arviz 0.23.3__py3-none-any.whl → 1.0.0rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- arviz/__init__.py +52 -367
- arviz-1.0.0rc0.dist-info/METADATA +182 -0
- arviz-1.0.0rc0.dist-info/RECORD +5 -0
- {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/WHEEL +1 -2
- {arviz-0.23.3.dist-info → arviz-1.0.0rc0.dist-info}/licenses/LICENSE +0 -1
- arviz/data/__init__.py +0 -55
- arviz/data/base.py +0 -596
- arviz/data/converters.py +0 -203
- arviz/data/datasets.py +0 -161
- arviz/data/example_data/code/radon/radon.json +0 -326
- arviz/data/example_data/data/centered_eight.nc +0 -0
- arviz/data/example_data/data/non_centered_eight.nc +0 -0
- arviz/data/example_data/data_local.json +0 -12
- arviz/data/example_data/data_remote.json +0 -58
- arviz/data/inference_data.py +0 -2386
- arviz/data/io_beanmachine.py +0 -112
- arviz/data/io_cmdstan.py +0 -1036
- arviz/data/io_cmdstanpy.py +0 -1233
- arviz/data/io_datatree.py +0 -23
- arviz/data/io_dict.py +0 -462
- arviz/data/io_emcee.py +0 -317
- arviz/data/io_json.py +0 -54
- arviz/data/io_netcdf.py +0 -68
- arviz/data/io_numpyro.py +0 -497
- arviz/data/io_pyjags.py +0 -378
- arviz/data/io_pyro.py +0 -333
- arviz/data/io_pystan.py +0 -1095
- arviz/data/io_zarr.py +0 -46
- arviz/data/utils.py +0 -139
- arviz/labels.py +0 -210
- arviz/plots/__init__.py +0 -61
- arviz/plots/autocorrplot.py +0 -171
- arviz/plots/backends/__init__.py +0 -223
- arviz/plots/backends/bokeh/__init__.py +0 -166
- arviz/plots/backends/bokeh/autocorrplot.py +0 -101
- arviz/plots/backends/bokeh/bfplot.py +0 -23
- arviz/plots/backends/bokeh/bpvplot.py +0 -193
- arviz/plots/backends/bokeh/compareplot.py +0 -167
- arviz/plots/backends/bokeh/densityplot.py +0 -239
- arviz/plots/backends/bokeh/distcomparisonplot.py +0 -23
- arviz/plots/backends/bokeh/distplot.py +0 -183
- arviz/plots/backends/bokeh/dotplot.py +0 -113
- arviz/plots/backends/bokeh/ecdfplot.py +0 -73
- arviz/plots/backends/bokeh/elpdplot.py +0 -203
- arviz/plots/backends/bokeh/energyplot.py +0 -155
- arviz/plots/backends/bokeh/essplot.py +0 -176
- arviz/plots/backends/bokeh/forestplot.py +0 -772
- arviz/plots/backends/bokeh/hdiplot.py +0 -54
- arviz/plots/backends/bokeh/kdeplot.py +0 -268
- arviz/plots/backends/bokeh/khatplot.py +0 -163
- arviz/plots/backends/bokeh/lmplot.py +0 -185
- arviz/plots/backends/bokeh/loopitplot.py +0 -211
- arviz/plots/backends/bokeh/mcseplot.py +0 -184
- arviz/plots/backends/bokeh/pairplot.py +0 -328
- arviz/plots/backends/bokeh/parallelplot.py +0 -81
- arviz/plots/backends/bokeh/posteriorplot.py +0 -324
- arviz/plots/backends/bokeh/ppcplot.py +0 -379
- arviz/plots/backends/bokeh/rankplot.py +0 -149
- arviz/plots/backends/bokeh/separationplot.py +0 -107
- arviz/plots/backends/bokeh/traceplot.py +0 -436
- arviz/plots/backends/bokeh/violinplot.py +0 -164
- arviz/plots/backends/matplotlib/__init__.py +0 -124
- arviz/plots/backends/matplotlib/autocorrplot.py +0 -72
- arviz/plots/backends/matplotlib/bfplot.py +0 -78
- arviz/plots/backends/matplotlib/bpvplot.py +0 -177
- arviz/plots/backends/matplotlib/compareplot.py +0 -135
- arviz/plots/backends/matplotlib/densityplot.py +0 -194
- arviz/plots/backends/matplotlib/distcomparisonplot.py +0 -119
- arviz/plots/backends/matplotlib/distplot.py +0 -178
- arviz/plots/backends/matplotlib/dotplot.py +0 -116
- arviz/plots/backends/matplotlib/ecdfplot.py +0 -70
- arviz/plots/backends/matplotlib/elpdplot.py +0 -189
- arviz/plots/backends/matplotlib/energyplot.py +0 -113
- arviz/plots/backends/matplotlib/essplot.py +0 -180
- arviz/plots/backends/matplotlib/forestplot.py +0 -656
- arviz/plots/backends/matplotlib/hdiplot.py +0 -48
- arviz/plots/backends/matplotlib/kdeplot.py +0 -177
- arviz/plots/backends/matplotlib/khatplot.py +0 -241
- arviz/plots/backends/matplotlib/lmplot.py +0 -149
- arviz/plots/backends/matplotlib/loopitplot.py +0 -144
- arviz/plots/backends/matplotlib/mcseplot.py +0 -161
- arviz/plots/backends/matplotlib/pairplot.py +0 -355
- arviz/plots/backends/matplotlib/parallelplot.py +0 -58
- arviz/plots/backends/matplotlib/posteriorplot.py +0 -348
- arviz/plots/backends/matplotlib/ppcplot.py +0 -478
- arviz/plots/backends/matplotlib/rankplot.py +0 -119
- arviz/plots/backends/matplotlib/separationplot.py +0 -97
- arviz/plots/backends/matplotlib/traceplot.py +0 -526
- arviz/plots/backends/matplotlib/tsplot.py +0 -121
- arviz/plots/backends/matplotlib/violinplot.py +0 -148
- arviz/plots/bfplot.py +0 -128
- arviz/plots/bpvplot.py +0 -308
- arviz/plots/compareplot.py +0 -177
- arviz/plots/densityplot.py +0 -284
- arviz/plots/distcomparisonplot.py +0 -197
- arviz/plots/distplot.py +0 -233
- arviz/plots/dotplot.py +0 -233
- arviz/plots/ecdfplot.py +0 -372
- arviz/plots/elpdplot.py +0 -174
- arviz/plots/energyplot.py +0 -147
- arviz/plots/essplot.py +0 -319
- arviz/plots/forestplot.py +0 -304
- arviz/plots/hdiplot.py +0 -211
- arviz/plots/kdeplot.py +0 -357
- arviz/plots/khatplot.py +0 -236
- arviz/plots/lmplot.py +0 -380
- arviz/plots/loopitplot.py +0 -224
- arviz/plots/mcseplot.py +0 -194
- arviz/plots/pairplot.py +0 -281
- arviz/plots/parallelplot.py +0 -204
- arviz/plots/plot_utils.py +0 -599
- arviz/plots/posteriorplot.py +0 -298
- arviz/plots/ppcplot.py +0 -369
- arviz/plots/rankplot.py +0 -232
- arviz/plots/separationplot.py +0 -167
- arviz/plots/styles/arviz-bluish.mplstyle +0 -1
- arviz/plots/styles/arviz-brownish.mplstyle +0 -1
- arviz/plots/styles/arviz-colors.mplstyle +0 -2
- arviz/plots/styles/arviz-cyanish.mplstyle +0 -1
- arviz/plots/styles/arviz-darkgrid.mplstyle +0 -40
- arviz/plots/styles/arviz-doc.mplstyle +0 -88
- arviz/plots/styles/arviz-docgrid.mplstyle +0 -88
- arviz/plots/styles/arviz-grayscale.mplstyle +0 -41
- arviz/plots/styles/arviz-greenish.mplstyle +0 -1
- arviz/plots/styles/arviz-orangish.mplstyle +0 -1
- arviz/plots/styles/arviz-plasmish.mplstyle +0 -1
- arviz/plots/styles/arviz-purplish.mplstyle +0 -1
- arviz/plots/styles/arviz-redish.mplstyle +0 -1
- arviz/plots/styles/arviz-royish.mplstyle +0 -1
- arviz/plots/styles/arviz-viridish.mplstyle +0 -1
- arviz/plots/styles/arviz-white.mplstyle +0 -40
- arviz/plots/styles/arviz-whitegrid.mplstyle +0 -40
- arviz/plots/traceplot.py +0 -273
- arviz/plots/tsplot.py +0 -440
- arviz/plots/violinplot.py +0 -192
- arviz/preview.py +0 -58
- arviz/py.typed +0 -0
- arviz/rcparams.py +0 -606
- arviz/sel_utils.py +0 -223
- arviz/static/css/style.css +0 -340
- arviz/static/html/icons-svg-inline.html +0 -15
- arviz/stats/__init__.py +0 -37
- arviz/stats/density_utils.py +0 -1013
- arviz/stats/diagnostics.py +0 -1013
- arviz/stats/ecdf_utils.py +0 -324
- arviz/stats/stats.py +0 -2422
- arviz/stats/stats_refitting.py +0 -119
- arviz/stats/stats_utils.py +0 -609
- arviz/tests/__init__.py +0 -1
- arviz/tests/base_tests/__init__.py +0 -1
- arviz/tests/base_tests/test_data.py +0 -1679
- arviz/tests/base_tests/test_data_zarr.py +0 -143
- arviz/tests/base_tests/test_diagnostics.py +0 -511
- arviz/tests/base_tests/test_diagnostics_numba.py +0 -87
- arviz/tests/base_tests/test_helpers.py +0 -18
- arviz/tests/base_tests/test_labels.py +0 -69
- arviz/tests/base_tests/test_plot_utils.py +0 -342
- arviz/tests/base_tests/test_plots_bokeh.py +0 -1288
- arviz/tests/base_tests/test_plots_matplotlib.py +0 -2197
- arviz/tests/base_tests/test_rcparams.py +0 -317
- arviz/tests/base_tests/test_stats.py +0 -925
- arviz/tests/base_tests/test_stats_ecdf_utils.py +0 -166
- arviz/tests/base_tests/test_stats_numba.py +0 -45
- arviz/tests/base_tests/test_stats_utils.py +0 -384
- arviz/tests/base_tests/test_utils.py +0 -376
- arviz/tests/base_tests/test_utils_numba.py +0 -87
- arviz/tests/conftest.py +0 -46
- arviz/tests/external_tests/__init__.py +0 -1
- arviz/tests/external_tests/test_data_beanmachine.py +0 -78
- arviz/tests/external_tests/test_data_cmdstan.py +0 -398
- arviz/tests/external_tests/test_data_cmdstanpy.py +0 -496
- arviz/tests/external_tests/test_data_emcee.py +0 -166
- arviz/tests/external_tests/test_data_numpyro.py +0 -434
- arviz/tests/external_tests/test_data_pyjags.py +0 -119
- arviz/tests/external_tests/test_data_pyro.py +0 -260
- arviz/tests/external_tests/test_data_pystan.py +0 -307
- arviz/tests/helpers.py +0 -677
- arviz/utils.py +0 -773
- arviz/wrappers/__init__.py +0 -13
- arviz/wrappers/base.py +0 -236
- arviz/wrappers/wrap_pymc.py +0 -36
- arviz/wrappers/wrap_stan.py +0 -148
- arviz-0.23.3.dist-info/METADATA +0 -264
- arviz-0.23.3.dist-info/RECORD +0 -183
- arviz-0.23.3.dist-info/top_level.txt +0 -1
|
@@ -1,149 +0,0 @@
|
|
|
1
|
-
"""Bokeh rankplot."""
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
|
|
5
|
-
from bokeh.models import Span
|
|
6
|
-
from bokeh.models.annotations import Title
|
|
7
|
-
from bokeh.models.tickers import FixedTicker
|
|
8
|
-
|
|
9
|
-
from ....stats.density_utils import histogram
|
|
10
|
-
from ...plot_utils import _scale_fig_size, compute_ranks
|
|
11
|
-
from .. import show_layout
|
|
12
|
-
from . import backend_kwarg_defaults, create_axes_grid
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
def plot_rank(
|
|
16
|
-
axes,
|
|
17
|
-
length_plotters,
|
|
18
|
-
rows,
|
|
19
|
-
cols,
|
|
20
|
-
figsize,
|
|
21
|
-
plotters,
|
|
22
|
-
bins,
|
|
23
|
-
kind,
|
|
24
|
-
colors,
|
|
25
|
-
ref_line,
|
|
26
|
-
labels,
|
|
27
|
-
labeller,
|
|
28
|
-
ref_line_kwargs,
|
|
29
|
-
bar_kwargs,
|
|
30
|
-
vlines_kwargs,
|
|
31
|
-
marker_vlines_kwargs,
|
|
32
|
-
backend_kwargs,
|
|
33
|
-
show,
|
|
34
|
-
):
|
|
35
|
-
"""Bokeh rank plot."""
|
|
36
|
-
if ref_line_kwargs is None:
|
|
37
|
-
ref_line_kwargs = {}
|
|
38
|
-
ref_line_kwargs.setdefault("line_dash", "dashed")
|
|
39
|
-
ref_line_kwargs.setdefault("line_color", "black")
|
|
40
|
-
|
|
41
|
-
if bar_kwargs is None:
|
|
42
|
-
bar_kwargs = {}
|
|
43
|
-
bar_kwargs.setdefault("line_color", "white")
|
|
44
|
-
|
|
45
|
-
if vlines_kwargs is None:
|
|
46
|
-
vlines_kwargs = {}
|
|
47
|
-
vlines_kwargs.setdefault("line_width", 2)
|
|
48
|
-
vlines_kwargs.setdefault("line_dash", "solid")
|
|
49
|
-
|
|
50
|
-
if marker_vlines_kwargs is None:
|
|
51
|
-
marker_vlines_kwargs = {}
|
|
52
|
-
marker_vlines_kwargs.setdefault("marker", "circle")
|
|
53
|
-
|
|
54
|
-
if backend_kwargs is None:
|
|
55
|
-
backend_kwargs = {}
|
|
56
|
-
|
|
57
|
-
backend_kwargs = {
|
|
58
|
-
**backend_kwarg_defaults(
|
|
59
|
-
("dpi", "plot.bokeh.figure.dpi"),
|
|
60
|
-
),
|
|
61
|
-
**backend_kwargs,
|
|
62
|
-
}
|
|
63
|
-
figsize, *_ = _scale_fig_size(figsize, None, rows=rows, cols=cols)
|
|
64
|
-
if axes is None:
|
|
65
|
-
axes = create_axes_grid(
|
|
66
|
-
length_plotters,
|
|
67
|
-
rows,
|
|
68
|
-
cols,
|
|
69
|
-
figsize=figsize,
|
|
70
|
-
sharex=True,
|
|
71
|
-
sharey=True,
|
|
72
|
-
backend_kwargs=backend_kwargs,
|
|
73
|
-
)
|
|
74
|
-
else:
|
|
75
|
-
axes = np.atleast_2d(axes)
|
|
76
|
-
|
|
77
|
-
for ax, (var_name, selection, isel, var_data) in zip(
|
|
78
|
-
(item for item in axes.flatten() if item is not None), plotters
|
|
79
|
-
):
|
|
80
|
-
ranks = compute_ranks(var_data)
|
|
81
|
-
bin_ary = np.histogram_bin_edges(ranks, bins=bins, range=(0, ranks.size))
|
|
82
|
-
all_counts = np.empty((len(ranks), len(bin_ary) - 1))
|
|
83
|
-
for idx, row in enumerate(ranks):
|
|
84
|
-
_, all_counts[idx], _ = histogram(row, bins=bin_ary)
|
|
85
|
-
counts_normalizer = all_counts.max() / 0.95
|
|
86
|
-
gap = 1
|
|
87
|
-
width = bin_ary[1] - bin_ary[0]
|
|
88
|
-
|
|
89
|
-
bar_kwargs.setdefault("width", width)
|
|
90
|
-
# Center the bins
|
|
91
|
-
bin_ary = (bin_ary[1:] + bin_ary[:-1]) / 2
|
|
92
|
-
|
|
93
|
-
y_ticks = []
|
|
94
|
-
if kind == "bars":
|
|
95
|
-
for idx, counts in enumerate(all_counts):
|
|
96
|
-
counts = counts / counts_normalizer
|
|
97
|
-
y_ticks.append(idx * gap)
|
|
98
|
-
ax.vbar(
|
|
99
|
-
x=bin_ary,
|
|
100
|
-
top=y_ticks[-1] + counts,
|
|
101
|
-
bottom=y_ticks[-1],
|
|
102
|
-
fill_color=colors[idx],
|
|
103
|
-
**bar_kwargs,
|
|
104
|
-
)
|
|
105
|
-
if ref_line:
|
|
106
|
-
hline = Span(location=y_ticks[-1] + counts.mean(), **ref_line_kwargs)
|
|
107
|
-
ax.add_layout(hline)
|
|
108
|
-
if labels:
|
|
109
|
-
ax.yaxis.axis_label = "Chain"
|
|
110
|
-
elif kind == "vlines":
|
|
111
|
-
ymin = np.full(len(all_counts), all_counts.mean())
|
|
112
|
-
for idx, counts in enumerate(all_counts):
|
|
113
|
-
ax.scatter(
|
|
114
|
-
bin_ary,
|
|
115
|
-
counts,
|
|
116
|
-
fill_color=colors[idx],
|
|
117
|
-
line_color=colors[idx],
|
|
118
|
-
**marker_vlines_kwargs,
|
|
119
|
-
)
|
|
120
|
-
x_locations = [(bin, bin) for bin in bin_ary]
|
|
121
|
-
y_locations = [(ymin[idx], counts_) for counts_ in counts]
|
|
122
|
-
ax.multi_line(x_locations, y_locations, line_color=colors[idx], **vlines_kwargs)
|
|
123
|
-
|
|
124
|
-
if ref_line:
|
|
125
|
-
hline = Span(location=all_counts.mean(), **ref_line_kwargs)
|
|
126
|
-
ax.add_layout(hline)
|
|
127
|
-
|
|
128
|
-
if labels:
|
|
129
|
-
ax.xaxis.axis_label = "Rank (all chains)"
|
|
130
|
-
|
|
131
|
-
ax.yaxis.ticker = FixedTicker(ticks=y_ticks)
|
|
132
|
-
ax.xaxis.major_label_overrides = dict(
|
|
133
|
-
zip(map(str, y_ticks), map(str, range(len(y_ticks))))
|
|
134
|
-
)
|
|
135
|
-
|
|
136
|
-
else:
|
|
137
|
-
ax.yaxis.major_tick_line_color = None
|
|
138
|
-
ax.yaxis.minor_tick_line_color = None
|
|
139
|
-
|
|
140
|
-
ax.xaxis.major_label_text_font_size = "0pt"
|
|
141
|
-
ax.yaxis.major_label_text_font_size = "0pt"
|
|
142
|
-
|
|
143
|
-
_title = Title()
|
|
144
|
-
_title.text = labeller.make_label_vert(var_name, selection, isel)
|
|
145
|
-
ax.title = _title
|
|
146
|
-
|
|
147
|
-
show_layout(axes, show)
|
|
148
|
-
|
|
149
|
-
return axes
|
|
@@ -1,107 +0,0 @@
|
|
|
1
|
-
"""Bokeh separation plot."""
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
|
|
5
|
-
from ...plot_utils import _scale_fig_size, vectorized_to_hex
|
|
6
|
-
from .. import show_layout
|
|
7
|
-
from . import backend_kwarg_defaults, create_axes_grid
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
def plot_separation(
|
|
11
|
-
y,
|
|
12
|
-
y_hat,
|
|
13
|
-
y_hat_line,
|
|
14
|
-
label_y_hat,
|
|
15
|
-
expected_events,
|
|
16
|
-
figsize,
|
|
17
|
-
textsize,
|
|
18
|
-
color,
|
|
19
|
-
legend,
|
|
20
|
-
locs,
|
|
21
|
-
width,
|
|
22
|
-
ax,
|
|
23
|
-
plot_kwargs,
|
|
24
|
-
y_hat_line_kwargs,
|
|
25
|
-
exp_events_kwargs,
|
|
26
|
-
backend_kwargs,
|
|
27
|
-
show,
|
|
28
|
-
):
|
|
29
|
-
"""Matplotlib separation plot."""
|
|
30
|
-
if backend_kwargs is None:
|
|
31
|
-
backend_kwargs = {}
|
|
32
|
-
|
|
33
|
-
if plot_kwargs is None:
|
|
34
|
-
plot_kwargs = {}
|
|
35
|
-
|
|
36
|
-
# plot_kwargs.setdefault("color", "#2a2eec")
|
|
37
|
-
# if color:
|
|
38
|
-
plot_kwargs["color"] = vectorized_to_hex(color)
|
|
39
|
-
|
|
40
|
-
backend_kwargs = {
|
|
41
|
-
**backend_kwarg_defaults(),
|
|
42
|
-
**backend_kwargs,
|
|
43
|
-
}
|
|
44
|
-
|
|
45
|
-
if y_hat_line_kwargs is None:
|
|
46
|
-
y_hat_line_kwargs = {}
|
|
47
|
-
|
|
48
|
-
y_hat_line_kwargs.setdefault("color", "black")
|
|
49
|
-
y_hat_line_kwargs.setdefault("line_width", 2)
|
|
50
|
-
|
|
51
|
-
if exp_events_kwargs is None:
|
|
52
|
-
exp_events_kwargs = {}
|
|
53
|
-
|
|
54
|
-
exp_events_kwargs.setdefault("color", "black")
|
|
55
|
-
exp_events_kwargs.setdefault("size", 15)
|
|
56
|
-
|
|
57
|
-
if legend:
|
|
58
|
-
y_hat_line_kwargs.setdefault("legend_label", label_y_hat)
|
|
59
|
-
exp_events_kwargs.setdefault(
|
|
60
|
-
"legend_label",
|
|
61
|
-
"Expected events",
|
|
62
|
-
)
|
|
63
|
-
|
|
64
|
-
figsize, *_ = _scale_fig_size(figsize, textsize)
|
|
65
|
-
|
|
66
|
-
idx = np.argsort(y_hat)
|
|
67
|
-
|
|
68
|
-
backend_kwargs["x_range"] = (0, 1)
|
|
69
|
-
backend_kwargs["y_range"] = (0, 1)
|
|
70
|
-
|
|
71
|
-
if ax is None:
|
|
72
|
-
ax = create_axes_grid(1, figsize=figsize, squeeze=True, backend_kwargs=backend_kwargs)
|
|
73
|
-
|
|
74
|
-
for i, loc in enumerate(locs):
|
|
75
|
-
positive = not y[idx][i] == 0
|
|
76
|
-
alpha = 1 if positive else 0.3
|
|
77
|
-
ax.vbar(
|
|
78
|
-
loc,
|
|
79
|
-
top=1,
|
|
80
|
-
width=width,
|
|
81
|
-
fill_alpha=alpha,
|
|
82
|
-
line_alpha=alpha,
|
|
83
|
-
**plot_kwargs,
|
|
84
|
-
)
|
|
85
|
-
|
|
86
|
-
if y_hat_line:
|
|
87
|
-
ax.line(
|
|
88
|
-
np.linspace(0, 1, len(y_hat)),
|
|
89
|
-
y_hat[idx],
|
|
90
|
-
**y_hat_line_kwargs,
|
|
91
|
-
)
|
|
92
|
-
|
|
93
|
-
if expected_events:
|
|
94
|
-
expected_events = int(np.round(np.sum(y_hat)))
|
|
95
|
-
ax.triangle(
|
|
96
|
-
y_hat[idx][len(y_hat) - expected_events - 1],
|
|
97
|
-
0,
|
|
98
|
-
**exp_events_kwargs,
|
|
99
|
-
)
|
|
100
|
-
|
|
101
|
-
ax.axis.visible = False
|
|
102
|
-
ax.xgrid.grid_line_color = None
|
|
103
|
-
ax.ygrid.grid_line_color = None
|
|
104
|
-
|
|
105
|
-
show_layout(ax, show)
|
|
106
|
-
|
|
107
|
-
return ax
|
|
@@ -1,436 +0,0 @@
|
|
|
1
|
-
"""Bokeh Traceplot."""
|
|
2
|
-
|
|
3
|
-
import warnings
|
|
4
|
-
from collections.abc import Iterable
|
|
5
|
-
from itertools import cycle
|
|
6
|
-
|
|
7
|
-
import bokeh.plotting as bkp
|
|
8
|
-
import matplotlib.pyplot as plt
|
|
9
|
-
import numpy as np
|
|
10
|
-
from bokeh.models import ColumnDataSource, DataRange1d, Span
|
|
11
|
-
from bokeh.models.glyphs import Scatter
|
|
12
|
-
from bokeh.models.annotations import Title
|
|
13
|
-
|
|
14
|
-
from ...distplot import plot_dist
|
|
15
|
-
from ...plot_utils import _scale_fig_size
|
|
16
|
-
from ...rankplot import plot_rank
|
|
17
|
-
from .. import show_layout
|
|
18
|
-
from . import backend_kwarg_defaults, dealiase_sel_kwargs
|
|
19
|
-
from ....sel_utils import xarray_var_iter
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
def plot_trace(
|
|
23
|
-
data,
|
|
24
|
-
var_names,
|
|
25
|
-
divergences,
|
|
26
|
-
kind,
|
|
27
|
-
figsize,
|
|
28
|
-
rug,
|
|
29
|
-
lines,
|
|
30
|
-
circ_var_names, # pylint: disable=unused-argument
|
|
31
|
-
circ_var_units, # pylint: disable=unused-argument
|
|
32
|
-
compact,
|
|
33
|
-
compact_prop,
|
|
34
|
-
combined,
|
|
35
|
-
chain_prop,
|
|
36
|
-
legend,
|
|
37
|
-
labeller,
|
|
38
|
-
plot_kwargs,
|
|
39
|
-
fill_kwargs,
|
|
40
|
-
rug_kwargs,
|
|
41
|
-
hist_kwargs,
|
|
42
|
-
trace_kwargs,
|
|
43
|
-
rank_kwargs,
|
|
44
|
-
plotters,
|
|
45
|
-
divergence_data,
|
|
46
|
-
axes,
|
|
47
|
-
backend_kwargs,
|
|
48
|
-
backend_config,
|
|
49
|
-
show,
|
|
50
|
-
):
|
|
51
|
-
"""Bokeh traceplot."""
|
|
52
|
-
# If divergences are plotted they must be provided
|
|
53
|
-
if divergences is not False:
|
|
54
|
-
assert divergence_data is not None
|
|
55
|
-
|
|
56
|
-
if backend_config is None:
|
|
57
|
-
backend_config = {}
|
|
58
|
-
|
|
59
|
-
backend_config = {
|
|
60
|
-
**backend_kwarg_defaults(
|
|
61
|
-
("bounds_y_range", "plot.bokeh.bounds_y_range"),
|
|
62
|
-
),
|
|
63
|
-
**backend_config,
|
|
64
|
-
}
|
|
65
|
-
|
|
66
|
-
# Set plot default backend kwargs
|
|
67
|
-
if backend_kwargs is None:
|
|
68
|
-
backend_kwargs = {}
|
|
69
|
-
|
|
70
|
-
backend_kwargs = {
|
|
71
|
-
**backend_kwarg_defaults(
|
|
72
|
-
("dpi", "plot.bokeh.figure.dpi"),
|
|
73
|
-
),
|
|
74
|
-
**backend_kwargs,
|
|
75
|
-
}
|
|
76
|
-
dpi = backend_kwargs.pop("dpi")
|
|
77
|
-
|
|
78
|
-
if figsize is None:
|
|
79
|
-
figsize = (12, len(plotters) * 2)
|
|
80
|
-
|
|
81
|
-
figsize, _, _, _, linewidth, _ = _scale_fig_size(figsize, 10, rows=len(plotters), cols=2)
|
|
82
|
-
|
|
83
|
-
backend_kwargs.setdefault("height", int(figsize[1] * dpi // len(plotters)))
|
|
84
|
-
backend_kwargs.setdefault("width", int(figsize[0] * dpi // 2))
|
|
85
|
-
|
|
86
|
-
if lines is None:
|
|
87
|
-
lines = ()
|
|
88
|
-
|
|
89
|
-
num_chain_props = len(data.chain) + 1 if combined else len(data.chain)
|
|
90
|
-
if not compact:
|
|
91
|
-
chain_prop = (
|
|
92
|
-
{"line_color": plt.rcParams["axes.prop_cycle"].by_key()["color"]}
|
|
93
|
-
if chain_prop is None
|
|
94
|
-
else chain_prop
|
|
95
|
-
)
|
|
96
|
-
else:
|
|
97
|
-
chain_prop = (
|
|
98
|
-
{
|
|
99
|
-
"line_dash": ("solid", "dotted", "dashed", "dashdot"),
|
|
100
|
-
}
|
|
101
|
-
if chain_prop is None
|
|
102
|
-
else chain_prop
|
|
103
|
-
)
|
|
104
|
-
compact_prop = (
|
|
105
|
-
{"line_color": plt.rcParams["axes.prop_cycle"].by_key()["color"]}
|
|
106
|
-
if compact_prop is None
|
|
107
|
-
else compact_prop
|
|
108
|
-
)
|
|
109
|
-
|
|
110
|
-
if isinstance(chain_prop, str):
|
|
111
|
-
chain_prop = {chain_prop: plt.rcParams["axes.prop_cycle"].by_key()[chain_prop]}
|
|
112
|
-
if isinstance(chain_prop, tuple):
|
|
113
|
-
warnings.warn(
|
|
114
|
-
"chain_prop as a tuple will be deprecated in a future warning, use a dict instead",
|
|
115
|
-
FutureWarning,
|
|
116
|
-
)
|
|
117
|
-
chain_prop = {chain_prop[0]: chain_prop[1]}
|
|
118
|
-
chain_prop = {
|
|
119
|
-
prop_name: [prop for _, prop in zip(range(num_chain_props), cycle(props))]
|
|
120
|
-
for prop_name, props in chain_prop.items()
|
|
121
|
-
}
|
|
122
|
-
|
|
123
|
-
if isinstance(compact_prop, str):
|
|
124
|
-
compact_prop = {compact_prop: plt.rcParams["axes.prop_cycle"].by_key()[compact_prop]}
|
|
125
|
-
if isinstance(compact_prop, tuple):
|
|
126
|
-
warnings.warn(
|
|
127
|
-
"compact_prop as a tuple will be deprecated in a future warning, use a dict instead",
|
|
128
|
-
FutureWarning,
|
|
129
|
-
)
|
|
130
|
-
compact_prop = {compact_prop[0]: compact_prop[1]}
|
|
131
|
-
|
|
132
|
-
trace_kwargs = {} if trace_kwargs is None else trace_kwargs
|
|
133
|
-
trace_kwargs.setdefault("alpha", 0.35)
|
|
134
|
-
|
|
135
|
-
if hist_kwargs is None:
|
|
136
|
-
hist_kwargs = {}
|
|
137
|
-
hist_kwargs.setdefault("alpha", 0.35)
|
|
138
|
-
|
|
139
|
-
if plot_kwargs is None:
|
|
140
|
-
plot_kwargs = {}
|
|
141
|
-
if fill_kwargs is None:
|
|
142
|
-
fill_kwargs = {}
|
|
143
|
-
if rug_kwargs is None:
|
|
144
|
-
rug_kwargs = {}
|
|
145
|
-
if rank_kwargs is None:
|
|
146
|
-
rank_kwargs = {}
|
|
147
|
-
|
|
148
|
-
trace_kwargs.setdefault("line_width", linewidth)
|
|
149
|
-
plot_kwargs.setdefault("line_width", linewidth)
|
|
150
|
-
|
|
151
|
-
if rank_kwargs is None:
|
|
152
|
-
rank_kwargs = {}
|
|
153
|
-
|
|
154
|
-
if axes is None:
|
|
155
|
-
axes = []
|
|
156
|
-
backend_kwargs_copy = backend_kwargs.copy()
|
|
157
|
-
for i in range(len(plotters)):
|
|
158
|
-
if not i:
|
|
159
|
-
_axes = [bkp.figure(**backend_kwargs), bkp.figure(**backend_kwargs_copy)]
|
|
160
|
-
backend_kwargs_copy.setdefault("x_range", _axes[1].x_range)
|
|
161
|
-
else:
|
|
162
|
-
_axes = [
|
|
163
|
-
bkp.figure(**backend_kwargs),
|
|
164
|
-
bkp.figure(**backend_kwargs_copy),
|
|
165
|
-
]
|
|
166
|
-
axes.append(_axes)
|
|
167
|
-
|
|
168
|
-
axes = np.atleast_2d(axes)
|
|
169
|
-
|
|
170
|
-
cds_data = {}
|
|
171
|
-
cds_var_groups = {}
|
|
172
|
-
draw_name = "draw"
|
|
173
|
-
|
|
174
|
-
for var_name, selection, isel, value in list(
|
|
175
|
-
xarray_var_iter(data, var_names=var_names, combined=True)
|
|
176
|
-
):
|
|
177
|
-
if selection:
|
|
178
|
-
cds_name = "{}_ARVIZ_CDS_SELECTION_{}".format(
|
|
179
|
-
var_name,
|
|
180
|
-
"_".join(
|
|
181
|
-
str(item)
|
|
182
|
-
for key, value in selection.items()
|
|
183
|
-
for item in (
|
|
184
|
-
[key, value]
|
|
185
|
-
if (isinstance(value, str) or not isinstance(value, Iterable))
|
|
186
|
-
else [key, *value]
|
|
187
|
-
)
|
|
188
|
-
),
|
|
189
|
-
)
|
|
190
|
-
else:
|
|
191
|
-
cds_name = var_name
|
|
192
|
-
|
|
193
|
-
if var_name not in cds_var_groups:
|
|
194
|
-
cds_var_groups[var_name] = []
|
|
195
|
-
cds_var_groups[var_name].append(cds_name)
|
|
196
|
-
|
|
197
|
-
for chain_idx, _ in enumerate(data.chain.values):
|
|
198
|
-
if chain_idx not in cds_data:
|
|
199
|
-
cds_data[chain_idx] = {}
|
|
200
|
-
_data = value[chain_idx]
|
|
201
|
-
cds_data[chain_idx][cds_name] = _data
|
|
202
|
-
|
|
203
|
-
while any(key == draw_name for key in cds_data[0]):
|
|
204
|
-
draw_name += "w"
|
|
205
|
-
|
|
206
|
-
for chain in cds_data.values():
|
|
207
|
-
chain[draw_name] = data.draw.values
|
|
208
|
-
|
|
209
|
-
cds_data = {chain_idx: ColumnDataSource(cds) for chain_idx, cds in cds_data.items()}
|
|
210
|
-
|
|
211
|
-
for idx, (var_name, selection, isel, value) in enumerate(plotters):
|
|
212
|
-
value = np.atleast_2d(value)
|
|
213
|
-
|
|
214
|
-
if len(value.shape) == 2:
|
|
215
|
-
y_name = (
|
|
216
|
-
var_name
|
|
217
|
-
if not selection
|
|
218
|
-
else "{}_ARVIZ_CDS_SELECTION_{}".format(
|
|
219
|
-
var_name,
|
|
220
|
-
"_".join(
|
|
221
|
-
str(item)
|
|
222
|
-
for key, value in selection.items()
|
|
223
|
-
for item in (
|
|
224
|
-
(key, value)
|
|
225
|
-
if (isinstance(value, str) or not isinstance(value, Iterable))
|
|
226
|
-
else (key, *value)
|
|
227
|
-
)
|
|
228
|
-
),
|
|
229
|
-
)
|
|
230
|
-
)
|
|
231
|
-
if rug:
|
|
232
|
-
rug_kwargs["y"] = y_name
|
|
233
|
-
_plot_chains_bokeh(
|
|
234
|
-
ax_density=axes[idx, 0],
|
|
235
|
-
ax_trace=axes[idx, 1],
|
|
236
|
-
data=cds_data,
|
|
237
|
-
x_name=draw_name,
|
|
238
|
-
y_name=y_name,
|
|
239
|
-
chain_prop=chain_prop,
|
|
240
|
-
combined=combined,
|
|
241
|
-
rug=rug,
|
|
242
|
-
kind=kind,
|
|
243
|
-
legend=legend,
|
|
244
|
-
trace_kwargs=trace_kwargs,
|
|
245
|
-
hist_kwargs=hist_kwargs,
|
|
246
|
-
plot_kwargs=plot_kwargs,
|
|
247
|
-
fill_kwargs=fill_kwargs,
|
|
248
|
-
rug_kwargs=rug_kwargs,
|
|
249
|
-
rank_kwargs=rank_kwargs,
|
|
250
|
-
)
|
|
251
|
-
else:
|
|
252
|
-
for y_name in cds_var_groups[var_name]:
|
|
253
|
-
if rug:
|
|
254
|
-
rug_kwargs["y"] = y_name
|
|
255
|
-
_plot_chains_bokeh(
|
|
256
|
-
ax_density=axes[idx, 0],
|
|
257
|
-
ax_trace=axes[idx, 1],
|
|
258
|
-
data=cds_data,
|
|
259
|
-
x_name=draw_name,
|
|
260
|
-
y_name=y_name,
|
|
261
|
-
chain_prop=chain_prop,
|
|
262
|
-
combined=combined,
|
|
263
|
-
rug=rug,
|
|
264
|
-
kind=kind,
|
|
265
|
-
legend=legend,
|
|
266
|
-
trace_kwargs=trace_kwargs,
|
|
267
|
-
hist_kwargs=hist_kwargs,
|
|
268
|
-
plot_kwargs=plot_kwargs,
|
|
269
|
-
fill_kwargs=fill_kwargs,
|
|
270
|
-
rug_kwargs=rug_kwargs,
|
|
271
|
-
rank_kwargs=rank_kwargs,
|
|
272
|
-
)
|
|
273
|
-
|
|
274
|
-
for col in (0, 1):
|
|
275
|
-
_title = Title()
|
|
276
|
-
_title.text = labeller.make_label_vert(var_name, selection, isel)
|
|
277
|
-
axes[idx, col].title = _title
|
|
278
|
-
axes[idx, col].y_range = DataRange1d(
|
|
279
|
-
bounds=backend_config["bounds_y_range"], min_interval=0.1
|
|
280
|
-
)
|
|
281
|
-
|
|
282
|
-
for _, _, vlines in (j for j in lines if j[0] == var_name and j[1] == selection):
|
|
283
|
-
if isinstance(vlines, (float, int)):
|
|
284
|
-
line_values = [vlines]
|
|
285
|
-
else:
|
|
286
|
-
line_values = np.atleast_1d(vlines).ravel()
|
|
287
|
-
|
|
288
|
-
for line_value in line_values:
|
|
289
|
-
vline = Span(
|
|
290
|
-
location=line_value,
|
|
291
|
-
dimension="height",
|
|
292
|
-
line_color="black",
|
|
293
|
-
line_width=1.5,
|
|
294
|
-
line_alpha=0.75,
|
|
295
|
-
)
|
|
296
|
-
hline = Span(
|
|
297
|
-
location=line_value,
|
|
298
|
-
dimension="width",
|
|
299
|
-
line_color="black",
|
|
300
|
-
line_width=1.5,
|
|
301
|
-
line_alpha=trace_kwargs["alpha"],
|
|
302
|
-
)
|
|
303
|
-
|
|
304
|
-
axes[idx, 0].renderers.append(vline)
|
|
305
|
-
axes[idx, 1].renderers.append(hline)
|
|
306
|
-
|
|
307
|
-
if legend:
|
|
308
|
-
for col in (0, 1):
|
|
309
|
-
axes[idx, col].legend.location = "top_left"
|
|
310
|
-
axes[idx, col].legend.click_policy = "hide"
|
|
311
|
-
else:
|
|
312
|
-
for col in (0, 1):
|
|
313
|
-
if axes[idx, col].legend:
|
|
314
|
-
axes[idx, col].legend.visible = False
|
|
315
|
-
|
|
316
|
-
if divergences:
|
|
317
|
-
div_density_kwargs = {}
|
|
318
|
-
div_density_kwargs.setdefault("size", 14)
|
|
319
|
-
div_density_kwargs.setdefault("line_color", "red")
|
|
320
|
-
div_density_kwargs.setdefault("line_width", 2)
|
|
321
|
-
div_density_kwargs.setdefault("line_alpha", 0.50)
|
|
322
|
-
div_density_kwargs.setdefault("angle", np.pi / 2)
|
|
323
|
-
|
|
324
|
-
div_trace_kwargs = {}
|
|
325
|
-
div_trace_kwargs.setdefault("size", 14)
|
|
326
|
-
div_trace_kwargs.setdefault("line_color", "red")
|
|
327
|
-
div_trace_kwargs.setdefault("line_width", 2)
|
|
328
|
-
div_trace_kwargs.setdefault("line_alpha", 0.50)
|
|
329
|
-
div_trace_kwargs.setdefault("angle", np.pi / 2)
|
|
330
|
-
|
|
331
|
-
div_selection = {k: v for k, v in selection.items() if k in divergence_data.dims}
|
|
332
|
-
divs = divergence_data.sel(**div_selection).values
|
|
333
|
-
divs = np.atleast_2d(divs)
|
|
334
|
-
|
|
335
|
-
for chain, chain_divs in enumerate(divs):
|
|
336
|
-
div_idxs = np.arange(len(chain_divs))[chain_divs]
|
|
337
|
-
if div_idxs.size > 0:
|
|
338
|
-
values = value[chain, div_idxs]
|
|
339
|
-
tmp_cds = ColumnDataSource({"y": values, "x": div_idxs})
|
|
340
|
-
if divergences == "top":
|
|
341
|
-
y_div_trace = value.max()
|
|
342
|
-
else:
|
|
343
|
-
y_div_trace = value.min()
|
|
344
|
-
glyph_density = Scatter(x="y", y=0.0, marker="dash", **div_density_kwargs)
|
|
345
|
-
if kind == "trace":
|
|
346
|
-
glyph_trace = Scatter(
|
|
347
|
-
x="x", y=y_div_trace, marker="dash", **div_trace_kwargs
|
|
348
|
-
)
|
|
349
|
-
axes[idx, 1].add_glyph(tmp_cds, glyph_trace)
|
|
350
|
-
|
|
351
|
-
axes[idx, 0].add_glyph(tmp_cds, glyph_density)
|
|
352
|
-
|
|
353
|
-
show_layout(axes, show)
|
|
354
|
-
|
|
355
|
-
return axes
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
def _plot_chains_bokeh(
|
|
359
|
-
ax_density,
|
|
360
|
-
ax_trace,
|
|
361
|
-
data,
|
|
362
|
-
x_name,
|
|
363
|
-
y_name,
|
|
364
|
-
chain_prop,
|
|
365
|
-
combined,
|
|
366
|
-
rug,
|
|
367
|
-
kind,
|
|
368
|
-
legend,
|
|
369
|
-
trace_kwargs,
|
|
370
|
-
hist_kwargs,
|
|
371
|
-
plot_kwargs,
|
|
372
|
-
fill_kwargs,
|
|
373
|
-
rug_kwargs,
|
|
374
|
-
rank_kwargs,
|
|
375
|
-
):
|
|
376
|
-
marker = trace_kwargs.pop("marker", True)
|
|
377
|
-
for chain_idx, cds in data.items():
|
|
378
|
-
if kind == "trace":
|
|
379
|
-
if legend:
|
|
380
|
-
trace_kwargs["legend_label"] = f"chain {chain_idx}"
|
|
381
|
-
ax_trace.line(
|
|
382
|
-
x=x_name,
|
|
383
|
-
y=y_name,
|
|
384
|
-
source=cds,
|
|
385
|
-
**dealiase_sel_kwargs(trace_kwargs, chain_prop, chain_idx),
|
|
386
|
-
)
|
|
387
|
-
if marker:
|
|
388
|
-
ax_trace.scatter(
|
|
389
|
-
x=x_name,
|
|
390
|
-
y=y_name,
|
|
391
|
-
marker="circle",
|
|
392
|
-
source=cds,
|
|
393
|
-
radius=0.30,
|
|
394
|
-
alpha=0.5,
|
|
395
|
-
**dealiase_sel_kwargs({}, chain_prop, chain_idx),
|
|
396
|
-
)
|
|
397
|
-
if not combined:
|
|
398
|
-
rug_kwargs["cds"] = cds
|
|
399
|
-
if legend:
|
|
400
|
-
plot_kwargs["legend_label"] = f"chain {chain_idx}"
|
|
401
|
-
plot_dist(
|
|
402
|
-
cds.data[y_name],
|
|
403
|
-
ax=ax_density,
|
|
404
|
-
rug=rug,
|
|
405
|
-
hist_kwargs=hist_kwargs,
|
|
406
|
-
plot_kwargs=dealiase_sel_kwargs(plot_kwargs, chain_prop, chain_idx),
|
|
407
|
-
fill_kwargs=fill_kwargs,
|
|
408
|
-
rug_kwargs=rug_kwargs,
|
|
409
|
-
backend="bokeh",
|
|
410
|
-
backend_kwargs={},
|
|
411
|
-
show=False,
|
|
412
|
-
)
|
|
413
|
-
|
|
414
|
-
if kind == "rank_bars":
|
|
415
|
-
value = np.array([item.data[y_name] for item in data.values()])
|
|
416
|
-
plot_rank(value, kind="bars", ax=ax_trace, backend="bokeh", show=False, **rank_kwargs)
|
|
417
|
-
elif kind == "rank_vlines":
|
|
418
|
-
value = np.array([item.data[y_name] for item in data.values()])
|
|
419
|
-
plot_rank(value, kind="vlines", ax=ax_trace, backend="bokeh", show=False, **rank_kwargs)
|
|
420
|
-
|
|
421
|
-
if combined:
|
|
422
|
-
rug_kwargs["cds"] = data
|
|
423
|
-
if legend:
|
|
424
|
-
plot_kwargs["legend_label"] = "combined chains"
|
|
425
|
-
plot_dist(
|
|
426
|
-
np.concatenate([item.data[y_name] for item in data.values()]).flatten(),
|
|
427
|
-
ax=ax_density,
|
|
428
|
-
rug=rug,
|
|
429
|
-
hist_kwargs=hist_kwargs,
|
|
430
|
-
plot_kwargs=dealiase_sel_kwargs(plot_kwargs, chain_prop, -1),
|
|
431
|
-
fill_kwargs=fill_kwargs,
|
|
432
|
-
rug_kwargs=rug_kwargs,
|
|
433
|
-
backend="bokeh",
|
|
434
|
-
backend_kwargs={},
|
|
435
|
-
show=False,
|
|
436
|
-
)
|