ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/__init__.py +31 -0
- ai_edge_torch/convert/__init__.py +14 -0
- ai_edge_torch/convert/conversion.py +117 -0
- ai_edge_torch/convert/conversion_utils.py +400 -0
- ai_edge_torch/convert/converter.py +202 -0
- ai_edge_torch/convert/fx_passes/__init__.py +59 -0
- ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +225 -0
- ai_edge_torch/convert/fx_passes/build_interpolate_composite_pass.py +123 -0
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
- ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +293 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
- ai_edge_torch/convert/test/__init__.py +14 -0
- ai_edge_torch/convert/test/test_convert.py +311 -0
- ai_edge_torch/convert/test/test_convert_composites.py +192 -0
- ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
- ai_edge_torch/convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/convert/to_channel_last_io.py +85 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +464 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +133 -0
- ai_edge_torch/debug/test/test_search_model.py +50 -0
- ai_edge_torch/debug/utils.py +48 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
- ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
- ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +106 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +115 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +142 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +317 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +573 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +118 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +222 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +61 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +65 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +73 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +38 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +71 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
- ai_edge_torch/generative/examples/t5/t5.py +608 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +231 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +122 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +161 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
- ai_edge_torch/generative/fx_passes/__init__.py +31 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +47 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +354 -0
- ai_edge_torch/generative/layers/attention_utils.py +169 -0
- ai_edge_torch/generative/layers/builder.py +131 -0
- ai_edge_torch/generative/layers/feed_forward.py +95 -0
- ai_edge_torch/generative/layers/kv_cache.py +83 -0
- ai_edge_torch/generative/layers/model_config.py +158 -0
- ai_edge_torch/generative/layers/normalization.py +62 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +117 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +711 -0
- ai_edge_torch/generative/layers/unet/builder.py +47 -0
- ai_edge_torch/generative/layers/unet/model_config.py +269 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/translate_recipe.py +148 -0
- ai_edge_torch/generative/quantize/example.py +45 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +151 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/loader_test.py +80 -0
- ai_edge_torch/generative/test/test_model_conversion.py +235 -0
- ai_edge_torch/generative/test/test_quantize.py +162 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/loader.py +328 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +924 -0
- ai_edge_torch/generative/utilities/t5_loader.py +483 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
- ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +273 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
- ai_edge_torch/model.py +142 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
- ai_edge_torch/quantize/quant_config.py +81 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +132 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/METADATA +38 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +121 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
from pathlib import Path
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
import torch
|
|
21
|
+
|
|
22
|
+
import ai_edge_torch
|
|
23
|
+
from ai_edge_torch.generative.examples.t5 import t5
|
|
24
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
# TODO(haoliang): clean this up untile 2-sig model is validated e2e.
|
|
28
|
+
def convert_t5_to_tflite_singlesig(checkpoint_path: str):
|
|
29
|
+
pytorch_model = t5.build_t5_model(checkpoint_path)
|
|
30
|
+
|
|
31
|
+
# encoder
|
|
32
|
+
seq_len = 512
|
|
33
|
+
prefill_e_tokens = torch.full((1, seq_len), 0, dtype=torch.long)
|
|
34
|
+
prompt_e_token = [1, 2, 3, 4, 5, 6]
|
|
35
|
+
prefill_e_tokens[0, : len(prompt_e_token)] = torch.tensor(
|
|
36
|
+
prompt_e_token, dtype=torch.long
|
|
37
|
+
)
|
|
38
|
+
prefill_e_input_pos = torch.arange(0, seq_len)
|
|
39
|
+
prefill_d_tokens = torch.full((1, seq_len), 0, dtype=torch.long)
|
|
40
|
+
prompt_d_token = [1, 2, 3, 4, 5, 6]
|
|
41
|
+
prefill_d_tokens[0, : len(prompt_d_token)] = torch.tensor(
|
|
42
|
+
prompt_d_token, dtype=torch.long
|
|
43
|
+
)
|
|
44
|
+
prefill_d_input_pos = torch.arange(0, seq_len)
|
|
45
|
+
|
|
46
|
+
# decoder
|
|
47
|
+
decode_token = torch.tensor([[1]], dtype=torch.long)
|
|
48
|
+
decode_input_pos = torch.tensor([0], dtype=torch.int64)
|
|
49
|
+
decode_d_token = torch.tensor([[1]], dtype=torch.long)
|
|
50
|
+
decode_d_input_pos = torch.tensor([0], dtype=torch.int64)
|
|
51
|
+
|
|
52
|
+
# Pad mask for self attention only on "real" tokens.
|
|
53
|
+
# Pad with `-inf` for any tokens indices that aren't desired.
|
|
54
|
+
pad_mask = torch.zeros([seq_len], dtype=torch.float32)
|
|
55
|
+
|
|
56
|
+
edge_model = ai_edge_torch.signature(
|
|
57
|
+
'decode',
|
|
58
|
+
pytorch_model,
|
|
59
|
+
(
|
|
60
|
+
prefill_e_tokens,
|
|
61
|
+
prefill_e_input_pos,
|
|
62
|
+
decode_d_token,
|
|
63
|
+
decode_d_input_pos,
|
|
64
|
+
pad_mask,
|
|
65
|
+
),
|
|
66
|
+
).convert()
|
|
67
|
+
|
|
68
|
+
edge_model.export('/tmp/t5_encode_decode.tflite')
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def convert_t5_to_tflite_multisig(checkpoint_path: str):
|
|
72
|
+
config = t5.get_model_config_t5()
|
|
73
|
+
embedding_layer = torch.nn.Embedding(
|
|
74
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
|
75
|
+
)
|
|
76
|
+
t5_encoder_model = t5.build_t5_encoder_model(config, embedding_layer, checkpoint_path)
|
|
77
|
+
t5_decoder_model = t5.build_t5_decoder_model(config, embedding_layer, checkpoint_path)
|
|
78
|
+
|
|
79
|
+
# encoder
|
|
80
|
+
seq_len = 512
|
|
81
|
+
prefill_e_tokens = torch.full((1, seq_len), 0, dtype=torch.long)
|
|
82
|
+
prompt_e_token = [1, 2, 3, 4, 5, 6]
|
|
83
|
+
prefill_e_tokens[0, : len(prompt_e_token)] = torch.tensor(
|
|
84
|
+
prompt_e_token, dtype=torch.long
|
|
85
|
+
)
|
|
86
|
+
prefill_e_input_pos = torch.arange(0, seq_len)
|
|
87
|
+
prefill_d_tokens = torch.full((1, seq_len), 0, dtype=torch.long)
|
|
88
|
+
prompt_d_token = [1, 2, 3, 4, 5, 6]
|
|
89
|
+
prefill_d_tokens[0, : len(prompt_d_token)] = torch.tensor(
|
|
90
|
+
prompt_d_token, dtype=torch.long
|
|
91
|
+
)
|
|
92
|
+
prefill_d_input_pos = torch.arange(0, seq_len)
|
|
93
|
+
|
|
94
|
+
# decoder
|
|
95
|
+
decode_token = torch.tensor([[1]], dtype=torch.long)
|
|
96
|
+
decode_input_pos = torch.tensor([0], dtype=torch.int64)
|
|
97
|
+
decode_d_token = torch.tensor([[1]], dtype=torch.long)
|
|
98
|
+
decode_d_input_pos = torch.tensor([0], dtype=torch.int64)
|
|
99
|
+
|
|
100
|
+
# Pad mask for self attention only on "real" tokens.
|
|
101
|
+
# Pad with `-inf` for any tokens indices that aren't desired.
|
|
102
|
+
pad_mask = torch.zeros([seq_len], dtype=torch.float32)
|
|
103
|
+
hidden_states = torch.zeros((1, 512, 768), dtype=torch.float32)
|
|
104
|
+
quant_config = quant_recipes.full_int8_dynamic_recipe()
|
|
105
|
+
|
|
106
|
+
edge_model = (
|
|
107
|
+
ai_edge_torch.signature(
|
|
108
|
+
'encode',
|
|
109
|
+
t5_encoder_model,
|
|
110
|
+
(
|
|
111
|
+
prefill_e_tokens,
|
|
112
|
+
prefill_e_input_pos,
|
|
113
|
+
pad_mask,
|
|
114
|
+
),
|
|
115
|
+
)
|
|
116
|
+
.signature(
|
|
117
|
+
'decode',
|
|
118
|
+
t5_decoder_model,
|
|
119
|
+
(
|
|
120
|
+
hidden_states,
|
|
121
|
+
decode_d_token,
|
|
122
|
+
decode_d_input_pos,
|
|
123
|
+
pad_mask,
|
|
124
|
+
),
|
|
125
|
+
)
|
|
126
|
+
.convert(quant_config=quant_config)
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
edge_model.export('/tmp/t5_encode_decode_2_sigs.tflite')
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
if __name__ == '__main__':
|
|
133
|
+
checkpoint_path = os.path.join(Path.home(), 'Downloads/llm_data/t5')
|
|
134
|
+
# convert_t5_to_tflite_singlesig(checkpoint_path)
|
|
135
|
+
convert_t5_to_tflite_multisig(checkpoint_path)
|