arviz 0.23.3__py3-none-any.whl → 1.0.0rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (185) hide show
  1. arviz/__init__.py +52 -367
  2. arviz-1.0.0rc0.dist-info/METADATA +182 -0
  3. arviz-1.0.0rc0.dist-info/RECORD +5 -0
  4. {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/WHEEL +1 -2
  5. {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/licenses/LICENSE +0 -1
  6. arviz/data/__init__.py +0 -55
  7. arviz/data/base.py +0 -596
  8. arviz/data/converters.py +0 -203
  9. arviz/data/datasets.py +0 -161
  10. arviz/data/example_data/code/radon/radon.json +0 -326
  11. arviz/data/example_data/data/centered_eight.nc +0 -0
  12. arviz/data/example_data/data/non_centered_eight.nc +0 -0
  13. arviz/data/example_data/data_local.json +0 -12
  14. arviz/data/example_data/data_remote.json +0 -58
  15. arviz/data/inference_data.py +0 -2386
  16. arviz/data/io_beanmachine.py +0 -112
  17. arviz/data/io_cmdstan.py +0 -1036
  18. arviz/data/io_cmdstanpy.py +0 -1233
  19. arviz/data/io_datatree.py +0 -23
  20. arviz/data/io_dict.py +0 -462
  21. arviz/data/io_emcee.py +0 -317
  22. arviz/data/io_json.py +0 -54
  23. arviz/data/io_netcdf.py +0 -68
  24. arviz/data/io_numpyro.py +0 -497
  25. arviz/data/io_pyjags.py +0 -378
  26. arviz/data/io_pyro.py +0 -333
  27. arviz/data/io_pystan.py +0 -1095
  28. arviz/data/io_zarr.py +0 -46
  29. arviz/data/utils.py +0 -139
  30. arviz/labels.py +0 -210
  31. arviz/plots/__init__.py +0 -61
  32. arviz/plots/autocorrplot.py +0 -171
  33. arviz/plots/backends/__init__.py +0 -223
  34. arviz/plots/backends/bokeh/__init__.py +0 -166
  35. arviz/plots/backends/bokeh/autocorrplot.py +0 -101
  36. arviz/plots/backends/bokeh/bfplot.py +0 -23
  37. arviz/plots/backends/bokeh/bpvplot.py +0 -193
  38. arviz/plots/backends/bokeh/compareplot.py +0 -167
  39. arviz/plots/backends/bokeh/densityplot.py +0 -239
  40. arviz/plots/backends/bokeh/distcomparisonplot.py +0 -23
  41. arviz/plots/backends/bokeh/distplot.py +0 -183
  42. arviz/plots/backends/bokeh/dotplot.py +0 -113
  43. arviz/plots/backends/bokeh/ecdfplot.py +0 -73
  44. arviz/plots/backends/bokeh/elpdplot.py +0 -203
  45. arviz/plots/backends/bokeh/energyplot.py +0 -155
  46. arviz/plots/backends/bokeh/essplot.py +0 -176
  47. arviz/plots/backends/bokeh/forestplot.py +0 -772
  48. arviz/plots/backends/bokeh/hdiplot.py +0 -54
  49. arviz/plots/backends/bokeh/kdeplot.py +0 -268
  50. arviz/plots/backends/bokeh/khatplot.py +0 -163
  51. arviz/plots/backends/bokeh/lmplot.py +0 -185
  52. arviz/plots/backends/bokeh/loopitplot.py +0 -211
  53. arviz/plots/backends/bokeh/mcseplot.py +0 -184
  54. arviz/plots/backends/bokeh/pairplot.py +0 -328
  55. arviz/plots/backends/bokeh/parallelplot.py +0 -81
  56. arviz/plots/backends/bokeh/posteriorplot.py +0 -324
  57. arviz/plots/backends/bokeh/ppcplot.py +0 -379
  58. arviz/plots/backends/bokeh/rankplot.py +0 -149
  59. arviz/plots/backends/bokeh/separationplot.py +0 -107
  60. arviz/plots/backends/bokeh/traceplot.py +0 -436
  61. arviz/plots/backends/bokeh/violinplot.py +0 -164
  62. arviz/plots/backends/matplotlib/__init__.py +0 -124
  63. arviz/plots/backends/matplotlib/autocorrplot.py +0 -72
  64. arviz/plots/backends/matplotlib/bfplot.py +0 -78
  65. arviz/plots/backends/matplotlib/bpvplot.py +0 -177
  66. arviz/plots/backends/matplotlib/compareplot.py +0 -135
  67. arviz/plots/backends/matplotlib/densityplot.py +0 -194
  68. arviz/plots/backends/matplotlib/distcomparisonplot.py +0 -119
  69. arviz/plots/backends/matplotlib/distplot.py +0 -178
  70. arviz/plots/backends/matplotlib/dotplot.py +0 -116
  71. arviz/plots/backends/matplotlib/ecdfplot.py +0 -70
  72. arviz/plots/backends/matplotlib/elpdplot.py +0 -189
  73. arviz/plots/backends/matplotlib/energyplot.py +0 -113
  74. arviz/plots/backends/matplotlib/essplot.py +0 -180
  75. arviz/plots/backends/matplotlib/forestplot.py +0 -656
  76. arviz/plots/backends/matplotlib/hdiplot.py +0 -48
  77. arviz/plots/backends/matplotlib/kdeplot.py +0 -177
  78. arviz/plots/backends/matplotlib/khatplot.py +0 -241
  79. arviz/plots/backends/matplotlib/lmplot.py +0 -149
  80. arviz/plots/backends/matplotlib/loopitplot.py +0 -144
  81. arviz/plots/backends/matplotlib/mcseplot.py +0 -161
  82. arviz/plots/backends/matplotlib/pairplot.py +0 -355
  83. arviz/plots/backends/matplotlib/parallelplot.py +0 -58
  84. arviz/plots/backends/matplotlib/posteriorplot.py +0 -348
  85. arviz/plots/backends/matplotlib/ppcplot.py +0 -478
  86. arviz/plots/backends/matplotlib/rankplot.py +0 -119
  87. arviz/plots/backends/matplotlib/separationplot.py +0 -97
  88. arviz/plots/backends/matplotlib/traceplot.py +0 -526
  89. arviz/plots/backends/matplotlib/tsplot.py +0 -121
  90. arviz/plots/backends/matplotlib/violinplot.py +0 -148
  91. arviz/plots/bfplot.py +0 -128
  92. arviz/plots/bpvplot.py +0 -308
  93. arviz/plots/compareplot.py +0 -177
  94. arviz/plots/densityplot.py +0 -284
  95. arviz/plots/distcomparisonplot.py +0 -197
  96. arviz/plots/distplot.py +0 -233
  97. arviz/plots/dotplot.py +0 -233
  98. arviz/plots/ecdfplot.py +0 -372
  99. arviz/plots/elpdplot.py +0 -174
  100. arviz/plots/energyplot.py +0 -147
  101. arviz/plots/essplot.py +0 -319
  102. arviz/plots/forestplot.py +0 -304
  103. arviz/plots/hdiplot.py +0 -211
  104. arviz/plots/kdeplot.py +0 -357
  105. arviz/plots/khatplot.py +0 -236
  106. arviz/plots/lmplot.py +0 -380
  107. arviz/plots/loopitplot.py +0 -224
  108. arviz/plots/mcseplot.py +0 -194
  109. arviz/plots/pairplot.py +0 -281
  110. arviz/plots/parallelplot.py +0 -204
  111. arviz/plots/plot_utils.py +0 -599
  112. arviz/plots/posteriorplot.py +0 -298
  113. arviz/plots/ppcplot.py +0 -369
  114. arviz/plots/rankplot.py +0 -232
  115. arviz/plots/separationplot.py +0 -167
  116. arviz/plots/styles/arviz-bluish.mplstyle +0 -1
  117. arviz/plots/styles/arviz-brownish.mplstyle +0 -1
  118. arviz/plots/styles/arviz-colors.mplstyle +0 -2
  119. arviz/plots/styles/arviz-cyanish.mplstyle +0 -1
  120. arviz/plots/styles/arviz-darkgrid.mplstyle +0 -40
  121. arviz/plots/styles/arviz-doc.mplstyle +0 -88
  122. arviz/plots/styles/arviz-docgrid.mplstyle +0 -88
  123. arviz/plots/styles/arviz-grayscale.mplstyle +0 -41
  124. arviz/plots/styles/arviz-greenish.mplstyle +0 -1
  125. arviz/plots/styles/arviz-orangish.mplstyle +0 -1
  126. arviz/plots/styles/arviz-plasmish.mplstyle +0 -1
  127. arviz/plots/styles/arviz-purplish.mplstyle +0 -1
  128. arviz/plots/styles/arviz-redish.mplstyle +0 -1
  129. arviz/plots/styles/arviz-royish.mplstyle +0 -1
  130. arviz/plots/styles/arviz-viridish.mplstyle +0 -1
  131. arviz/plots/styles/arviz-white.mplstyle +0 -40
  132. arviz/plots/styles/arviz-whitegrid.mplstyle +0 -40
  133. arviz/plots/traceplot.py +0 -273
  134. arviz/plots/tsplot.py +0 -440
  135. arviz/plots/violinplot.py +0 -192
  136. arviz/preview.py +0 -58
  137. arviz/py.typed +0 -0
  138. arviz/rcparams.py +0 -606
  139. arviz/sel_utils.py +0 -223
  140. arviz/static/css/style.css +0 -340
  141. arviz/static/html/icons-svg-inline.html +0 -15
  142. arviz/stats/__init__.py +0 -37
  143. arviz/stats/density_utils.py +0 -1013
  144. arviz/stats/diagnostics.py +0 -1013
  145. arviz/stats/ecdf_utils.py +0 -324
  146. arviz/stats/stats.py +0 -2422
  147. arviz/stats/stats_refitting.py +0 -119
  148. arviz/stats/stats_utils.py +0 -609
  149. arviz/tests/__init__.py +0 -1
  150. arviz/tests/base_tests/__init__.py +0 -1
  151. arviz/tests/base_tests/test_data.py +0 -1679
  152. arviz/tests/base_tests/test_data_zarr.py +0 -143
  153. arviz/tests/base_tests/test_diagnostics.py +0 -511
  154. arviz/tests/base_tests/test_diagnostics_numba.py +0 -87
  155. arviz/tests/base_tests/test_helpers.py +0 -18
  156. arviz/tests/base_tests/test_labels.py +0 -69
  157. arviz/tests/base_tests/test_plot_utils.py +0 -342
  158. arviz/tests/base_tests/test_plots_bokeh.py +0 -1288
  159. arviz/tests/base_tests/test_plots_matplotlib.py +0 -2197
  160. arviz/tests/base_tests/test_rcparams.py +0 -317
  161. arviz/tests/base_tests/test_stats.py +0 -925
  162. arviz/tests/base_tests/test_stats_ecdf_utils.py +0 -166
  163. arviz/tests/base_tests/test_stats_numba.py +0 -45
  164. arviz/tests/base_tests/test_stats_utils.py +0 -384
  165. arviz/tests/base_tests/test_utils.py +0 -376
  166. arviz/tests/base_tests/test_utils_numba.py +0 -87
  167. arviz/tests/conftest.py +0 -46
  168. arviz/tests/external_tests/__init__.py +0 -1
  169. arviz/tests/external_tests/test_data_beanmachine.py +0 -78
  170. arviz/tests/external_tests/test_data_cmdstan.py +0 -398
  171. arviz/tests/external_tests/test_data_cmdstanpy.py +0 -496
  172. arviz/tests/external_tests/test_data_emcee.py +0 -166
  173. arviz/tests/external_tests/test_data_numpyro.py +0 -434
  174. arviz/tests/external_tests/test_data_pyjags.py +0 -119
  175. arviz/tests/external_tests/test_data_pyro.py +0 -260
  176. arviz/tests/external_tests/test_data_pystan.py +0 -307
  177. arviz/tests/helpers.py +0 -677
  178. arviz/utils.py +0 -773
  179. arviz/wrappers/__init__.py +0 -13
  180. arviz/wrappers/base.py +0 -236
  181. arviz/wrappers/wrap_pymc.py +0 -36
  182. arviz/wrappers/wrap_stan.py +0 -148
  183. arviz-0.23.3.dist-info/METADATA +0 -264
  184. arviz-0.23.3.dist-info/RECORD +0 -183
  185. arviz-0.23.3.dist-info/top_level.txt +0 -1
@@ -1,326 +0,0 @@
1
- {
2
- "N" : 919,
3
- "J" : 85,
4
- "y" : [0.78845736036427,0.78845736036427,1.06471073699243,0.0,1.1314021114911,
5
- 0.916290731874155,0.405465108108164,0.0,-0.356674943938732,0.182321556793955,
6
- 0.182321556793955,0.262364264467491,0.336472236621213,-0.916290731874155,
7
- 0.0953101798043249,1.50407739677627,0.262364264467491,0.741937344729377,
8
- 1.77495235091167,1.19392246847243,0.587786664902119,1.68639895357023,
9
- 1.84054963339749,0.641853886172395,1.88706964903238,1.1314021114911,
10
- 1.91692261218206,1.94591014905531,2.04122032885964,1.64865862558738,
11
- 1.50407739677627,1.48160454092422,1.02961941718116,2.09186406167839,
12
- 0.470003629245736,1.43508452528932,1.68639895357023,1.38629436111989,
13
- 0.832909122935104,1.06471073699243,0.336472236621213,1.19392246847243,
14
- 1.06471073699243,0.587786664902119,-1.6094379124341,0.8754687373539,
15
- 0.0953101798043249,0.78845736036427,-0.510825623765991,0.53062825106217,
16
- 1.06471073699243,0.78845736036427,0.53062825106217,0.336472236621213,
17
- 0.641853886172395,0.587786664902119,0.182321556793955,1.45861502269952,
18
- 1.50407739677627,1.84054963339749,1.52605630349505,1.7404661748405,
19
- 0.78845736036427,-0.916290731874155,1.52605630349505,1.48160454092422,
20
- 1.88706964903238,0.993251773010283,1.06471073699243,1.06471073699243,
21
- 1.97408102602201,1.6094379124341,0.955511445027436,1.6094379124341,
22
- 2.56494935746154,1.97408102602201,1.91692261218206,2.54944517092557,
23
- 1.75785791755237,2.2512917986065,1.79175946922805,1.33500106673234,
24
- 2.66025953726586,0.587786664902119,1.93152141160321,1.54756250871601,
25
- 2.2512917986065,0.916290731874155,1.90210752639692,1.38629436111989,
26
- 2.31253542384721,0.78845736036427,0.587786664902119,1.22377543162212,
27
- 1.7227665977411,1.45861502269952,1.3609765531356,0.262364264467491,
28
- 1.43508452528932,-0.22314355131421,0.693147180559945,0.470003629245736,
29
- 2.55722731136763,2.68784749378469,1.54756250871601,2.26176309847379,
30
- -2.30258509299405,1.30833281965018,2.00148000021012,0.641853886172395,
31
- 1.66770682055808,1.38629436111989,2.04122032885964,0.336472236621213,
32
- 2.30258509299405,2.24070968927596,-0.22314355131421,1.48160454092422,
33
- 1.6094379124341,0.741937344729377,0.53062825106217,2.09186406167839,
34
- -0.105360515657826,2.55722731136763,0.955511445027436,1.25276296849537,
35
- 3.28091121578765,0.405465108108164,2.56494935746154,2.17475172148416,
36
- 2.9704144655697,0.916290731874155,2.19722457733622,2.57261223020711,
37
- 1.28093384546206,1.93152141160321,1.56861591791385,1.22377543162212,
38
- -0.105360515657826,1.22377543162212,0.993251773010283,0.336472236621213,
39
- 1.91692261218206,2.40694510831829,-2.30258509299405,0.916290731874155,
40
- 0.587786664902119,0.470003629245736,0.0,-0.105360515657826,1.06471073699243,
41
- 1.48160454092422,0.405465108108164,1.41098697371026,0.916290731874155,
42
- 1.90210752639692,1.45861502269952,1.70474809223843,1.28093384546206,
43
- 1.02961941718116,2.68102152871429,1.90210752639692,2.07944154167984,
44
- 0.955511445027436,1.02961941718116,1.48160454092422,0.53062825106217,
45
- 0.693147180559945,0.693147180559945,0.405465108108164,2.26176309847379,
46
- 2.09186406167839,1.25276296849537,-0.22314355131421,1.62924053973028,
47
- 1.16315080980568,2.37954613413017,2.10413415427021,1.84054963339749,
48
- 1.56861591791385,1.79175946922805,0.0953101798043249,2.16332302566054,
49
- 2.17475172148416,1.91692261218206,0.832909122935104,0.470003629245736,
50
- 1.02961941718116,1.87180217690159,0.53062825106217,1.52605630349505,
51
- 1.19392246847243,1.48160454092422,3.05400118167797,2.2082744135228,
52
- -0.105360515657826,1.58923520511658,1.6094379124341,0.0953101798043249,
53
- 2.02814824729229,1.68639895357023,1.28093384546206,1.58923520511658,
54
- 1.54756250871601,0.336472236621213,1.22377543162212,1.43508452528932,
55
- 0.916290731874155,0.336472236621213,0.336472236621213,0.641853886172395,
56
- 1.56861591791385,0.336472236621213,1.33500106673234,2.17475172148416,
57
- 1.45861502269952,1.48160454092422,1.50407739677627,0.78845736036427,
58
- -0.693147180559945,1.75785791755237,1.68639895357023,1.97408102602201,
59
- 1.7404661748405,2.00148000021012,1.56861591791385,1.91692261218206,
60
- 1.85629799036563,1.30833281965018,1.70474809223843,2.05412373369555,
61
- 1.48160454092422,0.993251773010283,1.22377543162212,1.43508452528932,
62
- 0.832909122935104,0.262364264467491,1.64865862558738,-2.30258509299405,
63
- 0.916290731874155,1.16315080980568,1.16315080980568,2.26176309847379,
64
- 1.43508452528932,2.19722457733622,1.84054963339749,3.48431228837266,
65
- 2.58021682959233,0.78845736036427,1.7227665977411,2.66025953726586,
66
- 1.93152141160321,2.02814824729229,2.28238238567653,0.955511445027436,
67
- 3.77276093809464,1.58923520511658,1.58923520511658,1.25276296849537,
68
- 1.56861591791385,1.7227665977411,1.25276296849537,1.3609765531356,
69
- 1.90210752639692,2.06686275947298,1.19392246847243,0.741937344729377,
70
- 0.470003629245736,1.38629436111989,0.587786664902119,0.916290731874155,
71
- 2.41591377830105,0.955511445027436,1.3609765531356,2.00148000021012,
72
- 0.262364264467491,-0.105360515657826,-0.916290731874155,0.916290731874155,
73
- 1.79175946922805,0.693147180559945,1.68639895357023,1.09861228866811,
74
- 1.06471073699243,1.70474809223843,1.41098697371026,1.3609765531356,
75
- 2.70136121295141,1.97408102602201,0.832909122935104,1.02961941718116,
76
- 1.48160454092422,0.405465108108164,2.15176220325946,1.7227665977411,
77
- 2.15176220325946,1.33500106673234,0.587786664902119,0.641853886172395,
78
- 1.70474809223843,0.916290731874155,-0.22314355131421,0.741937344729377,
79
- 1.02961941718116,1.3609765531356,1.45861502269952,1.54756250871601,
80
- 1.02961941718116,1.41098697371026,0.470003629245736,1.45861502269952,
81
- -0.356674943938732,1.70474809223843,1.19392246847243,1.70474809223843,
82
- 0.916290731874155,0.993251773010283,2.12823170584927,1.19392246847243,
83
- 1.16315080980568,2.15176220325946,0.53062825106217,1.7404661748405,
84
- 2.56494935746154,0.993251773010283,1.54756250871601,1.7227665977411,
85
- 2.62466859216316,2.02814824729229,1.7404661748405,1.52605630349505,
86
- 2.02814824729229,0.955511445027436,1.50407739677627,1.77495235091167,
87
- 0.78845736036427,0.8754687373539,1.38629436111989,1.52605630349505,
88
- 1.52605630349505,2.3887627892351,2.02814824729229,1.09861228866811,
89
- 0.405465108108164,0.470003629245736,2.80336038090653,1.1314021114911,
90
- 1.62924053973028,1.58923520511658,1.79175946922805,-0.105360515657826,
91
- 0.587786664902119,1.3609765531356,1.7227665977411,-0.916290731874155,
92
- 0.955511445027436,1.28093384546206,1.82454929205105,3.16124671203156,
93
- 1.3609765531356,1.06471073699243,1.09861228866811,1.54756250871601,
94
- 1.09861228866811,1.43508452528932,1.33500106673234,1.09861228866811,
95
- 1.45861502269952,1.06471073699243,1.22377543162212,2.14006616349627,
96
- 2.19722457733622,1.56861591791385,1.28093384546206,0.78845736036427,
97
- 1.02961941718116,-0.22314355131421,0.405465108108164,1.52605630349505,
98
- 1.30833281965018,1.28093384546206,1.09861228866811,0.78845736036427,
99
- 0.641853886172395,0.955511445027436,0.587786664902119,0.8754687373539,
100
- 1.45861502269952,0.955511445027436,0.0953101798043249,1.19392246847243,
101
- 0.916290731874155,2.24070968927596,0.262364264467491,2.12823170584927,
102
- 1.6094379124341,1.06471073699243,2.57261223020711,2.72785282839839,
103
- 0.587786664902119,1.33500106673234,2.06686275947298,0.955511445027436,
104
- 2.42480272571829,1.41098697371026,2.50959926237837,1.90210752639692,
105
- 1.93152141160321,1.50407739677627,-0.105360515657826,0.53062825106217,
106
- 0.336472236621213,0.693147180559945,0.0,0.0,1.02961941718116,0.262364264467491,
107
- 2.42480272571829,2.77258872223978,0.262364264467491,0.262364264467491,
108
- 0.470003629245736,-0.105360515657826,1.02961941718116,-0.693147180559945,
109
- 0.405465108108164,1.96009478404727,-0.693147180559945,2.31253542384721,
110
- 1.45861502269952,1.19392246847243,1.06471073699243,2.52572864430826,
111
- 1.43508452528932,1.50407739677627,1.3609765531356,1.19392246847243,
112
- 2.86220088092947,2.36085400111802,2.06686275947298,1.25276296849537,
113
- 1.87180217690159,1.93152141160321,1.62924053973028,2.484906649788,
114
- 1.62924053973028,2.18605127673809,1.75785791755237,1.52605630349505,
115
- 1.3609765531356,0.405465108108164,3.16968558067743,-0.105360515657826,
116
- 0.336472236621213,0.0953101798043249,1.02961941718116,3.87535902105655,
117
- -0.105360515657826,2.11625551480255,1.41098697371026,-0.693147180559945,
118
- 1.90210752639692,2.01490302054226,2.21920348405499,-0.693147180559945,
119
- 0.405465108108164,2.33214389523559,1.3609765531356,0.587786664902119,
120
- 2.29253475714054,0.832909122935104,1.48160454092422,1.02961941718116,
121
- 0.0953101798043249,0.182321556793955,0.470003629245736,3.23474917402449,
122
- -2.30258509299405,2.36085400111802,0.832909122935104,1.3609765531356,
123
- 1.97408102602201,0.741937344729377,1.16315080980568,-0.693147180559945,
124
- 1.7404661748405,0.336472236621213,0.741937344729377,1.48160454092422,
125
- 0.8754687373539,1.58923520511658,1.09861228866811,1.09861228866811,
126
- 1.02961941718116,1.3609765531356,2.3887627892351,1.85629799036563,
127
- 0.693147180559945,1.09861228866811,1.50407739677627,0.741937344729377,
128
- 2.07944154167984,0.262364264467491,2.21920348405499,0.0953101798043249,
129
- 2.36085400111802,3.17805383034795,2.2082744135228,2.4932054526027,
130
- 2.09186406167839,2.37954613413017,1.43508452528932,2.75366071235426,
131
- 1.68639895357023,1.82454929205105,2.27212588550934,2.09186406167839,
132
- 0.470003629245736,0.470003629245736,1.85629799036563,1.48160454092422,
133
- 2.41591377830105,2.30258509299405,1.50407739677627,2.07944154167984,
134
- 0.832909122935104,1.16315080980568,1.6094379124341,1.41098697371026,
135
- 0.0953101798043249,0.693147180559945,0.0953101798043249,1.06471073699243,
136
- 0.741937344729377,2.05412373369555,1.33500106673234,0.916290731874155,
137
- 1.06471073699243,0.53062825106217,0.916290731874155,2.24070968927596,
138
- -0.510825623765991,0.993251773010283,0.0953101798043249,0.741937344729377,
139
- 2.484906649788,2.53369681395743,1.16315080980568,1.43508452528932,
140
- 1.33500106673234,1.30833281965018,1.75785791755237,-1.20397280432594,
141
- 1.41098697371026,1.02961941718116,0.641853886172395,0.182321556793955,
142
- 0.182321556793955,0.405465108108164,2.24070968927596,0.53062825106217,
143
- 2.4932054526027,1.45861502269952,1.93152141160321,0.336472236621213,
144
- 0.916290731874155,2.26176309847379,1.33500106673234,1.22377543162212,
145
- 1.91692261218206,1.28093384546206,0.78845736036427,0.955511445027436,
146
- 0.741937344729377,1.94591014905531,0.182321556793955,1.33500106673234,
147
- 1.25276296849537,1.43508452528932,0.470003629245736,1.02961941718116,
148
- 2.15176220325946,1.82454929205105,1.64865862558738,0.993251773010283,
149
- 0.182321556793955,1.25276296849537,1.70474809223843,2.31253542384721,
150
- 1.70474809223843,0.182321556793955,1.58923520511658,1.38629436111989,
151
- 1.25276296849537,0.916290731874155,0.182321556793955,0.993251773010283,
152
- 0.53062825106217,1.1314021114911,-0.356674943938732,0.0,0.641853886172395,
153
- 1.33500106673234,2.18605127673809,2.00148000021012,3.03013370027132,
154
- 1.79175946922805,0.741937344729377,1.75785791755237,2.27212588550934,
155
- 1.85629799036563,1.52605630349505,1.7227665977411,2.94443897916644,
156
- 0.8754687373539,1.09861228866811,1.62924053973028,2.04122032885964,
157
- 2.09186406167839,1.54756250871601,2.12823170584927,0.470003629245736,
158
- 1.79175946922805,0.0953101798043249,2.43361335540045,1.45861502269952,
159
- 1.28093384546206,2.33214389523559,1.22377543162212,1.1314021114911,
160
- 1.28093384546206,0.993251773010283,1.38629436111989,0.182321556793955,
161
- 0.53062825106217,1.43508452528932,2.96010509591084,2.2082744135228,
162
- 0.693147180559945,2.43361335540045,2.32238772029023,0.741937344729377,
163
- 0.182321556793955,1.16315080980568,0.693147180559945,1.45861502269952,
164
- 0.78845736036427,1.68639895357023,3.22684399451738,1.62924053973028,
165
- 0.832909122935104,1.16315080980568,0.916290731874155,1.02961941718116,
166
- 1.1314021114911,0.470003629245736,1.54756250871601,1.38629436111989,
167
- 1.6094379124341,0.405465108108164,1.56861591791385,-0.22314355131421,
168
- -0.693147180559945,0.8754687373539,0.832909122935104,1.52605630349505,
169
- 2.39789527279837,2.70136121295141,2.15176220325946,1.50407739677627,
170
- 0.405465108108164,1.3609765531356,0.587786664902119,0.470003629245736,
171
- -0.693147180559945,-0.916290731874155,-0.693147180559945,2.16332302566054,
172
- 0.470003629245736,0.336472236621213,2.16332302566054,2.40694510831829,
173
- 0.405465108108164,0.0953101798043249,-0.105360515657826,-0.356674943938732,
174
- 1.43508452528932,1.22377543162212,0.741937344729377,1.06471073699243,
175
- 0.587786664902119,0.587786664902119,0.8754687373539,0.53062825106217,
176
- -0.22314355131421,2.45958884180371,0.587786664902119,1.02961941718116,
177
- 1.25276296849537,1.28093384546206,1.25276296849537,1.09861228866811,
178
- 1.16315080980568,1.1314021114911,1.19392246847243,0.53062825106217,
179
- 1.7227665977411,1.22377543162212,0.405465108108164,3.47196645255036,
180
- 0.0953101798043249,0.741937344729377,-0.22314355131421,0.405465108108164,
181
- 0.262364264467491,1.1314021114911,1.97408102602201,0.336472236621213,
182
- 0.262364264467491,0.405465108108164,1.6094379124341,0.832909122935104,
183
- 0.8754687373539,0.182321556793955,1.68639895357023,0.0953101798043249,
184
- 0.336472236621213,1.97408102602201,0.0953101798043249,1.19392246847243,
185
- 1.16315080980568,0.405465108108164,1.28093384546206,-0.22314355131421,
186
- 0.470003629245736,0.336472236621213,0.993251773010283,1.19392246847243,
187
- -0.105360515657826,-0.510825623765991,0.693147180559945,0.641853886172395,
188
- -0.105360515657826,1.68639895357023,0.405465108108164,1.1314021114911,
189
- 0.587786664902119,-0.105360515657826,1.19392246847243,0.53062825106217,
190
- 1.1314021114911,-0.356674943938732,1.45861502269952,0.336472236621213,
191
- 0.587786664902119,0.405465108108164,0.78845736036427,0.8754687373539,
192
- 0.993251773010283,0.53062825106217,0.0953101798043249,0.587786664902119,
193
- -1.6094379124341,0.78845736036427,1.52605630349505,0.741937344729377,
194
- 0.693147180559945,-0.356674943938732,1.85629799036563,1.09861228866811,
195
- 0.693147180559945,-0.105360515657826,1.19392246847243,0.587786664902119,
196
- 0.587786664902119,0.78845736036427,1.45861502269952,2.01490302054226,
197
- 1.85629799036563,2.11625551480255,0.741937344729377,1.19392246847243,
198
- 0.262364264467491,1.6094379124341,0.0,1.94591014905531,1.7404661748405,
199
- 2.31253542384721,1.88706964903238,0.955511445027436,1.19392246847243,
200
- 0.405465108108164,1.6094379124341,2.00148000021012,2.67414864942653,
201
- 0.587786664902119,2.00148000021012,0.955511445027436,1.30833281965018,
202
- 0.641853886172395,0.78845736036427,1.6094379124341,1.98787434815435,
203
- 1.30833281965018,1.06471073699243,1.48160454092422,2.12823170584927,
204
- 1.62924053973028,1.28093384546206,0.405465108108164,2.15176220325946,
205
- 2.36085400111802,2.07944154167984,1.50407739677627,1.09861228866811,
206
- 0.8754687373539,0.405465108108164,1.56861591791385,1.91692261218206,
207
- 0.741937344729377,1.79175946922805,1.06471073699243,1.90210752639692,
208
- 2.96010509591084,1.38629436111989,1.77495235091167,2.19722457733622,
209
- 2.12823170584927,0.0953101798043249,1.1314021114911,2.4423470353692,
210
- 2.26176309847379,1.06471073699243,-0.356674943938732,1.16315080980568,
211
- 1.54756250871601,1.56861591791385,-0.916290731874155,2.23001440015921,
212
- 0.53062825106217,-0.105360515657826,2.32238772029023,2.04122032885964,
213
- 0.78845736036427,1.87180217690159,2.50143595173921,1.52605630349505,
214
- 1.82454929205105,1.87180217690159,1.02961941718116,0.641853886172395,
215
- 0.182321556793955,0.8754687373539,0.0,0.182321556793955,0.470003629245736,
216
- -0.22314355131421,0.53062825106217,1.54756250871601,0.53062825106217,
217
- 1.19392246847243,-0.22314355131421,2.28238238567653,1.66770682055808,
218
- 2.14006616349627,0.641853886172395,1.88706964903238,1.33500106673234,
219
- 1.77495235091167,1.58923520511658,0.916290731874155,2.37024374146786,
220
- 0.8754687373539,0.741937344729377,1.54756250871601,1.30833281965018,
221
- 2.59525470695687,1.06471073699243,1.45861502269952,1.33500106673234,
222
- 0.587786664902119,0.405465108108164,0.587786664902119,0.262364264467491,
223
- 1.88706964903238,3.01553490085017,1.79175946922805,2.62466859216316,
224
- 2.32238772029023,1.7404661748405,2.23001440015921,1.22377543162212,
225
- 1.41098697371026,2.45100509811232,1.97408102602201,1.54756250871601,
226
- 0.587786664902119,-0.356674943938732,1.54756250871601,2.32238772029023,
227
- 2.42480272571829,2.02814824729229,2.46809953147162,-0.693147180559945,
228
- 1.90210752639692,1.66770682055808,1.1314021114911,0.741937344729377,
229
- 1.98787434815435,1.62924053973028,0.78845736036427,0.832909122935104,
230
- 2.76631910922619,2.2512917986065,1.85629799036563,1.50407739677627,
231
- 1.6094379124341,1.30833281965018,1.06471073699243],
232
- "x" : [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
233
- 0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,
234
- 0,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,
235
- 0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,0,0,1,1,1,0,0,1,0,0,0,0,
236
- 0,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
237
- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
238
- 0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
239
- 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
240
- 0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
241
- 0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,0,0,
242
- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0,0,0,
243
- 0,0,0,1,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,1,0,0,0,0,
244
- 0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,
245
- 1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,
246
- 1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,
247
- 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,
248
- 0,1,1,0,1,1,0,1,0,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
249
- 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,
250
- 0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
251
- 0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
252
- 0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
253
- 0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,
254
- 0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,
255
- 0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
256
- "county" : [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
257
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5,5,5,
258
- 6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,
259
- 10,10,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,
260
- 13,14,14,14,14,15,15,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,18,18,
261
- 18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,
262
- 18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,
263
- 18,18,18,18,18,18,18,18,18,18,18,19,19,19,20,20,20,20,20,20,20,20,20,21,21,
264
- 21,21,21,21,22,22,23,23,23,23,23,23,23,23,23,24,24,24,24,24,24,24,24,24,24,
265
- 24,24,24,24,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,
266
- 25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,
267
- 25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,
268
- 25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,
269
- 25,25,25,25,25,25,25,25,25,26,26,26,26,26,26,27,27,27,27,27,28,28,28,29,29,
270
- 29,29,29,29,29,29,29,29,29,30,30,30,30,30,31,31,31,31,32,32,32,32,33,33,33,
271
- 34,34,34,34,34,34,34,35,35,36,36,36,36,36,36,36,36,36,37,37,37,37,38,38,38,
272
- 38,38,39,39,39,39,40,40,40,40,40,40,40,40,41,42,42,42,42,42,42,42,42,42,43,
273
- 43,43,43,43,43,43,44,44,44,44,44,44,44,44,44,44,44,44,44,45,45,45,45,45,46,
274
- 46,47,47,47,47,47,47,47,47,47,48,48,48,48,48,48,48,48,48,48,48,48,48,49,50,
275
- 50,50,50,51,51,51,52,52,52,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,
276
- 53,53,53,53,53,53,53,54,54,54,54,54,54,54,54,55,55,55,56,56,56,56,56,56,57,
277
- 57,57,57,58,58,58,58,59,59,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,
278
- 60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,61,61,61,61,61,62,62,62,63,
279
- 63,63,63,63,63,63,63,63,63,63,64,64,65,65,65,65,65,65,65,65,65,65,65,65,65,
280
- 65,66,66,66,66,66,66,66,66,66,66,66,66,66,67,67,67,67,67,67,67,67,68,68,68,
281
- 68,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,
282
- 69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,
283
- 69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,
284
- 69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,
285
- 69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,70,70,70,70,70,70,70,70,
286
- 70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,71,71,71,71,71,71,71,71,
287
- 71,71,72,72,73,73,73,73,74,74,74,75,75,75,75,76,76,76,76,76,76,76,77,77,77,
288
- 77,77,78,78,78,78,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,
289
- 79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,
290
- 79,79,80,80,80,81,82,82,82,82,82,82,82,82,82,82,82,82,82,83,83,83,83,83,83,
291
- 83,83,83,83,83,83,83,84,84],
292
- "county_name" : ["AITKIN","ANOKA","BECKER","BELTRAMI","BENTON","BIG STONE",
293
- "BLUE EARTH","BROWN","CARLTON","CARVER","CASS","CHIPPEWA","CHISAGO","CLAY",
294
- "CLEARWATER","COOK","COTTONWOOD","CROW WING","DAKOTA","DODGE","DOUGLAS",
295
- "FARIBAULT","FILLMORE","FREEBORN","GOODHUE","HENNEPIN","HOUSTON","HUBBARD",
296
- "ISANTI","ITASCA","JACKSON","KANABEC","KANDIYOHI","KITTSON","KOOCHICHING",
297
- "LAC QUI PARLE","LAKE","LAKE OF THE WOODS","LE SUEUR","LINCOLN","LYON",
298
- "MAHNOMEN","MARSHALL","MARTIN","MCLEOD","MEEKER","MILLE LACS","MORRISON",
299
- "MOWER","MURRAY","NICOLLET","NOBLES","NORMAN","OLMSTED","OTTER TAIL",
300
- "PENNINGTON","PINE","PIPESTONE","POLK","POPE","RAMSEY","REDWOOD","RENVILLE",
301
- "RICE","ROCK","ROSEAU","SCOTT","SHERBURNE","SIBLEY","ST LOUIS","STEARNS",
302
- "STEELE","STEVENS","SWIFT","TODD","TRAVERSE","WABASHA","WADENA","WASECA",
303
- "WASHINGTON","WATONWAN","WILKIN","WINONA","WRIGHT","YELLOW MEDICINE"],
304
- "u" : [-0.6890475953545,-0.847312860499705,-0.11345877376814,-0.593352525607471,
305
- -0.142890481153028,0.387056708424809,0.271613664272716,0.277578704889093,
306
- -0.332315487884133,0.0958645715553609,-0.608219806930943,0.273684562807927,
307
- -0.735320087151157,0.343781175420031,-0.0598604138977053,-0.504995982525783,
308
- 0.339560320720446,-0.633390700175141,-0.0241451624685385,0.263855459775217,
309
- 0.155712316979839,0.295025046707039,0.414913662927776,0.224206985667406,
310
- 0.196610646424232,-0.09652081232424,0.503529068533353,-0.400596976711304,
311
- -0.751872232701787,-0.663347630601429,0.309020284839334,-0.0533860089036706,
312
- 0.10973294265158,-0.00780336722984165,-0.881828920506582,0.311029878756367,
313
- -0.691596383667291,-0.681708848419116,0.194447736591795,0.444903746232023,
314
- 0.39473440617801,0.14960034272844,0.0137648285757133,0.16586183575527,
315
- 0.140422593662249,0.0239508741557865,-0.210059521766286,-0.0932266518569275,
316
- 0.260932470709068,0.398849942735755,0.248046873411091,0.405451774685941,
317
- 0.265221716521598,0.24315007938984,-0.20473036924229,-0.0740276676859043,
318
- -0.163292169547294,0.478604039464906,0.266111082523638,0.281148273600784,
319
- -0.418053510614464,0.366322258590098,0.380577976600215,0.193146092877103,
320
- 0.528024865192056,-0.212045364648176,0.0631156343140753,-0.683436482376788,
321
- 0.23721212323308,-0.474673717150503,0.116395406677788,0.269805738660408,
322
- 0.470778329088307,0.316028975591628,-0.0468400668458182,0.497594476916848,
323
- 0.150082415651304,-0.672029731746026,0.212414197101124,-0.147484283042756,
324
- 0.183237803578308,0.236036084296147,0.463211867357523,-0.0900242748478867,
325
- 0.355286981163884]
326
- }
@@ -1,12 +0,0 @@
1
- [
2
- {
3
- "name": "centered_eight",
4
- "filename": "centered_eight.nc",
5
- "description": "A centered parameterization of the eight schools model. Provided as an example of a model that NUTS has trouble fitting. Compare to `non_centered_eight`.\n\nThe eight schools model is a hierarchical model used for an analysis of the effectiveness of classes that were designed to improve students' performance on the Scholastic Aptitude Test.\n\nSee Bayesian Data Analysis (Gelman et. al.) for more details."
6
- },
7
- {
8
- "name": "non_centered_eight",
9
- "filename": "non_centered_eight.nc",
10
- "description": "A non-centered parameterization of the eight schools model. This is a hierarchical model where sampling problems may be fixed by a non-centered parametrization. Compare to `centered_eight`.\n\nThe eight schools model is a hierarchical model used for an analysis of the effectiveness of classes that were designed to improve students' performance on the Scholastic Aptitude Test.\n\nSee Bayesian Data Analysis (Gelman et. al.) for more details."
11
- }
12
- ]
@@ -1,58 +0,0 @@
1
- [
2
- {
3
- "name": "radon",
4
- "filename": "radon_hierarchical.nc",
5
- "url": "http://ndownloader.figshare.com/files/24067472",
6
- "checksum": "a9b2b4adf1bf9c5728e5bdc97107e69c4fc8d8b7d213e9147233b57be8b4587b",
7
- "description": "Radon is a radioactive gas that enters homes through contact points with the ground. It is a carcinogen that is the primary cause of lung cancer in non-smokers. Radon levels vary greatly from household to household.\n\nThis example uses an EPA study of radon levels in houses in Minnesota to construct a model with a hierarchy over households within a county. The model includes estimates (gamma) for contextual effects of the uranium per household.\n\nSee Gelman and Hill (2006) for details on the example, or https://docs.pymc.io/notebooks/multilevel_modeling.html by Chris Fonnesbeck for details on this implementation."
8
- },
9
- {
10
- "name": "rugby",
11
- "filename": "rugby.nc",
12
- "url": "http://ndownloader.figshare.com/files/44916469",
13
- "checksum": "f4a5e699a8a4cc93f722eb97929dd7c4895c59a2183f05309f5082f3f81eb228",
14
- "description": "The Six Nations Championship is a yearly rugby competition between Italy, Ireland, Scotland, England, France and Wales. Fifteen games are played each year, representing all combinations of the six teams.\n\nThis example uses and includes results from 2014 - 2017, comprising 60 total games. It models latent parameters for each team's attack and defense, as well as a global parameter for home team advantage.\n\nSee https://github.com/arviz-devs/arviz_example_data/blob/main/code/rugby/rugby.ipynb for the whole model specification."
15
- },
16
- {
17
- "name": "rugby_field",
18
- "filename": "rugby_field.nc",
19
- "url": "http://ndownloader.figshare.com/files/44667112",
20
- "checksum": "53a99da7ac40d82cd01bb0b089263b9633ee016f975700e941b4c6ea289a1fb0",
21
- "description": "A variant of the 'rugby' example dataset. The Six Nations Championship is a yearly rugby competition between Italy, Ireland, Scotland, England, France and Wales. Fifteen games are played each year, representing all combinations of the six teams.\n\nThis example uses and includes results from 2014 - 2017, comprising 60 total games. It models latent parameters for each team's attack and defense, with each team having different values depending on them being home or away team.\n\nSee https://github.com/arviz-devs/arviz_example_data/blob/main/code/rugby_field/rugby_field.ipynb for the whole model specification."
22
- },
23
- {
24
- "name": "regression1d",
25
- "filename": "regression1d.nc",
26
- "url": "http://ndownloader.figshare.com/files/16254899",
27
- "checksum": "909e8ffe344e196dad2730b1542881ab5729cb0977dd20ba645a532ffa427278",
28
- "description": "A synthetic one dimensional linear regression dataset with latent slope, intercept, and noise (\"eps\"). One hundred data points, fit with PyMC3.\n\nTrue slope and intercept are included as deterministic variables."
29
- },
30
- {
31
- "name": "regression10d",
32
- "filename": "regression10d.nc",
33
- "url": "http://ndownloader.figshare.com/files/16255736",
34
- "checksum": "c6716ec7e19926ad2a52d6ae4c1d1dd5ddb747e204c0d811757c8e93fcf9f970",
35
- "description": "A synthetic multi-dimensional (10 dimensions) linear regression dataset with latent weights (\"w\"), intercept, and noise (\"eps\"). Five hundred data points, fit with PyMC3.\n\nTrue weights and intercept are included as deterministic variables."
36
- },
37
- {
38
- "name": "classification1d",
39
- "filename": "classification1d.nc",
40
- "url": "http://ndownloader.figshare.com/files/16256678",
41
- "checksum": "1cf3806e72c14001f6864bb69d89747dcc09dd55bcbca50aba04e9939daee5a0",
42
- "description": "A synthetic one dimensional logistic regression dataset with latent slope and intercept, passed into a Bernoulli random variable. One hundred data points, fit with PyMC3.\n\nTrue slope and intercept are included as deterministic variables."
43
- },
44
- {
45
- "name": "classification10d",
46
- "filename": "classification10d.nc",
47
- "url": "http://ndownloader.figshare.com/files/16256681",
48
- "checksum": "16c9a45e1e6e0519d573cafc4d266d761ba347e62b6f6a79030aaa8e2fde1367",
49
- "description": "A synthetic multi dimensional (10 dimensions) logistic regression dataset with latent weights (\"w\") and intercept, passed into a Bernoulli random variable. Five hundred data points, fit with PyMC3.\n\nTrue weights and intercept are included as deterministic variables."
50
- },
51
- {
52
- "name": "glycan_torsion_angles",
53
- "filename": "glycan_torsion_angles.nc",
54
- "url": "http://ndownloader.figshare.com/files/22882652",
55
- "checksum": "4622621fe7a1d3075c18c4c34af8cc57c59eabbb3501b20c6e2d9c6c4737034c",
56
- "description": "Torsion angles phi and psi are critical for determining the three dimensional structure of bio-molecules. Combinations of phi and psi torsion angles that produce clashes between atoms in the bio-molecule result in high energy, unlikely structures.\n\nThis model uses a Von Mises distribution to propose torsion angles for the structure of a glycan molecule (pdb id: 2LIQ), and a Potential to estimate the proposed structure's energy. Said Potential is bound by Boltzman's law."
57
- }
58
- ]