arviz 0.23.3__py3-none-any.whl → 1.0.0rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- arviz/__init__.py +52 -367
- arviz-1.0.0rc0.dist-info/METADATA +182 -0
- arviz-1.0.0rc0.dist-info/RECORD +5 -0
- {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/WHEEL +1 -2
- {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/licenses/LICENSE +0 -1
- arviz/data/__init__.py +0 -55
- arviz/data/base.py +0 -596
- arviz/data/converters.py +0 -203
- arviz/data/datasets.py +0 -161
- arviz/data/example_data/code/radon/radon.json +0 -326
- arviz/data/example_data/data/centered_eight.nc +0 -0
- arviz/data/example_data/data/non_centered_eight.nc +0 -0
- arviz/data/example_data/data_local.json +0 -12
- arviz/data/example_data/data_remote.json +0 -58
- arviz/data/inference_data.py +0 -2386
- arviz/data/io_beanmachine.py +0 -112
- arviz/data/io_cmdstan.py +0 -1036
- arviz/data/io_cmdstanpy.py +0 -1233
- arviz/data/io_datatree.py +0 -23
- arviz/data/io_dict.py +0 -462
- arviz/data/io_emcee.py +0 -317
- arviz/data/io_json.py +0 -54
- arviz/data/io_netcdf.py +0 -68
- arviz/data/io_numpyro.py +0 -497
- arviz/data/io_pyjags.py +0 -378
- arviz/data/io_pyro.py +0 -333
- arviz/data/io_pystan.py +0 -1095
- arviz/data/io_zarr.py +0 -46
- arviz/data/utils.py +0 -139
- arviz/labels.py +0 -210
- arviz/plots/__init__.py +0 -61
- arviz/plots/autocorrplot.py +0 -171
- arviz/plots/backends/__init__.py +0 -223
- arviz/plots/backends/bokeh/__init__.py +0 -166
- arviz/plots/backends/bokeh/autocorrplot.py +0 -101
- arviz/plots/backends/bokeh/bfplot.py +0 -23
- arviz/plots/backends/bokeh/bpvplot.py +0 -193
- arviz/plots/backends/bokeh/compareplot.py +0 -167
- arviz/plots/backends/bokeh/densityplot.py +0 -239
- arviz/plots/backends/bokeh/distcomparisonplot.py +0 -23
- arviz/plots/backends/bokeh/distplot.py +0 -183
- arviz/plots/backends/bokeh/dotplot.py +0 -113
- arviz/plots/backends/bokeh/ecdfplot.py +0 -73
- arviz/plots/backends/bokeh/elpdplot.py +0 -203
- arviz/plots/backends/bokeh/energyplot.py +0 -155
- arviz/plots/backends/bokeh/essplot.py +0 -176
- arviz/plots/backends/bokeh/forestplot.py +0 -772
- arviz/plots/backends/bokeh/hdiplot.py +0 -54
- arviz/plots/backends/bokeh/kdeplot.py +0 -268
- arviz/plots/backends/bokeh/khatplot.py +0 -163
- arviz/plots/backends/bokeh/lmplot.py +0 -185
- arviz/plots/backends/bokeh/loopitplot.py +0 -211
- arviz/plots/backends/bokeh/mcseplot.py +0 -184
- arviz/plots/backends/bokeh/pairplot.py +0 -328
- arviz/plots/backends/bokeh/parallelplot.py +0 -81
- arviz/plots/backends/bokeh/posteriorplot.py +0 -324
- arviz/plots/backends/bokeh/ppcplot.py +0 -379
- arviz/plots/backends/bokeh/rankplot.py +0 -149
- arviz/plots/backends/bokeh/separationplot.py +0 -107
- arviz/plots/backends/bokeh/traceplot.py +0 -436
- arviz/plots/backends/bokeh/violinplot.py +0 -164
- arviz/plots/backends/matplotlib/__init__.py +0 -124
- arviz/plots/backends/matplotlib/autocorrplot.py +0 -72
- arviz/plots/backends/matplotlib/bfplot.py +0 -78
- arviz/plots/backends/matplotlib/bpvplot.py +0 -177
- arviz/plots/backends/matplotlib/compareplot.py +0 -135
- arviz/plots/backends/matplotlib/densityplot.py +0 -194
- arviz/plots/backends/matplotlib/distcomparisonplot.py +0 -119
- arviz/plots/backends/matplotlib/distplot.py +0 -178
- arviz/plots/backends/matplotlib/dotplot.py +0 -116
- arviz/plots/backends/matplotlib/ecdfplot.py +0 -70
- arviz/plots/backends/matplotlib/elpdplot.py +0 -189
- arviz/plots/backends/matplotlib/energyplot.py +0 -113
- arviz/plots/backends/matplotlib/essplot.py +0 -180
- arviz/plots/backends/matplotlib/forestplot.py +0 -656
- arviz/plots/backends/matplotlib/hdiplot.py +0 -48
- arviz/plots/backends/matplotlib/kdeplot.py +0 -177
- arviz/plots/backends/matplotlib/khatplot.py +0 -241
- arviz/plots/backends/matplotlib/lmplot.py +0 -149
- arviz/plots/backends/matplotlib/loopitplot.py +0 -144
- arviz/plots/backends/matplotlib/mcseplot.py +0 -161
- arviz/plots/backends/matplotlib/pairplot.py +0 -355
- arviz/plots/backends/matplotlib/parallelplot.py +0 -58
- arviz/plots/backends/matplotlib/posteriorplot.py +0 -348
- arviz/plots/backends/matplotlib/ppcplot.py +0 -478
- arviz/plots/backends/matplotlib/rankplot.py +0 -119
- arviz/plots/backends/matplotlib/separationplot.py +0 -97
- arviz/plots/backends/matplotlib/traceplot.py +0 -526
- arviz/plots/backends/matplotlib/tsplot.py +0 -121
- arviz/plots/backends/matplotlib/violinplot.py +0 -148
- arviz/plots/bfplot.py +0 -128
- arviz/plots/bpvplot.py +0 -308
- arviz/plots/compareplot.py +0 -177
- arviz/plots/densityplot.py +0 -284
- arviz/plots/distcomparisonplot.py +0 -197
- arviz/plots/distplot.py +0 -233
- arviz/plots/dotplot.py +0 -233
- arviz/plots/ecdfplot.py +0 -372
- arviz/plots/elpdplot.py +0 -174
- arviz/plots/energyplot.py +0 -147
- arviz/plots/essplot.py +0 -319
- arviz/plots/forestplot.py +0 -304
- arviz/plots/hdiplot.py +0 -211
- arviz/plots/kdeplot.py +0 -357
- arviz/plots/khatplot.py +0 -236
- arviz/plots/lmplot.py +0 -380
- arviz/plots/loopitplot.py +0 -224
- arviz/plots/mcseplot.py +0 -194
- arviz/plots/pairplot.py +0 -281
- arviz/plots/parallelplot.py +0 -204
- arviz/plots/plot_utils.py +0 -599
- arviz/plots/posteriorplot.py +0 -298
- arviz/plots/ppcplot.py +0 -369
- arviz/plots/rankplot.py +0 -232
- arviz/plots/separationplot.py +0 -167
- arviz/plots/styles/arviz-bluish.mplstyle +0 -1
- arviz/plots/styles/arviz-brownish.mplstyle +0 -1
- arviz/plots/styles/arviz-colors.mplstyle +0 -2
- arviz/plots/styles/arviz-cyanish.mplstyle +0 -1
- arviz/plots/styles/arviz-darkgrid.mplstyle +0 -40
- arviz/plots/styles/arviz-doc.mplstyle +0 -88
- arviz/plots/styles/arviz-docgrid.mplstyle +0 -88
- arviz/plots/styles/arviz-grayscale.mplstyle +0 -41
- arviz/plots/styles/arviz-greenish.mplstyle +0 -1
- arviz/plots/styles/arviz-orangish.mplstyle +0 -1
- arviz/plots/styles/arviz-plasmish.mplstyle +0 -1
- arviz/plots/styles/arviz-purplish.mplstyle +0 -1
- arviz/plots/styles/arviz-redish.mplstyle +0 -1
- arviz/plots/styles/arviz-royish.mplstyle +0 -1
- arviz/plots/styles/arviz-viridish.mplstyle +0 -1
- arviz/plots/styles/arviz-white.mplstyle +0 -40
- arviz/plots/styles/arviz-whitegrid.mplstyle +0 -40
- arviz/plots/traceplot.py +0 -273
- arviz/plots/tsplot.py +0 -440
- arviz/plots/violinplot.py +0 -192
- arviz/preview.py +0 -58
- arviz/py.typed +0 -0
- arviz/rcparams.py +0 -606
- arviz/sel_utils.py +0 -223
- arviz/static/css/style.css +0 -340
- arviz/static/html/icons-svg-inline.html +0 -15
- arviz/stats/__init__.py +0 -37
- arviz/stats/density_utils.py +0 -1013
- arviz/stats/diagnostics.py +0 -1013
- arviz/stats/ecdf_utils.py +0 -324
- arviz/stats/stats.py +0 -2422
- arviz/stats/stats_refitting.py +0 -119
- arviz/stats/stats_utils.py +0 -609
- arviz/tests/__init__.py +0 -1
- arviz/tests/base_tests/__init__.py +0 -1
- arviz/tests/base_tests/test_data.py +0 -1679
- arviz/tests/base_tests/test_data_zarr.py +0 -143
- arviz/tests/base_tests/test_diagnostics.py +0 -511
- arviz/tests/base_tests/test_diagnostics_numba.py +0 -87
- arviz/tests/base_tests/test_helpers.py +0 -18
- arviz/tests/base_tests/test_labels.py +0 -69
- arviz/tests/base_tests/test_plot_utils.py +0 -342
- arviz/tests/base_tests/test_plots_bokeh.py +0 -1288
- arviz/tests/base_tests/test_plots_matplotlib.py +0 -2197
- arviz/tests/base_tests/test_rcparams.py +0 -317
- arviz/tests/base_tests/test_stats.py +0 -925
- arviz/tests/base_tests/test_stats_ecdf_utils.py +0 -166
- arviz/tests/base_tests/test_stats_numba.py +0 -45
- arviz/tests/base_tests/test_stats_utils.py +0 -384
- arviz/tests/base_tests/test_utils.py +0 -376
- arviz/tests/base_tests/test_utils_numba.py +0 -87
- arviz/tests/conftest.py +0 -46
- arviz/tests/external_tests/__init__.py +0 -1
- arviz/tests/external_tests/test_data_beanmachine.py +0 -78
- arviz/tests/external_tests/test_data_cmdstan.py +0 -398
- arviz/tests/external_tests/test_data_cmdstanpy.py +0 -496
- arviz/tests/external_tests/test_data_emcee.py +0 -166
- arviz/tests/external_tests/test_data_numpyro.py +0 -434
- arviz/tests/external_tests/test_data_pyjags.py +0 -119
- arviz/tests/external_tests/test_data_pyro.py +0 -260
- arviz/tests/external_tests/test_data_pystan.py +0 -307
- arviz/tests/helpers.py +0 -677
- arviz/utils.py +0 -773
- arviz/wrappers/__init__.py +0 -13
- arviz/wrappers/base.py +0 -236
- arviz/wrappers/wrap_pymc.py +0 -36
- arviz/wrappers/wrap_stan.py +0 -148
- arviz-0.23.3.dist-info/METADATA +0 -264
- arviz-0.23.3.dist-info/RECORD +0 -183
- arviz-0.23.3.dist-info/top_level.txt +0 -1
|
@@ -1,478 +0,0 @@
|
|
|
1
|
-
"""Matplotlib Posterior predictive plot."""
|
|
2
|
-
|
|
3
|
-
import logging
|
|
4
|
-
import platform
|
|
5
|
-
|
|
6
|
-
import matplotlib.pyplot as plt
|
|
7
|
-
import numpy as np
|
|
8
|
-
from matplotlib import animation, get_backend
|
|
9
|
-
|
|
10
|
-
from ....stats.density_utils import get_bins, histogram, kde
|
|
11
|
-
from ...kdeplot import plot_kde
|
|
12
|
-
from ...plot_utils import _scale_fig_size
|
|
13
|
-
from . import backend_kwarg_defaults, backend_show, create_axes_grid
|
|
14
|
-
|
|
15
|
-
_log = logging.getLogger(__name__)
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
def plot_ppc(
|
|
19
|
-
ax,
|
|
20
|
-
length_plotters,
|
|
21
|
-
rows,
|
|
22
|
-
cols,
|
|
23
|
-
figsize,
|
|
24
|
-
animated,
|
|
25
|
-
obs_plotters,
|
|
26
|
-
pp_plotters,
|
|
27
|
-
predictive_dataset,
|
|
28
|
-
pp_sample_ix,
|
|
29
|
-
kind,
|
|
30
|
-
alpha,
|
|
31
|
-
colors,
|
|
32
|
-
textsize,
|
|
33
|
-
mean,
|
|
34
|
-
observed,
|
|
35
|
-
observed_rug,
|
|
36
|
-
jitter,
|
|
37
|
-
total_pp_samples,
|
|
38
|
-
legend,
|
|
39
|
-
labeller,
|
|
40
|
-
group,
|
|
41
|
-
animation_kwargs,
|
|
42
|
-
num_pp_samples,
|
|
43
|
-
backend_kwargs,
|
|
44
|
-
show,
|
|
45
|
-
):
|
|
46
|
-
"""Matplotlib ppc plot."""
|
|
47
|
-
if backend_kwargs is None:
|
|
48
|
-
backend_kwargs = {}
|
|
49
|
-
|
|
50
|
-
backend_kwargs = {
|
|
51
|
-
**backend_kwarg_defaults(),
|
|
52
|
-
**backend_kwargs,
|
|
53
|
-
}
|
|
54
|
-
|
|
55
|
-
if animation_kwargs is None:
|
|
56
|
-
animation_kwargs = {}
|
|
57
|
-
if platform.system() == "Linux":
|
|
58
|
-
animation_kwargs.setdefault("blit", True)
|
|
59
|
-
else:
|
|
60
|
-
animation_kwargs.setdefault("blit", False)
|
|
61
|
-
|
|
62
|
-
if alpha is None:
|
|
63
|
-
if animated:
|
|
64
|
-
alpha = 1
|
|
65
|
-
else:
|
|
66
|
-
if kind.lower() == "scatter":
|
|
67
|
-
alpha = 0.7
|
|
68
|
-
else:
|
|
69
|
-
alpha = 0.2
|
|
70
|
-
|
|
71
|
-
if jitter is None:
|
|
72
|
-
jitter = 0.0
|
|
73
|
-
if jitter < 0.0:
|
|
74
|
-
raise ValueError("jitter must be >=0")
|
|
75
|
-
|
|
76
|
-
if animated:
|
|
77
|
-
try:
|
|
78
|
-
shell = get_ipython().__class__.__name__
|
|
79
|
-
if shell == "ZMQInteractiveShell" and get_backend() != "nbAgg":
|
|
80
|
-
raise Warning(
|
|
81
|
-
"To run animations inside a notebook you have to use the nbAgg backend. "
|
|
82
|
-
"Try with `%matplotlib notebook` or `%matplotlib nbAgg`. You can switch "
|
|
83
|
-
"back to the default backend with `%matplotlib inline` or "
|
|
84
|
-
"`%matplotlib auto`."
|
|
85
|
-
)
|
|
86
|
-
except NameError:
|
|
87
|
-
pass
|
|
88
|
-
|
|
89
|
-
if animation_kwargs["blit"] and platform.system() != "Linux":
|
|
90
|
-
_log.warning(
|
|
91
|
-
"If you experience problems rendering the animation try setting "
|
|
92
|
-
"`animation_kwargs({'blit':False}) or changing the plotting backend "
|
|
93
|
-
"(e.g. to TkAgg)"
|
|
94
|
-
)
|
|
95
|
-
|
|
96
|
-
(figsize, ax_labelsize, _, xt_labelsize, linewidth, markersize) = _scale_fig_size(
|
|
97
|
-
figsize, textsize, rows, cols
|
|
98
|
-
)
|
|
99
|
-
backend_kwargs.setdefault("figsize", figsize)
|
|
100
|
-
backend_kwargs.setdefault("squeeze", True)
|
|
101
|
-
if ax is None:
|
|
102
|
-
fig, axes = create_axes_grid(length_plotters, rows, cols, backend_kwargs=backend_kwargs)
|
|
103
|
-
else:
|
|
104
|
-
axes = np.ravel(ax)
|
|
105
|
-
if len(axes) != length_plotters:
|
|
106
|
-
raise ValueError(
|
|
107
|
-
"Found {} variables to plot but {} axes instances. They must be equal.".format(
|
|
108
|
-
length_plotters, len(axes)
|
|
109
|
-
)
|
|
110
|
-
)
|
|
111
|
-
if animated:
|
|
112
|
-
fig = axes[0].get_figure()
|
|
113
|
-
if not all((ax.get_figure() is fig for ax in axes)):
|
|
114
|
-
raise ValueError("All axes must be on the same figure for animation to work")
|
|
115
|
-
|
|
116
|
-
for i, ax_i in enumerate(np.ravel(axes)[:length_plotters]):
|
|
117
|
-
var_name, selection, isel, obs_vals = obs_plotters[i]
|
|
118
|
-
pp_var_name, _, _, pp_vals = pp_plotters[i]
|
|
119
|
-
dtype = predictive_dataset[pp_var_name].dtype.kind
|
|
120
|
-
|
|
121
|
-
if dtype not in ["i", "f"]:
|
|
122
|
-
raise ValueError(
|
|
123
|
-
f"The data type of the predictive data must be one of 'i' or 'f', but is '{dtype}'"
|
|
124
|
-
)
|
|
125
|
-
|
|
126
|
-
# flatten non-specified dimensions
|
|
127
|
-
obs_vals = obs_vals.flatten()
|
|
128
|
-
pp_vals = pp_vals.reshape(total_pp_samples, -1)
|
|
129
|
-
pp_sampled_vals = pp_vals[pp_sample_ix]
|
|
130
|
-
|
|
131
|
-
if kind == "kde":
|
|
132
|
-
plot_kwargs = {"color": colors[0], "alpha": alpha, "linewidth": 0.5 * linewidth}
|
|
133
|
-
if dtype == "i":
|
|
134
|
-
plot_kwargs["drawstyle"] = "steps-pre"
|
|
135
|
-
ax_i.plot([], color=colors[0], label=f"{group.capitalize()} predictive")
|
|
136
|
-
if observed:
|
|
137
|
-
if dtype == "f":
|
|
138
|
-
plot_kde(
|
|
139
|
-
obs_vals,
|
|
140
|
-
rug=observed_rug,
|
|
141
|
-
label="Observed",
|
|
142
|
-
plot_kwargs={"color": colors[1], "linewidth": linewidth, "zorder": 3},
|
|
143
|
-
fill_kwargs={"alpha": 0},
|
|
144
|
-
ax=ax_i,
|
|
145
|
-
legend=legend,
|
|
146
|
-
)
|
|
147
|
-
else:
|
|
148
|
-
bins = get_bins(obs_vals)
|
|
149
|
-
_, hist, bin_edges = histogram(obs_vals, bins=bins)
|
|
150
|
-
hist = np.concatenate((hist[:1], hist))
|
|
151
|
-
ax_i.plot(
|
|
152
|
-
bin_edges,
|
|
153
|
-
hist,
|
|
154
|
-
label="Observed",
|
|
155
|
-
color=colors[1],
|
|
156
|
-
linewidth=linewidth,
|
|
157
|
-
zorder=3,
|
|
158
|
-
drawstyle=plot_kwargs["drawstyle"],
|
|
159
|
-
)
|
|
160
|
-
|
|
161
|
-
pp_densities = []
|
|
162
|
-
pp_xs = []
|
|
163
|
-
for vals in pp_sampled_vals:
|
|
164
|
-
vals = np.array([vals]).flatten()
|
|
165
|
-
if dtype == "f":
|
|
166
|
-
pp_x, pp_density = kde(vals)
|
|
167
|
-
pp_densities.append(pp_density)
|
|
168
|
-
pp_xs.append(pp_x)
|
|
169
|
-
else:
|
|
170
|
-
bins = get_bins(vals)
|
|
171
|
-
_, hist, bin_edges = histogram(vals, bins=bins)
|
|
172
|
-
hist = np.concatenate((hist[:1], hist))
|
|
173
|
-
pp_densities.append(hist)
|
|
174
|
-
pp_xs.append(bin_edges)
|
|
175
|
-
|
|
176
|
-
if animated:
|
|
177
|
-
animate, init = _set_animation(
|
|
178
|
-
pp_sampled_vals, ax_i, dtype=dtype, kind=kind, plot_kwargs=plot_kwargs
|
|
179
|
-
)
|
|
180
|
-
|
|
181
|
-
else:
|
|
182
|
-
if dtype == "f":
|
|
183
|
-
ax_i.plot(np.transpose(pp_xs), np.transpose(pp_densities), **plot_kwargs)
|
|
184
|
-
else:
|
|
185
|
-
for x_s, y_s in zip(pp_xs, pp_densities):
|
|
186
|
-
ax_i.plot(x_s, y_s, **plot_kwargs)
|
|
187
|
-
|
|
188
|
-
if mean:
|
|
189
|
-
label = f"{group.capitalize()} predictive mean"
|
|
190
|
-
if dtype == "f":
|
|
191
|
-
rep = len(pp_densities)
|
|
192
|
-
len_density = len(pp_densities[0])
|
|
193
|
-
|
|
194
|
-
new_x = np.linspace(np.min(pp_xs), np.max(pp_xs), len_density)
|
|
195
|
-
new_d = np.zeros((rep, len_density))
|
|
196
|
-
bins = np.digitize(pp_xs, new_x, right=True)
|
|
197
|
-
new_x -= (new_x[1] - new_x[0]) / 2
|
|
198
|
-
for irep in range(rep):
|
|
199
|
-
new_d[irep][bins[irep]] = pp_densities[irep]
|
|
200
|
-
ax_i.plot(
|
|
201
|
-
new_x,
|
|
202
|
-
new_d.mean(0),
|
|
203
|
-
color=colors[2],
|
|
204
|
-
linestyle="--",
|
|
205
|
-
linewidth=linewidth * 1.5,
|
|
206
|
-
zorder=2,
|
|
207
|
-
label=label,
|
|
208
|
-
)
|
|
209
|
-
else:
|
|
210
|
-
vals = pp_vals.flatten()
|
|
211
|
-
bins = get_bins(vals)
|
|
212
|
-
_, hist, bin_edges = histogram(vals, bins=bins)
|
|
213
|
-
hist = np.concatenate((hist[:1], hist))
|
|
214
|
-
ax_i.plot(
|
|
215
|
-
bin_edges,
|
|
216
|
-
hist,
|
|
217
|
-
color=colors[2],
|
|
218
|
-
linewidth=linewidth * 1.5,
|
|
219
|
-
label=label,
|
|
220
|
-
zorder=2,
|
|
221
|
-
linestyle="--",
|
|
222
|
-
drawstyle=plot_kwargs["drawstyle"],
|
|
223
|
-
)
|
|
224
|
-
ax_i.tick_params(labelsize=xt_labelsize)
|
|
225
|
-
ax_i.set_yticks([])
|
|
226
|
-
|
|
227
|
-
elif kind == "cumulative":
|
|
228
|
-
drawstyle = "default" if dtype == "f" else "steps-pre"
|
|
229
|
-
if observed:
|
|
230
|
-
ax_i.plot(
|
|
231
|
-
*_empirical_cdf(obs_vals),
|
|
232
|
-
color=colors[1],
|
|
233
|
-
linewidth=linewidth,
|
|
234
|
-
label="Observed",
|
|
235
|
-
drawstyle=drawstyle,
|
|
236
|
-
zorder=3,
|
|
237
|
-
)
|
|
238
|
-
if observed_rug:
|
|
239
|
-
ax_i.plot(
|
|
240
|
-
obs_vals,
|
|
241
|
-
np.zeros_like(obs_vals) - 0.1,
|
|
242
|
-
ls="",
|
|
243
|
-
marker="|",
|
|
244
|
-
color=colors[1],
|
|
245
|
-
)
|
|
246
|
-
if animated:
|
|
247
|
-
animate, init = _set_animation(
|
|
248
|
-
pp_sampled_vals,
|
|
249
|
-
ax_i,
|
|
250
|
-
kind=kind,
|
|
251
|
-
alpha=alpha,
|
|
252
|
-
drawstyle=drawstyle,
|
|
253
|
-
linewidth=linewidth,
|
|
254
|
-
)
|
|
255
|
-
|
|
256
|
-
else:
|
|
257
|
-
pp_densities = np.empty((2 * len(pp_sampled_vals), pp_sampled_vals[0].size))
|
|
258
|
-
for idx, vals in enumerate(pp_sampled_vals):
|
|
259
|
-
vals = np.array([vals]).flatten()
|
|
260
|
-
pp_x, pp_density = _empirical_cdf(vals)
|
|
261
|
-
pp_densities[2 * idx] = pp_x
|
|
262
|
-
pp_densities[2 * idx + 1] = pp_density
|
|
263
|
-
|
|
264
|
-
ax_i.plot(
|
|
265
|
-
*pp_densities,
|
|
266
|
-
alpha=alpha,
|
|
267
|
-
color=colors[0],
|
|
268
|
-
drawstyle=drawstyle,
|
|
269
|
-
linewidth=linewidth,
|
|
270
|
-
)
|
|
271
|
-
ax_i.plot([], color=colors[0], label=f"{group.capitalize()} predictive")
|
|
272
|
-
if mean:
|
|
273
|
-
ax_i.plot(
|
|
274
|
-
*_empirical_cdf(pp_vals.flatten()),
|
|
275
|
-
color=colors[2],
|
|
276
|
-
linestyle="--",
|
|
277
|
-
linewidth=linewidth * 1.5,
|
|
278
|
-
drawstyle=drawstyle,
|
|
279
|
-
label=f"{group.capitalize()} predictive mean",
|
|
280
|
-
)
|
|
281
|
-
ax_i.set_yticks([0, 0.5, 1])
|
|
282
|
-
|
|
283
|
-
elif kind == "scatter":
|
|
284
|
-
if mean:
|
|
285
|
-
if dtype == "f":
|
|
286
|
-
plot_kde(
|
|
287
|
-
pp_vals.flatten(),
|
|
288
|
-
plot_kwargs={
|
|
289
|
-
"color": colors[2],
|
|
290
|
-
"linestyle": "--",
|
|
291
|
-
"linewidth": linewidth * 1.5,
|
|
292
|
-
"zorder": 3,
|
|
293
|
-
},
|
|
294
|
-
label=f"{group.capitalize()} predictive mean",
|
|
295
|
-
ax=ax_i,
|
|
296
|
-
legend=legend,
|
|
297
|
-
)
|
|
298
|
-
else:
|
|
299
|
-
vals = pp_vals.flatten()
|
|
300
|
-
bins = get_bins(vals)
|
|
301
|
-
_, hist, bin_edges = histogram(vals, bins=bins)
|
|
302
|
-
hist = np.concatenate((hist[:1], hist))
|
|
303
|
-
ax_i.plot(
|
|
304
|
-
bin_edges,
|
|
305
|
-
hist,
|
|
306
|
-
color=colors[2],
|
|
307
|
-
linewidth=linewidth * 1.5,
|
|
308
|
-
label=f"{group.capitalize()} predictive mean",
|
|
309
|
-
zorder=3,
|
|
310
|
-
linestyle="--",
|
|
311
|
-
drawstyle="steps-pre",
|
|
312
|
-
)
|
|
313
|
-
|
|
314
|
-
_, limit = ax_i.get_ylim()
|
|
315
|
-
limit *= 1.05
|
|
316
|
-
y_rows = np.linspace(0, limit, num_pp_samples + 1)
|
|
317
|
-
jitter_scale = y_rows[1] - y_rows[0]
|
|
318
|
-
scale_low = 0
|
|
319
|
-
scale_high = jitter_scale * jitter
|
|
320
|
-
|
|
321
|
-
if observed:
|
|
322
|
-
obs_yvals = np.zeros_like(obs_vals, dtype=np.float64)
|
|
323
|
-
if jitter:
|
|
324
|
-
obs_yvals += np.random.uniform(
|
|
325
|
-
low=scale_low, high=scale_high, size=len(obs_vals)
|
|
326
|
-
)
|
|
327
|
-
ax_i.plot(
|
|
328
|
-
obs_vals,
|
|
329
|
-
obs_yvals,
|
|
330
|
-
"o",
|
|
331
|
-
color=colors[1],
|
|
332
|
-
markersize=markersize,
|
|
333
|
-
alpha=alpha,
|
|
334
|
-
label="Observed",
|
|
335
|
-
zorder=4,
|
|
336
|
-
)
|
|
337
|
-
|
|
338
|
-
if animated:
|
|
339
|
-
animate, init = _set_animation(
|
|
340
|
-
pp_sampled_vals,
|
|
341
|
-
ax_i,
|
|
342
|
-
kind=kind,
|
|
343
|
-
color=colors[0],
|
|
344
|
-
height=y_rows.mean() * 0.5,
|
|
345
|
-
markersize=markersize,
|
|
346
|
-
)
|
|
347
|
-
|
|
348
|
-
else:
|
|
349
|
-
for vals, y in zip(pp_sampled_vals, y_rows[1:]):
|
|
350
|
-
vals = np.ravel(vals)
|
|
351
|
-
yvals = np.full_like(vals, y, dtype=np.float64)
|
|
352
|
-
if jitter:
|
|
353
|
-
yvals += np.random.uniform(low=scale_low, high=scale_high, size=len(vals))
|
|
354
|
-
ax_i.plot(
|
|
355
|
-
vals,
|
|
356
|
-
yvals,
|
|
357
|
-
"o",
|
|
358
|
-
zorder=2,
|
|
359
|
-
color=colors[0],
|
|
360
|
-
markersize=markersize,
|
|
361
|
-
alpha=alpha,
|
|
362
|
-
)
|
|
363
|
-
|
|
364
|
-
ax_i.plot([], color=colors[0], marker="o", label=f"{group.capitalize()} predictive")
|
|
365
|
-
|
|
366
|
-
ax_i.set_yticks([])
|
|
367
|
-
|
|
368
|
-
ax_i.set_xlabel(
|
|
369
|
-
labeller.make_pp_label(var_name, pp_var_name, selection, isel), fontsize=ax_labelsize
|
|
370
|
-
)
|
|
371
|
-
|
|
372
|
-
if legend:
|
|
373
|
-
if i == 0:
|
|
374
|
-
ax_i.legend(fontsize=xt_labelsize * 0.75)
|
|
375
|
-
|
|
376
|
-
if backend_show(show):
|
|
377
|
-
plt.show()
|
|
378
|
-
|
|
379
|
-
if animated:
|
|
380
|
-
ani = animation.FuncAnimation(
|
|
381
|
-
fig, animate, np.arange(0, num_pp_samples), init_func=init, **animation_kwargs
|
|
382
|
-
)
|
|
383
|
-
return axes, ani
|
|
384
|
-
else:
|
|
385
|
-
return axes
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
def _set_animation(
|
|
389
|
-
pp_sampled_vals,
|
|
390
|
-
ax,
|
|
391
|
-
dtype=None,
|
|
392
|
-
kind="density",
|
|
393
|
-
alpha=None,
|
|
394
|
-
color=None,
|
|
395
|
-
drawstyle=None,
|
|
396
|
-
linewidth=None,
|
|
397
|
-
height=None,
|
|
398
|
-
markersize=None,
|
|
399
|
-
plot_kwargs=None,
|
|
400
|
-
):
|
|
401
|
-
if kind == "kde":
|
|
402
|
-
length = len(pp_sampled_vals)
|
|
403
|
-
if dtype == "f":
|
|
404
|
-
x_vals, y_vals = kde(pp_sampled_vals[0])
|
|
405
|
-
max_max = max(max(kde(pp_sampled_vals[i])[1]) for i in range(length))
|
|
406
|
-
ax.set_ylim(0, max_max)
|
|
407
|
-
(line,) = ax.plot(x_vals, y_vals, **plot_kwargs)
|
|
408
|
-
|
|
409
|
-
def animate(i):
|
|
410
|
-
x_vals, y_vals = kde(pp_sampled_vals[i])
|
|
411
|
-
line.set_data(x_vals, y_vals)
|
|
412
|
-
return (line,)
|
|
413
|
-
|
|
414
|
-
else:
|
|
415
|
-
vals = pp_sampled_vals[0]
|
|
416
|
-
bins = get_bins(vals)
|
|
417
|
-
_, y_vals, x_vals = histogram(vals, bins=bins)
|
|
418
|
-
(line,) = ax.plot(x_vals[:-1], y_vals, **plot_kwargs)
|
|
419
|
-
|
|
420
|
-
max_max = max(
|
|
421
|
-
max(histogram(pp_sampled_vals[i], bins=get_bins(pp_sampled_vals[i]))[1])
|
|
422
|
-
for i in range(length)
|
|
423
|
-
)
|
|
424
|
-
|
|
425
|
-
ax.set_ylim(0, max_max)
|
|
426
|
-
|
|
427
|
-
def animate(i):
|
|
428
|
-
pp_vals = pp_sampled_vals[i]
|
|
429
|
-
_, y_vals, x_vals = histogram(pp_vals, bins=get_bins(pp_vals))
|
|
430
|
-
line.set_data(x_vals[:-1], y_vals)
|
|
431
|
-
return (line,)
|
|
432
|
-
|
|
433
|
-
elif kind == "cumulative":
|
|
434
|
-
x_vals, y_vals = _empirical_cdf(pp_sampled_vals[0])
|
|
435
|
-
(line,) = ax.plot(
|
|
436
|
-
x_vals, y_vals, alpha=alpha, color=color, drawstyle=drawstyle, linewidth=linewidth
|
|
437
|
-
)
|
|
438
|
-
|
|
439
|
-
def animate(i):
|
|
440
|
-
x_vals, y_vals = _empirical_cdf(pp_sampled_vals[i])
|
|
441
|
-
line.set_data(x_vals, y_vals)
|
|
442
|
-
return (line,)
|
|
443
|
-
|
|
444
|
-
elif kind == "scatter":
|
|
445
|
-
x_vals = pp_sampled_vals[0]
|
|
446
|
-
y_vals = np.full_like(x_vals, height, dtype=np.float64)
|
|
447
|
-
(line,) = ax.plot(
|
|
448
|
-
x_vals, y_vals, "o", zorder=2, color=color, markersize=markersize, alpha=alpha
|
|
449
|
-
)
|
|
450
|
-
|
|
451
|
-
def animate(i):
|
|
452
|
-
line.set_xdata(np.ravel(pp_sampled_vals[i]))
|
|
453
|
-
return (line,)
|
|
454
|
-
|
|
455
|
-
def init():
|
|
456
|
-
if kind != "scatter":
|
|
457
|
-
line.set_data([], [])
|
|
458
|
-
else:
|
|
459
|
-
line.set_xdata([])
|
|
460
|
-
return (line,)
|
|
461
|
-
|
|
462
|
-
return animate, init
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
def _empirical_cdf(data):
|
|
466
|
-
"""Compute empirical cdf of a numpy array.
|
|
467
|
-
|
|
468
|
-
Parameters
|
|
469
|
-
----------
|
|
470
|
-
data : np.array
|
|
471
|
-
1d array
|
|
472
|
-
|
|
473
|
-
Returns
|
|
474
|
-
-------
|
|
475
|
-
np.array, np.array
|
|
476
|
-
x and y coordinates for the empirical cdf of the data
|
|
477
|
-
"""
|
|
478
|
-
return np.sort(data), np.linspace(0, 1, len(data))
|
|
@@ -1,119 +0,0 @@
|
|
|
1
|
-
"""Matplotlib rankplot."""
|
|
2
|
-
|
|
3
|
-
import matplotlib.pyplot as plt
|
|
4
|
-
import numpy as np
|
|
5
|
-
|
|
6
|
-
from ....stats.density_utils import histogram
|
|
7
|
-
from ...plot_utils import _scale_fig_size, compute_ranks
|
|
8
|
-
from . import backend_kwarg_defaults, backend_show, create_axes_grid
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
def plot_rank(
|
|
12
|
-
axes,
|
|
13
|
-
length_plotters,
|
|
14
|
-
rows,
|
|
15
|
-
cols,
|
|
16
|
-
figsize,
|
|
17
|
-
plotters,
|
|
18
|
-
bins,
|
|
19
|
-
kind,
|
|
20
|
-
colors,
|
|
21
|
-
ref_line,
|
|
22
|
-
labels,
|
|
23
|
-
labeller,
|
|
24
|
-
ref_line_kwargs,
|
|
25
|
-
bar_kwargs,
|
|
26
|
-
vlines_kwargs,
|
|
27
|
-
marker_vlines_kwargs,
|
|
28
|
-
backend_kwargs,
|
|
29
|
-
show,
|
|
30
|
-
):
|
|
31
|
-
"""Matplotlib rankplot.."""
|
|
32
|
-
if ref_line_kwargs is None:
|
|
33
|
-
ref_line_kwargs = {}
|
|
34
|
-
ref_line_kwargs.setdefault("linestyle", "--")
|
|
35
|
-
ref_line_kwargs.setdefault("color", "k")
|
|
36
|
-
|
|
37
|
-
if bar_kwargs is None:
|
|
38
|
-
bar_kwargs = {}
|
|
39
|
-
bar_kwargs.setdefault("align", "center")
|
|
40
|
-
|
|
41
|
-
if vlines_kwargs is None:
|
|
42
|
-
vlines_kwargs = {}
|
|
43
|
-
vlines_kwargs.setdefault("lw", 2)
|
|
44
|
-
|
|
45
|
-
if marker_vlines_kwargs is None:
|
|
46
|
-
marker_vlines_kwargs = {}
|
|
47
|
-
marker_vlines_kwargs.setdefault("marker", "o")
|
|
48
|
-
marker_vlines_kwargs.setdefault("lw", 0)
|
|
49
|
-
|
|
50
|
-
if backend_kwargs is None:
|
|
51
|
-
backend_kwargs = {}
|
|
52
|
-
|
|
53
|
-
backend_kwargs = {
|
|
54
|
-
**backend_kwarg_defaults(),
|
|
55
|
-
**backend_kwargs,
|
|
56
|
-
}
|
|
57
|
-
|
|
58
|
-
figsize, ax_labelsize, titlesize, _, _, _ = _scale_fig_size(figsize, None, rows=rows, cols=cols)
|
|
59
|
-
backend_kwargs.setdefault("figsize", figsize)
|
|
60
|
-
backend_kwargs.setdefault("squeeze", True)
|
|
61
|
-
if axes is None:
|
|
62
|
-
_, axes = create_axes_grid(
|
|
63
|
-
length_plotters,
|
|
64
|
-
rows,
|
|
65
|
-
cols,
|
|
66
|
-
backend_kwargs=backend_kwargs,
|
|
67
|
-
)
|
|
68
|
-
|
|
69
|
-
for ax, (var_name, selection, isel, var_data) in zip(np.ravel(axes), plotters):
|
|
70
|
-
ranks = compute_ranks(var_data)
|
|
71
|
-
bin_ary = np.histogram_bin_edges(ranks, bins=bins, range=(0, ranks.size))
|
|
72
|
-
all_counts = np.empty((len(ranks), len(bin_ary) - 1))
|
|
73
|
-
for idx, row in enumerate(ranks):
|
|
74
|
-
_, all_counts[idx], _ = histogram(row, bins=bin_ary)
|
|
75
|
-
gap = 2 / ranks.size
|
|
76
|
-
width = bin_ary[1] - bin_ary[0]
|
|
77
|
-
|
|
78
|
-
bar_kwargs.setdefault("width", width)
|
|
79
|
-
bar_kwargs.setdefault("edgecolor", ax.get_facecolor())
|
|
80
|
-
# Center the bins
|
|
81
|
-
bin_ary = (bin_ary[1:] + bin_ary[:-1]) / 2
|
|
82
|
-
|
|
83
|
-
y_ticks = []
|
|
84
|
-
if kind == "bars":
|
|
85
|
-
for idx, counts in enumerate(all_counts):
|
|
86
|
-
y_ticks.append(idx * gap)
|
|
87
|
-
ax.bar(
|
|
88
|
-
bin_ary,
|
|
89
|
-
counts,
|
|
90
|
-
bottom=y_ticks[-1],
|
|
91
|
-
color=colors[idx],
|
|
92
|
-
**bar_kwargs,
|
|
93
|
-
)
|
|
94
|
-
if ref_line:
|
|
95
|
-
ax.axhline(y=y_ticks[-1] + counts.mean(), **ref_line_kwargs)
|
|
96
|
-
if labels:
|
|
97
|
-
ax.set_ylabel("Chain", fontsize=ax_labelsize)
|
|
98
|
-
elif kind == "vlines":
|
|
99
|
-
ymin = all_counts.mean()
|
|
100
|
-
|
|
101
|
-
for idx, counts in enumerate(all_counts):
|
|
102
|
-
ax.plot(bin_ary, counts, color=colors[idx], **marker_vlines_kwargs)
|
|
103
|
-
ax.vlines(bin_ary, ymin, counts, colors=colors[idx], **vlines_kwargs)
|
|
104
|
-
ax.set_ylim(0, all_counts.mean() * 2)
|
|
105
|
-
if ref_line:
|
|
106
|
-
ax.axhline(y=ymin, **ref_line_kwargs)
|
|
107
|
-
|
|
108
|
-
if labels:
|
|
109
|
-
ax.set_xlabel("Rank (all chains)", fontsize=ax_labelsize)
|
|
110
|
-
ax.set_yticks(y_ticks)
|
|
111
|
-
ax.set_yticklabels(np.arange(len(y_ticks)))
|
|
112
|
-
ax.set_title(labeller.make_label_vert(var_name, selection, isel), fontsize=titlesize)
|
|
113
|
-
else:
|
|
114
|
-
ax.set_yticks([])
|
|
115
|
-
|
|
116
|
-
if backend_show(show):
|
|
117
|
-
plt.show()
|
|
118
|
-
|
|
119
|
-
return axes
|
|
@@ -1,97 +0,0 @@
|
|
|
1
|
-
"""Matplotlib separation plot."""
|
|
2
|
-
|
|
3
|
-
import matplotlib.pyplot as plt
|
|
4
|
-
import numpy as np
|
|
5
|
-
|
|
6
|
-
from ...plot_utils import _scale_fig_size
|
|
7
|
-
from . import backend_kwarg_defaults, backend_show, create_axes_grid
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
def plot_separation(
|
|
11
|
-
y,
|
|
12
|
-
y_hat,
|
|
13
|
-
y_hat_line,
|
|
14
|
-
label_y_hat,
|
|
15
|
-
expected_events,
|
|
16
|
-
figsize,
|
|
17
|
-
textsize,
|
|
18
|
-
color,
|
|
19
|
-
legend,
|
|
20
|
-
locs,
|
|
21
|
-
width,
|
|
22
|
-
ax,
|
|
23
|
-
plot_kwargs,
|
|
24
|
-
y_hat_line_kwargs,
|
|
25
|
-
exp_events_kwargs,
|
|
26
|
-
backend_kwargs,
|
|
27
|
-
show,
|
|
28
|
-
):
|
|
29
|
-
"""Matplotlib separation plot."""
|
|
30
|
-
if backend_kwargs is None:
|
|
31
|
-
backend_kwargs = {}
|
|
32
|
-
|
|
33
|
-
if plot_kwargs is None:
|
|
34
|
-
plot_kwargs = {}
|
|
35
|
-
|
|
36
|
-
# plot_kwargs.setdefault("color", "C0")
|
|
37
|
-
# if color:
|
|
38
|
-
plot_kwargs["color"] = color
|
|
39
|
-
|
|
40
|
-
if y_hat_line_kwargs is None:
|
|
41
|
-
y_hat_line_kwargs = {}
|
|
42
|
-
|
|
43
|
-
y_hat_line_kwargs.setdefault("color", "k")
|
|
44
|
-
|
|
45
|
-
if exp_events_kwargs is None:
|
|
46
|
-
exp_events_kwargs = {}
|
|
47
|
-
|
|
48
|
-
exp_events_kwargs.setdefault("color", "k")
|
|
49
|
-
exp_events_kwargs.setdefault("marker", "^")
|
|
50
|
-
exp_events_kwargs.setdefault("s", 100)
|
|
51
|
-
exp_events_kwargs.setdefault("zorder", 2)
|
|
52
|
-
|
|
53
|
-
backend_kwargs = {
|
|
54
|
-
**backend_kwarg_defaults(),
|
|
55
|
-
**backend_kwargs,
|
|
56
|
-
}
|
|
57
|
-
|
|
58
|
-
(figsize, *_) = _scale_fig_size(figsize, textsize, 1, 1)
|
|
59
|
-
backend_kwargs.setdefault("figsize", figsize)
|
|
60
|
-
backend_kwargs["squeeze"] = True
|
|
61
|
-
|
|
62
|
-
if ax is None:
|
|
63
|
-
_, ax = create_axes_grid(1, backend_kwargs=backend_kwargs)
|
|
64
|
-
|
|
65
|
-
idx = np.argsort(y_hat)
|
|
66
|
-
|
|
67
|
-
for i, loc in enumerate(locs):
|
|
68
|
-
positive = not y[idx][i] == 0
|
|
69
|
-
alpha = 1 if positive else 0.3
|
|
70
|
-
ax.bar(loc, 1, width=width, alpha=alpha, **plot_kwargs)
|
|
71
|
-
|
|
72
|
-
if y_hat_line:
|
|
73
|
-
ax.plot(np.linspace(0, 1, len(y_hat)), y_hat[idx], label=label_y_hat, **y_hat_line_kwargs)
|
|
74
|
-
|
|
75
|
-
if expected_events:
|
|
76
|
-
expected_events = int(np.round(np.sum(y_hat)))
|
|
77
|
-
ax.scatter(
|
|
78
|
-
y_hat[idx][len(y_hat) - expected_events - 1],
|
|
79
|
-
0,
|
|
80
|
-
label="Expected events",
|
|
81
|
-
**exp_events_kwargs
|
|
82
|
-
)
|
|
83
|
-
|
|
84
|
-
if legend and (expected_events or y_hat_line):
|
|
85
|
-
handles, labels = ax.get_legend_handles_labels()
|
|
86
|
-
labels_dict = dict(zip(labels, handles))
|
|
87
|
-
ax.legend(labels_dict.values(), labels_dict.keys())
|
|
88
|
-
|
|
89
|
-
ax.set_xticks([])
|
|
90
|
-
ax.set_yticks([])
|
|
91
|
-
ax.set_xlim(0, 1)
|
|
92
|
-
ax.set_ylim(0, 1)
|
|
93
|
-
|
|
94
|
-
if backend_show(show):
|
|
95
|
-
plt.show()
|
|
96
|
-
|
|
97
|
-
return ax
|