ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ai-edge-torch-nightly might be problematic. Click here for more details.

Files changed (121) hide show
  1. ai_edge_torch/__init__.py +31 -0
  2. ai_edge_torch/convert/__init__.py +14 -0
  3. ai_edge_torch/convert/conversion.py +117 -0
  4. ai_edge_torch/convert/conversion_utils.py +400 -0
  5. ai_edge_torch/convert/converter.py +202 -0
  6. ai_edge_torch/convert/fx_passes/__init__.py +59 -0
  7. ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
  8. ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +225 -0
  9. ai_edge_torch/convert/fx_passes/build_interpolate_composite_pass.py +123 -0
  10. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
  11. ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  12. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  13. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
  14. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
  15. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
  16. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
  17. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +215 -0
  18. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
  19. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  20. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +293 -0
  21. ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
  22. ai_edge_torch/convert/test/__init__.py +14 -0
  23. ai_edge_torch/convert/test/test_convert.py +311 -0
  24. ai_edge_torch/convert/test/test_convert_composites.py +192 -0
  25. ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
  26. ai_edge_torch/convert/test/test_to_channel_last_io.py +96 -0
  27. ai_edge_torch/convert/to_channel_last_io.py +85 -0
  28. ai_edge_torch/debug/__init__.py +17 -0
  29. ai_edge_torch/debug/culprit.py +464 -0
  30. ai_edge_torch/debug/test/__init__.py +14 -0
  31. ai_edge_torch/debug/test/test_culprit.py +133 -0
  32. ai_edge_torch/debug/test/test_search_model.py +50 -0
  33. ai_edge_torch/debug/utils.py +48 -0
  34. ai_edge_torch/experimental/__init__.py +14 -0
  35. ai_edge_torch/generative/__init__.py +14 -0
  36. ai_edge_torch/generative/examples/__init__.py +14 -0
  37. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  38. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
  39. ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
  40. ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
  42. ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
  43. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  44. ai_edge_torch/generative/examples/stable_diffusion/attention.py +106 -0
  45. ai_edge_torch/generative/examples/stable_diffusion/clip.py +115 -0
  46. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +142 -0
  47. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +317 -0
  48. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +573 -0
  49. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +118 -0
  50. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +222 -0
  51. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  52. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +61 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +65 -0
  54. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +73 -0
  55. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +38 -0
  56. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +108 -0
  57. ai_edge_torch/generative/examples/stable_diffusion/util.py +71 -0
  58. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  59. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
  60. ai_edge_torch/generative/examples/t5/t5.py +608 -0
  61. ai_edge_torch/generative/examples/t5/t5_attention.py +231 -0
  62. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  63. ai_edge_torch/generative/examples/test_models/toy_model.py +122 -0
  64. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +161 -0
  65. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
  66. ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
  67. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
  68. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
  69. ai_edge_torch/generative/fx_passes/__init__.py +31 -0
  70. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +47 -0
  71. ai_edge_torch/generative/layers/__init__.py +14 -0
  72. ai_edge_torch/generative/layers/attention.py +354 -0
  73. ai_edge_torch/generative/layers/attention_utils.py +169 -0
  74. ai_edge_torch/generative/layers/builder.py +131 -0
  75. ai_edge_torch/generative/layers/feed_forward.py +95 -0
  76. ai_edge_torch/generative/layers/kv_cache.py +83 -0
  77. ai_edge_torch/generative/layers/model_config.py +158 -0
  78. ai_edge_torch/generative/layers/normalization.py +62 -0
  79. ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
  80. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +117 -0
  81. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  82. ai_edge_torch/generative/layers/unet/blocks_2d.py +711 -0
  83. ai_edge_torch/generative/layers/unet/builder.py +47 -0
  84. ai_edge_torch/generative/layers/unet/model_config.py +269 -0
  85. ai_edge_torch/generative/quantize/__init__.py +14 -0
  86. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  87. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/translate_recipe.py +148 -0
  88. ai_edge_torch/generative/quantize/example.py +45 -0
  89. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  90. ai_edge_torch/generative/quantize/quant_recipe.py +151 -0
  91. ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
  92. ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
  93. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  94. ai_edge_torch/generative/test/__init__.py +14 -0
  95. ai_edge_torch/generative/test/loader_test.py +80 -0
  96. ai_edge_torch/generative/test/test_model_conversion.py +235 -0
  97. ai_edge_torch/generative/test/test_quantize.py +162 -0
  98. ai_edge_torch/generative/utilities/__init__.py +15 -0
  99. ai_edge_torch/generative/utilities/loader.py +328 -0
  100. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +924 -0
  101. ai_edge_torch/generative/utilities/t5_loader.py +483 -0
  102. ai_edge_torch/hlfb/__init__.py +16 -0
  103. ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
  104. ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
  105. ai_edge_torch/hlfb/mark_pattern/pattern.py +273 -0
  106. ai_edge_torch/hlfb/test/__init__.py +14 -0
  107. ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
  108. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
  109. ai_edge_torch/model.py +142 -0
  110. ai_edge_torch/quantize/__init__.py +16 -0
  111. ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
  112. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
  113. ai_edge_torch/quantize/quant_config.py +81 -0
  114. ai_edge_torch/testing/__init__.py +14 -0
  115. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  116. ai_edge_torch/testing/model_coverage/model_coverage.py +132 -0
  117. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/LICENSE +202 -0
  118. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/METADATA +38 -0
  119. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +121 -0
  120. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/WHEEL +5 -0
  121. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/top_level.txt +1 -0
@@ -0,0 +1,135 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import os
17
+ from pathlib import Path
18
+
19
+ import numpy as np
20
+ import torch
21
+
22
+ import ai_edge_torch
23
+ from ai_edge_torch.generative.examples.t5 import t5
24
+ from ai_edge_torch.generative.quantize import quant_recipes
25
+
26
+
27
+ # TODO(haoliang): clean this up untile 2-sig model is validated e2e.
28
+ def convert_t5_to_tflite_singlesig(checkpoint_path: str):
29
+ pytorch_model = t5.build_t5_model(checkpoint_path)
30
+
31
+ # encoder
32
+ seq_len = 512
33
+ prefill_e_tokens = torch.full((1, seq_len), 0, dtype=torch.long)
34
+ prompt_e_token = [1, 2, 3, 4, 5, 6]
35
+ prefill_e_tokens[0, : len(prompt_e_token)] = torch.tensor(
36
+ prompt_e_token, dtype=torch.long
37
+ )
38
+ prefill_e_input_pos = torch.arange(0, seq_len)
39
+ prefill_d_tokens = torch.full((1, seq_len), 0, dtype=torch.long)
40
+ prompt_d_token = [1, 2, 3, 4, 5, 6]
41
+ prefill_d_tokens[0, : len(prompt_d_token)] = torch.tensor(
42
+ prompt_d_token, dtype=torch.long
43
+ )
44
+ prefill_d_input_pos = torch.arange(0, seq_len)
45
+
46
+ # decoder
47
+ decode_token = torch.tensor([[1]], dtype=torch.long)
48
+ decode_input_pos = torch.tensor([0], dtype=torch.int64)
49
+ decode_d_token = torch.tensor([[1]], dtype=torch.long)
50
+ decode_d_input_pos = torch.tensor([0], dtype=torch.int64)
51
+
52
+ # Pad mask for self attention only on "real" tokens.
53
+ # Pad with `-inf` for any tokens indices that aren't desired.
54
+ pad_mask = torch.zeros([seq_len], dtype=torch.float32)
55
+
56
+ edge_model = ai_edge_torch.signature(
57
+ 'decode',
58
+ pytorch_model,
59
+ (
60
+ prefill_e_tokens,
61
+ prefill_e_input_pos,
62
+ decode_d_token,
63
+ decode_d_input_pos,
64
+ pad_mask,
65
+ ),
66
+ ).convert()
67
+
68
+ edge_model.export('/tmp/t5_encode_decode.tflite')
69
+
70
+
71
+ def convert_t5_to_tflite_multisig(checkpoint_path: str):
72
+ config = t5.get_model_config_t5()
73
+ embedding_layer = torch.nn.Embedding(
74
+ config.vocab_size, config.embedding_dim, padding_idx=0
75
+ )
76
+ t5_encoder_model = t5.build_t5_encoder_model(config, embedding_layer, checkpoint_path)
77
+ t5_decoder_model = t5.build_t5_decoder_model(config, embedding_layer, checkpoint_path)
78
+
79
+ # encoder
80
+ seq_len = 512
81
+ prefill_e_tokens = torch.full((1, seq_len), 0, dtype=torch.long)
82
+ prompt_e_token = [1, 2, 3, 4, 5, 6]
83
+ prefill_e_tokens[0, : len(prompt_e_token)] = torch.tensor(
84
+ prompt_e_token, dtype=torch.long
85
+ )
86
+ prefill_e_input_pos = torch.arange(0, seq_len)
87
+ prefill_d_tokens = torch.full((1, seq_len), 0, dtype=torch.long)
88
+ prompt_d_token = [1, 2, 3, 4, 5, 6]
89
+ prefill_d_tokens[0, : len(prompt_d_token)] = torch.tensor(
90
+ prompt_d_token, dtype=torch.long
91
+ )
92
+ prefill_d_input_pos = torch.arange(0, seq_len)
93
+
94
+ # decoder
95
+ decode_token = torch.tensor([[1]], dtype=torch.long)
96
+ decode_input_pos = torch.tensor([0], dtype=torch.int64)
97
+ decode_d_token = torch.tensor([[1]], dtype=torch.long)
98
+ decode_d_input_pos = torch.tensor([0], dtype=torch.int64)
99
+
100
+ # Pad mask for self attention only on "real" tokens.
101
+ # Pad with `-inf` for any tokens indices that aren't desired.
102
+ pad_mask = torch.zeros([seq_len], dtype=torch.float32)
103
+ hidden_states = torch.zeros((1, 512, 768), dtype=torch.float32)
104
+ quant_config = quant_recipes.full_int8_dynamic_recipe()
105
+
106
+ edge_model = (
107
+ ai_edge_torch.signature(
108
+ 'encode',
109
+ t5_encoder_model,
110
+ (
111
+ prefill_e_tokens,
112
+ prefill_e_input_pos,
113
+ pad_mask,
114
+ ),
115
+ )
116
+ .signature(
117
+ 'decode',
118
+ t5_decoder_model,
119
+ (
120
+ hidden_states,
121
+ decode_d_token,
122
+ decode_d_input_pos,
123
+ pad_mask,
124
+ ),
125
+ )
126
+ .convert(quant_config=quant_config)
127
+ )
128
+
129
+ edge_model.export('/tmp/t5_encode_decode_2_sigs.tflite')
130
+
131
+
132
+ if __name__ == '__main__':
133
+ checkpoint_path = os.path.join(Path.home(), 'Downloads/llm_data/t5')
134
+ # convert_t5_to_tflite_singlesig(checkpoint_path)
135
+ convert_t5_to_tflite_multisig(checkpoint_path)