ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/__init__.py +31 -0
- ai_edge_torch/convert/__init__.py +14 -0
- ai_edge_torch/convert/conversion.py +117 -0
- ai_edge_torch/convert/conversion_utils.py +400 -0
- ai_edge_torch/convert/converter.py +202 -0
- ai_edge_torch/convert/fx_passes/__init__.py +59 -0
- ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +225 -0
- ai_edge_torch/convert/fx_passes/build_interpolate_composite_pass.py +123 -0
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
- ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +293 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
- ai_edge_torch/convert/test/__init__.py +14 -0
- ai_edge_torch/convert/test/test_convert.py +311 -0
- ai_edge_torch/convert/test/test_convert_composites.py +192 -0
- ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
- ai_edge_torch/convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/convert/to_channel_last_io.py +85 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +464 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +133 -0
- ai_edge_torch/debug/test/test_search_model.py +50 -0
- ai_edge_torch/debug/utils.py +48 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
- ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
- ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +106 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +115 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +142 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +317 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +573 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +118 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +222 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +61 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +65 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +73 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +38 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +71 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
- ai_edge_torch/generative/examples/t5/t5.py +608 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +231 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +122 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +161 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
- ai_edge_torch/generative/fx_passes/__init__.py +31 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +47 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +354 -0
- ai_edge_torch/generative/layers/attention_utils.py +169 -0
- ai_edge_torch/generative/layers/builder.py +131 -0
- ai_edge_torch/generative/layers/feed_forward.py +95 -0
- ai_edge_torch/generative/layers/kv_cache.py +83 -0
- ai_edge_torch/generative/layers/model_config.py +158 -0
- ai_edge_torch/generative/layers/normalization.py +62 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +117 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +711 -0
- ai_edge_torch/generative/layers/unet/builder.py +47 -0
- ai_edge_torch/generative/layers/unet/model_config.py +269 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/translate_recipe.py +148 -0
- ai_edge_torch/generative/quantize/example.py +45 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +151 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/loader_test.py +80 -0
- ai_edge_torch/generative/test/test_model_conversion.py +235 -0
- ai_edge_torch/generative/test/test_quantize.py +162 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/loader.py +328 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +924 -0
- ai_edge_torch/generative/utilities/t5_loader.py +483 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
- ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +273 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
- ai_edge_torch/model.py +142 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
- ai_edge_torch/quantize/quant_config.py +81 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +132 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/METADATA +38 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +121 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,608 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Example of building a T5 model.
|
|
16
|
+
|
|
17
|
+
import copy
|
|
18
|
+
import os
|
|
19
|
+
from pathlib import Path
|
|
20
|
+
from typing import Optional, Tuple
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
import torch
|
|
24
|
+
import torch.nn as nn
|
|
25
|
+
|
|
26
|
+
from ai_edge_torch.generative.examples.t5.t5_attention import EncoderDecoderBlock # NOQA
|
|
27
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
|
28
|
+
import ai_edge_torch.generative.layers.builder as builder
|
|
29
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
|
30
|
+
import ai_edge_torch.generative.utilities.t5_loader as loading_utils
|
|
31
|
+
|
|
32
|
+
ENCDEC_TENSOR_NAMES = {
|
|
33
|
+
"ff_up_proj": "{prefix}.block.{}.layer.{num}.DenseReluDense.wi",
|
|
34
|
+
"ff_down_proj": "{prefix}.block.{}.layer.{num}.DenseReluDense.wo",
|
|
35
|
+
"attn_query_proj": "{prefix}.block.{}.layer.0.SelfAttention.q",
|
|
36
|
+
"attn_key_proj": "{prefix}.block.{}.layer.0.SelfAttention.k",
|
|
37
|
+
"attn_value_proj": "{prefix}.block.{}.layer.0.SelfAttention.v",
|
|
38
|
+
"attn_output_proj": "{prefix}.block.{}.layer.0.SelfAttention.o",
|
|
39
|
+
"relative_attn_bias": "{prefix}.block.0.layer.0.SelfAttention.relative_attention_bias",
|
|
40
|
+
"pre_attn_norm": "{prefix}.block.{}.layer.0.layer_norm",
|
|
41
|
+
"pre_ff_norm": "{prefix}.block.{}.layer.1.layer_norm",
|
|
42
|
+
"final_norm": "{prefix}.final_layer_norm",
|
|
43
|
+
}
|
|
44
|
+
|
|
45
|
+
TENSOR_NAMES = {"lm_head": "lm_head", "embedding": "shared"}
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class T5Stack(nn.Module):
|
|
49
|
+
|
|
50
|
+
def __init__(self, config, embed_tokens=None):
|
|
51
|
+
super().__init__()
|
|
52
|
+
self.config = config
|
|
53
|
+
self.embed_tokens = embed_tokens
|
|
54
|
+
self.is_decoder = config.is_decoder
|
|
55
|
+
self.transformer_blocks = nn.ModuleList(
|
|
56
|
+
[
|
|
57
|
+
EncoderDecoderBlock(config, has_relative_attention_bias=bool(i == 0))
|
|
58
|
+
for i in range(config.num_layers)
|
|
59
|
+
]
|
|
60
|
+
)
|
|
61
|
+
self.final_norm = builder.build_norm(config.embedding_dim, config.final_norm_config)
|
|
62
|
+
|
|
63
|
+
def forward(
|
|
64
|
+
self,
|
|
65
|
+
input_ids: torch.Tensor,
|
|
66
|
+
input_pos: torch.Tensor,
|
|
67
|
+
attention_mask: torch.Tensor,
|
|
68
|
+
relative_position: torch.Tensor,
|
|
69
|
+
encoder_hidden_states: Optional[
|
|
70
|
+
torch.Tensor
|
|
71
|
+
] = None, # should be for decoder case
|
|
72
|
+
encoder_attention_mask: Optional[
|
|
73
|
+
torch.Tensor
|
|
74
|
+
] = None, # should be for decoder case
|
|
75
|
+
):
|
|
76
|
+
input_shape = input_ids.size()
|
|
77
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
78
|
+
batch_size, seq_length = input_shape
|
|
79
|
+
hidden_states = inputs_embeds
|
|
80
|
+
position_bias = None
|
|
81
|
+
encoder_decoder_position_bias = None
|
|
82
|
+
for i, layer_module in enumerate(self.transformer_blocks):
|
|
83
|
+
# EncoderDecoderBlock.forward
|
|
84
|
+
hidden_states, position_bias, encoder_decoder_position_bias = layer_module(
|
|
85
|
+
hidden_states,
|
|
86
|
+
input_pos,
|
|
87
|
+
mask=attention_mask,
|
|
88
|
+
relative_position=relative_position,
|
|
89
|
+
position_bias=position_bias,
|
|
90
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
91
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
92
|
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
hidden_states = self.final_norm(hidden_states)
|
|
96
|
+
return hidden_states
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
class T5(nn.Module):
|
|
100
|
+
|
|
101
|
+
def __init__(self, config: cfg.ModelConfig):
|
|
102
|
+
super().__init__()
|
|
103
|
+
|
|
104
|
+
self.config = config
|
|
105
|
+
# Construct model layers.
|
|
106
|
+
self.tok_embedding = nn.Embedding(
|
|
107
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
encoder_config = copy.deepcopy(config)
|
|
111
|
+
encoder_config.is_decoder = False
|
|
112
|
+
encoder_config.attn_config.enable_kv_cache = False
|
|
113
|
+
self.encoder = T5Stack(encoder_config, self.tok_embedding)
|
|
114
|
+
|
|
115
|
+
decoder_config = copy.deepcopy(config)
|
|
116
|
+
decoder_config.is_decoder = True
|
|
117
|
+
self.decoder = T5Stack(decoder_config, self.tok_embedding)
|
|
118
|
+
self.lm_head = nn.Linear(
|
|
119
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
self.enc_attn_mask_cache = (
|
|
123
|
+
torch.zeros(
|
|
124
|
+
(config.kv_cache_max, config.kv_cache_max),
|
|
125
|
+
dtype=torch.float32,
|
|
126
|
+
device=torch.device("cpu"),
|
|
127
|
+
)
|
|
128
|
+
.unsqueeze(0)
|
|
129
|
+
.unsqueeze(0)
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
self.dec_attn_mask_cache = attn_utils.build_causal_mask_cache(
|
|
133
|
+
size=config.kv_cache_max, dtype=torch.float32, device=torch.device("cpu")
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
self.enc_rel_pos_mask = attn_utils.build_relative_position_buckets(
|
|
137
|
+
bidirectional=True,
|
|
138
|
+
query_length=config.kv_cache_max,
|
|
139
|
+
key_length=config.kv_cache_max,
|
|
140
|
+
num_buckets=config.attn_config.relative_attention_num_buckets,
|
|
141
|
+
max_distance=config.attn_config.relative_attention_max_distance,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
self.dec_rel_pos_mask = attn_utils.build_relative_position_buckets(
|
|
145
|
+
bidirectional=False,
|
|
146
|
+
query_length=config.kv_cache_max,
|
|
147
|
+
key_length=config.kv_cache_max,
|
|
148
|
+
num_buckets=config.attn_config.relative_attention_num_buckets,
|
|
149
|
+
max_distance=config.attn_config.relative_attention_max_distance,
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
@torch.inference_mode
|
|
153
|
+
def forward(
|
|
154
|
+
self,
|
|
155
|
+
input_ids: torch.Tensor,
|
|
156
|
+
input_pos: torch.Tensor,
|
|
157
|
+
decoder_input_ids: torch.Tensor,
|
|
158
|
+
decoder_input_pos: torch.Tensor,
|
|
159
|
+
pad_mask: torch.Tensor,
|
|
160
|
+
) -> torch.Tensor:
|
|
161
|
+
B, T = input_ids.size()
|
|
162
|
+
assert (
|
|
163
|
+
self.config.max_seq_len >= T
|
|
164
|
+
), f"Cannot forward sequence of length {T}, max seq length is only {self.config.max_seq_len}"
|
|
165
|
+
|
|
166
|
+
enc_mask = self.enc_attn_mask_cache.index_select(2, input_pos)
|
|
167
|
+
enc_mask = enc_mask[:, :, :, : self.config.kv_cache_max]
|
|
168
|
+
# Mask off any "pad" tokens that shouldn't contribute to self-attention
|
|
169
|
+
enc_mask[:, :, :, :] += pad_mask
|
|
170
|
+
dec_mask = self.dec_attn_mask_cache.index_select(2, decoder_input_pos)
|
|
171
|
+
dec_mask = dec_mask[:, :, :, : self.config.kv_cache_max]
|
|
172
|
+
enc_relative_position = self.enc_rel_pos_mask.index_select(2, input_pos)
|
|
173
|
+
enc_relative_position = enc_relative_position[:, :, :, : self.config.kv_cache_max]
|
|
174
|
+
dec_relative_position = self.enc_rel_pos_mask.index_select(2, decoder_input_pos)
|
|
175
|
+
dec_relative_position = dec_relative_position[:, :, :, : self.config.kv_cache_max]
|
|
176
|
+
enc_attention_mask = self.enc_attn_mask_cache.index_select(2, decoder_input_pos)
|
|
177
|
+
# Mask off any "pad" tokens that shouldn't contribute to cross attention
|
|
178
|
+
enc_attention_mask[:, :, :, :] += pad_mask
|
|
179
|
+
|
|
180
|
+
# Convert encoder inputs in embeddings if needed
|
|
181
|
+
encoder_hidden_states = self.encoder(
|
|
182
|
+
input_ids=input_ids,
|
|
183
|
+
input_pos=input_pos,
|
|
184
|
+
attention_mask=enc_mask,
|
|
185
|
+
relative_position=enc_relative_position,
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
# Decode
|
|
189
|
+
decoder_out = self.decoder(
|
|
190
|
+
input_ids=decoder_input_ids,
|
|
191
|
+
input_pos=decoder_input_pos,
|
|
192
|
+
attention_mask=dec_mask,
|
|
193
|
+
relative_position=dec_relative_position,
|
|
194
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
195
|
+
encoder_attention_mask=enc_attention_mask,
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
# Rescale output before projecting on vocab
|
|
199
|
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
|
200
|
+
sequence_output = decoder_out * (self.config.embedding_dim**-0.5)
|
|
201
|
+
|
|
202
|
+
lm_logits = self.lm_head(sequence_output)
|
|
203
|
+
return lm_logits
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
class T5Encoder(nn.Module):
|
|
207
|
+
|
|
208
|
+
def __init__(self, config: cfg.ModelConfig, embedding_layer):
|
|
209
|
+
super().__init__()
|
|
210
|
+
|
|
211
|
+
self.config = config
|
|
212
|
+
# Construct model layers.
|
|
213
|
+
assert embedding_layer != None, "Passed in embedding layer should not be None!"
|
|
214
|
+
self.tok_embedding = embedding_layer
|
|
215
|
+
|
|
216
|
+
encoder_config = copy.deepcopy(config)
|
|
217
|
+
encoder_config.is_decoder = False
|
|
218
|
+
encoder_config.attn_config.enable_kv_cache = False
|
|
219
|
+
self.encoder = T5Stack(encoder_config, self.tok_embedding)
|
|
220
|
+
|
|
221
|
+
self.enc_attn_mask_cache = (
|
|
222
|
+
torch.zeros(
|
|
223
|
+
(config.kv_cache_max, config.kv_cache_max),
|
|
224
|
+
dtype=torch.float32,
|
|
225
|
+
device=torch.device("cpu"),
|
|
226
|
+
)
|
|
227
|
+
.unsqueeze(0)
|
|
228
|
+
.unsqueeze(0)
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
self.enc_rel_pos_mask = attn_utils.build_relative_position_buckets(
|
|
232
|
+
bidirectional=True,
|
|
233
|
+
query_length=config.kv_cache_max,
|
|
234
|
+
key_length=config.kv_cache_max,
|
|
235
|
+
num_buckets=config.attn_config.relative_attention_num_buckets,
|
|
236
|
+
max_distance=config.attn_config.relative_attention_max_distance,
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
@torch.inference_mode
|
|
240
|
+
def forward(
|
|
241
|
+
self,
|
|
242
|
+
input_ids: torch.Tensor,
|
|
243
|
+
input_pos: torch.Tensor,
|
|
244
|
+
pad_mask: torch.Tensor,
|
|
245
|
+
) -> torch.Tensor:
|
|
246
|
+
B, T = input_ids.size()
|
|
247
|
+
assert (
|
|
248
|
+
self.config.max_seq_len >= T
|
|
249
|
+
), f"Cannot forward sequence of length {T}, max seq length is only {self.config.max_seq_len}"
|
|
250
|
+
|
|
251
|
+
enc_mask = self.enc_attn_mask_cache.index_select(2, input_pos)
|
|
252
|
+
enc_mask = enc_mask[:, :, :, : self.config.kv_cache_max]
|
|
253
|
+
# Mask off any "pad" tokens that shouldn't contribute to self-attention
|
|
254
|
+
enc_mask[:, :, :, :] += pad_mask
|
|
255
|
+
enc_relative_position = self.enc_rel_pos_mask.index_select(2, input_pos)
|
|
256
|
+
enc_relative_position = enc_relative_position[:, :, :, : self.config.kv_cache_max]
|
|
257
|
+
|
|
258
|
+
# Convert encoder inputs in embeddings if needed
|
|
259
|
+
encoder_hidden_states = self.encoder(
|
|
260
|
+
input_ids=input_ids,
|
|
261
|
+
input_pos=input_pos,
|
|
262
|
+
attention_mask=enc_mask,
|
|
263
|
+
relative_position=enc_relative_position,
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
return encoder_hidden_states
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
class T5Decoder(nn.Module):
|
|
270
|
+
|
|
271
|
+
def __init__(self, config: cfg.ModelConfig, embedding_layer):
|
|
272
|
+
super().__init__()
|
|
273
|
+
|
|
274
|
+
self.config = config
|
|
275
|
+
# Construct model layers.
|
|
276
|
+
assert embedding_layer != None, "Passed in embedding layer should not be None!"
|
|
277
|
+
self.tok_embedding = embedding_layer
|
|
278
|
+
|
|
279
|
+
decoder_config = copy.deepcopy(config)
|
|
280
|
+
decoder_config.is_decoder = True
|
|
281
|
+
self.decoder = T5Stack(decoder_config, self.tok_embedding)
|
|
282
|
+
self.lm_head = nn.Linear(
|
|
283
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
self.enc_attn_mask_cache = (
|
|
287
|
+
torch.zeros(
|
|
288
|
+
(config.kv_cache_max, config.kv_cache_max),
|
|
289
|
+
dtype=torch.float32,
|
|
290
|
+
device=torch.device("cpu"),
|
|
291
|
+
)
|
|
292
|
+
.unsqueeze(0)
|
|
293
|
+
.unsqueeze(0)
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
self.enc_rel_pos_mask = attn_utils.build_relative_position_buckets(
|
|
297
|
+
bidirectional=True,
|
|
298
|
+
query_length=config.kv_cache_max,
|
|
299
|
+
key_length=config.kv_cache_max,
|
|
300
|
+
num_buckets=config.attn_config.relative_attention_num_buckets,
|
|
301
|
+
max_distance=config.attn_config.relative_attention_max_distance,
|
|
302
|
+
)
|
|
303
|
+
|
|
304
|
+
self.dec_attn_mask_cache = attn_utils.build_causal_mask_cache(
|
|
305
|
+
size=config.kv_cache_max, dtype=torch.float32, device=torch.device("cpu")
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
@torch.inference_mode
|
|
309
|
+
def forward(
|
|
310
|
+
self,
|
|
311
|
+
encoder_hidden_states: torch.Tensor,
|
|
312
|
+
decoder_input_ids: torch.Tensor,
|
|
313
|
+
decoder_input_pos: torch.Tensor,
|
|
314
|
+
pad_mask: torch.Tensor,
|
|
315
|
+
) -> torch.Tensor:
|
|
316
|
+
dec_mask = self.dec_attn_mask_cache.index_select(2, decoder_input_pos)
|
|
317
|
+
dec_mask = dec_mask[:, :, :, : self.config.kv_cache_max]
|
|
318
|
+
dec_relative_position = self.enc_rel_pos_mask.index_select(2, decoder_input_pos)
|
|
319
|
+
dec_relative_position = dec_relative_position[:, :, :, : self.config.kv_cache_max]
|
|
320
|
+
enc_attention_mask = self.enc_attn_mask_cache.index_select(2, decoder_input_pos)
|
|
321
|
+
# Mask off any "pad" tokens that shouldn't contribute to cross attention
|
|
322
|
+
enc_attention_mask[:, :, :, :] += pad_mask
|
|
323
|
+
|
|
324
|
+
# Decode
|
|
325
|
+
decoder_out = self.decoder(
|
|
326
|
+
input_ids=decoder_input_ids,
|
|
327
|
+
input_pos=decoder_input_pos,
|
|
328
|
+
attention_mask=dec_mask,
|
|
329
|
+
relative_position=dec_relative_position,
|
|
330
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
331
|
+
encoder_attention_mask=enc_attention_mask,
|
|
332
|
+
)
|
|
333
|
+
|
|
334
|
+
# Rescale output before projecting on vocab
|
|
335
|
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
|
336
|
+
sequence_output = decoder_out * (self.config.embedding_dim**-0.5)
|
|
337
|
+
|
|
338
|
+
lm_logits = self.lm_head(sequence_output)
|
|
339
|
+
return lm_logits
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
def get_model_config_t5() -> cfg.ModelConfig:
|
|
343
|
+
attn_config = cfg.AttentionConfig(
|
|
344
|
+
num_heads=12,
|
|
345
|
+
num_query_groups=12,
|
|
346
|
+
qkv_use_bias=False,
|
|
347
|
+
relative_attention_num_buckets=32,
|
|
348
|
+
relative_attention_max_distance=128,
|
|
349
|
+
)
|
|
350
|
+
ff_config = cfg.FeedForwardConfig(
|
|
351
|
+
type=cfg.FeedForwardType.SEQUENTIAL,
|
|
352
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.RELU),
|
|
353
|
+
intermediate_size=3072,
|
|
354
|
+
)
|
|
355
|
+
# T5 Confirmed as RMS Norm and eps = 1e-6 TJA.
|
|
356
|
+
norm_config = cfg.NormalizationConfig(
|
|
357
|
+
type=cfg.NormalizationType.RMS_NORM,
|
|
358
|
+
epsilon=1e-6,
|
|
359
|
+
)
|
|
360
|
+
|
|
361
|
+
config = cfg.ModelConfig(
|
|
362
|
+
vocab_size=32128,
|
|
363
|
+
num_layers=12,
|
|
364
|
+
max_seq_len=512,
|
|
365
|
+
embedding_dim=768,
|
|
366
|
+
attn_config=attn_config,
|
|
367
|
+
relative_attention=True,
|
|
368
|
+
ff_config=ff_config,
|
|
369
|
+
pre_attention_norm_config=norm_config,
|
|
370
|
+
pre_ff_norm_config=norm_config,
|
|
371
|
+
final_norm_config=norm_config,
|
|
372
|
+
parallel_residual=False,
|
|
373
|
+
lm_head_use_bias=False,
|
|
374
|
+
enable_hlfb=True,
|
|
375
|
+
)
|
|
376
|
+
return config
|
|
377
|
+
|
|
378
|
+
|
|
379
|
+
def build_t5_model(checkpoint_path: str) -> nn.Module:
|
|
380
|
+
config = get_model_config_t5()
|
|
381
|
+
model = T5(config)
|
|
382
|
+
# Need the encoder and decoder mappings.
|
|
383
|
+
encoder_tensor_names = {
|
|
384
|
+
k: v.replace("{prefix}", "encoder").replace("{num}", "1")
|
|
385
|
+
for k, v in ENCDEC_TENSOR_NAMES.items()
|
|
386
|
+
}
|
|
387
|
+
decoder_tensor_names = ENCDEC_TENSOR_NAMES | {
|
|
388
|
+
"cross_attn_query_proj": "{prefix}.block.{}.layer.1.EncDecAttention.q",
|
|
389
|
+
"cross_attn_key_proj": "{prefix}.block.{}.layer.1.EncDecAttention.k",
|
|
390
|
+
"cross_attn_value_proj": "{prefix}.block.{}.layer.1.EncDecAttention.v",
|
|
391
|
+
"cross_attn_output_proj": "{prefix}.block.{}.layer.1.EncDecAttention.o",
|
|
392
|
+
# In the decoder, the FF is layer 2 in the Transformer block
|
|
393
|
+
"pre_ff_norm": "{prefix}.block.{}.layer.2.layer_norm",
|
|
394
|
+
# In the decoder, the cross attention is layer 1 in the Transformer block
|
|
395
|
+
"pre_cross_attn_norm": "{prefix}.block.{}.layer.1.layer_norm",
|
|
396
|
+
}
|
|
397
|
+
|
|
398
|
+
decoder_tensor_names = {
|
|
399
|
+
k: v.replace("{prefix}", "decoder").replace("{num}", "2")
|
|
400
|
+
for k, v in decoder_tensor_names.items()
|
|
401
|
+
}
|
|
402
|
+
|
|
403
|
+
# Additional layer norms for Cross Attention in decoder
|
|
404
|
+
# decoder_tensor_names["pre_attn_norm"] = "{prefix}.block.{}.layer.1.layer_norm",
|
|
405
|
+
tensor_names = {
|
|
406
|
+
"encoder.": loading_utils.ModelLoader.TensorNames(**encoder_tensor_names),
|
|
407
|
+
"decoder.": loading_utils.ModelLoader.TensorNames(**decoder_tensor_names),
|
|
408
|
+
"": loading_utils.ModelLoader.TensorNames(**TENSOR_NAMES),
|
|
409
|
+
}
|
|
410
|
+
loader = loading_utils.ModelLoader(checkpoint_path, names=tensor_names)
|
|
411
|
+
# The embedding is shared between the encoder and decoder, so we set
|
|
412
|
+
# strict=False.
|
|
413
|
+
loader.load(model, strict=False, fuse_attention=False)
|
|
414
|
+
return model
|
|
415
|
+
|
|
416
|
+
|
|
417
|
+
def build_t5_encoder_model(
|
|
418
|
+
config: cfg.ModelConfig, embedding_layer, checkpoint_path: str
|
|
419
|
+
) -> nn.Module:
|
|
420
|
+
model = T5Encoder(config, embedding_layer)
|
|
421
|
+
encoder_tensor_names = {
|
|
422
|
+
k: v.replace("{prefix}", "encoder").replace("{num}", "1")
|
|
423
|
+
for k, v in ENCDEC_TENSOR_NAMES.items()
|
|
424
|
+
}
|
|
425
|
+
|
|
426
|
+
# Additional layer norms for Cross Attention in decoder
|
|
427
|
+
# decoder_tensor_names["pre_attn_norm"] = "{prefix}.block.{}.layer.1.layer_norm",
|
|
428
|
+
tensor_names = {
|
|
429
|
+
"encoder.": loading_utils.ModelLoader.TensorNames(**encoder_tensor_names),
|
|
430
|
+
"": loading_utils.ModelLoader.TensorNames(**TENSOR_NAMES),
|
|
431
|
+
}
|
|
432
|
+
loader = loading_utils.ModelLoader(checkpoint_path, names=tensor_names)
|
|
433
|
+
# The embedding is shared between the encoder and decoder, so we set
|
|
434
|
+
# strict=False.
|
|
435
|
+
loader.load(model, strict=False, fuse_attention=False)
|
|
436
|
+
return model
|
|
437
|
+
|
|
438
|
+
|
|
439
|
+
def build_t5_decoder_model(
|
|
440
|
+
config: cfg.ModelConfig, embedding_layer, checkpoint_path: str
|
|
441
|
+
) -> nn.Module:
|
|
442
|
+
model = T5Decoder(config, embedding_layer)
|
|
443
|
+
decoder_tensor_names = ENCDEC_TENSOR_NAMES | {
|
|
444
|
+
"cross_attn_query_proj": "{prefix}.block.{}.layer.1.EncDecAttention.q",
|
|
445
|
+
"cross_attn_key_proj": "{prefix}.block.{}.layer.1.EncDecAttention.k",
|
|
446
|
+
"cross_attn_value_proj": "{prefix}.block.{}.layer.1.EncDecAttention.v",
|
|
447
|
+
"cross_attn_output_proj": "{prefix}.block.{}.layer.1.EncDecAttention.o",
|
|
448
|
+
# In the decoder, the FF is layer 2 in the Transformer block
|
|
449
|
+
"pre_ff_norm": "{prefix}.block.{}.layer.2.layer_norm",
|
|
450
|
+
# In the decoder, the cross attention is layer 1 in the Transformer block
|
|
451
|
+
"pre_cross_attn_norm": "{prefix}.block.{}.layer.1.layer_norm",
|
|
452
|
+
}
|
|
453
|
+
|
|
454
|
+
decoder_tensor_names = {
|
|
455
|
+
k: v.replace("{prefix}", "decoder").replace("{num}", "2")
|
|
456
|
+
for k, v in decoder_tensor_names.items()
|
|
457
|
+
}
|
|
458
|
+
|
|
459
|
+
# Additional layer norms for Cross Attention in decoder
|
|
460
|
+
# decoder_tensor_names["pre_attn_norm"] = "{prefix}.block.{}.layer.1.layer_norm",
|
|
461
|
+
tensor_names = {
|
|
462
|
+
"decoder.": loading_utils.ModelLoader.TensorNames(**decoder_tensor_names),
|
|
463
|
+
"": loading_utils.ModelLoader.TensorNames(**TENSOR_NAMES),
|
|
464
|
+
}
|
|
465
|
+
loader = loading_utils.ModelLoader(checkpoint_path, names=tensor_names)
|
|
466
|
+
# The embedding is shared between the encoder and decoder, so we set
|
|
467
|
+
# strict=False.
|
|
468
|
+
loader.load(model, strict=False, fuse_attention=False)
|
|
469
|
+
return model
|
|
470
|
+
|
|
471
|
+
|
|
472
|
+
def get_sample_encoder_input_ids() -> torch.Tensor:
|
|
473
|
+
idx = torch.tensor(
|
|
474
|
+
[
|
|
475
|
+
[
|
|
476
|
+
3856,
|
|
477
|
+
27111,
|
|
478
|
+
10,
|
|
479
|
+
4425,
|
|
480
|
+
51,
|
|
481
|
+
4008,
|
|
482
|
+
31,
|
|
483
|
+
7,
|
|
484
|
+
2306,
|
|
485
|
+
16576,
|
|
486
|
+
47,
|
|
487
|
+
4381,
|
|
488
|
+
16,
|
|
489
|
+
8,
|
|
490
|
+
3414,
|
|
491
|
+
13,
|
|
492
|
+
1410,
|
|
493
|
+
16,
|
|
494
|
+
932,
|
|
495
|
+
11,
|
|
496
|
+
1515,
|
|
497
|
+
2766,
|
|
498
|
+
6,
|
|
499
|
+
11,
|
|
500
|
+
4838,
|
|
501
|
+
16,
|
|
502
|
+
23964,
|
|
503
|
+
16,
|
|
504
|
+
1797,
|
|
505
|
+
13,
|
|
506
|
+
24,
|
|
507
|
+
215,
|
|
508
|
+
5,
|
|
509
|
+
94,
|
|
510
|
+
47,
|
|
511
|
+
2017,
|
|
512
|
+
168,
|
|
513
|
+
1204,
|
|
514
|
+
57,
|
|
515
|
+
6800,
|
|
516
|
+
7,
|
|
517
|
+
11,
|
|
518
|
+
9443,
|
|
519
|
+
38,
|
|
520
|
+
3673,
|
|
521
|
+
8,
|
|
522
|
+
4016,
|
|
523
|
+
13,
|
|
524
|
+
66,
|
|
525
|
+
70,
|
|
526
|
+
14234,
|
|
527
|
+
5,
|
|
528
|
+
2449,
|
|
529
|
+
1215,
|
|
530
|
+
83,
|
|
531
|
+
17,
|
|
532
|
+
16,
|
|
533
|
+
8782,
|
|
534
|
+
70,
|
|
535
|
+
723,
|
|
536
|
+
30,
|
|
537
|
+
8,
|
|
538
|
+
6162,
|
|
539
|
+
13,
|
|
540
|
+
1410,
|
|
541
|
+
12,
|
|
542
|
+
48,
|
|
543
|
+
833,
|
|
544
|
+
250,
|
|
545
|
+
13,
|
|
546
|
+
149,
|
|
547
|
+
231,
|
|
548
|
+
79,
|
|
549
|
+
1858,
|
|
550
|
+
16576,
|
|
551
|
+
5,
|
|
552
|
+
1,
|
|
553
|
+
]
|
|
554
|
+
]
|
|
555
|
+
)
|
|
556
|
+
return idx
|
|
557
|
+
|
|
558
|
+
|
|
559
|
+
def define_and_run_t5(checkpoint_path: str) -> None:
|
|
560
|
+
t5_goldens = torch.load("t5_lm_logits.pt")
|
|
561
|
+
|
|
562
|
+
model = build_t5_model(checkpoint_path)
|
|
563
|
+
|
|
564
|
+
idx = get_sample_encoder_input_ids()
|
|
565
|
+
tokens = torch.full((1, 512), 0, dtype=torch.long, device="cpu")
|
|
566
|
+
tokens[0, :77] = idx
|
|
567
|
+
input_pos = torch.arange(0, 512)
|
|
568
|
+
|
|
569
|
+
decode_d_token = torch.tensor([[0]], dtype=torch.int64)
|
|
570
|
+
decode_d_input_pos = torch.tensor([0], dtype=torch.int64)
|
|
571
|
+
pad_mask = torch.zeros([model.config.kv_cache_max], dtype=torch.float32)
|
|
572
|
+
pad_mask[77:] = float("-inf")
|
|
573
|
+
lm_logits = model.forward(
|
|
574
|
+
tokens, input_pos, decode_d_token, decode_d_input_pos, pad_mask
|
|
575
|
+
)
|
|
576
|
+
print("comparing with goldens..")
|
|
577
|
+
assert torch.allclose(t5_goldens, lm_logits, atol=1e-05)
|
|
578
|
+
|
|
579
|
+
|
|
580
|
+
# TODO(haoliang): Move those tests.
|
|
581
|
+
def define_and_run_t5_split(checkpoint_path: str) -> None:
|
|
582
|
+
t5_goldens = torch.load("t5_lm_logits.pt")
|
|
583
|
+
config = get_model_config_t5()
|
|
584
|
+
embedding_layer = nn.Embedding(config.vocab_size, config.embedding_dim, padding_idx=0)
|
|
585
|
+
t5_encoder_model = build_t5_encoder_model(config, embedding_layer, checkpoint_path)
|
|
586
|
+
t5_decoder_model = build_t5_decoder_model(config, embedding_layer, checkpoint_path)
|
|
587
|
+
idx = get_sample_encoder_input_ids()
|
|
588
|
+
|
|
589
|
+
tokens = torch.full((1, 512), 0, dtype=torch.long, device="cpu")
|
|
590
|
+
tokens[0, :77] = idx
|
|
591
|
+
input_pos = torch.arange(0, 512)
|
|
592
|
+
|
|
593
|
+
decode_d_token = torch.tensor([[0]], dtype=torch.int64)
|
|
594
|
+
decode_d_input_pos = torch.tensor([0], dtype=torch.int64)
|
|
595
|
+
pad_mask = torch.zeros([t5_encoder_model.config.kv_cache_max], dtype=torch.float32)
|
|
596
|
+
pad_mask[77:] = float("-inf")
|
|
597
|
+
hidden_states = t5_encoder_model.forward(tokens, input_pos, pad_mask)
|
|
598
|
+
lm_logits = t5_decoder_model.forward(
|
|
599
|
+
hidden_states, decode_d_token, decode_d_input_pos, pad_mask
|
|
600
|
+
)
|
|
601
|
+
print("comparing with goldens..")
|
|
602
|
+
assert torch.allclose(t5_goldens, lm_logits, atol=1e-05)
|
|
603
|
+
|
|
604
|
+
|
|
605
|
+
if __name__ == "__main__":
|
|
606
|
+
checkpoint = os.path.join(Path.home(), "Downloads/llm_data/t5")
|
|
607
|
+
# define_and_run_t5(checkpoint)
|
|
608
|
+
define_and_run_t5_split(checkpoint)
|