedDict``'s. The
305
+ user must pass at least one ``Filter`` (i.e. :class:`State`),
306
+ and the filters must be exhaustive (i.e. they must cover all
307
+ :class:`State` types in the ``NestedDict``).
308
+
309
+ Example usage::
310
+
311
+ >>> import brainstate as bst
312
+
313
+ >>> class Model(bst.nn.Module):
314
+ ... def __init__(self):
315
+ ... super().__init__()
316
+ ... self.batchnorm = bst.nn.BatchNorm1d([10, 3])
317
+ ... self.linear = bst.nn.Linear(2, 3)
318
+ ... def __call__(self, x):
319
+ ... return self.linear(self.batchnorm(x))
320
+
321
+ >>> model = Model()
322
+ >>> state_map = bst.graph.treefy_states(model)
323
+ >>> param, others = state_map.treefy_split(bst.ParamState, ...)
324
+
325
+ Arguments:
326
+ first: The first filter
327
+ *filters: The optional, additional filters to group the state into mutually exclusive substates.
328
+
329
+ Returns:
330
+ One or more ``States`` equal to the number of filters passed.
331
+ """
332
+ filters = (first, *filters)
333
+ *states_, rest = _split_nested_mapping(self, *filters)
334
+ if rest:
335
+ raise ValueError(f'Non-exhaustive filters, got a non-empty remainder: {rest}.\n'
336
+ f'Use `...` to match all remaining elements.')
337
+
338
+ states: NestedDict | Tuple[NestedDict, ...]
339
+ if len(states_) == 1:
340
+ states = states_[0]
341
+ else:
342
+ states = tuple(states_)
343
+ return states # type: ignore[bad-return-type]
344
+
345
+ def filter(
346
+ self,
347
+ first: Filter,
348
+ /,
349
+ *filters: Filter,
350
+ ) -> Union[NestedDict[K, V], Tuple[NestedDict[K, V], ...]]:
351
+ """
352
+ Filter a ``NestedDict`` into one or more ``NestedDict``'s. The
353
+ user must pass at least one ``Filter`` (i.e. :class:`State`).
354
+ This method is similar to :meth:`split() <flax.nnx.NestedDict.state.split>`,
355
+ except the filters can be non-exhaustive.
356
+
357
+ Arguments:
358
+ first: The first filter
359
+ *filters: The optional, additional filters to group the state into mutually exclusive substates.
360
+
361
+ Returns:
362
+ One or more ``States`` equal to the number of filters passed.
363
+ """
364
+ *states_, _rest = _split_nested_mapping(self, first, *filters)
365
+ assert len(states_) == len(filters) + 1, f'Expected {len(filters) + 1} states, got {len(states_)}'
366
+ if len(states_) == 1:
367
+ states = states_[0]
368
+ else:
369
+ states = tuple(states_)
370
+ return states # type: ignore[bad-return-type]
371
+
372
+ @staticmethod
373
+ def merge(
374
+ state: NestedDict[K, V] | FlattedDict[K, V],
375
+ /,
376
+ *states: NestedDict[K, V] | FlattedDict[K, V]
377
+ ) -> NestedDict[K, V]:
378
+ """
379
+ The inverse of :meth:`split()`.
380
+
381
+ ``merge`` takes one or more ``PrettyDict``'s and creates a new ``PrettyDict``.
382
+
383
+ Args:
384
+ state: A ``PrettyDict`` object.
385
+ *states: Additional ``PrettyDict`` objects.
386
+
387
+ Returns:
388
+ The merged ``PrettyDict``.
389
+ """
390
+ if not states:
391
+ return state
392
+ states = (state, *states)
393
+ new_state: FlattedDict = FlattedDict()
394
+ for state in states:
395
+ if isinstance(state, NestedDict):
396
+ new_state.update(state.to_flat()) # type: ignore[attribute-error] # pytype is wrong here
397
+ elif isinstance(state, FlattedDict):
398
+ new_state.update(state)
399
+ else:
400
+ raise TypeError(f'Expected Nested or Flatted Mapping, got {type(state)} instead.')
401
+ return NestedDict.from_flat(new_state)
402
+
403
+ def to_pure_dict(self) -> Dict[str, Any]:
404
+ flat_values = {k: x for k, x in self.to_flat().items()}
405
+ return nest_mapping(flat_values).to_dict()
406
+
407
+ def replace_by_pure_dict(
408
+ self,
409
+ pure_dict: Dict[str, Any],
410
+ replace_fn: Optional[SetValueFn] = None
411
+ ):
412
+ if replace_fn is None:
413
+ replace_fn = lambda x, v: x.replace(v) if hasattr(x, 'replace') else v
414
+ current_flat = self.to_flat()
415
+ for kp, v in flat_mapping(pure_dict).items():
416
+ if kp not in current_flat:
417
+ raise ValueError(f'key in pure_dict not available in state: {kp}')
418
+ current_flat[kp] = replace_fn(current_flat[kp], v)
419
+ self.update(nest_mapping(current_flat))
420
+
421
+
422
+ class FlattedDict(PrettyDict):
423
+ """
424
+ A pytree-like structure that contains a ``Mapping`` from strings or integers to leaves.
425
+
426
+ A valid leaf type is either :class:`State`, ``jax.Array``, ``numpy.ndarray`` or Python variables.
427
+
428
+ A ``NestedDict`` can be generated by either calling :func:`states()` or
429
+ :func:`nodes()` on the :class:`Module`.
430
+
431
+ Example usage::
432
+
433
+ >>> import brainstate as bst
434
+ >>> import jax.numpy as jnp
435
+ >>>
436
+ >>> class Model(bst.nn.Module):
437
+ ... def __init__(self):
438
+ ... super().__init__()
439
+ ... self.batchnorm = bst.nn.BatchNorm1d([10, 3])
440
+ ... self.linear = bst.nn.Linear(2, 3)
441
+ ... def __call__(self, x):
442
+ ... return self.linear(self.batchnorm(x))
443
+ >>>
444
+ >>> model = Model()
445
+
446
+ >>> # retrieve the states of the model
447
+ >>> model.states() # with the same to the function of ``brainstate.graph.states()``
448
+ FlattedDict({
449
+ ('batchnorm', 'running_mean'): LongTermState(
450
+ value=Array([[0., 0., 0.]], dtype=float32)
451
+ ),
452
+ ('batchnorm', 'running_var'): LongTermState(
453
+ value=Array([[1., 1., 1.]], dtype=float32)
454
+ ),
455
+ ('batchnorm', 'weight'): ParamState(
456
+ value={'bias': Array([[0., 0., 0.]], dtype=float32), 'scale': Array([[1., 1., 1.]], dtype=float32)}
457
+ ),
458
+ ('linear', 'weight'): ParamState(
459
+ value={'weight': Array([[-0.21467684, 0.7621282 , -0.50756454, -0.49047297],
460
+ [-0.90413696, 0.6711 , -0.1254792 , 0.50412565],
461
+ [ 0.23975602, 0.47905368, 1.4851435 , 0.16745673]], dtype=float32), 'bias': Array([0., 0., 0., 0.], dtype=float32)}
462
+ )
463
+ })
464
+
465
+ >>> # retrieve the nodes of the model
466
+ >>> model.nodes() # with the same to the function of ``brainstate.graph.nodes()``
467
+ FlattedDict({
468
+ ('batchnorm',): BatchNorm1d(
469
+ in_size=(10, 3),
470
+ out_size=(10, 3),
471
+ affine=True,
472
+ bias_initializer=Constant(value=0.0, dtype=<class 'numpy.float32'>),
473
+ scale_initializer=Constant(value=1.0, dtype=<class 'numpy.float32'>),
474
+ dtype=<class 'numpy.float32'>,
475
+ track_running_stats=True,
476
+ momentum=Array(shape=(), dtype=float32),
477
+ epsilon=Array(shape=(), dtype=float32),
478
+ feature_axis=(1,),
479
+ axis_name=None,
480
+ axis_index_groups=None,
481
+ running_mean=LongTermState(
482
+ value=Array(shape=(1, 3), dtype=float32)
483
+ ),
484
+ running_var=LongTermState(
485
+ value=Array(shape=(1, 3), dtype=float32)
486
+ ),
487
+ weight=ParamState(
488
+ value={'bias': Array(shape=(1, 3), dtype=float32), 'scale': Array(shape=(1, 3), dtype=float32)}
489
+ )
490
+ ),
491
+ ('linear',): Linear(
492
+ in_size=(10, 3),
493
+ out_size=(10, 4),
494
+ w_mask=None,
495
+ weight=ParamState(
496
+ value={'bias': Array(shape=(4,), dtype=float32), 'weight': Array(shape=(3, 4), dtype=float32)}
497
+ )
498
+ ),
499
+ (): Model(
500
+ batchnorm=BatchNorm1d(...),
501
+ linear=Linear(...)
502
+ )
503
+ })
504
+ """
505
+ __module__ = 'brainstate.util'
506
+
507
+ def __or__(self, other: FlattedDict[K, V]) -> FlattedDict[K, V]:
508
+ if not other:
509
+ return self
510
+ assert isinstance(other, FlattedDict), f'expected NestedDict; got {type(other).__qualname__}'
511
+ return FlattedDict.merge(self, other)
512
+
513
+ def __sub__(self, other: FlattedDict[K, V]) -> FlattedDict[K, V]:
514
+ if not other:
515
+ return self
516
+ assert isinstance(other, FlattedDict), f'expected NestedDict; got {type(other).__qualname__}'
517
+ diff = {k: v for k, v in self.items() if k not in other}
518
+ return FlattedDict(diff)
519
+
520
+ def to_nest(self) -> NestedDict:
521
+ """
522
+ Unflatten the flat mapping into a nested mapping.
523
+
524
+ Returns:
525
+ The nested mapping.
526
+ """
527
+ return nest_mapping(self)
528
+
529
+ @classmethod
530
+ def from_nest(
531
+ cls, nested_dict: abc.Mapping[PathParts, V] | Iterable[tuple[PathParts, V]],
532
+ ) -> FlattedDict:
533
+ """
534
+ Create a ``NestedDict`` from a flat mapping.
535
+
536
+ Args:
537
+ nested_dict: The flat mapping.
538
+
539
+ Returns:
540
+ The ``NestedDict``.
541
+ """
542
+ return flat_mapping(nested_dict)
543
+
544
+ def split( # type: ignore[misc]
545
+ self,
546
+ first: Filter,
547
+ /,
548
+ *filters: Filter
549
+ ) -> Union[FlattedDict[K, V], tuple[FlattedDict[K, V], ...]]:
550
+ """
551
+ Split a ``FlattedDict`` into one or more ``FlattedDict``'s. The
552
+ user must pass at least one ``Filter`` (i.e. :class:`State`),
553
+ and the filters must be exhaustive (i.e. they must cover all
554
+ :class:`State` types in the ``NestedDict``).
555
+
556
+ Arguments:
557
+ first: The first filter
558
+ *filters: The optional, additional filters to group the state into mutually exclusive substates.
559
+
560
+ Returns:
561
+ One or more ``States`` equal to the number of filters passed.
562
+ """
563
+ filters = (first, *filters)
564
+ *states_, rest = _split_flatted_mapping(self, *filters)
565
+ if rest:
566
+ raise ValueError(f'Non-exhaustive filters, got a non-empty remainder: {rest}.\n'
567
+ f'Use `...` to match all remaining elements.')
568
+
569
+ states: FlattedDict | Tuple[FlattedDict, ...]
570
+ if len(states_) == 1:
571
+ states = states_[0]
572
+ else:
573
+ states = tuple(states_)
574
+ return states # type: ignore[bad-return-type]
575
+
576
+ def filter(
577
+ self,
578
+ first: Filter,
579
+ /,
580
+ *filters: Filter,
581
+ ) -> Union[FlattedDict[K, V], Tuple[FlattedDict[K, V], ...]]:
582
+ """
583
+ Filter a ``FlattedDict`` into one or more ``FlattedDict``'s. The
584
+ user must pass at least one ``Filter`` (i.e. :class:`State`).
585
+ This method is similar to :meth:`split() <flax.nnx.NestedDict.state.split>`,
586
+ except the filters can be non-exhaustive.
587
+
588
+ Arguments:
589
+ first: The first filter
590
+ *filters: The optional, additional filters to group the state into mutually exclusive substates.
591
+
592
+ Returns:
593
+ One or more ``States`` equal to the number of filters passed.
594
+ """
595
+ *states_, _rest = _split_flatted_mapping(self, first, *filters)
596
+ assert len(states_) == len(filters) + 1, f'Expected {len(filters) + 1} states, got {len(states_)}'
597
+ if len(states_) == 1:
598
+ states = states_[0]
599
+ else:
600
+ states = tuple(states_)
601
+ return states # type: ignore[bad-return-type]
602
+
603
+ @staticmethod
604
+ def merge(
605
+ state: FlattedDict[K, V] | NestedDict[K, V],
606
+ /,
607
+ *states: FlattedDict[K, V] | NestedDict[K, V]
608
+ ) -> FlattedDict[K, V]:
609
+ """
610
+ The inverse of :meth:`split()`.
611
+
612
+ ``merge`` takes one or more ``FlattedDict``'s and creates a new ``FlattedDict``.
613
+
614
+ Args:
615
+ state: A ``PrettyDict`` object.
616
+ *states: Additional ``PrettyDict`` objects.
617
+
618
+ Returns:
619
+ The merged ``PrettyDict``.
620
+ """
621
+ if not states:
622
+ return state
623
+ states = (state, *states)
624
+ new_state: FlattedStateMapping[V] = {}
625
+ for state in states:
626
+ if isinstance(state, NestedDict):
627
+ new_state.update(state.to_flat()) # type: ignore[attribute-error] # pytype is wrong here
628
+ elif isinstance(state, FlattedDict):
629
+ new_state.update(state)
630
+ else:
631
+ raise TypeError(f'Expected Nested or Flatted Mapping, got {type(state)} instead.')
632
+ return FlattedDict(new_state)
633
+
634
+ def to_dict_values(self):
635
+ from brainstate._state import State
636
+ return {k: v.value if isinstance(v, State) else v for k, v in self.items()}
637
+
638
+
639
+ def _split_nested_mapping(
640
+ mapping: NestedDict[K, V],
641
+ *filters: Filter,
642
+ ) -> Tuple[NestedDict[K, V], ...]:
643
+ # check if the filters are exhaustive
644
+ for i, filter_ in enumerate(filters):
645
+ if filter_ in (..., True) and i != len(filters) - 1:
646
+ remaining_filters = filters[i + 1:]
647
+ if not all(f in (..., True) for f in remaining_filters):
648
+ raise ValueError('`...` or `True` can only be used as the last filters, '
649
+ f'got {filter_} it at index {i}.')
650
+
651
+ # change the filters to predicates
652
+ predicates = tuple(map(to_predicate, filters))
653
+
654
+ # we have n + 1 state mappings, where n is the number of predicates
655
+ # the last state mapping is for values that don't match any predicate
656
+ flat_states: tuple[FlattedStateMapping[V], ...] = tuple({} for _ in range(len(predicates) + 1))
657
+
658
+ assert isinstance(mapping, NestedDict), f'expected NestedDict; got {type(mapping).__qualname__}'
659
+ flat_state = mapping.to_flat()
660
+ for path, value in flat_state.items():
661
+ for i, predicate in enumerate(predicates):
662
+ if predicate(path, value):
663
+ flat_states[i][path] = value # type: ignore[index] # mypy is wrong here?
664
+ break
665
+ else:
666
+ # if we didn't break, set leaf to last state
667
+ flat_states[-1][path] = value # type: ignore[index] # mypy is wrong here?
668
+
669
+ return tuple(NestedDict.from_flat(flat_state) for flat_state in flat_states)
670
+
671
+
672
+ def _split_flatted_mapping(
673
+ mapping: FlattedDict[K, V],
674
+ *filters: Filter,
675
+ ) -> Tuple[FlattedDict[K, V], ...]:
676
+ # check if the filters are exhaustive
677
+ for i, filter_ in enumerate(filters):
678
+ if filter_ in (..., True) and i != len(filters) - 1:
679
+ remaining_filters = filters[i + 1:]
680
+ if not all(f in (..., True) for f in remaining_filters):
681
+ raise ValueError('`...` or `True` can only be used as the last filters, '
682
+ f'got {filter_} it at index {i}.')
683
+
684
+ # change the filters to predicates
685
+ predicates = tuple(map(to_predicate, filters))
686
+
687
+ # we have n + 1 state mappings, where n is the number of predicates
688
+ # the last state mapping is for values that don't match any predicate
689
+ flat_states: tuple[FlattedStateMapping[V], ...] = tuple({} for _ in range(len(predicates) + 1))
690
+
691
+ assert isinstance(mapping, FlattedDict), f'expected FlattedDict; got {type(mapping).__qualname__}'
692
+ for path, value in mapping.items():
693
+ for i, predicate in enumerate(predicates):
694
+ if predicate(path, value):
695
+ flat_states[i][path] = value # type: ignore[index] # mypy is wrong here?
696
+ break
697
+ else:
698
+ # if we didn't break, set leaf to last state
699
+ flat_states[-1][path] = value # type: ignore[index] # mypy is wrong here?
700
+
701
+ return tuple(FlattedDict(flat_state) for flat_state in flat_states)
702
+
703
+
704
+ # register ``NestedDict`` as a pytree
705
+ def _nest_flatten_with_keys(x: NestedDict):
706
+ items = sorted(x.items())
707
+ children = tuple((jax.tree_util.DictKey(key), value) for key, value in items)
708
+ return children, tuple(key for key, _ in items)
709
+
710
+
711
+ def _nest_unflatten(
712
+ static: Tuple[K, ...],
713
+ leaves: Tuple[V, ...] | Tuple[Dict[K, V]],
714
+ ):
715
+ return NestedDict(zip(static, leaves))
716
+
717
+
718
+ jax.tree_util.register_pytree_with_keys(NestedDict,
719
+ _nest_flatten_with_keys,
720
+ _nest_unflatten) # type: ignore[arg-type]
721
+
722
+
723
+ # register ``FlattedDict`` as a pytree
724
+
725
+ def _flat_unflatten(
726
+ static: Tuple[K, ...],
727
+ leaves: Tuple[V, ...] | Tuple[Dict[K, V]],
728
+ ):
729
+ return FlattedDict(zip(static, leaves))
730
+
731
+
732
+ jax.tree_util.register_pytree_with_keys(FlattedDict,
733
+ _nest_flatten_with_keys,
734
+ _flat_unflatten) # type: ignore[arg-type]