ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/__init__.py +31 -0
- ai_edge_torch/convert/__init__.py +14 -0
- ai_edge_torch/convert/conversion.py +117 -0
- ai_edge_torch/convert/conversion_utils.py +400 -0
- ai_edge_torch/convert/converter.py +202 -0
- ai_edge_torch/convert/fx_passes/__init__.py +59 -0
- ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +225 -0
- ai_edge_torch/convert/fx_passes/build_interpolate_composite_pass.py +123 -0
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
- ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +293 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
- ai_edge_torch/convert/test/__init__.py +14 -0
- ai_edge_torch/convert/test/test_convert.py +311 -0
- ai_edge_torch/convert/test/test_convert_composites.py +192 -0
- ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
- ai_edge_torch/convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/convert/to_channel_last_io.py +85 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +464 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +133 -0
- ai_edge_torch/debug/test/test_search_model.py +50 -0
- ai_edge_torch/debug/utils.py +48 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
- ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
- ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +106 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +115 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +142 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +317 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +573 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +118 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +222 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +61 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +65 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +73 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +38 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +71 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
- ai_edge_torch/generative/examples/t5/t5.py +608 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +231 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +122 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +161 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
- ai_edge_torch/generative/fx_passes/__init__.py +31 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +47 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +354 -0
- ai_edge_torch/generative/layers/attention_utils.py +169 -0
- ai_edge_torch/generative/layers/builder.py +131 -0
- ai_edge_torch/generative/layers/feed_forward.py +95 -0
- ai_edge_torch/generative/layers/kv_cache.py +83 -0
- ai_edge_torch/generative/layers/model_config.py +158 -0
- ai_edge_torch/generative/layers/normalization.py +62 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +117 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +711 -0
- ai_edge_torch/generative/layers/unet/builder.py +47 -0
- ai_edge_torch/generative/layers/unet/model_config.py +269 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/translate_recipe.py +148 -0
- ai_edge_torch/generative/quantize/example.py +45 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +151 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/loader_test.py +80 -0
- ai_edge_torch/generative/test/test_model_conversion.py +235 -0
- ai_edge_torch/generative/test/test_quantize.py +162 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/loader.py +328 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +924 -0
- ai_edge_torch/generative/utilities/t5_loader.py +483 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
- ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +273 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
- ai_edge_torch/model.py +142 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
- ai_edge_torch/quantize/quant_config.py +81 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +132 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/METADATA +38 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +121 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,400 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import operator
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
from torch.fx import Node
|
|
19
|
+
import torch.utils._pytree as pytree
|
|
20
|
+
|
|
21
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
|
|
22
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
|
|
23
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass.op_func_registry import OpFuncRegistry # NOQA
|
|
24
|
+
|
|
25
|
+
aten = torch.ops.aten
|
|
26
|
+
|
|
27
|
+
__all__ = ["rewrite_nhwc_node", "has_nhwc_rewriter"]
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class NHWCNodeRewritersRegistry(OpFuncRegistry):
|
|
31
|
+
|
|
32
|
+
def __missing__(self, op):
|
|
33
|
+
def _rewriter(node):
|
|
34
|
+
raise RuntimeError(f"NHWC node rewriter not found: {str(node)}")
|
|
35
|
+
|
|
36
|
+
return _rewriter
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
rewriters = NHWCNodeRewritersRegistry()
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def rewrite_nhwc_node(node: Node):
|
|
43
|
+
if not layout_mark.is_nhwc_node(node):
|
|
44
|
+
return
|
|
45
|
+
|
|
46
|
+
rewriters[node.target](node)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def has_nhwc_rewriter(node: Node):
|
|
50
|
+
return node.target in rewriters
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
# ======= Quantize ops
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
@rewriters.register(torch.ops.quantized_decomposed.dequantize_per_tensor)
|
|
57
|
+
@rewriters.register(torch.ops.quantized_decomposed.quantize_per_tensor)
|
|
58
|
+
def noop(node: Node):
|
|
59
|
+
pass
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
@rewriters.register(torch.ops.quantized_decomposed.dequantize_per_channel)
|
|
63
|
+
@rewriters.register(torch.ops.quantized_decomposed.quantize_per_channel)
|
|
64
|
+
def _qdq_per_channel_rewriter(node: Node):
|
|
65
|
+
new_args = []
|
|
66
|
+
new_kwargs = {}
|
|
67
|
+
|
|
68
|
+
def axis_nchw_to_nhwc(axis: int):
|
|
69
|
+
axis = axis if axis >= 0 else 4 + axis
|
|
70
|
+
return {3: 2, 2: 1, 1: 3}.get(axis, axis)
|
|
71
|
+
|
|
72
|
+
for arg, spec in zip(node.args, op._schema.arguments):
|
|
73
|
+
if spec.name == "axis":
|
|
74
|
+
new_args.append(axis_nchw_to_nhwc(arg))
|
|
75
|
+
else:
|
|
76
|
+
new_args.append(arg)
|
|
77
|
+
|
|
78
|
+
for spec in op._schema.arguments[len(node.args) :]:
|
|
79
|
+
if spec.name not in node.kwargs:
|
|
80
|
+
continue
|
|
81
|
+
|
|
82
|
+
if spec.name == "axis":
|
|
83
|
+
new_kwargs[spec.name] = axis_nchw_to_nhwc(node.kwargs[spec.name])
|
|
84
|
+
else:
|
|
85
|
+
new_kwargs[spec.name] = node.kwargs[spec.name]
|
|
86
|
+
|
|
87
|
+
node.args = tuple(new_args)
|
|
88
|
+
node.kwargs = new_kwargs
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
# ======= Noop ops (layout insensitive ops)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
@rewriters.register(utils.tensor_to_nhwc)
|
|
95
|
+
@rewriters.register(utils.tensor_to_nchw)
|
|
96
|
+
@rewriters.register(operator.getitem)
|
|
97
|
+
@rewriters.register("output")
|
|
98
|
+
@rewriters.register(aten.add.Tensor)
|
|
99
|
+
@rewriters.register(aten.add.Scalar)
|
|
100
|
+
@rewriters.register(aten.atan2.default)
|
|
101
|
+
@rewriters.register(aten.atan2.out)
|
|
102
|
+
@rewriters.register(aten.bitwise_and.Tensor)
|
|
103
|
+
@rewriters.register(aten.bitwise_and.Scalar)
|
|
104
|
+
@rewriters.register(aten.bitwise_or.Tensor)
|
|
105
|
+
@rewriters.register(aten.bitwise_or.Scalar)
|
|
106
|
+
@rewriters.register(aten.bitwise_xor.Tensor)
|
|
107
|
+
@rewriters.register(aten.bitwise_xor.Scalar)
|
|
108
|
+
@rewriters.register(aten.div.Tensor)
|
|
109
|
+
@rewriters.register(aten.div.Scalar)
|
|
110
|
+
@rewriters.register(aten.div.Tensor_mode)
|
|
111
|
+
@rewriters.register(aten.div.Scalar_mode)
|
|
112
|
+
@rewriters.register(aten.fmod.Tensor)
|
|
113
|
+
@rewriters.register(aten.fmod.Scalar)
|
|
114
|
+
@rewriters.register(aten.mul.Tensor)
|
|
115
|
+
@rewriters.register(aten.mul.Scalar)
|
|
116
|
+
@rewriters.register(aten.remainder.Tensor)
|
|
117
|
+
@rewriters.register(aten.remainder.Scalar)
|
|
118
|
+
@rewriters.register(aten.sub.Tensor)
|
|
119
|
+
@rewriters.register(aten.sub.Scalar)
|
|
120
|
+
@rewriters.register(aten.eq.Tensor)
|
|
121
|
+
@rewriters.register(aten.eq.Scalar)
|
|
122
|
+
@rewriters.register(aten.ne.Tensor)
|
|
123
|
+
@rewriters.register(aten.ne.Scalar)
|
|
124
|
+
@rewriters.register(aten.le.Tensor)
|
|
125
|
+
@rewriters.register(aten.le.Scalar)
|
|
126
|
+
@rewriters.register(aten.ge.Tensor)
|
|
127
|
+
@rewriters.register(aten.ge.Scalar)
|
|
128
|
+
@rewriters.register(aten.gt.Tensor)
|
|
129
|
+
@rewriters.register(aten.gt.Scalar)
|
|
130
|
+
@rewriters.register(aten.lt.Tensor)
|
|
131
|
+
@rewriters.register(aten.lt.Scalar)
|
|
132
|
+
@rewriters.register(aten.maximum.default)
|
|
133
|
+
@rewriters.register(aten.minimum.default)
|
|
134
|
+
@rewriters.register(aten.mean.default)
|
|
135
|
+
@rewriters.register(aten.prod.default)
|
|
136
|
+
@rewriters.register(aten.abs.default)
|
|
137
|
+
@rewriters.register(aten.acos.default)
|
|
138
|
+
@rewriters.register(aten.acosh.default)
|
|
139
|
+
@rewriters.register(aten.asin.default)
|
|
140
|
+
@rewriters.register(aten.asinh.default)
|
|
141
|
+
@rewriters.register(aten.atan.default)
|
|
142
|
+
@rewriters.register(aten.atanh.default)
|
|
143
|
+
@rewriters.register(aten.bitwise_not.default)
|
|
144
|
+
@rewriters.register(aten.ceil.default)
|
|
145
|
+
@rewriters.register(aten.clamp.default)
|
|
146
|
+
@rewriters.register(aten.clamp.Tensor)
|
|
147
|
+
@rewriters.register(aten.cos.default)
|
|
148
|
+
@rewriters.register(aten.cosh.default)
|
|
149
|
+
@rewriters.register(aten.erf.default)
|
|
150
|
+
@rewriters.register(aten.exp.default)
|
|
151
|
+
@rewriters.register(aten.expm1.default)
|
|
152
|
+
@rewriters.register(aten.floor.default)
|
|
153
|
+
@rewriters.register(aten.log.default)
|
|
154
|
+
@rewriters.register(aten.log10.default)
|
|
155
|
+
@rewriters.register(aten.log1p.default)
|
|
156
|
+
@rewriters.register(aten.log2.default)
|
|
157
|
+
@rewriters.register(aten.isnan.default)
|
|
158
|
+
@rewriters.register(aten.neg.default)
|
|
159
|
+
@rewriters.register(aten.pow.Tensor_Tensor)
|
|
160
|
+
@rewriters.register(aten.pow.Tensor_Scalar)
|
|
161
|
+
@rewriters.register(aten.pow.Scalar)
|
|
162
|
+
@rewriters.register(aten.reciprocal.default)
|
|
163
|
+
@rewriters.register(aten.round.default)
|
|
164
|
+
@rewriters.register(aten.rsqrt.default)
|
|
165
|
+
@rewriters.register(aten.sigmoid.default)
|
|
166
|
+
@rewriters.register(aten.sign.default)
|
|
167
|
+
@rewriters.register(aten.sin.default)
|
|
168
|
+
@rewriters.register(aten.sinh.default)
|
|
169
|
+
@rewriters.register(aten.sqrt.default)
|
|
170
|
+
@rewriters.register(aten.tan.default)
|
|
171
|
+
@rewriters.register(aten.tanh.default)
|
|
172
|
+
@rewriters.register(aten.trunc.default)
|
|
173
|
+
@rewriters.register(aten.nonzero.default)
|
|
174
|
+
@rewriters.register(aten.copy.default)
|
|
175
|
+
@rewriters.register(aten.mm.default)
|
|
176
|
+
@rewriters.register(aten.fill.Scalar)
|
|
177
|
+
@rewriters.register(aten.col2im.default)
|
|
178
|
+
@rewriters.register(aten.addmm.default)
|
|
179
|
+
@rewriters.register(aten.gelu.default)
|
|
180
|
+
@rewriters.register(aten.hardtanh.default)
|
|
181
|
+
@rewriters.register(aten.leaky_relu.default)
|
|
182
|
+
@rewriters.register(aten.relu.default)
|
|
183
|
+
@rewriters.register(aten.arange.start_step)
|
|
184
|
+
@rewriters.register(aten.isinf.default)
|
|
185
|
+
@rewriters.register(aten.logical_and.default)
|
|
186
|
+
@rewriters.register(aten.logical_not.default)
|
|
187
|
+
@rewriters.register(aten.logical_or.default)
|
|
188
|
+
@rewriters.register(aten.logical_xor.default)
|
|
189
|
+
@rewriters.register(aten.where.self)
|
|
190
|
+
@rewriters.register(aten.clone.default)
|
|
191
|
+
@rewriters.register(aten.any.default)
|
|
192
|
+
@rewriters.register(aten.repeat.default)
|
|
193
|
+
@rewriters.register(aten.alias.default)
|
|
194
|
+
@rewriters.register(aten._pdist_forward.default)
|
|
195
|
+
@rewriters.register(aten._cdist_forward.default)
|
|
196
|
+
@rewriters.register(aten.bmm.default)
|
|
197
|
+
@rewriters.register(aten.hardswish)
|
|
198
|
+
@rewriters.register(aten.hardsigmoid)
|
|
199
|
+
@rewriters.register(aten._to_copy)
|
|
200
|
+
@rewriters.register(aten._prelu_kernel)
|
|
201
|
+
@rewriters.register(aten.softplus)
|
|
202
|
+
@rewriters.register(aten.silu)
|
|
203
|
+
def noop(node: Node):
|
|
204
|
+
pass
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
# ======= Add transposes before and after NCHW-only ops (T-aten-T)
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
@rewriters.register(aten.upsample_bilinear2d)
|
|
211
|
+
@rewriters.register(aten.upsample_nearest2d)
|
|
212
|
+
@rewriters.register(aten.max_pool2d)
|
|
213
|
+
@rewriters.register(aten.max_pool2d_with_indices)
|
|
214
|
+
@rewriters.register(aten.avg_pool2d)
|
|
215
|
+
@rewriters.register(aten._adaptive_avg_pool2d.default)
|
|
216
|
+
def transpose_first_arg_rewriter(node: Node):
|
|
217
|
+
op = node.target
|
|
218
|
+
|
|
219
|
+
def nhwc_op(x, *args, **kwargs):
|
|
220
|
+
nonlocal op
|
|
221
|
+
x = utils.tensor_to_nchw(x)
|
|
222
|
+
res = pytree.tree_map_only(
|
|
223
|
+
torch.Tensor, utils.tensor_to_nhwc, op(x, *args, **kwargs)
|
|
224
|
+
)
|
|
225
|
+
return res
|
|
226
|
+
|
|
227
|
+
node.target = nhwc_op
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
@rewriters.register(aten.convolution)
|
|
231
|
+
def _aten_convolution_rewriter(node: Node):
|
|
232
|
+
op = node.target
|
|
233
|
+
|
|
234
|
+
def conv_nhwc(input, weight, bias, *args, **kwargs):
|
|
235
|
+
nonlocal op
|
|
236
|
+
nhwc_bias = None
|
|
237
|
+
if bias is not None and len(bias.shape) == 1:
|
|
238
|
+
nhwc_bias = bias
|
|
239
|
+
bias = None
|
|
240
|
+
|
|
241
|
+
input = utils.tensor_to_nchw(input)
|
|
242
|
+
res = pytree.tree_map_only(
|
|
243
|
+
torch.Tensor,
|
|
244
|
+
utils.tensor_to_nhwc,
|
|
245
|
+
op(input, weight, bias, *args, **kwargs),
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
if nhwc_bias is not None:
|
|
249
|
+
res += nhwc_bias
|
|
250
|
+
return res
|
|
251
|
+
|
|
252
|
+
node.target = conv_nhwc
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
# ======= Rewrite dim attribute(s)
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
@rewriters.register(aten._softmax.default)
|
|
259
|
+
@rewriters.register(aten.select.int)
|
|
260
|
+
@rewriters.register(aten.slice.Tensor)
|
|
261
|
+
@rewriters.register(aten.sum.dim_IntList)
|
|
262
|
+
@rewriters.register(aten.mean.dim)
|
|
263
|
+
@rewriters.register(aten.prod.dim_int)
|
|
264
|
+
@rewriters.register(aten.var.dim)
|
|
265
|
+
@rewriters.register(aten.var.correction)
|
|
266
|
+
@rewriters.register(aten.slice_scatter.default)
|
|
267
|
+
@rewriters.register(aten.diagonal.default)
|
|
268
|
+
@rewriters.register(aten.select_scatter.default)
|
|
269
|
+
@rewriters.register(aten.sym_size.int)
|
|
270
|
+
@rewriters.register(aten.sym_stride.int)
|
|
271
|
+
@rewriters.register(aten._log_softmax.default)
|
|
272
|
+
@rewriters.register(aten.split_with_sizes.default)
|
|
273
|
+
@rewriters.register(aten.squeeze.dim)
|
|
274
|
+
@rewriters.register(aten.squeeze.dims)
|
|
275
|
+
@rewriters.register(aten.scatter.value)
|
|
276
|
+
@rewriters.register(aten.scatter.src)
|
|
277
|
+
@rewriters.register(aten.scatter_add.default)
|
|
278
|
+
@rewriters.register(aten.scatter_reduce.two)
|
|
279
|
+
@rewriters.register(aten.any.dim)
|
|
280
|
+
@rewriters.register(aten.any.dims)
|
|
281
|
+
@rewriters.register(aten.flip.default)
|
|
282
|
+
@rewriters.register(aten.index_select.default)
|
|
283
|
+
@rewriters.register(aten.cumsum.default)
|
|
284
|
+
@rewriters.register(aten.max.dim)
|
|
285
|
+
@rewriters.register(aten.min.dim)
|
|
286
|
+
@rewriters.register(aten.gather.default)
|
|
287
|
+
@rewriters.register(aten.sort.default)
|
|
288
|
+
@rewriters.register(aten.topk.default)
|
|
289
|
+
@rewriters.register(aten.cat.default)
|
|
290
|
+
def dim_attr_rewriter(node: Node):
|
|
291
|
+
op = node.target
|
|
292
|
+
|
|
293
|
+
new_args = []
|
|
294
|
+
new_kwargs = {}
|
|
295
|
+
|
|
296
|
+
def dims_nchw_to_nhwc(dims: list[int]):
|
|
297
|
+
def convert(dim: int):
|
|
298
|
+
dim = dim if dim >= 0 else 4 + dim
|
|
299
|
+
return {3: 2, 2: 1, 1: 3}.get(dim, dim)
|
|
300
|
+
|
|
301
|
+
dims = pytree.tree_map_only(int, convert, dims)
|
|
302
|
+
dims = pytree.tree_map_only(torch.SymInt, convert, dims)
|
|
303
|
+
return dims
|
|
304
|
+
|
|
305
|
+
for arg, spec in zip(node.args, op._schema.arguments):
|
|
306
|
+
if spec.name.startswith("dim"):
|
|
307
|
+
new_args.append(dims_nchw_to_nhwc(arg))
|
|
308
|
+
else:
|
|
309
|
+
new_args.append(arg)
|
|
310
|
+
|
|
311
|
+
for spec in op._schema.arguments[len(node.args) :]:
|
|
312
|
+
if spec.name not in node.kwargs:
|
|
313
|
+
continue
|
|
314
|
+
|
|
315
|
+
if spec.name.startswith("dim"):
|
|
316
|
+
new_kwargs[spec.name] = dims_nchw_to_nhwc(node.kwargs[spec.name])
|
|
317
|
+
else:
|
|
318
|
+
new_kwargs[spec.name] = node.kwargs[spec.name]
|
|
319
|
+
|
|
320
|
+
node.args = tuple(new_args)
|
|
321
|
+
node.kwargs = new_kwargs
|
|
322
|
+
|
|
323
|
+
|
|
324
|
+
# ======= Others
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
@rewriters.register(aten._native_batch_norm_legit_no_training.default)
|
|
328
|
+
def _aten__native_batch_norm_legit_no_training(node):
|
|
329
|
+
def batch_norm(input, weight, bias, running_mean, running_var, momentum, eps):
|
|
330
|
+
a = input - running_mean
|
|
331
|
+
b = torch.sqrt(running_var + eps)
|
|
332
|
+
return a / b * weight + bias, None, None
|
|
333
|
+
|
|
334
|
+
node.target = batch_norm
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
@rewriters.register(aten.native_group_norm.default)
|
|
338
|
+
def _aten_native_group_norm(node):
|
|
339
|
+
|
|
340
|
+
def native_group_norm(
|
|
341
|
+
input,
|
|
342
|
+
weight,
|
|
343
|
+
bias,
|
|
344
|
+
batch_size: int,
|
|
345
|
+
num_channels: int,
|
|
346
|
+
flattened_inner_size: int,
|
|
347
|
+
num_groups: int,
|
|
348
|
+
eps: float,
|
|
349
|
+
):
|
|
350
|
+
input_reshaped = torch.reshape(
|
|
351
|
+
input,
|
|
352
|
+
[batch_size, flattened_inner_size, num_groups, num_channels // num_groups],
|
|
353
|
+
)
|
|
354
|
+
reduction_dims = [1, 3]
|
|
355
|
+
|
|
356
|
+
biased_var, mean = torch.var_mean(
|
|
357
|
+
input_reshaped, dim=reduction_dims, unbiased=False, keepdim=True
|
|
358
|
+
)
|
|
359
|
+
rstd = torch.rsqrt(biased_var + eps)
|
|
360
|
+
|
|
361
|
+
out = (input_reshaped - mean) * rstd
|
|
362
|
+
out = torch.reshape(out, input.shape)
|
|
363
|
+
|
|
364
|
+
if weight is not None:
|
|
365
|
+
out = out * weight
|
|
366
|
+
if bias is not None:
|
|
367
|
+
out = out + bias
|
|
368
|
+
|
|
369
|
+
mean = torch.squeeze(mean, reduction_dims)
|
|
370
|
+
rstd = torch.squeeze(rstd, reduction_dims)
|
|
371
|
+
|
|
372
|
+
return out, mean, rstd
|
|
373
|
+
|
|
374
|
+
node.target = native_group_norm
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
@rewriters.register(aten.index)
|
|
378
|
+
@rewriters.register(aten._unsafe_index)
|
|
379
|
+
def _aten_index(node):
|
|
380
|
+
op = node.target
|
|
381
|
+
|
|
382
|
+
def index_nhwc(x, indices=[], *args, **kwargs):
|
|
383
|
+
nonlocal op
|
|
384
|
+
indices = list(indices)
|
|
385
|
+
if len(indices) < 4:
|
|
386
|
+
indices += [None] * (4 - len(indices))
|
|
387
|
+
|
|
388
|
+
indices[1:4] = indices[2], indices[3], indices[1]
|
|
389
|
+
return op(x, indices, *args, **kwargs)
|
|
390
|
+
|
|
391
|
+
node.target = index_nhwc
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
@rewriters.register(aten.reflection_pad2d.default)
|
|
395
|
+
def _aten_reflection_pad2d(node):
|
|
396
|
+
def reflection_pad2d_nhwc(x, padding):
|
|
397
|
+
padding = [0, 0] + padding
|
|
398
|
+
return torch.nn.functional.pad(x, padding, mode="reflect")
|
|
399
|
+
|
|
400
|
+
node.target = reflection_pad2d_nhwc
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class OpFuncRegistry(dict):
|
|
21
|
+
|
|
22
|
+
def register(self, op):
|
|
23
|
+
ops = utils.flatten_torch_op_overloads(op)
|
|
24
|
+
|
|
25
|
+
def inner(func):
|
|
26
|
+
for op in ops:
|
|
27
|
+
self[op] = func
|
|
28
|
+
return func
|
|
29
|
+
|
|
30
|
+
return inner
|