ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ai-edge-torch-nightly might be problematic. Click here for more details.

Files changed (121) hide show
  1. ai_edge_torch/__init__.py +31 -0
  2. ai_edge_torch/convert/__init__.py +14 -0
  3. ai_edge_torch/convert/conversion.py +117 -0
  4. ai_edge_torch/convert/conversion_utils.py +400 -0
  5. ai_edge_torch/convert/converter.py +202 -0
  6. ai_edge_torch/convert/fx_passes/__init__.py +59 -0
  7. ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
  8. ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +225 -0
  9. ai_edge_torch/convert/fx_passes/build_interpolate_composite_pass.py +123 -0
  10. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
  11. ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  12. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  13. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
  14. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
  15. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
  16. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
  17. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +215 -0
  18. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
  19. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  20. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +293 -0
  21. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
  22. ai_edge_torch/convert/test/__init__.py +14 -0
  23. ai_edge_torch/convert/test/test_convert.py +311 -0
  24. ai_edge_torch/convert/test/test_convert_composites.py +192 -0
  25. ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
  26. ai_edge_torch/convert/test/test_to_channel_last_io.py +96 -0
  27. ai_edge_torch/convert/to_channel_last_io.py +85 -0
  28. ai_edge_torch/debug/__init__.py +17 -0
  29. ai_edge_torch/debug/culprit.py +464 -0
  30. ai_edge_torch/debug/test/__init__.py +14 -0
  31. ai_edge_torch/debug/test/test_culprit.py +133 -0
  32. ai_edge_torch/debug/test/test_search_model.py +50 -0
  33. ai_edge_torch/debug/utils.py +48 -0
  34. ai_edge_torch/experimental/__init__.py +14 -0
  35. ai_edge_torch/generative/__init__.py +14 -0
  36. ai_edge_torch/generative/examples/__init__.py +14 -0
  37. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  38. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
  39. ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
  40. ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
  42. ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
  43. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  44. ai_edge_torch/generative/examples/stable_diffusion/attention.py +106 -0
  45. ai_edge_torch/generative/examples/stable_diffusion/clip.py +115 -0
  46. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +142 -0
  47. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +317 -0
  48. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +573 -0
  49. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +118 -0
  50. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +222 -0
  51. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  52. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +61 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +65 -0
  54. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +73 -0
  55. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +38 -0
  56. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +108 -0
  57. ai_edge_torch/generative/examples/stable_diffusion/util.py +71 -0
  58. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  59. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
  60. ai_edge_torch/generative/examples/t5/t5.py +608 -0
  61. ai_edge_torch/generative/examples/t5/t5_attention.py +231 -0
  62. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  63. ai_edge_torch/generative/examples/test_models/toy_model.py +122 -0
  64. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +161 -0
  65. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
  66. ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
  67. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
  68. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
  69. ai_edge_torch/generative/fx_passes/__init__.py +31 -0
  70. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +47 -0
  71. ai_edge_torch/generative/layers/__init__.py +14 -0
  72. ai_edge_torch/generative/layers/attention.py +354 -0
  73. ai_edge_torch/generative/layers/attention_utils.py +169 -0
  74. ai_edge_torch/generative/layers/builder.py +131 -0
  75. ai_edge_torch/generative/layers/feed_forward.py +95 -0
  76. ai_edge_torch/generative/layers/kv_cache.py +83 -0
  77. ai_edge_torch/generative/layers/model_config.py +158 -0
  78. ai_edge_torch/generative/layers/normalization.py +62 -0
  79. ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
  80. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +117 -0
  81. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  82. ai_edge_torch/generative/layers/unet/blocks_2d.py +711 -0
  83. ai_edge_torch/generative/layers/unet/builder.py +47 -0
  84. ai_edge_torch/generative/layers/unet/model_config.py +269 -0
  85. ai_edge_torch/generative/quantize/__init__.py +14 -0
  86. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  87. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/translate_recipe.py +148 -0
  88. ai_edge_torch/generative/quantize/example.py +45 -0
  89. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  90. ai_edge_torch/generative/quantize/quant_recipe.py +151 -0
  91. ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
  92. ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
  93. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  94. ai_edge_torch/generative/test/__init__.py +14 -0
  95. ai_edge_torch/generative/test/loader_test.py +80 -0
  96. ai_edge_torch/generative/test/test_model_conversion.py +235 -0
  97. ai_edge_torch/generative/test/test_quantize.py +162 -0
  98. ai_edge_torch/generative/utilities/__init__.py +15 -0
  99. ai_edge_torch/generative/utilities/loader.py +328 -0
  100. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +924 -0
  101. ai_edge_torch/generative/utilities/t5_loader.py +483 -0
  102. ai_edge_torch/hlfb/__init__.py +16 -0
  103. ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
  104. ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
  105. ai_edge_torch/hlfb/mark_pattern/pattern.py +273 -0
  106. ai_edge_torch/hlfb/test/__init__.py +14 -0
  107. ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
  108. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
  109. ai_edge_torch/model.py +142 -0
  110. ai_edge_torch/quantize/__init__.py +16 -0
  111. ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
  112. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
  113. ai_edge_torch/quantize/quant_config.py +81 -0
  114. ai_edge_torch/testing/__init__.py +14 -0
  115. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  116. ai_edge_torch/testing/model_coverage/model_coverage.py +132 -0
  117. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/LICENSE +202 -0
  118. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/METADATA +38 -0
  119. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +121 -0
  120. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/WHEEL +5 -0
  121. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/top_level.txt +1 -0
@@ -0,0 +1,400 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ import operator
16
+
17
+ import torch
18
+ from torch.fx import Node
19
+ import torch.utils._pytree as pytree
20
+
21
+ from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
22
+ from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
23
+ from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass.op_func_registry import OpFuncRegistry # NOQA
24
+
25
+ aten = torch.ops.aten
26
+
27
+ __all__ = ["rewrite_nhwc_node", "has_nhwc_rewriter"]
28
+
29
+
30
+ class NHWCNodeRewritersRegistry(OpFuncRegistry):
31
+
32
+ def __missing__(self, op):
33
+ def _rewriter(node):
34
+ raise RuntimeError(f"NHWC node rewriter not found: {str(node)}")
35
+
36
+ return _rewriter
37
+
38
+
39
+ rewriters = NHWCNodeRewritersRegistry()
40
+
41
+
42
+ def rewrite_nhwc_node(node: Node):
43
+ if not layout_mark.is_nhwc_node(node):
44
+ return
45
+
46
+ rewriters[node.target](node)
47
+
48
+
49
+ def has_nhwc_rewriter(node: Node):
50
+ return node.target in rewriters
51
+
52
+
53
+ # ======= Quantize ops
54
+
55
+
56
+ @rewriters.register(torch.ops.quantized_decomposed.dequantize_per_tensor)
57
+ @rewriters.register(torch.ops.quantized_decomposed.quantize_per_tensor)
58
+ def noop(node: Node):
59
+ pass
60
+
61
+
62
+ @rewriters.register(torch.ops.quantized_decomposed.dequantize_per_channel)
63
+ @rewriters.register(torch.ops.quantized_decomposed.quantize_per_channel)
64
+ def _qdq_per_channel_rewriter(node: Node):
65
+ new_args = []
66
+ new_kwargs = {}
67
+
68
+ def axis_nchw_to_nhwc(axis: int):
69
+ axis = axis if axis >= 0 else 4 + axis
70
+ return {3: 2, 2: 1, 1: 3}.get(axis, axis)
71
+
72
+ for arg, spec in zip(node.args, op._schema.arguments):
73
+ if spec.name == "axis":
74
+ new_args.append(axis_nchw_to_nhwc(arg))
75
+ else:
76
+ new_args.append(arg)
77
+
78
+ for spec in op._schema.arguments[len(node.args) :]:
79
+ if spec.name not in node.kwargs:
80
+ continue
81
+
82
+ if spec.name == "axis":
83
+ new_kwargs[spec.name] = axis_nchw_to_nhwc(node.kwargs[spec.name])
84
+ else:
85
+ new_kwargs[spec.name] = node.kwargs[spec.name]
86
+
87
+ node.args = tuple(new_args)
88
+ node.kwargs = new_kwargs
89
+
90
+
91
+ # ======= Noop ops (layout insensitive ops)
92
+
93
+
94
+ @rewriters.register(utils.tensor_to_nhwc)
95
+ @rewriters.register(utils.tensor_to_nchw)
96
+ @rewriters.register(operator.getitem)
97
+ @rewriters.register("output")
98
+ @rewriters.register(aten.add.Tensor)
99
+ @rewriters.register(aten.add.Scalar)
100
+ @rewriters.register(aten.atan2.default)
101
+ @rewriters.register(aten.atan2.out)
102
+ @rewriters.register(aten.bitwise_and.Tensor)
103
+ @rewriters.register(aten.bitwise_and.Scalar)
104
+ @rewriters.register(aten.bitwise_or.Tensor)
105
+ @rewriters.register(aten.bitwise_or.Scalar)
106
+ @rewriters.register(aten.bitwise_xor.Tensor)
107
+ @rewriters.register(aten.bitwise_xor.Scalar)
108
+ @rewriters.register(aten.div.Tensor)
109
+ @rewriters.register(aten.div.Scalar)
110
+ @rewriters.register(aten.div.Tensor_mode)
111
+ @rewriters.register(aten.div.Scalar_mode)
112
+ @rewriters.register(aten.fmod.Tensor)
113
+ @rewriters.register(aten.fmod.Scalar)
114
+ @rewriters.register(aten.mul.Tensor)
115
+ @rewriters.register(aten.mul.Scalar)
116
+ @rewriters.register(aten.remainder.Tensor)
117
+ @rewriters.register(aten.remainder.Scalar)
118
+ @rewriters.register(aten.sub.Tensor)
119
+ @rewriters.register(aten.sub.Scalar)
120
+ @rewriters.register(aten.eq.Tensor)
121
+ @rewriters.register(aten.eq.Scalar)
122
+ @rewriters.register(aten.ne.Tensor)
123
+ @rewriters.register(aten.ne.Scalar)
124
+ @rewriters.register(aten.le.Tensor)
125
+ @rewriters.register(aten.le.Scalar)
126
+ @rewriters.register(aten.ge.Tensor)
127
+ @rewriters.register(aten.ge.Scalar)
128
+ @rewriters.register(aten.gt.Tensor)
129
+ @rewriters.register(aten.gt.Scalar)
130
+ @rewriters.register(aten.lt.Tensor)
131
+ @rewriters.register(aten.lt.Scalar)
132
+ @rewriters.register(aten.maximum.default)
133
+ @rewriters.register(aten.minimum.default)
134
+ @rewriters.register(aten.mean.default)
135
+ @rewriters.register(aten.prod.default)
136
+ @rewriters.register(aten.abs.default)
137
+ @rewriters.register(aten.acos.default)
138
+ @rewriters.register(aten.acosh.default)
139
+ @rewriters.register(aten.asin.default)
140
+ @rewriters.register(aten.asinh.default)
141
+ @rewriters.register(aten.atan.default)
142
+ @rewriters.register(aten.atanh.default)
143
+ @rewriters.register(aten.bitwise_not.default)
144
+ @rewriters.register(aten.ceil.default)
145
+ @rewriters.register(aten.clamp.default)
146
+ @rewriters.register(aten.clamp.Tensor)
147
+ @rewriters.register(aten.cos.default)
148
+ @rewriters.register(aten.cosh.default)
149
+ @rewriters.register(aten.erf.default)
150
+ @rewriters.register(aten.exp.default)
151
+ @rewriters.register(aten.expm1.default)
152
+ @rewriters.register(aten.floor.default)
153
+ @rewriters.register(aten.log.default)
154
+ @rewriters.register(aten.log10.default)
155
+ @rewriters.register(aten.log1p.default)
156
+ @rewriters.register(aten.log2.default)
157
+ @rewriters.register(aten.isnan.default)
158
+ @rewriters.register(aten.neg.default)
159
+ @rewriters.register(aten.pow.Tensor_Tensor)
160
+ @rewriters.register(aten.pow.Tensor_Scalar)
161
+ @rewriters.register(aten.pow.Scalar)
162
+ @rewriters.register(aten.reciprocal.default)
163
+ @rewriters.register(aten.round.default)
164
+ @rewriters.register(aten.rsqrt.default)
165
+ @rewriters.register(aten.sigmoid.default)
166
+ @rewriters.register(aten.sign.default)
167
+ @rewriters.register(aten.sin.default)
168
+ @rewriters.register(aten.sinh.default)
169
+ @rewriters.register(aten.sqrt.default)
170
+ @rewriters.register(aten.tan.default)
171
+ @rewriters.register(aten.tanh.default)
172
+ @rewriters.register(aten.trunc.default)
173
+ @rewriters.register(aten.nonzero.default)
174
+ @rewriters.register(aten.copy.default)
175
+ @rewriters.register(aten.mm.default)
176
+ @rewriters.register(aten.fill.Scalar)
177
+ @rewriters.register(aten.col2im.default)
178
+ @rewriters.register(aten.addmm.default)
179
+ @rewriters.register(aten.gelu.default)
180
+ @rewriters.register(aten.hardtanh.default)
181
+ @rewriters.register(aten.leaky_relu.default)
182
+ @rewriters.register(aten.relu.default)
183
+ @rewriters.register(aten.arange.start_step)
184
+ @rewriters.register(aten.isinf.default)
185
+ @rewriters.register(aten.logical_and.default)
186
+ @rewriters.register(aten.logical_not.default)
187
+ @rewriters.register(aten.logical_or.default)
188
+ @rewriters.register(aten.logical_xor.default)
189
+ @rewriters.register(aten.where.self)
190
+ @rewriters.register(aten.clone.default)
191
+ @rewriters.register(aten.any.default)
192
+ @rewriters.register(aten.repeat.default)
193
+ @rewriters.register(aten.alias.default)
194
+ @rewriters.register(aten._pdist_forward.default)
195
+ @rewriters.register(aten._cdist_forward.default)
196
+ @rewriters.register(aten.bmm.default)
197
+ @rewriters.register(aten.hardswish)
198
+ @rewriters.register(aten.hardsigmoid)
199
+ @rewriters.register(aten._to_copy)
200
+ @rewriters.register(aten._prelu_kernel)
201
+ @rewriters.register(aten.softplus)
202
+ @rewriters.register(aten.silu)
203
+ def noop(node: Node):
204
+ pass
205
+
206
+
207
+ # ======= Add transposes before and after NCHW-only ops (T-aten-T)
208
+
209
+
210
+ @rewriters.register(aten.upsample_bilinear2d)
211
+ @rewriters.register(aten.upsample_nearest2d)
212
+ @rewriters.register(aten.max_pool2d)
213
+ @rewriters.register(aten.max_pool2d_with_indices)
214
+ @rewriters.register(aten.avg_pool2d)
215
+ @rewriters.register(aten._adaptive_avg_pool2d.default)
216
+ def transpose_first_arg_rewriter(node: Node):
217
+ op = node.target
218
+
219
+ def nhwc_op(x, *args, **kwargs):
220
+ nonlocal op
221
+ x = utils.tensor_to_nchw(x)
222
+ res = pytree.tree_map_only(
223
+ torch.Tensor, utils.tensor_to_nhwc, op(x, *args, **kwargs)
224
+ )
225
+ return res
226
+
227
+ node.target = nhwc_op
228
+
229
+
230
+ @rewriters.register(aten.convolution)
231
+ def _aten_convolution_rewriter(node: Node):
232
+ op = node.target
233
+
234
+ def conv_nhwc(input, weight, bias, *args, **kwargs):
235
+ nonlocal op
236
+ nhwc_bias = None
237
+ if bias is not None and len(bias.shape) == 1:
238
+ nhwc_bias = bias
239
+ bias = None
240
+
241
+ input = utils.tensor_to_nchw(input)
242
+ res = pytree.tree_map_only(
243
+ torch.Tensor,
244
+ utils.tensor_to_nhwc,
245
+ op(input, weight, bias, *args, **kwargs),
246
+ )
247
+
248
+ if nhwc_bias is not None:
249
+ res += nhwc_bias
250
+ return res
251
+
252
+ node.target = conv_nhwc
253
+
254
+
255
+ # ======= Rewrite dim attribute(s)
256
+
257
+
258
+ @rewriters.register(aten._softmax.default)
259
+ @rewriters.register(aten.select.int)
260
+ @rewriters.register(aten.slice.Tensor)
261
+ @rewriters.register(aten.sum.dim_IntList)
262
+ @rewriters.register(aten.mean.dim)
263
+ @rewriters.register(aten.prod.dim_int)
264
+ @rewriters.register(aten.var.dim)
265
+ @rewriters.register(aten.var.correction)
266
+ @rewriters.register(aten.slice_scatter.default)
267
+ @rewriters.register(aten.diagonal.default)
268
+ @rewriters.register(aten.select_scatter.default)
269
+ @rewriters.register(aten.sym_size.int)
270
+ @rewriters.register(aten.sym_stride.int)
271
+ @rewriters.register(aten._log_softmax.default)
272
+ @rewriters.register(aten.split_with_sizes.default)
273
+ @rewriters.register(aten.squeeze.dim)
274
+ @rewriters.register(aten.squeeze.dims)
275
+ @rewriters.register(aten.scatter.value)
276
+ @rewriters.register(aten.scatter.src)
277
+ @rewriters.register(aten.scatter_add.default)
278
+ @rewriters.register(aten.scatter_reduce.two)
279
+ @rewriters.register(aten.any.dim)
280
+ @rewriters.register(aten.any.dims)
281
+ @rewriters.register(aten.flip.default)
282
+ @rewriters.register(aten.index_select.default)
283
+ @rewriters.register(aten.cumsum.default)
284
+ @rewriters.register(aten.max.dim)
285
+ @rewriters.register(aten.min.dim)
286
+ @rewriters.register(aten.gather.default)
287
+ @rewriters.register(aten.sort.default)
288
+ @rewriters.register(aten.topk.default)
289
+ @rewriters.register(aten.cat.default)
290
+ def dim_attr_rewriter(node: Node):
291
+ op = node.target
292
+
293
+ new_args = []
294
+ new_kwargs = {}
295
+
296
+ def dims_nchw_to_nhwc(dims: list[int]):
297
+ def convert(dim: int):
298
+ dim = dim if dim >= 0 else 4 + dim
299
+ return {3: 2, 2: 1, 1: 3}.get(dim, dim)
300
+
301
+ dims = pytree.tree_map_only(int, convert, dims)
302
+ dims = pytree.tree_map_only(torch.SymInt, convert, dims)
303
+ return dims
304
+
305
+ for arg, spec in zip(node.args, op._schema.arguments):
306
+ if spec.name.startswith("dim"):
307
+ new_args.append(dims_nchw_to_nhwc(arg))
308
+ else:
309
+ new_args.append(arg)
310
+
311
+ for spec in op._schema.arguments[len(node.args) :]:
312
+ if spec.name not in node.kwargs:
313
+ continue
314
+
315
+ if spec.name.startswith("dim"):
316
+ new_kwargs[spec.name] = dims_nchw_to_nhwc(node.kwargs[spec.name])
317
+ else:
318
+ new_kwargs[spec.name] = node.kwargs[spec.name]
319
+
320
+ node.args = tuple(new_args)
321
+ node.kwargs = new_kwargs
322
+
323
+
324
+ # ======= Others
325
+
326
+
327
+ @rewriters.register(aten._native_batch_norm_legit_no_training.default)
328
+ def _aten__native_batch_norm_legit_no_training(node):
329
+ def batch_norm(input, weight, bias, running_mean, running_var, momentum, eps):
330
+ a = input - running_mean
331
+ b = torch.sqrt(running_var + eps)
332
+ return a / b * weight + bias, None, None
333
+
334
+ node.target = batch_norm
335
+
336
+
337
+ @rewriters.register(aten.native_group_norm.default)
338
+ def _aten_native_group_norm(node):
339
+
340
+ def native_group_norm(
341
+ input,
342
+ weight,
343
+ bias,
344
+ batch_size: int,
345
+ num_channels: int,
346
+ flattened_inner_size: int,
347
+ num_groups: int,
348
+ eps: float,
349
+ ):
350
+ input_reshaped = torch.reshape(
351
+ input,
352
+ [batch_size, flattened_inner_size, num_groups, num_channels // num_groups],
353
+ )
354
+ reduction_dims = [1, 3]
355
+
356
+ biased_var, mean = torch.var_mean(
357
+ input_reshaped, dim=reduction_dims, unbiased=False, keepdim=True
358
+ )
359
+ rstd = torch.rsqrt(biased_var + eps)
360
+
361
+ out = (input_reshaped - mean) * rstd
362
+ out = torch.reshape(out, input.shape)
363
+
364
+ if weight is not None:
365
+ out = out * weight
366
+ if bias is not None:
367
+ out = out + bias
368
+
369
+ mean = torch.squeeze(mean, reduction_dims)
370
+ rstd = torch.squeeze(rstd, reduction_dims)
371
+
372
+ return out, mean, rstd
373
+
374
+ node.target = native_group_norm
375
+
376
+
377
+ @rewriters.register(aten.index)
378
+ @rewriters.register(aten._unsafe_index)
379
+ def _aten_index(node):
380
+ op = node.target
381
+
382
+ def index_nhwc(x, indices=[], *args, **kwargs):
383
+ nonlocal op
384
+ indices = list(indices)
385
+ if len(indices) < 4:
386
+ indices += [None] * (4 - len(indices))
387
+
388
+ indices[1:4] = indices[2], indices[3], indices[1]
389
+ return op(x, indices, *args, **kwargs)
390
+
391
+ node.target = index_nhwc
392
+
393
+
394
+ @rewriters.register(aten.reflection_pad2d.default)
395
+ def _aten_reflection_pad2d(node):
396
+ def reflection_pad2d_nhwc(x, padding):
397
+ padding = [0, 0] + padding
398
+ return torch.nn.functional.pad(x, padding, mode="reflect")
399
+
400
+ node.target = reflection_pad2d_nhwc
@@ -0,0 +1,30 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ import torch
16
+
17
+ from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
18
+
19
+
20
+ class OpFuncRegistry(dict):
21
+
22
+ def register(self, op):
23
+ ops = utils.flatten_torch_op_overloads(op)
24
+
25
+ def inner(func):
26
+ for op in ops:
27
+ self[op] = func
28
+ return func
29
+
30
+ return inner