ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/__init__.py +31 -0
- ai_edge_torch/convert/__init__.py +14 -0
- ai_edge_torch/convert/conversion.py +117 -0
- ai_edge_torch/convert/conversion_utils.py +400 -0
- ai_edge_torch/convert/converter.py +202 -0
- ai_edge_torch/convert/fx_passes/__init__.py +59 -0
- ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +225 -0
- ai_edge_torch/convert/fx_passes/build_interpolate_composite_pass.py +123 -0
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
- ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +293 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
- ai_edge_torch/convert/test/__init__.py +14 -0
- ai_edge_torch/convert/test/test_convert.py +311 -0
- ai_edge_torch/convert/test/test_convert_composites.py +192 -0
- ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
- ai_edge_torch/convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/convert/to_channel_last_io.py +85 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +464 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +133 -0
- ai_edge_torch/debug/test/test_search_model.py +50 -0
- ai_edge_torch/debug/utils.py +48 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
- ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
- ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +106 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +115 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +142 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +317 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +573 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +118 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +222 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +61 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +65 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +73 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +38 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +71 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
- ai_edge_torch/generative/examples/t5/t5.py +608 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +231 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +122 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +161 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
- ai_edge_torch/generative/fx_passes/__init__.py +31 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +47 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +354 -0
- ai_edge_torch/generative/layers/attention_utils.py +169 -0
- ai_edge_torch/generative/layers/builder.py +131 -0
- ai_edge_torch/generative/layers/feed_forward.py +95 -0
- ai_edge_torch/generative/layers/kv_cache.py +83 -0
- ai_edge_torch/generative/layers/model_config.py +158 -0
- ai_edge_torch/generative/layers/normalization.py +62 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +117 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +711 -0
- ai_edge_torch/generative/layers/unet/builder.py +47 -0
- ai_edge_torch/generative/layers/unet/model_config.py +269 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/translate_recipe.py +148 -0
- ai_edge_torch/generative/quantize/example.py +45 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +151 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/loader_test.py +80 -0
- ai_edge_torch/generative/test/test_model_conversion.py +235 -0
- ai_edge_torch/generative/test/test_quantize.py +162 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/loader.py +328 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +924 -0
- ai_edge_torch/generative/utilities/t5_loader.py +483 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
- ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +273 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
- ai_edge_torch/model.py +142 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
- ai_edge_torch/quantize/quant_config.py +81 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +132 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/METADATA +38 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +121 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,169 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Common utility functions used with attention module.
|
|
16
|
+
|
|
17
|
+
import math
|
|
18
|
+
from typing import Tuple
|
|
19
|
+
|
|
20
|
+
import torch
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def build_rope_cache(
|
|
24
|
+
size: int,
|
|
25
|
+
dim: int,
|
|
26
|
+
base: int = 10000,
|
|
27
|
+
condense_ratio: int = 1,
|
|
28
|
+
dtype: torch.dtype = torch.float32,
|
|
29
|
+
device: torch.device = None,
|
|
30
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
31
|
+
"""Precompute Rotary Positional Embedding Sin and Cos values for quick lookups
|
|
32
|
+
during the inference.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
size (int): The size of the built cache.
|
|
36
|
+
dim (int): Each sequence's dimmension.
|
|
37
|
+
base (int, optional): Rope base value. Defaults to 10000.
|
|
38
|
+
condense_ratio (int, optional): The ratio by which sequence indicies are
|
|
39
|
+
condensed. Defaults to 1.
|
|
40
|
+
dtype (torch.dtype, optional): Output tensor's data type. Defaults to
|
|
41
|
+
torch.float32.
|
|
42
|
+
device (torch.device, optional): Output tensor's data type. Defaults to
|
|
43
|
+
None in which case "cpu" is used.
|
|
44
|
+
|
|
45
|
+
Returns:
|
|
46
|
+
Tuple[torch.Tensor, torch.Tensor]: Rope's Cosine and Sine waves.
|
|
47
|
+
"""
|
|
48
|
+
if device is None:
|
|
49
|
+
device = torch.device('cpu')
|
|
50
|
+
theta = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
|
51
|
+
seq_idx = torch.arange(size) / condense_ratio
|
|
52
|
+
idx_theta = torch.outer(seq_idx, theta)
|
|
53
|
+
cos = torch.cos(idx_theta).to(dtype=dtype, device=device)
|
|
54
|
+
sin = torch.sin(idx_theta).to(dtype=dtype, device=device)
|
|
55
|
+
return cos, sin
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def build_causal_mask_cache(
|
|
59
|
+
size: int,
|
|
60
|
+
dtype: torch.dtype = torch.float32,
|
|
61
|
+
device: torch.device = None,
|
|
62
|
+
) -> torch.Tensor:
|
|
63
|
+
"""Build a cache for causal attention mask.
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
size (int): The size of the built mask cache.
|
|
67
|
+
dtype (torch.dtype, optional): Output tensor's data type. Defaults to
|
|
68
|
+
torch.float32.
|
|
69
|
+
device (torch.device, optional): Output tensor's data type. Defaults to
|
|
70
|
+
None in which case "cpu" is used.
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
torch.Tensor: Causal attention mask.
|
|
74
|
+
"""
|
|
75
|
+
if device is None:
|
|
76
|
+
device = torch.device('cpu')
|
|
77
|
+
mask = torch.full((size, size), float('-inf'), dtype=dtype, device=device)
|
|
78
|
+
return torch.triu(mask, diagonal=1).unsqueeze(0).unsqueeze(0)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def relative_position_bucket(
|
|
82
|
+
relative_position: torch.Tensor,
|
|
83
|
+
bidirectional: bool,
|
|
84
|
+
num_buckets: int,
|
|
85
|
+
max_distance: int,
|
|
86
|
+
) -> torch.Tensor:
|
|
87
|
+
"""
|
|
88
|
+
Adapted from Mesh Tensorflow:
|
|
89
|
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
|
90
|
+
|
|
91
|
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
|
92
|
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
|
93
|
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
|
94
|
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
|
95
|
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
|
96
|
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
|
97
|
+
|
|
98
|
+
Args:
|
|
99
|
+
relative_position: an int32 Tensor
|
|
100
|
+
bidirectional: a boolean - whether the attention is bidirectional
|
|
101
|
+
num_buckets: an integer for number of buckets.
|
|
102
|
+
max_distance: an integer for max distance.
|
|
103
|
+
|
|
104
|
+
Returns:
|
|
105
|
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
|
106
|
+
"""
|
|
107
|
+
relative_buckets = 0
|
|
108
|
+
if bidirectional:
|
|
109
|
+
num_buckets //= 2
|
|
110
|
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
|
111
|
+
relative_position = torch.abs(relative_position)
|
|
112
|
+
else:
|
|
113
|
+
relative_position = -torch.min(
|
|
114
|
+
relative_position, torch.zeros_like(relative_position)
|
|
115
|
+
)
|
|
116
|
+
# now relative_position is in the range [0, inf)
|
|
117
|
+
|
|
118
|
+
# half of the buckets are for exact increments in positions
|
|
119
|
+
max_exact = num_buckets // 2
|
|
120
|
+
is_small = relative_position < max_exact
|
|
121
|
+
|
|
122
|
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
|
123
|
+
relative_position_if_large = max_exact + (
|
|
124
|
+
torch.log(relative_position.float() / max_exact)
|
|
125
|
+
/ math.log(max_distance / max_exact)
|
|
126
|
+
* (num_buckets - max_exact)
|
|
127
|
+
).to(torch.long)
|
|
128
|
+
relative_position_if_large = torch.min(
|
|
129
|
+
relative_position_if_large,
|
|
130
|
+
torch.full_like(relative_position_if_large, num_buckets - 1),
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
relative_buckets += torch.where(
|
|
134
|
+
is_small, relative_position, relative_position_if_large
|
|
135
|
+
)
|
|
136
|
+
return relative_buckets
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def build_relative_position_buckets(
|
|
140
|
+
query_length: int,
|
|
141
|
+
key_length: int,
|
|
142
|
+
bidirectional: bool = True,
|
|
143
|
+
num_buckets: int = 32,
|
|
144
|
+
max_distance: int = 128,
|
|
145
|
+
) -> torch.Tensor:
|
|
146
|
+
"""Relative position buckets for computing bias.
|
|
147
|
+
|
|
148
|
+
Args:
|
|
149
|
+
query_length: an integer of length of current query tensor.
|
|
150
|
+
key_length: an integer of length of current key tensor.
|
|
151
|
+
bidirectional: a boolean - whether the attention is bidirectional, default is True.
|
|
152
|
+
num_buckets: an integer for number of buckets, default is 32.
|
|
153
|
+
max_distance: an integer for max distance, default is 128.
|
|
154
|
+
|
|
155
|
+
Returns:
|
|
156
|
+
A torch.Tensor of computed relative position buckets.
|
|
157
|
+
"""
|
|
158
|
+
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
|
159
|
+
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
|
160
|
+
relative_position = (
|
|
161
|
+
memory_position - context_position
|
|
162
|
+
) # shape (query_length, key_length)
|
|
163
|
+
rel_pos_bucket = relative_position_bucket(
|
|
164
|
+
relative_position, # shape (query_length, key_length)
|
|
165
|
+
bidirectional=bidirectional,
|
|
166
|
+
num_buckets=num_buckets,
|
|
167
|
+
max_distance=max_distance,
|
|
168
|
+
)
|
|
169
|
+
return rel_pos_bucket.unsqueeze(0).unsqueeze(0)
|
|
@@ -0,0 +1,131 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Builder class for individual components.
|
|
16
|
+
import torch
|
|
17
|
+
from torch import nn
|
|
18
|
+
import torch.nn.functional as F
|
|
19
|
+
|
|
20
|
+
import ai_edge_torch.generative.layers.feed_forward as feed_forward
|
|
21
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
|
22
|
+
import ai_edge_torch.generative.layers.normalization as normalization
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class GeGLU(nn.Module):
|
|
26
|
+
"""GeGLU is an activation function which is a variant of GELU.
|
|
27
|
+
|
|
28
|
+
GeGLU(x) = (xW+b) * GELU(xV+c)
|
|
29
|
+
See: https://arxiv.org/abs/2002.05202v1
|
|
30
|
+
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
def __init__(self, d_in: int, d_out: int):
|
|
34
|
+
super().__init__()
|
|
35
|
+
self.proj = nn.Linear(d_in, d_out * 2)
|
|
36
|
+
|
|
37
|
+
def forward(self, x: torch.Tensor):
|
|
38
|
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
|
39
|
+
return x * F.gelu(gate)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def build_norm(dim: int, config: cfg.NormalizationConfig):
|
|
43
|
+
"""Builder function for normalizers.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
dim (int): dimension of the input tensor.
|
|
47
|
+
config (`NormalizationConfig` object): the normalization configuration.
|
|
48
|
+
|
|
49
|
+
Returns:
|
|
50
|
+
The constructed `nn.Module` normalization layer.
|
|
51
|
+
|
|
52
|
+
Raises:
|
|
53
|
+
ValueError: If config's `layer_norm_type` is not supported.
|
|
54
|
+
"""
|
|
55
|
+
if config.type == cfg.NormalizationType.NONE:
|
|
56
|
+
return lambda x: x
|
|
57
|
+
elif config.type == cfg.NormalizationType.RMS_NORM:
|
|
58
|
+
return normalization.RMSNorm(
|
|
59
|
+
dim,
|
|
60
|
+
eps=config.epsilon,
|
|
61
|
+
zero_centered_gamma=config.zero_centered,
|
|
62
|
+
)
|
|
63
|
+
elif config.type == cfg.NormalizationType.LAYER_NORM:
|
|
64
|
+
return nn.LayerNorm(dim, eps=config.epsilon)
|
|
65
|
+
elif config.type == cfg.NormalizationType.GROUP_NORM:
|
|
66
|
+
return nn.GroupNorm(config.group_num, dim, config.epsilon)
|
|
67
|
+
else:
|
|
68
|
+
raise ValueError("Unsupported norm type.")
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
|
72
|
+
"""Builder function for Feed Forward. Supports `Sequential` and `Gated`.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
dim (int): dimension of the input tensor.
|
|
76
|
+
config (`ModelConfig` object): the model configuration.
|
|
77
|
+
|
|
78
|
+
Returns:
|
|
79
|
+
The constructed `nn.Module` feedforward layer.
|
|
80
|
+
|
|
81
|
+
Raises:
|
|
82
|
+
ValueError: If config's `ff_type` is not supported.
|
|
83
|
+
"""
|
|
84
|
+
ff_type = config.type
|
|
85
|
+
if ff_type == cfg.FeedForwardType.SEQUENTIAL:
|
|
86
|
+
ff_module = feed_forward.SequentialFeedForward
|
|
87
|
+
elif ff_type == cfg.FeedForwardType.GATED:
|
|
88
|
+
ff_module = feed_forward.GatedFeedForward
|
|
89
|
+
else:
|
|
90
|
+
raise ValueError("Unsupported feedforward type.")
|
|
91
|
+
|
|
92
|
+
activation = get_activation(config.activation)
|
|
93
|
+
|
|
94
|
+
return ff_module(
|
|
95
|
+
dim=dim,
|
|
96
|
+
hidden_dim=config.intermediate_size,
|
|
97
|
+
activation=activation,
|
|
98
|
+
use_bias=config.use_bias,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
def get_activation(config: cfg.ActivationConfig):
|
|
103
|
+
"""Get pytorch callable activation from the activation config.
|
|
104
|
+
|
|
105
|
+
Args:
|
|
106
|
+
config (cfg.ActivationConfig): activation config.
|
|
107
|
+
|
|
108
|
+
Returns:
|
|
109
|
+
Activation function.
|
|
110
|
+
|
|
111
|
+
Raises:
|
|
112
|
+
ValueError: If activation config is not supported.
|
|
113
|
+
"""
|
|
114
|
+
if config.type == cfg.ActivationType.LINEAR:
|
|
115
|
+
return lambda x: x
|
|
116
|
+
elif config.type == cfg.ActivationType.SILU:
|
|
117
|
+
return F.silu
|
|
118
|
+
elif config.type == cfg.ActivationType.GELU:
|
|
119
|
+
return F.gelu
|
|
120
|
+
elif config.type == cfg.ActivationType.GELU_TANH:
|
|
121
|
+
return lambda x: F.gelu(x, approximate="tanh")
|
|
122
|
+
elif config.type == cfg.ActivationType.GELU_QUICK:
|
|
123
|
+
# GELU approximation that is fast but somewhat inaccurate.
|
|
124
|
+
# See: https://github.com/hendrycks/GELUs
|
|
125
|
+
return lambda x: x * F.sigmoid(1.702 * x)
|
|
126
|
+
elif config.type == cfg.ActivationType.GE_GLU:
|
|
127
|
+
return GeGLU(config.dim_in, config.dim_out)
|
|
128
|
+
elif config.type == cfg.ActivationType.RELU:
|
|
129
|
+
return F.relu
|
|
130
|
+
else:
|
|
131
|
+
raise ValueError("Unsupported activation type.")
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Common building blocks for FeedForward layers.
|
|
16
|
+
|
|
17
|
+
from typing import Callable
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
from torch import nn
|
|
21
|
+
import torch.nn.functional as F
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class SequentialFeedForward(nn.Module):
|
|
25
|
+
"""Vanilla sequential Feedforward with customizable activation."""
|
|
26
|
+
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
dim: int,
|
|
30
|
+
hidden_dim: int,
|
|
31
|
+
activation: Callable[[torch.Tensor], torch.Tensor],
|
|
32
|
+
use_bias=False,
|
|
33
|
+
):
|
|
34
|
+
"""Init function for feedforward layer.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
dim(int): embedding size.
|
|
38
|
+
hidden_dim(int): hidden dim size of the feedforward layer.
|
|
39
|
+
activation(Callable): activation function used in this block.
|
|
40
|
+
use_bias(Boolean): whether to use bias. Default is false.
|
|
41
|
+
"""
|
|
42
|
+
super().__init__()
|
|
43
|
+
self.act = activation
|
|
44
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
|
45
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=use_bias)
|
|
46
|
+
|
|
47
|
+
def forward(self, x):
|
|
48
|
+
"""Forward pass for Feedforward layer.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
x (torch.Tensor): the input tensor.
|
|
52
|
+
|
|
53
|
+
Returns:
|
|
54
|
+
torch.Tensor: output tensor after feedforward.
|
|
55
|
+
"""
|
|
56
|
+
return self.w2(self.act(self.w1(x)))
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
class GatedFeedForward(nn.Module):
|
|
60
|
+
"""Gated Feedforward with customizable activation.
|
|
61
|
+
|
|
62
|
+
https://arxiv.org/pdf/2002.05202v1.pdf
|
|
63
|
+
"""
|
|
64
|
+
|
|
65
|
+
def __init__(
|
|
66
|
+
self,
|
|
67
|
+
dim: int,
|
|
68
|
+
hidden_dim: int,
|
|
69
|
+
activation: Callable[[torch.Tensor], torch.Tensor],
|
|
70
|
+
use_bias=False,
|
|
71
|
+
):
|
|
72
|
+
"""Init function for feedforward layer.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
dim(int): embedding size.
|
|
76
|
+
hidden_dim(int): hidden dim size of the feedforward layer.
|
|
77
|
+
activation(Callable): activation function used in this block.
|
|
78
|
+
use_bias(Boolean): whether to use bias. Default is false.
|
|
79
|
+
"""
|
|
80
|
+
super().__init__()
|
|
81
|
+
self.act = activation
|
|
82
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
|
83
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=use_bias)
|
|
84
|
+
self.w3 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
|
85
|
+
|
|
86
|
+
def forward(self, x):
|
|
87
|
+
"""Forward pass for Feedforward layer.
|
|
88
|
+
|
|
89
|
+
Args:
|
|
90
|
+
x (torch.Tensor): the input tensor.
|
|
91
|
+
|
|
92
|
+
Returns:
|
|
93
|
+
torch.Tensor: output tensor after feedforward.
|
|
94
|
+
"""
|
|
95
|
+
return self.w2(self.act(self.w1(x)) * self.w3(x))
|
|
@@ -0,0 +1,83 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# `nn.Module` which implements a KV cache.
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
from torch import nn
|
|
19
|
+
import torch_xla
|
|
20
|
+
|
|
21
|
+
from ai_edge_torch.hlfb import StableHLOCompositeBuilder
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class KVCache(nn.Module):
|
|
25
|
+
|
|
26
|
+
def __init__(self, batch_size, kv_cache_max, n_heads, head_dim, enable_hlfb=False):
|
|
27
|
+
"""Initializes the KVCache layer.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
batch_size (int): batch size. Currently only batch size 1 is supported.
|
|
31
|
+
kv_cache_max (int): the max length of KV cache.
|
|
32
|
+
n_heads (int): number of kv heads.
|
|
33
|
+
head_dim (int): the head dimension size.
|
|
34
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
|
35
|
+
"""
|
|
36
|
+
super().__init__()
|
|
37
|
+
cache_shape = (batch_size, kv_cache_max, n_heads, head_dim)
|
|
38
|
+
self.register_buffer("k_cache", torch.zeros(cache_shape), persistent=False)
|
|
39
|
+
self.register_buffer("v_cache", torch.zeros(cache_shape), persistent=False)
|
|
40
|
+
self.enable_hlfb = enable_hlfb
|
|
41
|
+
self.kv_cache_max = kv_cache_max
|
|
42
|
+
|
|
43
|
+
def update_cache(self, input_pos, k_val, v_val):
|
|
44
|
+
"""Update an entry in the KV cache.
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
input_pos (torch.Tensor): the input position.
|
|
48
|
+
k_val (torch.Tensor): the new `key` value.
|
|
49
|
+
v_val (torch.Tensor): the new `value` value.
|
|
50
|
+
|
|
51
|
+
Returns:
|
|
52
|
+
The updated key and value tensor.
|
|
53
|
+
"""
|
|
54
|
+
if self.enable_hlfb:
|
|
55
|
+
return self.update_cache_with_hlfb(input_pos, k_val, v_val)
|
|
56
|
+
|
|
57
|
+
updated_k = self.k_cache.index_copy_(1, input_pos, k_val)
|
|
58
|
+
updated_v = self.v_cache.index_copy_(1, input_pos, v_val)
|
|
59
|
+
# Here we need a clone otherwise dynamo export will fail.
|
|
60
|
+
return torch.clone(updated_k), torch.clone(updated_v)
|
|
61
|
+
|
|
62
|
+
def update_cache_with_hlfb(self, input_pos, k_val, v_val):
|
|
63
|
+
"""Update an entry in the KV cache and enable high-level function boundary.
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
input_pos (torch.Tensor): the input position.
|
|
67
|
+
k_val (torch.Tensor): the new `key` value.
|
|
68
|
+
v_val (torch.Tensor): the new `value` value.
|
|
69
|
+
|
|
70
|
+
Returns:
|
|
71
|
+
The updated key and value tensor.
|
|
72
|
+
"""
|
|
73
|
+
|
|
74
|
+
builder = StableHLOCompositeBuilder(
|
|
75
|
+
name="odml.update_kv_cache", attr={"kv_cache_max": self.kv_cache_max}
|
|
76
|
+
)
|
|
77
|
+
k_cache, v_cache, input_pos, k_val, v_val = builder.mark_inputs(
|
|
78
|
+
self.k_cache, self.v_cache, input_pos, k_val, v_val
|
|
79
|
+
)
|
|
80
|
+
updated_k = k_cache.index_copy_(1, input_pos, k_val)
|
|
81
|
+
updated_v = v_cache.index_copy_(1, input_pos, v_val)
|
|
82
|
+
updated_k, updated_v = builder.mark_outputs(updated_k, updated_v)
|
|
83
|
+
return updated_k, updated_v
|
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Model configuration class.
|
|
16
|
+
from dataclasses import dataclass
|
|
17
|
+
from dataclasses import field
|
|
18
|
+
import enum
|
|
19
|
+
from typing import Optional
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@enum.unique
|
|
23
|
+
class ActivationType(enum.Enum):
|
|
24
|
+
"""Different activation functions supported by the default builder."""
|
|
25
|
+
|
|
26
|
+
LINEAR = enum.auto()
|
|
27
|
+
SILU = enum.auto()
|
|
28
|
+
GELU = enum.auto()
|
|
29
|
+
GELU_TANH = enum.auto()
|
|
30
|
+
GELU_QUICK = enum.auto()
|
|
31
|
+
GE_GLU = enum.auto()
|
|
32
|
+
RELU = enum.auto()
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@enum.unique
|
|
36
|
+
class NormalizationType(enum.Enum):
|
|
37
|
+
"""Different normalization functions"""
|
|
38
|
+
|
|
39
|
+
# No normalization is applied.
|
|
40
|
+
NONE = enum.auto()
|
|
41
|
+
RMS_NORM = enum.auto()
|
|
42
|
+
LAYER_NORM = enum.auto()
|
|
43
|
+
GROUP_NORM = enum.auto()
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
@enum.unique
|
|
47
|
+
class FeedForwardType(enum.Enum):
|
|
48
|
+
"""Different variations of the Feed Forward module."""
|
|
49
|
+
|
|
50
|
+
# `output = linear(act(linear(x)))`.
|
|
51
|
+
SEQUENTIAL = enum.auto()
|
|
52
|
+
# `output = linear_2(act(linear_1(x)) * lienar_3(x))`.
|
|
53
|
+
GATED = enum.auto()
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
@dataclass
|
|
57
|
+
class AttentionConfig:
|
|
58
|
+
"""Attention moduel's parameters."""
|
|
59
|
+
|
|
60
|
+
num_heads: int
|
|
61
|
+
# Used to determine number of groups in grouped query attention (GQA)
|
|
62
|
+
# https://arxiv.org/pdf/2305.13245.pdf
|
|
63
|
+
num_query_groups: Optional[int]
|
|
64
|
+
# Percentage of Rotary Positional Embedding added Q and K projections.
|
|
65
|
+
rotary_percentage: Optional[float] = None
|
|
66
|
+
# Whether to transpose the query groups of qkv bundled tensor before
|
|
67
|
+
# splitting into separated tensors.
|
|
68
|
+
qkv_transpose_before_split: bool = False
|
|
69
|
+
# Whether to use bias with Query, Key, and Value projection.
|
|
70
|
+
qkv_use_bias: bool = False
|
|
71
|
+
# Whether the fused q, k, v projection weights interleaves q, k, v heads.
|
|
72
|
+
# If True, the projection weights are in format [q_head_0, k_head_0, v_head_0, q_head_1, k_head_1, v_head_1, ...]
|
|
73
|
+
# If False, the projection weights are in format [q_head_0, q_head_1, ..., k_head_0, k_head_1, ... v_head_0, v_head_1, ...]
|
|
74
|
+
qkv_fused_interleaved: bool = True
|
|
75
|
+
# Whether to use bias with attention output projection.
|
|
76
|
+
output_proj_use_bias: bool = False
|
|
77
|
+
enable_kv_cache: bool = True
|
|
78
|
+
relative_attention_num_buckets: int = 0
|
|
79
|
+
relative_attention_max_distance: int = 0
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
@dataclass
|
|
83
|
+
class ActivationConfig:
|
|
84
|
+
type: ActivationType = ActivationType.LINEAR
|
|
85
|
+
# Dimension of input and output, used in GeGLU.
|
|
86
|
+
dim_in: Optional[int] = None
|
|
87
|
+
dim_out: Optional[int] = None
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
@dataclass
|
|
91
|
+
class FeedForwardConfig:
|
|
92
|
+
"""FeedForward module's parameters."""
|
|
93
|
+
|
|
94
|
+
type: FeedForwardType
|
|
95
|
+
activation: ActivationConfig
|
|
96
|
+
intermediate_size: int
|
|
97
|
+
use_bias: bool = False
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
@dataclass
|
|
101
|
+
class NormalizationConfig:
|
|
102
|
+
"""Normalizater parameters."""
|
|
103
|
+
|
|
104
|
+
type: NormalizationType = NormalizationType.NONE
|
|
105
|
+
epsilon: float = 1e-5
|
|
106
|
+
zero_centered: bool = False
|
|
107
|
+
# Number of groups used in group normalization.
|
|
108
|
+
group_num: Optional[float] = None
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
@dataclass
|
|
112
|
+
class ModelConfig:
|
|
113
|
+
"""Base configurations for building a transformer architecture."""
|
|
114
|
+
|
|
115
|
+
vocab_size: int
|
|
116
|
+
num_layers: int
|
|
117
|
+
max_seq_len: int
|
|
118
|
+
embedding_dim: int
|
|
119
|
+
|
|
120
|
+
attn_config: AttentionConfig
|
|
121
|
+
ff_config: FeedForwardConfig
|
|
122
|
+
# The normalization applied to attention's input.
|
|
123
|
+
pre_attention_norm_config: NormalizationConfig = field(
|
|
124
|
+
default_factory=NormalizationConfig
|
|
125
|
+
)
|
|
126
|
+
# The normalization applied to feed forward's input.
|
|
127
|
+
pre_ff_norm_config: NormalizationConfig = field(default_factory=NormalizationConfig)
|
|
128
|
+
# The normalization applied before LM head.
|
|
129
|
+
final_norm_config: NormalizationConfig = field(default_factory=NormalizationConfig)
|
|
130
|
+
|
|
131
|
+
# If set to True, only pre_attention_norm is applied to the input and the
|
|
132
|
+
# decode's output is computed as `output = input + attn_out + ff_out` where
|
|
133
|
+
# attention and feed forward are called with pre_attention_norm's output.
|
|
134
|
+
parallel_residual: bool = False
|
|
135
|
+
# Use bias term within LLM's HEAD.
|
|
136
|
+
lm_head_use_bias: bool = False
|
|
137
|
+
# Whether to turn on high-level function boundary.
|
|
138
|
+
enable_hlfb: bool = False
|
|
139
|
+
|
|
140
|
+
# The maximum sequence length of the KV cache. Should not exceed max_seq_len.
|
|
141
|
+
kv_cache_max_len: int = 0
|
|
142
|
+
|
|
143
|
+
# The Attention computation will include relative positional bias.
|
|
144
|
+
relative_attention: bool = False
|
|
145
|
+
|
|
146
|
+
# Default batch size of the exported model. Default value is 1.
|
|
147
|
+
batch_size: int = 1
|
|
148
|
+
|
|
149
|
+
@property
|
|
150
|
+
def kv_cache_max(self) -> int:
|
|
151
|
+
if self.kv_cache_max_len > 0:
|
|
152
|
+
return self.kv_cache_max_len
|
|
153
|
+
else:
|
|
154
|
+
return self.max_seq_len
|
|
155
|
+
|
|
156
|
+
@property
|
|
157
|
+
def head_dim(self) -> int:
|
|
158
|
+
return self.embedding_dim // self.attn_config.num_heads
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Common normalization layers.
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
# Implementation for RMSNorm from: https://arxiv.org/abs/1910.07467
|
|
21
|
+
class RMSNorm(torch.nn.Module):
|
|
22
|
+
|
|
23
|
+
def __init__(self, dim: int, eps: float = 1e-6, zero_centered_gamma=False):
|
|
24
|
+
"""
|
|
25
|
+
Initialize the RMSNorm layer.
|
|
26
|
+
|
|
27
|
+
Args:
|
|
28
|
+
dim (int): dimension of the input tensor.
|
|
29
|
+
eps (float): A small float value to ensure numerical stability (default: 1e-6).
|
|
30
|
+
"""
|
|
31
|
+
super().__init__()
|
|
32
|
+
self.eps = eps
|
|
33
|
+
self.weight = torch.nn.Parameter(torch.ones(dim))
|
|
34
|
+
self.zero_centered_gamma = zero_centered_gamma
|
|
35
|
+
|
|
36
|
+
def _norm(self, x):
|
|
37
|
+
"""
|
|
38
|
+
Apply RMSNorm normalization.
|
|
39
|
+
|
|
40
|
+
Args:
|
|
41
|
+
x (torch.Tensor): input tensor.
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
torch.Tensor: The normalized output tensor.
|
|
45
|
+
"""
|
|
46
|
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
47
|
+
|
|
48
|
+
def forward(self, x):
|
|
49
|
+
"""
|
|
50
|
+
Running the forward pass of RMSNorm layer.
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
x (torch.Tensor): input tensor.
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
torch.Tensor: output tensor after applying RMSNorm.
|
|
57
|
+
"""
|
|
58
|
+
output = self._norm(x.float()).type_as(x)
|
|
59
|
+
if self.zero_centered_gamma:
|
|
60
|
+
return output * (1 + self.weight)
|
|
61
|
+
else:
|
|
62
|
+
return output * self.weight
|