arviz 0.23.3__py3-none-any.whl → 1.0.0rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (185) hide show
  1. arviz/__init__.py +52 -367
  2. arviz-1.0.0rc0.dist-info/METADATA +182 -0
  3. arviz-1.0.0rc0.dist-info/RECORD +5 -0
  4. {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/WHEEL +1 -2
  5. {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/licenses/LICENSE +0 -1
  6. arviz/data/__init__.py +0 -55
  7. arviz/data/base.py +0 -596
  8. arviz/data/converters.py +0 -203
  9. arviz/data/datasets.py +0 -161
  10. arviz/data/example_data/code/radon/radon.json +0 -326
  11. arviz/data/example_data/data/centered_eight.nc +0 -0
  12. arviz/data/example_data/data/non_centered_eight.nc +0 -0
  13. arviz/data/example_data/data_local.json +0 -12
  14. arviz/data/example_data/data_remote.json +0 -58
  15. arviz/data/inference_data.py +0 -2386
  16. arviz/data/io_beanmachine.py +0 -112
  17. arviz/data/io_cmdstan.py +0 -1036
  18. arviz/data/io_cmdstanpy.py +0 -1233
  19. arviz/data/io_datatree.py +0 -23
  20. arviz/data/io_dict.py +0 -462
  21. arviz/data/io_emcee.py +0 -317
  22. arviz/data/io_json.py +0 -54
  23. arviz/data/io_netcdf.py +0 -68
  24. arviz/data/io_numpyro.py +0 -497
  25. arviz/data/io_pyjags.py +0 -378
  26. arviz/data/io_pyro.py +0 -333
  27. arviz/data/io_pystan.py +0 -1095
  28. arviz/data/io_zarr.py +0 -46
  29. arviz/data/utils.py +0 -139
  30. arviz/labels.py +0 -210
  31. arviz/plots/__init__.py +0 -61
  32. arviz/plots/autocorrplot.py +0 -171
  33. arviz/plots/backends/__init__.py +0 -223
  34. arviz/plots/backends/bokeh/__init__.py +0 -166
  35. arviz/plots/backends/bokeh/autocorrplot.py +0 -101
  36. arviz/plots/backends/bokeh/bfplot.py +0 -23
  37. arviz/plots/backends/bokeh/bpvplot.py +0 -193
  38. arviz/plots/backends/bokeh/compareplot.py +0 -167
  39. arviz/plots/backends/bokeh/densityplot.py +0 -239
  40. arviz/plots/backends/bokeh/distcomparisonplot.py +0 -23
  41. arviz/plots/backends/bokeh/distplot.py +0 -183
  42. arviz/plots/backends/bokeh/dotplot.py +0 -113
  43. arviz/plots/backends/bokeh/ecdfplot.py +0 -73
  44. arviz/plots/backends/bokeh/elpdplot.py +0 -203
  45. arviz/plots/backends/bokeh/energyplot.py +0 -155
  46. arviz/plots/backends/bokeh/essplot.py +0 -176
  47. arviz/plots/backends/bokeh/forestplot.py +0 -772
  48. arviz/plots/backends/bokeh/hdiplot.py +0 -54
  49. arviz/plots/backends/bokeh/kdeplot.py +0 -268
  50. arviz/plots/backends/bokeh/khatplot.py +0 -163
  51. arviz/plots/backends/bokeh/lmplot.py +0 -185
  52. arviz/plots/backends/bokeh/loopitplot.py +0 -211
  53. arviz/plots/backends/bokeh/mcseplot.py +0 -184
  54. arviz/plots/backends/bokeh/pairplot.py +0 -328
  55. arviz/plots/backends/bokeh/parallelplot.py +0 -81
  56. arviz/plots/backends/bokeh/posteriorplot.py +0 -324
  57. arviz/plots/backends/bokeh/ppcplot.py +0 -379
  58. arviz/plots/backends/bokeh/rankplot.py +0 -149
  59. arviz/plots/backends/bokeh/separationplot.py +0 -107
  60. arviz/plots/backends/bokeh/traceplot.py +0 -436
  61. arviz/plots/backends/bokeh/violinplot.py +0 -164
  62. arviz/plots/backends/matplotlib/__init__.py +0 -124
  63. arviz/plots/backends/matplotlib/autocorrplot.py +0 -72
  64. arviz/plots/backends/matplotlib/bfplot.py +0 -78
  65. arviz/plots/backends/matplotlib/bpvplot.py +0 -177
  66. arviz/plots/backends/matplotlib/compareplot.py +0 -135
  67. arviz/plots/backends/matplotlib/densityplot.py +0 -194
  68. arviz/plots/backends/matplotlib/distcomparisonplot.py +0 -119
  69. arviz/plots/backends/matplotlib/distplot.py +0 -178
  70. arviz/plots/backends/matplotlib/dotplot.py +0 -116
  71. arviz/plots/backends/matplotlib/ecdfplot.py +0 -70
  72. arviz/plots/backends/matplotlib/elpdplot.py +0 -189
  73. arviz/plots/backends/matplotlib/energyplot.py +0 -113
  74. arviz/plots/backends/matplotlib/essplot.py +0 -180
  75. arviz/plots/backends/matplotlib/forestplot.py +0 -656
  76. arviz/plots/backends/matplotlib/hdiplot.py +0 -48
  77. arviz/plots/backends/matplotlib/kdeplot.py +0 -177
  78. arviz/plots/backends/matplotlib/khatplot.py +0 -241
  79. arviz/plots/backends/matplotlib/lmplot.py +0 -149
  80. arviz/plots/backends/matplotlib/loopitplot.py +0 -144
  81. arviz/plots/backends/matplotlib/mcseplot.py +0 -161
  82. arviz/plots/backends/matplotlib/pairplot.py +0 -355
  83. arviz/plots/backends/matplotlib/parallelplot.py +0 -58
  84. arviz/plots/backends/matplotlib/posteriorplot.py +0 -348
  85. arviz/plots/backends/matplotlib/ppcplot.py +0 -478
  86. arviz/plots/backends/matplotlib/rankplot.py +0 -119
  87. arviz/plots/backends/matplotlib/separationplot.py +0 -97
  88. arviz/plots/backends/matplotlib/traceplot.py +0 -526
  89. arviz/plots/backends/matplotlib/tsplot.py +0 -121
  90. arviz/plots/backends/matplotlib/violinplot.py +0 -148
  91. arviz/plots/bfplot.py +0 -128
  92. arviz/plots/bpvplot.py +0 -308
  93. arviz/plots/compareplot.py +0 -177
  94. arviz/plots/densityplot.py +0 -284
  95. arviz/plots/distcomparisonplot.py +0 -197
  96. arviz/plots/distplot.py +0 -233
  97. arviz/plots/dotplot.py +0 -233
  98. arviz/plots/ecdfplot.py +0 -372
  99. arviz/plots/elpdplot.py +0 -174
  100. arviz/plots/energyplot.py +0 -147
  101. arviz/plots/essplot.py +0 -319
  102. arviz/plots/forestplot.py +0 -304
  103. arviz/plots/hdiplot.py +0 -211
  104. arviz/plots/kdeplot.py +0 -357
  105. arviz/plots/khatplot.py +0 -236
  106. arviz/plots/lmplot.py +0 -380
  107. arviz/plots/loopitplot.py +0 -224
  108. arviz/plots/mcseplot.py +0 -194
  109. arviz/plots/pairplot.py +0 -281
  110. arviz/plots/parallelplot.py +0 -204
  111. arviz/plots/plot_utils.py +0 -599
  112. arviz/plots/posteriorplot.py +0 -298
  113. arviz/plots/ppcplot.py +0 -369
  114. arviz/plots/rankplot.py +0 -232
  115. arviz/plots/separationplot.py +0 -167
  116. arviz/plots/styles/arviz-bluish.mplstyle +0 -1
  117. arviz/plots/styles/arviz-brownish.mplstyle +0 -1
  118. arviz/plots/styles/arviz-colors.mplstyle +0 -2
  119. arviz/plots/styles/arviz-cyanish.mplstyle +0 -1
  120. arviz/plots/styles/arviz-darkgrid.mplstyle +0 -40
  121. arviz/plots/styles/arviz-doc.mplstyle +0 -88
  122. arviz/plots/styles/arviz-docgrid.mplstyle +0 -88
  123. arviz/plots/styles/arviz-grayscale.mplstyle +0 -41
  124. arviz/plots/styles/arviz-greenish.mplstyle +0 -1
  125. arviz/plots/styles/arviz-orangish.mplstyle +0 -1
  126. arviz/plots/styles/arviz-plasmish.mplstyle +0 -1
  127. arviz/plots/styles/arviz-purplish.mplstyle +0 -1
  128. arviz/plots/styles/arviz-redish.mplstyle +0 -1
  129. arviz/plots/styles/arviz-royish.mplstyle +0 -1
  130. arviz/plots/styles/arviz-viridish.mplstyle +0 -1
  131. arviz/plots/styles/arviz-white.mplstyle +0 -40
  132. arviz/plots/styles/arviz-whitegrid.mplstyle +0 -40
  133. arviz/plots/traceplot.py +0 -273
  134. arviz/plots/tsplot.py +0 -440
  135. arviz/plots/violinplot.py +0 -192
  136. arviz/preview.py +0 -58
  137. arviz/py.typed +0 -0
  138. arviz/rcparams.py +0 -606
  139. arviz/sel_utils.py +0 -223
  140. arviz/static/css/style.css +0 -340
  141. arviz/static/html/icons-svg-inline.html +0 -15
  142. arviz/stats/__init__.py +0 -37
  143. arviz/stats/density_utils.py +0 -1013
  144. arviz/stats/diagnostics.py +0 -1013
  145. arviz/stats/ecdf_utils.py +0 -324
  146. arviz/stats/stats.py +0 -2422
  147. arviz/stats/stats_refitting.py +0 -119
  148. arviz/stats/stats_utils.py +0 -609
  149. arviz/tests/__init__.py +0 -1
  150. arviz/tests/base_tests/__init__.py +0 -1
  151. arviz/tests/base_tests/test_data.py +0 -1679
  152. arviz/tests/base_tests/test_data_zarr.py +0 -143
  153. arviz/tests/base_tests/test_diagnostics.py +0 -511
  154. arviz/tests/base_tests/test_diagnostics_numba.py +0 -87
  155. arviz/tests/base_tests/test_helpers.py +0 -18
  156. arviz/tests/base_tests/test_labels.py +0 -69
  157. arviz/tests/base_tests/test_plot_utils.py +0 -342
  158. arviz/tests/base_tests/test_plots_bokeh.py +0 -1288
  159. arviz/tests/base_tests/test_plots_matplotlib.py +0 -2197
  160. arviz/tests/base_tests/test_rcparams.py +0 -317
  161. arviz/tests/base_tests/test_stats.py +0 -925
  162. arviz/tests/base_tests/test_stats_ecdf_utils.py +0 -166
  163. arviz/tests/base_tests/test_stats_numba.py +0 -45
  164. arviz/tests/base_tests/test_stats_utils.py +0 -384
  165. arviz/tests/base_tests/test_utils.py +0 -376
  166. arviz/tests/base_tests/test_utils_numba.py +0 -87
  167. arviz/tests/conftest.py +0 -46
  168. arviz/tests/external_tests/__init__.py +0 -1
  169. arviz/tests/external_tests/test_data_beanmachine.py +0 -78
  170. arviz/tests/external_tests/test_data_cmdstan.py +0 -398
  171. arviz/tests/external_tests/test_data_cmdstanpy.py +0 -496
  172. arviz/tests/external_tests/test_data_emcee.py +0 -166
  173. arviz/tests/external_tests/test_data_numpyro.py +0 -434
  174. arviz/tests/external_tests/test_data_pyjags.py +0 -119
  175. arviz/tests/external_tests/test_data_pyro.py +0 -260
  176. arviz/tests/external_tests/test_data_pystan.py +0 -307
  177. arviz/tests/helpers.py +0 -677
  178. arviz/utils.py +0 -773
  179. arviz/wrappers/__init__.py +0 -13
  180. arviz/wrappers/base.py +0 -236
  181. arviz/wrappers/wrap_pymc.py +0 -36
  182. arviz/wrappers/wrap_stan.py +0 -148
  183. arviz-0.23.3.dist-info/METADATA +0 -264
  184. arviz-0.23.3.dist-info/RECORD +0 -183
  185. arviz-0.23.3.dist-info/top_level.txt +0 -1
@@ -1,264 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: arviz
3
- Version: 0.23.3
4
- Summary: Exploratory analysis of Bayesian models
5
- Home-page: http://github.com/arviz-devs/arviz
6
- Author: ArviZ Developers
7
- License: Apache-2.0
8
- Classifier: Development Status :: 4 - Beta
9
- Classifier: Framework :: Matplotlib
10
- Classifier: Intended Audience :: Science/Research
11
- Classifier: Intended Audience :: Education
12
- Classifier: License :: OSI Approved :: Apache Software License
13
- Classifier: Programming Language :: Python
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.10
16
- Classifier: Programming Language :: Python :: 3.11
17
- Classifier: Programming Language :: Python :: 3.12
18
- Classifier: Topic :: Scientific/Engineering
19
- Classifier: Topic :: Scientific/Engineering :: Visualization
20
- Classifier: Topic :: Scientific/Engineering :: Mathematics
21
- Requires-Python: >=3.10
22
- Description-Content-Type: text/markdown
23
- License-File: LICENSE
24
- Requires-Dist: setuptools>=60.0.0
25
- Requires-Dist: matplotlib>=3.8
26
- Requires-Dist: numpy>=1.26.0
27
- Requires-Dist: scipy>=1.11.0
28
- Requires-Dist: packaging
29
- Requires-Dist: pandas>=2.1.0
30
- Requires-Dist: xarray>=2023.7.0
31
- Requires-Dist: h5netcdf>=1.0.2
32
- Requires-Dist: h5py
33
- Requires-Dist: typing_extensions>=4.1.0
34
- Requires-Dist: xarray-einstats>=0.3
35
- Requires-Dist: platformdirs
36
- Provides-Extra: all
37
- Requires-Dist: numba; extra == "all"
38
- Requires-Dist: netcdf4; extra == "all"
39
- Requires-Dist: bokeh>=3; extra == "all"
40
- Requires-Dist: contourpy; extra == "all"
41
- Requires-Dist: ujson; extra == "all"
42
- Requires-Dist: dask[distributed]; extra == "all"
43
- Requires-Dist: zarr<3,>=2.5.0; extra == "all"
44
- Requires-Dist: xarray>=2024.11.0; extra == "all"
45
- Requires-Dist: dm-tree>=0.1.8; extra == "all"
46
- Provides-Extra: preview
47
- Requires-Dist: arviz-base[h5netcdf]; extra == "preview"
48
- Requires-Dist: arviz-stats[xarray]; extra == "preview"
49
- Requires-Dist: arviz-plots; extra == "preview"
50
- Dynamic: author
51
- Dynamic: classifier
52
- Dynamic: description
53
- Dynamic: description-content-type
54
- Dynamic: home-page
55
- Dynamic: license
56
- Dynamic: license-file
57
- Dynamic: provides-extra
58
- Dynamic: requires-dist
59
- Dynamic: requires-python
60
- Dynamic: summary
61
-
62
- <img src="https://raw.githubusercontent.com/arviz-devs/arviz-project/main/arviz_logos/ArviZ.png#gh-light-mode-only" width=200></img>
63
- <img src="https://raw.githubusercontent.com/arviz-devs/arviz-project/main/arviz_logos/ArviZ_white.png#gh-dark-mode-only" width=200></img>
64
-
65
- [![PyPI version](https://badge.fury.io/py/arviz.svg)](https://badge.fury.io/py/arviz)
66
- [![Azure Build Status](https://dev.azure.com/ArviZ/ArviZ/_apis/build/status/arviz-devs.arviz?branchName=main)](https://dev.azure.com/ArviZ/ArviZ/_build/latest?definitionId=1&branchName=main)
67
- [![codecov](https://codecov.io/gh/arviz-devs/arviz/branch/main/graph/badge.svg)](https://codecov.io/gh/arviz-devs/arviz)
68
- [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
69
- [![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/arviz-devs/community)
70
- [![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2540945.svg)](https://doi.org/10.5281/zenodo.2540945)
71
- [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)
72
-
73
- ArviZ (pronounced "AR-_vees_") is a Python package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, data storage, model checking, comparison and diagnostics.
74
-
75
- ### ArviZ in other languages
76
- ArviZ also has a Julia wrapper available [ArviZ.jl](https://julia.arviz.org/).
77
-
78
- ## Documentation
79
-
80
- The ArviZ documentation can be found in the [official docs](https://python.arviz.org/en/latest/index.html).
81
- First time users may find the [quickstart](https://python.arviz.org/en/latest/getting_started/Introduction.html)
82
- to be helpful. Additional guidance can be found in the
83
- [user guide](https://python.arviz.org/en/latest/user_guide/index.html).
84
-
85
-
86
- ## Installation
87
-
88
- ### Stable
89
- ArviZ is available for installation from [PyPI](https://pypi.org/project/arviz/).
90
- The latest stable version can be installed using pip:
91
-
92
- ```
93
- pip install arviz
94
- ```
95
-
96
- ArviZ is also available through [conda-forge](https://anaconda.org/conda-forge/arviz).
97
-
98
- ```
99
- conda install -c conda-forge arviz
100
- ```
101
-
102
- ### Development
103
- The latest development version can be installed from the main branch using pip:
104
-
105
- ```
106
- pip install git+git://github.com/arviz-devs/arviz.git
107
- ```
108
-
109
- Another option is to clone the repository and install using git and setuptools:
110
-
111
- ```
112
- git clone https://github.com/arviz-devs/arviz.git
113
- cd arviz
114
- python setup.py install
115
- ```
116
-
117
- -------------------------------------------------------------------------------
118
- ## [Gallery](https://python.arviz.org/en/latest/examples/index.html)
119
-
120
- <p>
121
- <table>
122
- <tr>
123
-
124
- <td>
125
- <a href= "https://python.arviz.org/en/latest/examples/plot_forest_ridge.html">
126
- <img alt="Ridge plot"
127
- src="https://python.arviz.org/en/latest/_images/mpl_plot_forest_ridge.png" width="300" height="auto" />
128
- </a>
129
- </td>
130
-
131
- <td>
132
- <a href="https://python.arviz.org/en/latest/examples/plot_forest.html">
133
- <img alt="Forest Plot"
134
- src="https://python.arviz.org/en/latest/_images/mpl_plot_forest.png" width="300" height="auto" />
135
- </a>
136
- </td>
137
-
138
- <td>
139
- <a href="https://python.arviz.org/en/latest/examples/plot_violin.html">
140
- <img alt="Violin Plot"
141
- src="https://python.arviz.org/en/latest/_images/mpl_plot_violin.png" width="300" height="auto" />
142
- </a>
143
- </td>
144
-
145
- </tr>
146
- <tr>
147
-
148
- <td>
149
- <a href="https://python.arviz.org/en/latest/examples/plot_ppc.html">
150
- <img alt="Posterior predictive plot"
151
- src="https://python.arviz.org/en/latest/_images/mpl_plot_ppc.png" width="300" height="auto" />
152
- </a>
153
- </td>
154
-
155
- <td>
156
- <a href="https://python.arviz.org/en/latest/examples/plot_dot.html">
157
- <img alt="Joint plot"
158
- src="https://python.arviz.org/en/latest/_images/mpl_plot_dot.png" width="300" height="auto" />
159
- </a>
160
- </td>
161
-
162
- <td>
163
- <a href="https://python.arviz.org/en/latest/examples/plot_posterior.html">
164
- <img alt="Posterior plot"
165
- src="https://python.arviz.org/en/latest/_images/mpl_plot_posterior.png" width="300" height="auto" />
166
- </a>
167
- </td>
168
-
169
- </tr>
170
- <tr>
171
-
172
- <td>
173
- <a href="https://python.arviz.org/en/latest/examples/plot_density.html">
174
- <img alt="Density plot"
175
- src="https://python.arviz.org/en/latest/_images/mpl_plot_density.png" width="300" height="auto" />
176
- </a>
177
- </td>
178
-
179
- <td>
180
- <a href="https://python.arviz.org/en/latest/examples/plot_pair.html">
181
- <img alt="Pair plot"
182
- src="https://python.arviz.org/en/latest/_images/mpl_plot_pair.png" width="300" height="auto" />
183
- </a>
184
- </td>
185
-
186
- <td>
187
- <a href="https://python.arviz.org/en/latest/examples/plot_pair_hex.html">
188
- <img alt="Hexbin Pair plot"
189
- src="https://python.arviz.org/en/latest/_images/mpl_plot_pair_hex.png" width="300" height="auto" />
190
- </a>
191
- </td>
192
-
193
- </tr>
194
- <tr>
195
- <td>
196
- <a href="https://python.arviz.org/en/latest/examples/plot_trace.html">
197
- <img alt="Trace plot"
198
- src="https://python.arviz.org/en/latest/_images/mpl_plot_trace.png" width="300" height="auto" />
199
- </a>
200
- </td>
201
-
202
- <td>
203
- <a href="https://python.arviz.org/en/latest/examples/plot_energy.html">
204
- <img alt="Energy Plot"
205
- src="https://python.arviz.org/en/latest/_images/mpl_plot_energy.png" width="300" height="auto" />
206
- </a>
207
- </td>
208
-
209
- <td>
210
- <a href="https://python.arviz.org/en/latest/examples/plot_rank.html">
211
- <img alt="Rank Plot"
212
- src="https://python.arviz.org/en/latest/_images/mpl_plot_rank.png" width="300" height="auto" />
213
- </a>
214
- </td>
215
-
216
- </tr>
217
- </table>
218
- <div>
219
-
220
- <a href="https://python.arviz.org/en/latest/examples/index.html">And more...</a>
221
- </div>
222
-
223
- ## Dependencies
224
-
225
- ArviZ is tested on Python 3.10, 3.11 and 3.12, and depends on NumPy, SciPy, xarray, and Matplotlib.
226
-
227
-
228
- ## Citation
229
-
230
-
231
- If you use ArviZ and want to cite it please use [![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143)
232
-
233
- Here is the citation in BibTeX format
234
-
235
- ```
236
- @article{arviz_2019,
237
- doi = {10.21105/joss.01143},
238
- url = {https://doi.org/10.21105/joss.01143},
239
- year = {2019},
240
- publisher = {The Open Journal},
241
- volume = {4},
242
- number = {33},
243
- pages = {1143},
244
- author = {Ravin Kumar and Colin Carroll and Ari Hartikainen and Osvaldo Martin},
245
- title = {ArviZ a unified library for exploratory analysis of Bayesian models in Python},
246
- journal = {Journal of Open Source Software}
247
- }
248
- ```
249
-
250
-
251
- ## Contributions
252
- ArviZ is a community project and welcomes contributions.
253
- Additional information can be found in the [Contributing Readme](https://github.com/arviz-devs/arviz/blob/main/CONTRIBUTING.md)
254
-
255
-
256
- ## Code of Conduct
257
- ArviZ wishes to maintain a positive community. Additional details
258
- can be found in the [Code of Conduct](https://github.com/arviz-devs/arviz/blob/main/CODE_OF_CONDUCT.md)
259
-
260
- ## Donations
261
- ArviZ is a non-profit project under NumFOCUS umbrella. If you want to support ArviZ financially, you can donate [here](https://numfocus.org/donate-to-arviz).
262
-
263
- ## Sponsors
264
- [![NumFOCUS](https://www.numfocus.org/wp-content/uploads/2017/07/NumFocus_LRG.png)](https://numfocus.org)
@@ -1,183 +0,0 @@
1
- arviz/__init__.py,sha256=C8rLjlBrmkJTT9-GCriCmt0izvt49EHDIhiJc-k-ijg,12149
2
- arviz/labels.py,sha256=w4-t0qdJzjKrqRyhzbtk6ucoMIAxle1HpHYlH7up06Q,6828
3
- arviz/preview.py,sha256=GuAwiStRYSooI4mG9j7JFpr3YxBfg_93DlgroORQBUg,1644
4
- arviz/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- arviz/rcparams.py,sha256=PRQYTnvwgGZrQkb1li3n-ZPdBaowDqfW51VTUa4dOjU,21095
6
- arviz/sel_utils.py,sha256=xvAYENhGXDTrhaT4Itlk1SJQUUGZ6BGcR04fPFgvzdM,6951
7
- arviz/utils.py,sha256=-q3eAeficZcLakOt6UXN0eyVx6uIVVpkqA_ky8FRSjE,26699
8
- arviz/data/__init__.py,sha256=SG2umdZ8uVNYKVBoVYPy5tNxJnzLdyw0spPMjMTae5k,1558
9
- arviz/data/base.py,sha256=PALdVidyCxJqje_za4XPwXH010qAMJt4VzzeOflUCC8,21365
10
- arviz/data/converters.py,sha256=TeiKpYCk4BSqkBzlSmMwAl3PNYvKaEy5sUMpQlYvt88,8411
11
- arviz/data/datasets.py,sha256=wPi23KZI-w4HrhjmY1LUg0Rj0aJobSJ4WO3LBrjfZQc,5392
12
- arviz/data/inference_data.py,sha256=vfueSyWiqYlVOvn_Y3xdYrNvCuVYaP3QX0x74emH9xI,94639
13
- arviz/data/io_beanmachine.py,sha256=QQVBD6rftvs6_kLIb4Vm1QzQ6BsS0J9DTrzw2Jj4ob8,3745
14
- arviz/data/io_cmdstan.py,sha256=8YX9Nfkx4LqjfKms4s4GTOkOjZNelb6SukvRZRHY6iM,38994
15
- arviz/data/io_cmdstanpy.py,sha256=iSr8ciKBFoIa1tJGHEX-2JKkUJRyaTXzRXf-5mu8q5U,42991
16
- arviz/data/io_datatree.py,sha256=QNj6Fkbv9HiJbCMbQmwGNPkwhYD4BkeMN10syhV9-J0,498
17
- arviz/data/io_dict.py,sha256=HM4ke-NuopsPnIdU-UGMtppAnj3vcbkBti8eROpMRTs,17698
18
- arviz/data/io_emcee.py,sha256=zsJJqwlyXLN_TfI6hgKz97p4N30NYTVvQSrIIpiLmB0,11844
19
- arviz/data/io_json.py,sha256=lrSP_9abfUW_5E8TwnG4hsS5HNHzAHZQCJTynl_tXKY,1256
20
- arviz/data/io_netcdf.py,sha256=cCxVnXSCTzWP3SU7cM4SqBiRRK9txFOsm-MchzNUzM4,2336
21
- arviz/data/io_numpyro.py,sha256=zJiL-U6x4hxHYs3mzTXdzF4iT2t4BBM5vh3zfU3I6eE,18668
22
- arviz/data/io_pyjags.py,sha256=PqljKXfXN13vxVJsLiNOdz_IGDhT-sTd-6nhn70LKVg,13272
23
- arviz/data/io_pyro.py,sha256=JYywUGUU1Qil_ahLuDYhYFafQAKB-y1kIipXdfH_vnQ,12740
24
- arviz/data/io_pystan.py,sha256=nRTU6yujilQCKERxzN7LIVwZplfvFNb-Y9Jk9YVJQLk,41700
25
- arviz/data/io_zarr.py,sha256=PeSBz-zHDzmwJq3sWzxASnjrfbd-hULJsl8FjK46YQQ,1163
26
- arviz/data/utils.py,sha256=gw1AtkCgdPA9bJsI1UTRi1h5xxFxv8erKlU_S48Nff8,4770
27
- arviz/data/example_data/data_local.json,sha256=8WwyEWriDDfcVT79GNQ412QDkSoOZF6FYJ7cbyGpONI,1088
28
- arviz/data/example_data/data_remote.json,sha256=tpEz0QouqUXDslNci_Y1AMuCNp-tv6CUz8kRz16tnAw,5340
29
- arviz/data/example_data/code/radon/radon.json,sha256=XwpiyGRrqkBP02zWz00s6z-d00Vv_vSqfx7ZLlb4lz0,24382
30
- arviz/data/example_data/data/centered_eight.nc,sha256=jvw6uv4MeW65rqe2lJDU4kAKM8V1BO9JMuHHEFhJF28,654694
31
- arviz/data/example_data/data/non_centered_eight.nc,sha256=r7kyd10HyJTTRQs4OlSCXPVt3T-nLsPd3g-bcPYnPmA,836647
32
- arviz/plots/__init__.py,sha256=atWhfLXHAD6zaTjbdWdTaJrPTNBl3XpcSCY4etgw_cY,1514
33
- arviz/plots/autocorrplot.py,sha256=veeZNEhHoDBzR-mGNm-JOP1gBoSpilpy2E6lOgcoWKk,5926
34
- arviz/plots/bfplot.py,sha256=TKCkk60dgIk70CNWz9pHDXb1HGwHT_aLfNgFH6jDz9c,4367
35
- arviz/plots/bpvplot.py,sha256=JcZPn-ON6nCZYiWTxaxGRMkkTkAEZHE4FE3cX2oYa-c,12505
36
- arviz/plots/compareplot.py,sha256=Z8usSMEeQKs4GmkziDR4dVzSh3Ocd4ySfiNDZVaFOUc,6078
37
- arviz/plots/densityplot.py,sha256=6477ZljpBCcZRw0SUwcTO4FYjxqw_qYsJupWNo-jCok,10895
38
- arviz/plots/distcomparisonplot.py,sha256=gVNQUN0VX7hC527fcUk1oxtQRdIl5mrltU95c0Nra9k,7184
39
- arviz/plots/distplot.py,sha256=xWXOsN-pPBwhHrEjC6lbIJdn-17DtpMueSnj6YzWlX4,8472
40
- arviz/plots/dotplot.py,sha256=jpXzHhlBxUuyJF6hnAUpaiuyL1zwLOJgq4CYwmqEtWs,7778
41
- arviz/plots/ecdfplot.py,sha256=eYasPwOYEmzqx82d6SyDg_iPyXkyFuOKnbOBjPrndH0,13112
42
- arviz/plots/elpdplot.py,sha256=NKqPkwTj9BWDzwMnG0cPeLmYBGMX_meP9F6bqvTwLKY,6433
43
- arviz/plots/energyplot.py,sha256=znEDPYpWaTIX0XpdVoyhXOITJ4A8BYkI9t1TVhJq4Qo,4797
44
- arviz/plots/essplot.py,sha256=ch0DjUQDILk4ohpSUR-9VHejGFb6Xmelly-qa-fKb9E,11741
45
- arviz/plots/forestplot.py,sha256=Cp8Xfk9CI_ZNOQj2qTMDy5UWkE2wVabOLForDuEcWxY,12505
46
- arviz/plots/hdiplot.py,sha256=Pii9ZsuejEM-I24dn39muUL-yYKTfe2RWzAuU0W-3SI,7798
47
- arviz/plots/kdeplot.py,sha256=t-SJt3LIL1nThAsVM5npXZhRxqkGoCsfF1F0Fkj8ZV8,11924
48
- arviz/plots/khatplot.py,sha256=u03gmBG1xwxG07ASLZEJB-GsRhRHtUCtbglpC1N0aIg,8086
49
- arviz/plots/lmplot.py,sha256=ZKX0RNaUpQO4qYYDqRqc_yktNsfdUXjs4EGFU2Wem2o,12943
50
- arviz/plots/loopitplot.py,sha256=bFUO_Fy4z6u6E39GdaF4rIvc-COWNwF4A0n2kcmZBfA,8321
51
- arviz/plots/mcseplot.py,sha256=rsiz4E9M9p58YetAaF75gbenGIj4M0hapWnh9UJOXzY,6829
52
- arviz/plots/pairplot.py,sha256=v-NCJIG6UG9cGIdFUWzW5S7Y29Ag5zE9zucxNSv46ME,10787
53
- arviz/plots/parallelplot.py,sha256=ZBEsHvnlmSXLRpSwP-KUwzgWBC2S4siKXFGJnLf7uAE,7125
54
- arviz/plots/plot_utils.py,sha256=VyVR50HrZegdkWa6ZxtRnC_WJstooYvaB-xsDHf6kaQ,18337
55
- arviz/plots/posteriorplot.py,sha256=pC-5SQZOGq1F4opM_sQLxn4ZG2we4Y9ULV8yhxjGVdo,10952
56
- arviz/plots/ppcplot.py,sha256=QwcgZTuUDijuXK9g3AB8Lc8ShK2URSL8Wc4Jeu5IxZM,13967
57
- arviz/plots/rankplot.py,sha256=lz0swHs6EBe-gXn4udP1Um3RS-EatsOAmguYqGMlIjU,8648
58
- arviz/plots/separationplot.py,sha256=Fx_QVeFUcF45fm7nn06pt0qubOzvH8QMU1cw5RLyaik,5491
59
- arviz/plots/traceplot.py,sha256=dwcF7rsjMAIxZ_LPv7Z8os01uQZHXTkDFWEBtsbzI9k,10216
60
- arviz/plots/tsplot.py,sha256=haTyvfGX5fA8Zle9bzllybG5n307BUJIxGywNAnOsU0,15925
61
- arviz/plots/violinplot.py,sha256=yxoEMGTIt4CDinZaNHPYI5MqFvXB2J2gyKdKJ47PKdk,7129
62
- arviz/plots/backends/__init__.py,sha256=LQbEHNuGuD2CRNmO-Djnfuk4kMF58guFGjEYr68mAxI,7867
63
- arviz/plots/backends/bokeh/__init__.py,sha256=e2wfZNdGTFU5GjsLokCLpknweaNgjZ5v3k7NB0gry6g,4877
64
- arviz/plots/backends/bokeh/autocorrplot.py,sha256=9CruVndfMnqsi4waav7Gcr7pn0nmUB0mkJxkzOjtGtw,2463
65
- arviz/plots/backends/bokeh/bfplot.py,sha256=ydjomuA5iTw9LE2_eq9_u6Ox3MCy0ulE_DU4qgH0MO8,406
66
- arviz/plots/backends/bokeh/bpvplot.py,sha256=FItG_h39UeoZX9nNE7GfM95cvT2gstlf374b2XuCEsM,6673
67
- arviz/plots/backends/bokeh/compareplot.py,sha256=52jOjhrRqB-Dgdw8odKfM4aPXk9med6MopCiHxKNgJM,4736
68
- arviz/plots/backends/bokeh/densityplot.py,sha256=LHkRpz7QJDobpBgw6Wuy23nFr8Ruc2CUBUDVwbj5A9c,6356
69
- arviz/plots/backends/bokeh/distcomparisonplot.py,sha256=o8FHMb1ZzKPpt7fXhwBr6HGhqpclO1Qk9o6aTGypgv0,431
70
- arviz/plots/backends/bokeh/distplot.py,sha256=a2yY4waIPdwGhDpUtYi87Ra-TJiAA67oQumIiU-nXiA,4851
71
- arviz/plots/backends/bokeh/dotplot.py,sha256=xnbaCSyGjCSfdiIIRf5zuMeogfNdNPK-1LenasjTAa8,2923
72
- arviz/plots/backends/bokeh/ecdfplot.py,sha256=Zrinhu6ViG3BbClxnRFZ_zIZm7S1nARiydHi-l1_i-g,1680
73
- arviz/plots/backends/bokeh/elpdplot.py,sha256=5bn_rH1Aixm0--BArAP4m4kuZMjWxR8ox-8T-xK_GMY,6487
74
- arviz/plots/backends/bokeh/energyplot.py,sha256=FKPYRaWwM32Vw0AHE0MIWBn9wZQeoYdP_YpYZGijIq0,4571
75
- arviz/plots/backends/bokeh/essplot.py,sha256=0i2E1TvlzzP9mTavlGlJ5hPoFW5tGWCkAPAKrVHbgYQ,5560
76
- arviz/plots/backends/bokeh/forestplot.py,sha256=TAaXMqF2F1G7BIeDdWas14C6pCKZ3RTNhLIjUm-_IQs,27466
77
- arviz/plots/backends/bokeh/hdiplot.py,sha256=O4sDsYDe94VsDRM0BFGblwQGKXE0WhA8Y8TmwX85vd8,1670
78
- arviz/plots/backends/bokeh/kdeplot.py,sha256=nKEgJfnP7NK2Y2cipF_RglEC6GpowaagH5wZP3iZq-U,9329
79
- arviz/plots/backends/bokeh/khatplot.py,sha256=Iz2C6YaQOhnucAFbjSWTha2HNLFmctXc4tt_rLdS6Ko,4663
80
- arviz/plots/backends/bokeh/lmplot.py,sha256=BP1-5O-PqpkheKHe1vDaZTzbAmFP_YKs9K02c3kYWtA,6532
81
- arviz/plots/backends/bokeh/loopitplot.py,sha256=FWjcsSWGJNy4wM63_N2qpg5oECb3Cq-uLy3xDS5x6j4,7172
82
- arviz/plots/backends/bokeh/mcseplot.py,sha256=QHyXeANcVSeLRdPJGh5RihZmaYq8cAPjSAn6FGJXQRk,5960
83
- arviz/plots/backends/bokeh/pairplot.py,sha256=RI480xTSrCvMNd8YQx5sjcDDkIytkSuGeCfWYpYIm8o,12482
84
- arviz/plots/backends/bokeh/parallelplot.py,sha256=SNChOLWvcKxXuuJsIfWs9CNj7qDuVb95UZyp4CP1BQE,2230
85
- arviz/plots/backends/bokeh/posteriorplot.py,sha256=yBAlGo3lQpFBVro724eZtKnOHgVkY7LXupa-8_VtE7c,9380
86
- arviz/plots/backends/bokeh/ppcplot.py,sha256=fDeXXn1WtjjSs-285nDo76NKJTp2m5hIZ7V9S6iqA30,13307
87
- arviz/plots/backends/bokeh/rankplot.py,sha256=cRTAU-cWt__0J4CzsHHSf47SA_vB1n4mQ16XIfve7aE,4531
88
- arviz/plots/backends/bokeh/separationplot.py,sha256=_VhJUnPW03xVpy2y4h8npLyPPD49H76WQMmj3hOq2Hc,2416
89
- arviz/plots/backends/bokeh/traceplot.py,sha256=mnw2rBoLNVrWYDR-m0HyECHFD1-dlsS18gj6D5qGGQ4,14246
90
- arviz/plots/backends/bokeh/violinplot.py,sha256=lfAzkv6qABLSz5R4uzFUotVExnG_c8HP3vkT_7Yc1dQ,4389
91
- arviz/plots/backends/matplotlib/__init__.py,sha256=LBEWakXN4QFoIXp_aPXPMTzXnA8VJt24k5RaowPCQoY,3629
92
- arviz/plots/backends/matplotlib/autocorrplot.py,sha256=ahyNnwyNrLubZTsxNvTi5hAZ5gV9dmo_wecrTYyMMDI,1807
93
- arviz/plots/backends/matplotlib/bfplot.py,sha256=00-xGO_VpmTxCkYiC1cGGsAW0HNO3bhQJkFxA6ssMh0,1828
94
- arviz/plots/backends/matplotlib/bpvplot.py,sha256=EJ79XptBAPrERh59wg0PCkKliIS1oPgcdzMkLmSFcno,6301
95
- arviz/plots/backends/matplotlib/compareplot.py,sha256=qvjSkNDBTZh3vxIw4pNEyRnaAM8qFG9vWw0X23hscsI,3695
96
- arviz/plots/backends/matplotlib/densityplot.py,sha256=zlqzYvH3VXWPiiIvL--fxtMp3hIGrcttKkQxKPV1U2s,5479
97
- arviz/plots/backends/matplotlib/distcomparisonplot.py,sha256=XZY2jITNKtcIMsg5tl_lzuwI-2DcdUdCWqrK7bsdvWE,3568
98
- arviz/plots/backends/matplotlib/distplot.py,sha256=V0CeyAPah5RzHXW9I5tssVXlZgj2NHPkg-k15ayEdVw,4581
99
- arviz/plots/backends/matplotlib/dotplot.py,sha256=WHrf_lpEKaJlTPKKZzkQrXzIy_ngxjOGUulInIQBI_M,2934
100
- arviz/plots/backends/matplotlib/ecdfplot.py,sha256=yX46D9bjhBTX-XFH2QVUZoHpSHcs_Pb9Mm6P4jwVEB8,1734
101
- arviz/plots/backends/matplotlib/elpdplot.py,sha256=LAB3PqxbWgvnyr-CIOFSO6egosCtYZmKsmCelFaNywY,6682
102
- arviz/plots/backends/matplotlib/energyplot.py,sha256=VDM8aZQ-SZzcZB9cv4EU0zQFk1L2JEJXL246mVALIwo,3317
103
- arviz/plots/backends/matplotlib/essplot.py,sha256=C5RH8MNIOGpCPKHUsGfZ03aQ3CaXI8xOLw6vDv6fSbE,6448
104
- arviz/plots/backends/matplotlib/forestplot.py,sha256=TWmJqmoH8Rn2bc-g3Tx1QTb_RIfNUKN5PxPFRnF3flA,23228
105
- arviz/plots/backends/matplotlib/hdiplot.py,sha256=7KawWKFahxILp0dxodkhRni9oJMCkulLhLhRD9qoH60,1521
106
- arviz/plots/backends/matplotlib/kdeplot.py,sha256=wsTBABG3MLkMAoAzu22otJdXCVzUnUu3McIt9_Hjldc,5323
107
- arviz/plots/backends/matplotlib/khatplot.py,sha256=SUV-Bbb88mnvFwxzFUf2j66JMjVtJNHoqYTRE7DmC8Y,7735
108
- arviz/plots/backends/matplotlib/lmplot.py,sha256=CHFhvUZaexnkS0ZFOJWTB3t0fdCF915RbmR-L2-cuM4,5564
109
- arviz/plots/backends/matplotlib/loopitplot.py,sha256=glK-BP4NftmdZEK5sB7kM8SzoGWsDnBdDVDzV-fDdCg,4632
110
- arviz/plots/backends/matplotlib/mcseplot.py,sha256=kGuRHRnyQKZPxoiHp8S30RzK7qbL83AaFGbn7BNVOZo,5810
111
- arviz/plots/backends/matplotlib/pairplot.py,sha256=NTBMIyvOMmCHwlrHeriEkwInA1R7beA9M28AlqCw8dU,13595
112
- arviz/plots/backends/matplotlib/parallelplot.py,sha256=zxtO6CNsK_HSl7E2sH40x8OYoO9a5bPNJ6VPJTuDQbk,1450
113
- arviz/plots/backends/matplotlib/posteriorplot.py,sha256=dUJfGYWYv5Lzlbz9Tr5d9virVfJb7JsnGiSYU7CdmsI,10092
114
- arviz/plots/backends/matplotlib/ppcplot.py,sha256=3kPTVEUsGpMyr_P5OKgfAu_NHZNmdJWXvCmfhIlNieE,16134
115
- arviz/plots/backends/matplotlib/rankplot.py,sha256=KU2EakKNv2oOr5zuNsM0dHLazyzBEbf_D95SBQhfnUA,3610
116
- arviz/plots/backends/matplotlib/separationplot.py,sha256=Yfc-9cgEif-Tb4piGuzJavDYu63x8HvdnZ4dYEzeqxQ,2352
117
- arviz/plots/backends/matplotlib/traceplot.py,sha256=ajAu1NSXZ7YX34cZkkTs3clMGzjs3AxKJywSnXvGTds,18882
118
- arviz/plots/backends/matplotlib/tsplot.py,sha256=1iD5xcV3pAskAQz2ulLgYKFb6PdGpPKCAnLN_FPwO-8,4033
119
- arviz/plots/backends/matplotlib/violinplot.py,sha256=Cm2jCLbrHOIV0mu1_v2on8Qt7HhN8w2CMgus4qEpErU,4253
120
- arviz/plots/styles/arviz-bluish.mplstyle,sha256=v4b3UX15ufQCWbAW3aflE9jE0w1T_PbYmc-f8QRJsKQ,95
121
- arviz/plots/styles/arviz-brownish.mplstyle,sha256=VqYcOVlcIQVGMk4smdAZg-ui9nI5xtY4vaNAbeQbhas,94
122
- arviz/plots/styles/arviz-colors.mplstyle,sha256=0mqf46lb2-fujgLOJzlAbGLaubznA2ZZOUSoht6eoEc,218
123
- arviz/plots/styles/arviz-cyanish.mplstyle,sha256=3LGyDCXD9MrUrCT40ncmkjuW2qVhpw1DbaYGKzBqsXw,93
124
- arviz/plots/styles/arviz-darkgrid.mplstyle,sha256=E6OmaFLN4w1gzjtxCryihdHnx5pWeCZZOKvO5e-DEcQ,1078
125
- arviz/plots/styles/arviz-doc.mplstyle,sha256=b1924an0wQ20mnQYnNlR3JIjPa5YPBw6cQ688MPKzjc,3392
126
- arviz/plots/styles/arviz-docgrid.mplstyle,sha256=xGW8i9hsoJw1rkL0GbZjLBexoEmRhDXOROQf5pC0FX8,3384
127
- arviz/plots/styles/arviz-grayscale.mplstyle,sha256=Bm9sLS1H9OqT6vQ2iOs6hZ_Jtjzqvsyho2zcgmCyzaE,1176
128
- arviz/plots/styles/arviz-greenish.mplstyle,sha256=OszR3ik_s25COWfD_J6h03J72C-idq2xaB5KrCOxqTM,93
129
- arviz/plots/styles/arviz-orangish.mplstyle,sha256=mgGSbJAqqCXeTeh9CmKPrDFyygeV3_SpcDOwPuN5P98,93
130
- arviz/plots/styles/arviz-plasmish.mplstyle,sha256=zstAfMInqSWOake-8w2DOKYFZgRNjYq_XIl8Ky7HoU8,85
131
- arviz/plots/styles/arviz-purplish.mplstyle,sha256=1S3QtqH3y3aExQl3eru_MfesG7y6-TS54yFF0srEBYc,93
132
- arviz/plots/styles/arviz-redish.mplstyle,sha256=c39qCsdQR48CHTzUKm3ga8ZBxQxxYOANNEgw5yv1hE0,93
133
- arviz/plots/styles/arviz-royish.mplstyle,sha256=1monU3L95dHMqL5SKGFzIKE3WjNbDf3cRrHNQJ8oq54,87
134
- arviz/plots/styles/arviz-viridish.mplstyle,sha256=kuaaxoLou_BPiGKNXzu-Fw_ST0eVuRwdluyvKDoXaCM,85
135
- arviz/plots/styles/arviz-white.mplstyle,sha256=p3dbvWzOKhA-u8r3BmTF-bR5bhKh87iIkkVLD_V6EdI,1083
136
- arviz/plots/styles/arviz-whitegrid.mplstyle,sha256=IMjjlfG3wg7heUjcVrkez1SNoiMI6BLztGPmsUp1iws,1072
137
- arviz/static/css/style.css,sha256=wcC7rvCT4E6TycEiw7YqxwyaaZ4tTRDGqMkYYjAqrao,5910
138
- arviz/static/html/icons-svg-inline.html,sha256=t-ChbtS1Gv8uZxc31DCJS8SuXDsLGUHoKgwv8zu6j2M,1343
139
- arviz/stats/__init__.py,sha256=kvrANzMkqyHMTdry7N5w836E2OP0tJM6bm5-G8OZaA0,721
140
- arviz/stats/density_utils.py,sha256=wmPFJzEZR7KgKxwQb5pGhY-w-rnFZpMIavrhpt_6u9w,32215
141
- arviz/stats/diagnostics.py,sha256=COTy2c5ROAirCAK_UNo7kQnggN71maBRPwy54ZdabKE,32656
142
- arviz/stats/ecdf_utils.py,sha256=Wy38wL-bsHDlpyU9qnDjedYBvbP_6ZrzJuWo6NzD2Xg,11835
143
- arviz/stats/stats.py,sha256=vowy6JVX1BkKynlrcBtDGVZ2ws3wWeiiTrMBFC0E6iY,89743
144
- arviz/stats/stats_refitting.py,sha256=trbPC7LCnsb-n5D6g7J0bzXJCPfcDukJDniB4ud1z9E,5415
145
- arviz/stats/stats_utils.py,sha256=XG8ILPVs8Jbh_v7jzLfwMkm2HraT2j2-Hxe_kEYlLjQ,20076
146
- arviz/tests/__init__.py,sha256=TiS6C1IzwAXmNa8u36Y2xzL1CTTZm2PwzAtmZgoqepE,18
147
- arviz/tests/conftest.py,sha256=6U9WpKmYf38EVRoFZNBpV0CunQvESBFJG2SJ8IBEkL4,1270
148
- arviz/tests/helpers.py,sha256=qhsOhLtfyz-dC2yuT6ug0frYZlbims06BljJuEVDP6E,23593
149
- arviz/tests/base_tests/__init__.py,sha256=zg7V5_0DZrCz7ozETqET6bUpAvUUmmkSoLpJLwaIj2E,23
150
- arviz/tests/base_tests/test_data.py,sha256=TZ9638lELh_rFqp0RnS5WThELGoqiPd39fSBXgcxB8Y,64910
151
- arviz/tests/base_tests/test_data_zarr.py,sha256=sPWnIQ7vPhN5Ql3Dq4JENuSwQV5IeignQjy9BAYe1_A,5441
152
- arviz/tests/base_tests/test_diagnostics.py,sha256=pbuy1-nvTKWSHv0nnhXOhpG4e2uy-4GGZb4lxAdoMpw,20353
153
- arviz/tests/base_tests/test_diagnostics_numba.py,sha256=2G5O-7Hz66DSaHIZtjs2XL45RezYnXQZH6Dg2Ow-p4Q,2847
154
- arviz/tests/base_tests/test_helpers.py,sha256=PogHpWCMBEtkuzKt9jGQ8uIPg0cLDwztXxOnPSPNyVE,669
155
- arviz/tests/base_tests/test_labels.py,sha256=X08vTMmcgXkYGbE2Qnu_UUDSTAIvSNKdnyqoWwmj008,1686
156
- arviz/tests/base_tests/test_plot_utils.py,sha256=lwDZYDNrlEOKP-asJv6qu3sH_4y-FiHcFlqnMTpZyhw,11771
157
- arviz/tests/base_tests/test_plots_bokeh.py,sha256=FDw3dp-M89EVsIAWvl7M17GXWyatRalYQJJHsbT5BzQ,41052
158
- arviz/tests/base_tests/test_plots_matplotlib.py,sha256=1MpAZHAlG9hc_vRTfXBy7-qxLLsZQNfns1qAVo6J9X8,69097
159
- arviz/tests/base_tests/test_rcparams.py,sha256=b9ueOXd9C0xiUIqgS0qnzvalHFgTFK7sUqL8UAzgJNs,10851
160
- arviz/tests/base_tests/test_stats.py,sha256=QHVa8sSzr5FX8X0D8tGFntCz9aW032gLu-EOuC6RHA4,34322
161
- arviz/tests/base_tests/test_stats_ecdf_utils.py,sha256=1T_9jYyuCWMEwTbps4AFHRDzEF8THcdFSeQN2oZIwVw,6102
162
- arviz/tests/base_tests/test_stats_numba.py,sha256=wGXgNuSO_gwJajoYtXSgpIe88PcBRyIkRihxC8paR-o,1582
163
- arviz/tests/base_tests/test_stats_utils.py,sha256=Udkw8tODs8mLt3_hO3HgNczrU0n09IJrML2agXF-upQ,13864
164
- arviz/tests/base_tests/test_utils.py,sha256=Auggtvwv3Y9STS8Tbram-IQe5IhewkwFN14CTcjRd5M,12533
165
- arviz/tests/base_tests/test_utils_numba.py,sha256=phV5engLS9Qe680UWfCn-5hzrh2PReiRrXwYKjMWt6U,2843
166
- arviz/tests/external_tests/__init__.py,sha256=W-G7ubGjIx9U2mudENOmdTrPiZ9XGrl5bge5rTbfAB4,26
167
- arviz/tests/external_tests/test_data_beanmachine.py,sha256=nwOJNJLrk5rY4M5YW-LT6gKsz1sFV-SMebXigMFHjhM,2647
168
- arviz/tests/external_tests/test_data_cmdstan.py,sha256=jHy-dZrY4M7F4uYWf71fOxVwfPxgRpM9E3JAvpk03qA,16829
169
- arviz/tests/external_tests/test_data_cmdstanpy.py,sha256=uCSOJVowKXccCPLpAwCiihghx_WxnUVyR8r801Xhw_0,18753
170
- arviz/tests/external_tests/test_data_emcee.py,sha256=w-tsP74-n688C9-v_KIf0YxZg7S1WrhOdJUvaHS9e6I,6270
171
- arviz/tests/external_tests/test_data_numpyro.py,sha256=ehI-xkxoub25xPIU1GyAhJDs4BpVwV_DLS0HYiL0Odw,17678
172
- arviz/tests/external_tests/test_data_pyjags.py,sha256=kqZfV8QRnAngO9obnAq5lKPIuJdVJ82sbkIfSr2tpqY,4547
173
- arviz/tests/external_tests/test_data_pyro.py,sha256=EaD_hZGALaSKQKK4OFgmuJ_1SsIYKessHQ7Jl9AKbw0,10771
174
- arviz/tests/external_tests/test_data_pystan.py,sha256=ebg_JXkmAhXRllP0otjyourGF_fUaKMkwRfrQO6Glwk,11792
175
- arviz/wrappers/__init__.py,sha256=d8GTUuBW_30LyDyk6qn2MAnvg-GZCeUw_i5SUPqaa1w,354
176
- arviz/wrappers/base.py,sha256=FNgPvd_tLCB5C2tRx1ngYjr4F5tEUuNrrLkStuyRXsE,9134
177
- arviz/wrappers/wrap_pymc.py,sha256=ltKv55aG0WTWXVDJuff5TXkgJJ_ESLvlT-JPlh3yHAg,1143
178
- arviz/wrappers/wrap_stan.py,sha256=sIy38fXg4Ln_0CM6xONDwOJg1Y6FwNM_JQErv3a-8_c,5526
179
- arviz-0.23.3.dist-info/licenses/LICENSE,sha256=xllut76FgcGL5zbIRvuRc7aezPbvlMUTWJPsVr2Sugg,11358
180
- arviz-0.23.3.dist-info/METADATA,sha256=PDnarYy_UbqJSrcZn8tvSbd0zu0inEY-pAJKZ8fCako,9137
181
- arviz-0.23.3.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
182
- arviz-0.23.3.dist-info/top_level.txt,sha256=5MFvqrTtYRWsIx-SjKuFIUHtrnVJq0Ngd0Nc2_etQhE,6
183
- arviz-0.23.3.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- arviz