arviz 0.23.3__py3-none-any.whl → 1.0.0rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (185) hide show
  1. arviz/__init__.py +52 -367
  2. arviz-1.0.0rc0.dist-info/METADATA +182 -0
  3. arviz-1.0.0rc0.dist-info/RECORD +5 -0
  4. {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/WHEEL +1 -2
  5. {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/licenses/LICENSE +0 -1
  6. arviz/data/__init__.py +0 -55
  7. arviz/data/base.py +0 -596
  8. arviz/data/converters.py +0 -203
  9. arviz/data/datasets.py +0 -161
  10. arviz/data/example_data/code/radon/radon.json +0 -326
  11. arviz/data/example_data/data/centered_eight.nc +0 -0
  12. arviz/data/example_data/data/non_centered_eight.nc +0 -0
  13. arviz/data/example_data/data_local.json +0 -12
  14. arviz/data/example_data/data_remote.json +0 -58
  15. arviz/data/inference_data.py +0 -2386
  16. arviz/data/io_beanmachine.py +0 -112
  17. arviz/data/io_cmdstan.py +0 -1036
  18. arviz/data/io_cmdstanpy.py +0 -1233
  19. arviz/data/io_datatree.py +0 -23
  20. arviz/data/io_dict.py +0 -462
  21. arviz/data/io_emcee.py +0 -317
  22. arviz/data/io_json.py +0 -54
  23. arviz/data/io_netcdf.py +0 -68
  24. arviz/data/io_numpyro.py +0 -497
  25. arviz/data/io_pyjags.py +0 -378
  26. arviz/data/io_pyro.py +0 -333
  27. arviz/data/io_pystan.py +0 -1095
  28. arviz/data/io_zarr.py +0 -46
  29. arviz/data/utils.py +0 -139
  30. arviz/labels.py +0 -210
  31. arviz/plots/__init__.py +0 -61
  32. arviz/plots/autocorrplot.py +0 -171
  33. arviz/plots/backends/__init__.py +0 -223
  34. arviz/plots/backends/bokeh/__init__.py +0 -166
  35. arviz/plots/backends/bokeh/autocorrplot.py +0 -101
  36. arviz/plots/backends/bokeh/bfplot.py +0 -23
  37. arviz/plots/backends/bokeh/bpvplot.py +0 -193
  38. arviz/plots/backends/bokeh/compareplot.py +0 -167
  39. arviz/plots/backends/bokeh/densityplot.py +0 -239
  40. arviz/plots/backends/bokeh/distcomparisonplot.py +0 -23
  41. arviz/plots/backends/bokeh/distplot.py +0 -183
  42. arviz/plots/backends/bokeh/dotplot.py +0 -113
  43. arviz/plots/backends/bokeh/ecdfplot.py +0 -73
  44. arviz/plots/backends/bokeh/elpdplot.py +0 -203
  45. arviz/plots/backends/bokeh/energyplot.py +0 -155
  46. arviz/plots/backends/bokeh/essplot.py +0 -176
  47. arviz/plots/backends/bokeh/forestplot.py +0 -772
  48. arviz/plots/backends/bokeh/hdiplot.py +0 -54
  49. arviz/plots/backends/bokeh/kdeplot.py +0 -268
  50. arviz/plots/backends/bokeh/khatplot.py +0 -163
  51. arviz/plots/backends/bokeh/lmplot.py +0 -185
  52. arviz/plots/backends/bokeh/loopitplot.py +0 -211
  53. arviz/plots/backends/bokeh/mcseplot.py +0 -184
  54. arviz/plots/backends/bokeh/pairplot.py +0 -328
  55. arviz/plots/backends/bokeh/parallelplot.py +0 -81
  56. arviz/plots/backends/bokeh/posteriorplot.py +0 -324
  57. arviz/plots/backends/bokeh/ppcplot.py +0 -379
  58. arviz/plots/backends/bokeh/rankplot.py +0 -149
  59. arviz/plots/backends/bokeh/separationplot.py +0 -107
  60. arviz/plots/backends/bokeh/traceplot.py +0 -436
  61. arviz/plots/backends/bokeh/violinplot.py +0 -164
  62. arviz/plots/backends/matplotlib/__init__.py +0 -124
  63. arviz/plots/backends/matplotlib/autocorrplot.py +0 -72
  64. arviz/plots/backends/matplotlib/bfplot.py +0 -78
  65. arviz/plots/backends/matplotlib/bpvplot.py +0 -177
  66. arviz/plots/backends/matplotlib/compareplot.py +0 -135
  67. arviz/plots/backends/matplotlib/densityplot.py +0 -194
  68. arviz/plots/backends/matplotlib/distcomparisonplot.py +0 -119
  69. arviz/plots/backends/matplotlib/distplot.py +0 -178
  70. arviz/plots/backends/matplotlib/dotplot.py +0 -116
  71. arviz/plots/backends/matplotlib/ecdfplot.py +0 -70
  72. arviz/plots/backends/matplotlib/elpdplot.py +0 -189
  73. arviz/plots/backends/matplotlib/energyplot.py +0 -113
  74. arviz/plots/backends/matplotlib/essplot.py +0 -180
  75. arviz/plots/backends/matplotlib/forestplot.py +0 -656
  76. arviz/plots/backends/matplotlib/hdiplot.py +0 -48
  77. arviz/plots/backends/matplotlib/kdeplot.py +0 -177
  78. arviz/plots/backends/matplotlib/khatplot.py +0 -241
  79. arviz/plots/backends/matplotlib/lmplot.py +0 -149
  80. arviz/plots/backends/matplotlib/loopitplot.py +0 -144
  81. arviz/plots/backends/matplotlib/mcseplot.py +0 -161
  82. arviz/plots/backends/matplotlib/pairplot.py +0 -355
  83. arviz/plots/backends/matplotlib/parallelplot.py +0 -58
  84. arviz/plots/backends/matplotlib/posteriorplot.py +0 -348
  85. arviz/plots/backends/matplotlib/ppcplot.py +0 -478
  86. arviz/plots/backends/matplotlib/rankplot.py +0 -119
  87. arviz/plots/backends/matplotlib/separationplot.py +0 -97
  88. arviz/plots/backends/matplotlib/traceplot.py +0 -526
  89. arviz/plots/backends/matplotlib/tsplot.py +0 -121
  90. arviz/plots/backends/matplotlib/violinplot.py +0 -148
  91. arviz/plots/bfplot.py +0 -128
  92. arviz/plots/bpvplot.py +0 -308
  93. arviz/plots/compareplot.py +0 -177
  94. arviz/plots/densityplot.py +0 -284
  95. arviz/plots/distcomparisonplot.py +0 -197
  96. arviz/plots/distplot.py +0 -233
  97. arviz/plots/dotplot.py +0 -233
  98. arviz/plots/ecdfplot.py +0 -372
  99. arviz/plots/elpdplot.py +0 -174
  100. arviz/plots/energyplot.py +0 -147
  101. arviz/plots/essplot.py +0 -319
  102. arviz/plots/forestplot.py +0 -304
  103. arviz/plots/hdiplot.py +0 -211
  104. arviz/plots/kdeplot.py +0 -357
  105. arviz/plots/khatplot.py +0 -236
  106. arviz/plots/lmplot.py +0 -380
  107. arviz/plots/loopitplot.py +0 -224
  108. arviz/plots/mcseplot.py +0 -194
  109. arviz/plots/pairplot.py +0 -281
  110. arviz/plots/parallelplot.py +0 -204
  111. arviz/plots/plot_utils.py +0 -599
  112. arviz/plots/posteriorplot.py +0 -298
  113. arviz/plots/ppcplot.py +0 -369
  114. arviz/plots/rankplot.py +0 -232
  115. arviz/plots/separationplot.py +0 -167
  116. arviz/plots/styles/arviz-bluish.mplstyle +0 -1
  117. arviz/plots/styles/arviz-brownish.mplstyle +0 -1
  118. arviz/plots/styles/arviz-colors.mplstyle +0 -2
  119. arviz/plots/styles/arviz-cyanish.mplstyle +0 -1
  120. arviz/plots/styles/arviz-darkgrid.mplstyle +0 -40
  121. arviz/plots/styles/arviz-doc.mplstyle +0 -88
  122. arviz/plots/styles/arviz-docgrid.mplstyle +0 -88
  123. arviz/plots/styles/arviz-grayscale.mplstyle +0 -41
  124. arviz/plots/styles/arviz-greenish.mplstyle +0 -1
  125. arviz/plots/styles/arviz-orangish.mplstyle +0 -1
  126. arviz/plots/styles/arviz-plasmish.mplstyle +0 -1
  127. arviz/plots/styles/arviz-purplish.mplstyle +0 -1
  128. arviz/plots/styles/arviz-redish.mplstyle +0 -1
  129. arviz/plots/styles/arviz-royish.mplstyle +0 -1
  130. arviz/plots/styles/arviz-viridish.mplstyle +0 -1
  131. arviz/plots/styles/arviz-white.mplstyle +0 -40
  132. arviz/plots/styles/arviz-whitegrid.mplstyle +0 -40
  133. arviz/plots/traceplot.py +0 -273
  134. arviz/plots/tsplot.py +0 -440
  135. arviz/plots/violinplot.py +0 -192
  136. arviz/preview.py +0 -58
  137. arviz/py.typed +0 -0
  138. arviz/rcparams.py +0 -606
  139. arviz/sel_utils.py +0 -223
  140. arviz/static/css/style.css +0 -340
  141. arviz/static/html/icons-svg-inline.html +0 -15
  142. arviz/stats/__init__.py +0 -37
  143. arviz/stats/density_utils.py +0 -1013
  144. arviz/stats/diagnostics.py +0 -1013
  145. arviz/stats/ecdf_utils.py +0 -324
  146. arviz/stats/stats.py +0 -2422
  147. arviz/stats/stats_refitting.py +0 -119
  148. arviz/stats/stats_utils.py +0 -609
  149. arviz/tests/__init__.py +0 -1
  150. arviz/tests/base_tests/__init__.py +0 -1
  151. arviz/tests/base_tests/test_data.py +0 -1679
  152. arviz/tests/base_tests/test_data_zarr.py +0 -143
  153. arviz/tests/base_tests/test_diagnostics.py +0 -511
  154. arviz/tests/base_tests/test_diagnostics_numba.py +0 -87
  155. arviz/tests/base_tests/test_helpers.py +0 -18
  156. arviz/tests/base_tests/test_labels.py +0 -69
  157. arviz/tests/base_tests/test_plot_utils.py +0 -342
  158. arviz/tests/base_tests/test_plots_bokeh.py +0 -1288
  159. arviz/tests/base_tests/test_plots_matplotlib.py +0 -2197
  160. arviz/tests/base_tests/test_rcparams.py +0 -317
  161. arviz/tests/base_tests/test_stats.py +0 -925
  162. arviz/tests/base_tests/test_stats_ecdf_utils.py +0 -166
  163. arviz/tests/base_tests/test_stats_numba.py +0 -45
  164. arviz/tests/base_tests/test_stats_utils.py +0 -384
  165. arviz/tests/base_tests/test_utils.py +0 -376
  166. arviz/tests/base_tests/test_utils_numba.py +0 -87
  167. arviz/tests/conftest.py +0 -46
  168. arviz/tests/external_tests/__init__.py +0 -1
  169. arviz/tests/external_tests/test_data_beanmachine.py +0 -78
  170. arviz/tests/external_tests/test_data_cmdstan.py +0 -398
  171. arviz/tests/external_tests/test_data_cmdstanpy.py +0 -496
  172. arviz/tests/external_tests/test_data_emcee.py +0 -166
  173. arviz/tests/external_tests/test_data_numpyro.py +0 -434
  174. arviz/tests/external_tests/test_data_pyjags.py +0 -119
  175. arviz/tests/external_tests/test_data_pyro.py +0 -260
  176. arviz/tests/external_tests/test_data_pystan.py +0 -307
  177. arviz/tests/helpers.py +0 -677
  178. arviz/utils.py +0 -773
  179. arviz/wrappers/__init__.py +0 -13
  180. arviz/wrappers/base.py +0 -236
  181. arviz/wrappers/wrap_pymc.py +0 -36
  182. arviz/wrappers/wrap_stan.py +0 -148
  183. arviz-0.23.3.dist-info/METADATA +0 -264
  184. arviz-0.23.3.dist-info/RECORD +0 -183
  185. arviz-0.23.3.dist-info/top_level.txt +0 -1
@@ -1,177 +0,0 @@
1
- """Matplotlib kdeplot."""
2
-
3
- import numpy as np
4
- from matplotlib import pyplot as plt
5
- from matplotlib import _pylab_helpers
6
- import matplotlib.ticker as mticker
7
-
8
-
9
- from ...plot_utils import _scale_fig_size, _init_kwargs_dict
10
- from . import backend_kwarg_defaults, backend_show, create_axes_grid, matplotlib_kwarg_dealiaser
11
-
12
-
13
- def plot_kde(
14
- density,
15
- lower,
16
- upper,
17
- density_q,
18
- xmin,
19
- xmax,
20
- ymin,
21
- ymax,
22
- gridsize,
23
- values,
24
- values2,
25
- rug,
26
- label,
27
- quantiles,
28
- rotated,
29
- contour,
30
- fill_last,
31
- figsize,
32
- textsize,
33
- plot_kwargs,
34
- fill_kwargs,
35
- rug_kwargs,
36
- contour_kwargs,
37
- contourf_kwargs,
38
- pcolormesh_kwargs,
39
- is_circular,
40
- ax,
41
- legend,
42
- backend_kwargs,
43
- show,
44
- return_glyph, # pylint: disable=unused-argument
45
- ):
46
- """Matplotlib kde plot."""
47
- backend_kwargs = _init_kwargs_dict(backend_kwargs)
48
-
49
- backend_kwargs = {
50
- **backend_kwarg_defaults(),
51
- **backend_kwargs,
52
- }
53
-
54
- figsize, *_, xt_labelsize, linewidth, markersize = _scale_fig_size(figsize, textsize)
55
-
56
- backend_kwargs.setdefault("figsize", figsize)
57
- backend_kwargs["squeeze"] = True
58
- backend_kwargs.setdefault("subplot_kw", {})
59
- backend_kwargs["subplot_kw"].setdefault("polar", is_circular)
60
-
61
- if ax is None:
62
- fig_manager = _pylab_helpers.Gcf.get_active()
63
- if fig_manager is not None:
64
- ax = fig_manager.canvas.figure.gca()
65
- else:
66
- _, ax = create_axes_grid(
67
- 1,
68
- backend_kwargs=backend_kwargs,
69
- )
70
-
71
- if values2 is None:
72
- plot_kwargs = matplotlib_kwarg_dealiaser(plot_kwargs, "plot")
73
- plot_kwargs.setdefault("color", "C0")
74
-
75
- default_color = plot_kwargs.get("color")
76
-
77
- fill_kwargs = matplotlib_kwarg_dealiaser(fill_kwargs, "hexbin")
78
- fill_kwargs.setdefault("color", default_color)
79
-
80
- rug_kwargs = matplotlib_kwarg_dealiaser(rug_kwargs, "plot")
81
- rug_kwargs.setdefault("marker", "_" if rotated else "|")
82
- rug_kwargs.setdefault("linestyle", "None")
83
- rug_kwargs.setdefault("color", default_color)
84
- rug_kwargs.setdefault("space", 0.2)
85
-
86
- plot_kwargs.setdefault("linewidth", linewidth)
87
- rug_kwargs.setdefault("markersize", 2 * markersize)
88
-
89
- rug_space = max(density) * rug_kwargs.pop("space")
90
-
91
- if is_circular:
92
- if is_circular == "radians":
93
- labels = [
94
- "0",
95
- f"{np.pi/4:.2f}",
96
- f"{np.pi/2:.2f}",
97
- f"{3*np.pi/4:.2f}",
98
- f"{np.pi:.2f}",
99
- f"{-3*np.pi/4:.2f}",
100
- f"{-np.pi/2:.2f}",
101
- f"{-np.pi/4:.2f}",
102
- ]
103
-
104
- ticks_loc = ax.get_xticks()
105
- ax.xaxis.set_major_locator(mticker.FixedLocator(ticks_loc))
106
- ax.set_xticklabels(labels)
107
-
108
- x = np.linspace(-np.pi, np.pi, len(density))
109
- ax.set_yticklabels([])
110
-
111
- else:
112
- x = np.linspace(lower, upper, len(density))
113
-
114
- fill_func = ax.fill_between
115
- fill_x, fill_y = x, density
116
- if rotated:
117
- x, density = density, x
118
- fill_func = ax.fill_betweenx
119
-
120
- ax.tick_params(labelsize=xt_labelsize)
121
-
122
- if rotated:
123
- ax.set_xlim(0, auto=True)
124
- rug_x, rug_y = np.zeros_like(values) - rug_space, values
125
- else:
126
- ax.set_ylim(0, auto=True)
127
- rug_x, rug_y = values, np.zeros_like(values) - rug_space
128
-
129
- if rug:
130
- ax.plot(rug_x, rug_y, **rug_kwargs)
131
-
132
- if quantiles is not None:
133
- fill_kwargs.setdefault("alpha", 0.75)
134
-
135
- idx = [np.sum(density_q < quant) for quant in quantiles]
136
-
137
- fill_func(
138
- fill_x,
139
- fill_y,
140
- where=np.isin(fill_x, fill_x[idx], invert=True, assume_unique=True),
141
- **fill_kwargs,
142
- )
143
- else:
144
- fill_kwargs.setdefault("alpha", 0)
145
- if fill_kwargs.get("alpha") == 0:
146
- label = plot_kwargs.setdefault("label", label)
147
- else:
148
- label = fill_kwargs.setdefault("label", label)
149
- ax.plot(x, density, **plot_kwargs)
150
- fill_func(fill_x, fill_y, **fill_kwargs)
151
- if legend and label:
152
- ax.legend()
153
- else:
154
- contour_kwargs = matplotlib_kwarg_dealiaser(contour_kwargs, "contour")
155
- contour_kwargs.setdefault("colors", "0.5")
156
- contourf_kwargs = matplotlib_kwarg_dealiaser(contourf_kwargs, "contour")
157
- pcolormesh_kwargs = matplotlib_kwarg_dealiaser(pcolormesh_kwargs, "pcolormesh")
158
- pcolormesh_kwargs.setdefault("shading", "auto")
159
-
160
- g_s = complex(gridsize[0])
161
- x_x, y_y = np.mgrid[xmin:xmax:g_s, ymin:ymax:g_s]
162
-
163
- ax.grid(False)
164
- if contour:
165
- qcfs = ax.contourf(x_x, y_y, density, antialiased=True, **contourf_kwargs)
166
- ax.contour(x_x, y_y, density, **contour_kwargs)
167
- if not fill_last:
168
- alpha = np.ones(len(qcfs.allsegs), dtype=float)
169
- alpha[0] = 0
170
- qcfs.set_alpha(alpha)
171
- else:
172
- ax.pcolormesh(x_x, y_y, density, **pcolormesh_kwargs)
173
-
174
- if backend_show(show):
175
- plt.show()
176
-
177
- return ax
@@ -1,241 +0,0 @@
1
- """Matplotlib khatplot."""
2
-
3
- import warnings
4
-
5
- import matplotlib as mpl
6
- from matplotlib import cm
7
- import matplotlib.pyplot as plt
8
- import numpy as np
9
- from matplotlib.colors import to_rgba_array
10
- from packaging import version
11
-
12
- from ....stats.density_utils import histogram
13
- from ...plot_utils import _scale_fig_size, color_from_dim, set_xticklabels, vectorized_to_hex
14
- from . import backend_show, create_axes_grid, matplotlib_kwarg_dealiaser
15
-
16
-
17
- def plot_khat(
18
- hover_label,
19
- hover_format,
20
- ax,
21
- figsize,
22
- xdata,
23
- khats,
24
- good_k,
25
- kwargs,
26
- threshold,
27
- coord_labels,
28
- show_hlines,
29
- show_bins,
30
- hlines_kwargs,
31
- xlabels,
32
- legend,
33
- color,
34
- dims,
35
- textsize,
36
- markersize,
37
- n_data_points,
38
- bin_format,
39
- backend_kwargs,
40
- show,
41
- ):
42
- """Matplotlib khat plot."""
43
- if version.parse(mpl.__version__) >= version.parse("3.9.0.dev0"):
44
- interactive_backends = mpl.backends.backend_registry.list_builtin(
45
- mpl.backends.BackendFilter.INTERACTIVE
46
- )
47
- else:
48
- interactive_backends = mpl.rcsetup.interactive_bk
49
- if hover_label and mpl.get_backend() not in interactive_backends:
50
- hover_label = False
51
- warnings.warn(
52
- "hover labels are only available with interactive backends. To switch to an "
53
- "interactive backend from ipython or jupyter, use `%matplotlib` there should be "
54
- "no need to restart the kernel. For other cases, see "
55
- "https://matplotlib.org/3.1.0/tutorials/introductory/usage.html#backends",
56
- UserWarning,
57
- )
58
-
59
- if backend_kwargs is None:
60
- backend_kwargs = {}
61
-
62
- backend_kwargs = {
63
- **backend_kwargs,
64
- }
65
-
66
- (figsize, ax_labelsize, _, xt_labelsize, linewidth, scaled_markersize) = _scale_fig_size(
67
- figsize, textsize
68
- )
69
- backend_kwargs.setdefault("figsize", figsize)
70
- backend_kwargs["squeeze"] = True
71
-
72
- if good_k is None:
73
- good_k = 0.7
74
-
75
- hlines_kwargs = matplotlib_kwarg_dealiaser(hlines_kwargs, "hlines")
76
- hlines_kwargs.setdefault("hlines", [0, good_k, 1])
77
- hlines_kwargs.setdefault("linestyle", [":", "-.", "--", "-"])
78
- hlines_kwargs.setdefault("alpha", 0.7)
79
- hlines_kwargs.setdefault("zorder", -1)
80
- hlines_kwargs.setdefault("color", "C1")
81
- hlines_kwargs["color"] = vectorized_to_hex(hlines_kwargs["color"])
82
-
83
- if markersize is None:
84
- markersize = scaled_markersize**2 # s in scatter plot mus be markersize square
85
- # for dots to have the same size
86
-
87
- kwargs = matplotlib_kwarg_dealiaser(kwargs, "scatter")
88
- kwargs.setdefault("s", markersize)
89
- kwargs.setdefault("marker", "+")
90
-
91
- c_kwarg = kwargs.get("c", None)
92
-
93
- if c_kwarg is None:
94
- color_mapping = None
95
- cmap = None
96
- if isinstance(color, str):
97
- if color in dims:
98
- colors, color_mapping = color_from_dim(khats, color)
99
- cmap_name = kwargs.get("cmap", plt.rcParams["image.cmap"])
100
- cmap = getattr(cm, cmap_name)
101
- rgba_c = cmap(colors)
102
- else:
103
- legend = False
104
- rgba_c = to_rgba_array(np.full(n_data_points, color))
105
- else:
106
- legend = False
107
- try:
108
- rgba_c = to_rgba_array(color)
109
- except ValueError:
110
- cmap_name = kwargs.get("cmap", plt.rcParams["image.cmap"])
111
- cmap = getattr(cm, cmap_name)
112
- norm_fun = kwargs.get("norm", mpl.colors.Normalize(color.min(), color.max()))
113
- rgba_c = cmap(norm_fun(color))
114
-
115
- khats = khats if isinstance(khats, np.ndarray) else khats.values.flatten()
116
- alphas = 0.5 + 0.2 * (khats > good_k) + 0.3 * (khats > 1)
117
- rgba_c[:, 3] = alphas
118
- rgba_c = vectorized_to_hex(rgba_c)
119
- kwargs["c"] = rgba_c
120
- else:
121
- if isinstance(c_kwarg, str):
122
- if c_kwarg in dims:
123
- colors, color_mapping = color_from_dim(khats, c_kwarg)
124
- else:
125
- legend = False
126
- else:
127
- legend = False
128
-
129
- if ax is None:
130
- fig, ax = create_axes_grid(
131
- 1,
132
- backend_kwargs=backend_kwargs,
133
- )
134
- else:
135
- fig = ax.get_figure()
136
-
137
- sc_plot = ax.scatter(xdata, khats, **kwargs)
138
-
139
- if threshold is not None:
140
- idxs = xdata[khats > threshold]
141
- for idx in idxs:
142
- ax.text(
143
- idx,
144
- khats[idx],
145
- coord_labels[idx],
146
- horizontalalignment="center",
147
- verticalalignment="bottom",
148
- fontsize=0.8 * xt_labelsize,
149
- )
150
-
151
- xmin, xmax = ax.get_xlim()
152
- if show_bins:
153
- xmax += n_data_points / 12
154
- ylims1 = ax.get_ylim()
155
- ylims2 = ax.get_ylim()
156
- ymin = min(ylims1[0], ylims2[0])
157
- ymax = min(ylims1[1], ylims2[1])
158
-
159
- if show_hlines:
160
- ax.hlines(
161
- hlines_kwargs.pop("hlines"), xmin=xmin, xmax=xmax, linewidth=linewidth, **hlines_kwargs
162
- )
163
-
164
- if show_bins:
165
- bin_edges = np.array([ymin, good_k, 1, ymax])
166
- bin_edges = bin_edges[(bin_edges >= ymin) & (bin_edges <= ymax)]
167
- hist, _, _ = histogram(khats, bin_edges)
168
- for idx, count in enumerate(hist):
169
- ax.text(
170
- (n_data_points - 1 + xmax) / 2,
171
- np.mean(bin_edges[idx : idx + 2]),
172
- bin_format.format(count, count / n_data_points * 100),
173
- horizontalalignment="center",
174
- verticalalignment="center",
175
- )
176
-
177
- ax.set_xlabel("Data Point", fontsize=ax_labelsize)
178
- ax.set_ylabel(r"Shape parameter k", fontsize=ax_labelsize)
179
- ax.tick_params(labelsize=xt_labelsize)
180
- if xlabels:
181
- set_xticklabels(ax, coord_labels)
182
- fig.autofmt_xdate()
183
- fig.tight_layout()
184
- if legend:
185
- kwargs.pop("c")
186
- ncols = len(color_mapping) // 6 + 1
187
- for label, float_color in color_mapping.items():
188
- ax.scatter([], [], c=[cmap(float_color)], label=label, **kwargs)
189
- ax.legend(ncol=ncols, title=color)
190
-
191
- if hover_label and mpl.get_backend() in mpl.rcsetup.interactive_bk:
192
- _make_hover_annotation(fig, ax, sc_plot, coord_labels, rgba_c, hover_format)
193
-
194
- if backend_show(show):
195
- plt.show()
196
-
197
- return ax
198
-
199
-
200
- def _make_hover_annotation(fig, ax, sc_plot, coord_labels, rgba_c, hover_format):
201
- """Show data point label when hovering over it with mouse."""
202
- annot = ax.annotate(
203
- "",
204
- xy=(0, 0),
205
- xytext=(0, 0),
206
- textcoords="offset points",
207
- bbox=dict(boxstyle="round", fc="w", alpha=0.4),
208
- arrowprops=dict(arrowstyle="->"),
209
- )
210
- annot.set_visible(False)
211
- xmid = np.mean(ax.get_xlim())
212
- ymid = np.mean(ax.get_ylim())
213
- offset = 10
214
-
215
- def update_annot(ind):
216
- idx = ind["ind"][0]
217
- pos = sc_plot.get_offsets()[idx]
218
- annot_text = hover_format.format(idx, coord_labels[idx])
219
- annot.xy = pos
220
- annot.set_position(
221
- (-offset if pos[0] > xmid else offset, -offset if pos[1] > ymid else offset)
222
- )
223
- annot.set_text(annot_text)
224
- annot.get_bbox_patch().set_facecolor(rgba_c[idx])
225
- annot.set_ha("right" if pos[0] > xmid else "left")
226
- annot.set_va("top" if pos[1] > ymid else "bottom")
227
-
228
- def hover(event):
229
- vis = annot.get_visible()
230
- if event.inaxes == ax:
231
- cont, ind = sc_plot.contains(event)
232
- if cont:
233
- update_annot(ind)
234
- annot.set_visible(True)
235
- fig.canvas.draw_idle()
236
- else:
237
- if vis:
238
- annot.set_visible(False)
239
- fig.canvas.draw_idle()
240
-
241
- fig.canvas.mpl_connect("motion_notify_event", hover)
@@ -1,149 +0,0 @@
1
- """Matplotlib plot linear regression figure."""
2
-
3
- import matplotlib.pyplot as plt
4
- import numpy as np
5
-
6
- from ...plot_utils import _scale_fig_size
7
- from ...hdiplot import plot_hdi
8
- from . import create_axes_grid, matplotlib_kwarg_dealiaser, backend_show, backend_kwarg_defaults
9
-
10
-
11
- def plot_lm(
12
- x,
13
- y,
14
- y_model,
15
- y_hat,
16
- num_samples,
17
- kind_pp,
18
- kind_model,
19
- xjitter,
20
- length_plotters,
21
- rows,
22
- cols,
23
- y_kwargs,
24
- y_hat_plot_kwargs,
25
- y_hat_fill_kwargs,
26
- y_model_plot_kwargs,
27
- y_model_fill_kwargs,
28
- y_model_mean_kwargs,
29
- backend_kwargs,
30
- show,
31
- figsize,
32
- textsize,
33
- axes,
34
- legend,
35
- grid,
36
- ):
37
- """Matplotlib Linear Regression."""
38
- if backend_kwargs is None:
39
- backend_kwargs = {}
40
-
41
- backend_kwargs = {
42
- **backend_kwarg_defaults(),
43
- **backend_kwargs,
44
- }
45
-
46
- figsize, _, _, xt_labelsize, _, _ = _scale_fig_size(figsize, textsize, rows, cols)
47
- backend_kwargs.setdefault("figsize", figsize)
48
- backend_kwargs.setdefault("squeeze", False)
49
-
50
- if axes is None:
51
- _, axes = create_axes_grid(length_plotters, rows, cols, backend_kwargs=backend_kwargs)
52
-
53
- for i, ax_i in enumerate(np.ravel(axes)[:length_plotters]):
54
- # All the kwargs are defined here beforehand
55
- y_kwargs = matplotlib_kwarg_dealiaser(y_kwargs, "plot")
56
- y_kwargs.setdefault("color", "C3")
57
- y_kwargs.setdefault("marker", ".")
58
- y_kwargs.setdefault("markersize", 15)
59
- y_kwargs.setdefault("linewidth", 0)
60
- y_kwargs.setdefault("zorder", 10)
61
- y_kwargs.setdefault("label", "observed_data")
62
-
63
- y_hat_plot_kwargs = matplotlib_kwarg_dealiaser(y_hat_plot_kwargs, "plot")
64
- y_hat_plot_kwargs.setdefault("color", "C1")
65
- y_hat_plot_kwargs.setdefault("alpha", 0.3)
66
- y_hat_plot_kwargs.setdefault("markersize", 10)
67
- y_hat_plot_kwargs.setdefault("marker", ".")
68
- y_hat_plot_kwargs.setdefault("linewidth", 0)
69
-
70
- y_hat_fill_kwargs = matplotlib_kwarg_dealiaser(y_hat_fill_kwargs, "fill_between")
71
- y_hat_fill_kwargs.setdefault("color", "C3")
72
-
73
- y_model_plot_kwargs = matplotlib_kwarg_dealiaser(y_model_plot_kwargs, "plot")
74
- y_model_plot_kwargs.setdefault("color", "C6")
75
- y_model_plot_kwargs.setdefault("alpha", 0.5)
76
- y_model_plot_kwargs.setdefault("linewidth", 0.5)
77
- y_model_plot_kwargs.setdefault("zorder", 9)
78
-
79
- y_model_fill_kwargs = matplotlib_kwarg_dealiaser(y_model_fill_kwargs, "fill_between")
80
- y_model_fill_kwargs.setdefault("color", "C0")
81
- y_model_fill_kwargs.setdefault("linewidth", 0.5)
82
- y_model_fill_kwargs.setdefault("zorder", 9)
83
- y_model_fill_kwargs.setdefault("alpha", 0.5)
84
-
85
- y_model_mean_kwargs = matplotlib_kwarg_dealiaser(y_model_mean_kwargs, "plot")
86
- y_model_mean_kwargs.setdefault("color", "C6")
87
- y_model_mean_kwargs.setdefault("linewidth", 0.8)
88
- y_model_mean_kwargs.setdefault("zorder", 11)
89
-
90
- y_var_name, _, _, y_plotters = y[i]
91
- x_var_name, _, _, x_plotters = x[i]
92
- ax_i.plot(x_plotters, y_plotters, **y_kwargs)
93
- ax_i.set_xlabel(x_var_name)
94
- ax_i.set_ylabel(y_var_name)
95
-
96
- if y_hat is not None:
97
- _, _, _, y_hat_plotters = y_hat[i]
98
- if kind_pp == "samples":
99
- for j in range(num_samples):
100
- if xjitter is True:
101
- jitter_scale = x_plotters[1] - x_plotters[0]
102
- scale_high = jitter_scale * 0.2
103
- x_plotters_jitter = x_plotters + np.random.uniform(
104
- low=-scale_high, high=scale_high, size=len(x_plotters)
105
- )
106
- ax_i.plot(x_plotters_jitter, y_hat_plotters[..., j], **y_hat_plot_kwargs)
107
- else:
108
- ax_i.plot(x_plotters, y_hat_plotters[..., j], **y_hat_plot_kwargs)
109
- ax_i.plot([], **y_hat_plot_kwargs, label="Posterior predictive samples")
110
- else:
111
- plot_hdi(x_plotters, y_hat_plotters, ax=ax_i, **y_hat_fill_kwargs)
112
- ax_i.plot(
113
- [], color=y_hat_fill_kwargs["color"], label="Posterior predictive samples"
114
- )
115
-
116
- if y_model is not None:
117
- _, _, _, y_model_plotters = y_model[i]
118
-
119
- if kind_model == "lines":
120
- # y_model_plotters should be (points, samples)
121
- y_points = y_model_plotters.shape[0]
122
- if x_plotters.shape[0] == y_points:
123
- for j in range(num_samples):
124
- ax_i.plot(x_plotters, y_model_plotters[:, j], **y_model_plot_kwargs)
125
-
126
- ax_i.plot([], **y_model_plot_kwargs, label="Uncertainty in mean")
127
- y_model_mean = np.mean(y_model_plotters, axis=1)
128
- ax_i.plot(x_plotters, y_model_mean, **y_model_mean_kwargs, label="Mean")
129
-
130
- else:
131
- plot_hdi(
132
- x_plotters,
133
- y_model_plotters,
134
- fill_kwargs=y_model_fill_kwargs,
135
- ax=ax_i,
136
- )
137
-
138
- ax_i.plot([], color=y_model_fill_kwargs["color"], label="Uncertainty in mean")
139
- y_model_mean = np.mean(y_model_plotters, axis=0)
140
- ax_i.plot(x_plotters, y_model_mean, **y_model_mean_kwargs, label="Mean")
141
-
142
- if legend:
143
- ax_i.legend(fontsize=xt_labelsize, loc="upper left")
144
- if grid:
145
- ax_i.grid(True)
146
-
147
- if backend_show(show):
148
- plt.show()
149
- return axes