ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/__init__.py +31 -0
- ai_edge_torch/convert/__init__.py +14 -0
- ai_edge_torch/convert/conversion.py +117 -0
- ai_edge_torch/convert/conversion_utils.py +400 -0
- ai_edge_torch/convert/converter.py +202 -0
- ai_edge_torch/convert/fx_passes/__init__.py +59 -0
- ai_edge_torch/convert/fx_passes/_pass_base.py +49 -0
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +225 -0
- ai_edge_torch/convert/fx_passes/build_interpolate_composite_pass.py +123 -0
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +37 -0
- ai_edge_torch/convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +48 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +17 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +59 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +215 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +400 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +293 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/utils.py +62 -0
- ai_edge_torch/convert/test/__init__.py +14 -0
- ai_edge_torch/convert/test/test_convert.py +311 -0
- ai_edge_torch/convert/test/test_convert_composites.py +192 -0
- ai_edge_torch/convert/test/test_convert_multisig.py +139 -0
- ai_edge_torch/convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/convert/to_channel_last_io.py +85 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +464 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +133 -0
- ai_edge_torch/debug/test/test_search_model.py +50 -0
- ai_edge_torch/debug/utils.py +48 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/gemma/gemma.py +174 -0
- ai_edge_torch/generative/examples/phi2/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +64 -0
- ai_edge_torch/generative/examples/phi2/phi2.py +164 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +106 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +115 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +142 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +317 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +573 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +118 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +222 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +61 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +65 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +73 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +38 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +71 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +135 -0
- ai_edge_torch/generative/examples/t5/t5.py +608 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +231 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +122 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +161 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +143 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +0 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +66 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +164 -0
- ai_edge_torch/generative/fx_passes/__init__.py +31 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +47 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +354 -0
- ai_edge_torch/generative/layers/attention_utils.py +169 -0
- ai_edge_torch/generative/layers/builder.py +131 -0
- ai_edge_torch/generative/layers/feed_forward.py +95 -0
- ai_edge_torch/generative/layers/kv_cache.py +83 -0
- ai_edge_torch/generative/layers/model_config.py +158 -0
- ai_edge_torch/generative/layers/normalization.py +62 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +36 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +117 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +711 -0
- ai_edge_torch/generative/layers/unet/builder.py +47 -0
- ai_edge_torch/generative/layers/unet/model_config.py +269 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/translate_recipe.py +148 -0
- ai_edge_torch/generative/quantize/example.py +45 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +151 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +51 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +48 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/loader_test.py +80 -0
- ai_edge_torch/generative/test/test_model_conversion.py +235 -0
- ai_edge_torch/generative/test/test_quantize.py +162 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/loader.py +328 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +924 -0
- ai_edge_torch/generative/utilities/t5_loader.py +483 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +139 -0
- ai_edge_torch/hlfb/mark_pattern/passes.py +42 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +273 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +133 -0
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +270 -0
- ai_edge_torch/model.py +142 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +438 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1041 -0
- ai_edge_torch/quantize/quant_config.py +81 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +132 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/METADATA +38 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +121 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
from pathlib import Path
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
|
|
21
|
+
import ai_edge_torch
|
|
22
|
+
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
|
23
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def convert_tiny_llama_to_tflite(
|
|
27
|
+
checkpoint_path: str,
|
|
28
|
+
prefill_seq_len: int = 512,
|
|
29
|
+
kv_cache_max_len: int = 1024,
|
|
30
|
+
quantize: bool = True,
|
|
31
|
+
):
|
|
32
|
+
"""An example method for converting TinyLlama model to multi-signature
|
|
33
|
+
tflite model.
|
|
34
|
+
|
|
35
|
+
Args:
|
|
36
|
+
checkpoint_path (str): The filepath to the model checkpoint, or directory holding the checkpoint.
|
|
37
|
+
prefill_seq_len (int, optional): The maximum size of prefill input tensor.
|
|
38
|
+
Defaults to 512.
|
|
39
|
+
kv_cache_max_len (int, optional): The maximum size of KV cache buffer,
|
|
40
|
+
including both prefill and decode. Defaults to 1024.
|
|
41
|
+
quantize (bool, optional): Whether the model should be quanized.
|
|
42
|
+
Defaults to True.
|
|
43
|
+
"""
|
|
44
|
+
pytorch_model = tiny_llama.build_model(
|
|
45
|
+
checkpoint_path, kv_cache_max_len=kv_cache_max_len
|
|
46
|
+
)
|
|
47
|
+
# Tensors used to trace the model graph during conversion.
|
|
48
|
+
prefill_tokens = torch.full((1, prefill_seq_len), 0, dtype=torch.long)
|
|
49
|
+
prefill_input_pos = torch.arange(0, prefill_seq_len)
|
|
50
|
+
decode_token = torch.tensor([[0]], dtype=torch.long)
|
|
51
|
+
decode_input_pos = torch.tensor([0], dtype=torch.int64)
|
|
52
|
+
|
|
53
|
+
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
|
54
|
+
edge_model = (
|
|
55
|
+
ai_edge_torch.signature(
|
|
56
|
+
'prefill', pytorch_model, (prefill_tokens, prefill_input_pos)
|
|
57
|
+
)
|
|
58
|
+
.signature('decode', pytorch_model, (decode_token, decode_input_pos))
|
|
59
|
+
.convert(quant_config=quant_config)
|
|
60
|
+
)
|
|
61
|
+
edge_model.export(f'/tmp/tiny_llama_seq{prefill_seq_len}_kv{kv_cache_max_len}.tflite')
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
if __name__ == '__main__':
|
|
65
|
+
checkpoint_path = os.path.join(Path.home(), 'Downloads/llm_data/tiny_llama')
|
|
66
|
+
convert_tiny_llama_to_tflite(checkpoint_path)
|
|
@@ -0,0 +1,164 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Example of building a TinyLlama model from the Edge Generative API layers.
|
|
16
|
+
|
|
17
|
+
import os
|
|
18
|
+
from pathlib import Path
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
import torch
|
|
22
|
+
import torch.nn as nn
|
|
23
|
+
|
|
24
|
+
from ai_edge_torch.generative.layers.attention import TransformerBlock
|
|
25
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
|
26
|
+
import ai_edge_torch.generative.layers.builder as builder
|
|
27
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
|
28
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
|
29
|
+
|
|
30
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
|
31
|
+
ff_up_proj="model.layers.{}.mlp.up_proj",
|
|
32
|
+
ff_down_proj="model.layers.{}.mlp.down_proj",
|
|
33
|
+
ff_gate_proj="model.layers.{}.mlp.gate_proj",
|
|
34
|
+
attn_query_proj="model.layers.{}.self_attn.q_proj",
|
|
35
|
+
attn_key_proj="model.layers.{}.self_attn.k_proj",
|
|
36
|
+
attn_value_proj="model.layers.{}.self_attn.v_proj",
|
|
37
|
+
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
|
38
|
+
pre_attn_norm="model.layers.{}.input_layernorm",
|
|
39
|
+
pre_ff_norm="model.layers.{}.post_attention_layernorm",
|
|
40
|
+
embedding="model.embed_tokens",
|
|
41
|
+
final_norm="model.norm",
|
|
42
|
+
lm_head="lm_head",
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class TinyLLamma(nn.Module):
|
|
47
|
+
|
|
48
|
+
def __init__(self, config: cfg.ModelConfig):
|
|
49
|
+
super().__init__()
|
|
50
|
+
|
|
51
|
+
self.config = config
|
|
52
|
+
# Construct model layers.
|
|
53
|
+
self.lm_head = nn.Linear(
|
|
54
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
|
55
|
+
)
|
|
56
|
+
self.tok_embedding = nn.Embedding(
|
|
57
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
|
58
|
+
)
|
|
59
|
+
self.transformer_blocks = nn.ModuleList(
|
|
60
|
+
TransformerBlock(config) for _ in range(config.num_layers)
|
|
61
|
+
)
|
|
62
|
+
self.final_norm = builder.build_norm(
|
|
63
|
+
config.embedding_dim,
|
|
64
|
+
config.final_norm_config,
|
|
65
|
+
)
|
|
66
|
+
self.rope_cache = attn_utils.build_rope_cache(
|
|
67
|
+
size=config.kv_cache_max,
|
|
68
|
+
dim=int(config.attn_config.rotary_percentage * config.head_dim),
|
|
69
|
+
base=10_000,
|
|
70
|
+
condense_ratio=1,
|
|
71
|
+
dtype=torch.float32,
|
|
72
|
+
device=torch.device("cpu"),
|
|
73
|
+
)
|
|
74
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
|
75
|
+
size=config.kv_cache_max, dtype=torch.float32, device=torch.device("cpu")
|
|
76
|
+
)
|
|
77
|
+
self.config = config
|
|
78
|
+
|
|
79
|
+
# The model's forward function takes in additional k/v cache tensors
|
|
80
|
+
# and returns the updated k/v cache tensors to the caller.
|
|
81
|
+
# This can be eliminated if we handle k/v cache updates inside the model itself.
|
|
82
|
+
@torch.inference_mode
|
|
83
|
+
def forward(self, idx: torch.Tensor, input_pos: torch.Tensor) -> torch.Tensor:
|
|
84
|
+
B, T = idx.size()
|
|
85
|
+
assert (
|
|
86
|
+
self.config.max_seq_len >= T
|
|
87
|
+
), f"Cannot forward sequence of length {T}, max seq length is only {self.config.max_seq_len}"
|
|
88
|
+
|
|
89
|
+
cos, sin = self.rope_cache
|
|
90
|
+
cos = cos.index_select(0, input_pos)
|
|
91
|
+
sin = sin.index_select(0, input_pos)
|
|
92
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
|
93
|
+
mask = mask[:, :, :, : self.config.kv_cache_max]
|
|
94
|
+
|
|
95
|
+
# forward the model itself
|
|
96
|
+
x = self.tok_embedding(idx) # token embeddings of shape (b, t, n_embd)
|
|
97
|
+
|
|
98
|
+
for i, block in enumerate(self.transformer_blocks):
|
|
99
|
+
x = block(x, (cos, sin), mask, input_pos)
|
|
100
|
+
|
|
101
|
+
x = self.final_norm(x)
|
|
102
|
+
|
|
103
|
+
res = self.lm_head(x) # (b, t, vocab_size)
|
|
104
|
+
return res
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
108
|
+
attn_config = cfg.AttentionConfig(
|
|
109
|
+
num_heads=32,
|
|
110
|
+
num_query_groups=4,
|
|
111
|
+
rotary_percentage=1.0,
|
|
112
|
+
)
|
|
113
|
+
ff_config = cfg.FeedForwardConfig(
|
|
114
|
+
type=cfg.FeedForwardType.GATED,
|
|
115
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU),
|
|
116
|
+
intermediate_size=5632,
|
|
117
|
+
)
|
|
118
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
|
119
|
+
config = cfg.ModelConfig(
|
|
120
|
+
vocab_size=32000,
|
|
121
|
+
num_layers=22,
|
|
122
|
+
max_seq_len=2048,
|
|
123
|
+
embedding_dim=2048,
|
|
124
|
+
kv_cache_max_len=kv_cache_max_len,
|
|
125
|
+
attn_config=attn_config,
|
|
126
|
+
ff_config=ff_config,
|
|
127
|
+
pre_attention_norm_config=norm_config,
|
|
128
|
+
pre_ff_norm_config=norm_config,
|
|
129
|
+
final_norm_config=norm_config,
|
|
130
|
+
enable_hlfb=True,
|
|
131
|
+
)
|
|
132
|
+
return config
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def get_fake_model_config_for_test() -> cfg.ModelConfig:
|
|
136
|
+
config = get_model_config()
|
|
137
|
+
config.vocab_size = 128
|
|
138
|
+
config.num_layers = 2
|
|
139
|
+
config.ff_config.intermediate_size = 256
|
|
140
|
+
return config
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
def build_model(checkpoint_path, **kwargs) -> nn.Module:
|
|
144
|
+
config = get_model_config(**kwargs)
|
|
145
|
+
model = TinyLLamma(config)
|
|
146
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
|
147
|
+
loader.load(model)
|
|
148
|
+
return model
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def define_and_run() -> None:
|
|
152
|
+
kv_cache_max_len = 1024
|
|
153
|
+
checkpoint_path = os.path.join(Path.home(), "Downloads/llm_data/tiny_llama")
|
|
154
|
+
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
|
155
|
+
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
|
156
|
+
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.long, device="cpu")
|
|
157
|
+
tokens[0, :4] = idx
|
|
158
|
+
input_pos = torch.arange(0, kv_cache_max_len)
|
|
159
|
+
print("running an inference")
|
|
160
|
+
print(model.forward(tokens, input_pos))
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
if __name__ == "__main__":
|
|
164
|
+
define_and_run()
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
from ai_edge_torch.convert.fx_passes import CanonicalizePass
|
|
18
|
+
from ai_edge_torch.convert.fx_passes import run_passes
|
|
19
|
+
from ai_edge_torch.generative.fx_passes.remove_sdpa_zero_mask_pass import RemoveSDPACompositeZeroMaskPass # NOQA
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def run_generative_passes(
|
|
23
|
+
exported_program: torch.export.ExportedProgram,
|
|
24
|
+
) -> torch.export.ExportedProgram:
|
|
25
|
+
return run_passes(
|
|
26
|
+
exported_program,
|
|
27
|
+
[
|
|
28
|
+
RemoveSDPACompositeZeroMaskPass(),
|
|
29
|
+
CanonicalizePass(),
|
|
30
|
+
],
|
|
31
|
+
)
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
from ai_edge_torch.convert.fx_passes._pass_base import ExportedProgramPassBase
|
|
18
|
+
from ai_edge_torch.convert.fx_passes._pass_base import ExportedProgramPassResult # NOQA
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase):
|
|
22
|
+
|
|
23
|
+
def is_zero_tensor_node(self, node: torch.fx.Node):
|
|
24
|
+
return node.target == torch.ops.aten.zeros.default
|
|
25
|
+
|
|
26
|
+
def call(self, exported_program: torch.export.ExportedProgram):
|
|
27
|
+
graph = exported_program.graph_module.graph
|
|
28
|
+
for node in graph.nodes:
|
|
29
|
+
if not (
|
|
30
|
+
node.op == "call_function"
|
|
31
|
+
and node.target == torch.ops.xla.mark_tensor.default
|
|
32
|
+
):
|
|
33
|
+
continue
|
|
34
|
+
|
|
35
|
+
source, name, io_position, id, is_input = node.args[:5]
|
|
36
|
+
# Composite info:
|
|
37
|
+
# - name: odml.scaled_dot_product_attention
|
|
38
|
+
# - inputs: q, k, v, mask
|
|
39
|
+
if name == "odml.scaled_dot_product_attention" and is_input and io_position == 3:
|
|
40
|
+
if self.is_zero_tensor_node(source):
|
|
41
|
+
# Remove the mark_tensor call on the mask input by
|
|
42
|
+
# replacing the target with an identity function.
|
|
43
|
+
node.target = lambda *args, **kwargs: torch.zeros_like(args[0])
|
|
44
|
+
|
|
45
|
+
exported_program.graph_module.graph.lint()
|
|
46
|
+
exported_program.graph_module.recompile()
|
|
47
|
+
return ExportedProgramPassResult(exported_program, True)
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
@@ -0,0 +1,354 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
# Common building blocks for Attention layer.
|
|
16
|
+
|
|
17
|
+
from typing import Optional, Tuple
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
from torch import nn
|
|
21
|
+
import torch.nn.functional as F
|
|
22
|
+
|
|
23
|
+
import ai_edge_torch.generative.layers.builder as builder
|
|
24
|
+
from ai_edge_torch.generative.layers.kv_cache import KVCache
|
|
25
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
|
26
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
|
27
|
+
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention # NOQA
|
|
28
|
+
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention_with_hlfb # NOQA
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def _embed_rope(
|
|
32
|
+
q: torch.Tensor,
|
|
33
|
+
k: torch.Tensor,
|
|
34
|
+
n_elem: int,
|
|
35
|
+
rope: Tuple[torch.Tensor, torch.Tensor],
|
|
36
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
37
|
+
"""Embed rotary positional embedding for query and key.
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
q (torch.Tensor): query tensor.
|
|
41
|
+
k (torch.Tensor): key tensor.
|
|
42
|
+
n_elem (int): number of elements to embed rotarty positional embedding.
|
|
43
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
|
44
|
+
"""
|
|
45
|
+
if n_elem > 0:
|
|
46
|
+
cos, sin = rope
|
|
47
|
+
q_roped = rotary_pos_emb.apply_rope(
|
|
48
|
+
q[..., :n_elem], cos.repeat(1, 2), sin.repeat(1, 2)
|
|
49
|
+
)
|
|
50
|
+
k_roped = rotary_pos_emb.apply_rope(
|
|
51
|
+
k[..., :n_elem], cos.repeat(1, 2), sin.repeat(1, 2)
|
|
52
|
+
)
|
|
53
|
+
q = torch.cat((q_roped, q[..., n_elem:]), dim=-1)
|
|
54
|
+
k = torch.cat((k_roped, k[..., n_elem:]), dim=-1)
|
|
55
|
+
return q, k
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class TransformerBlock(nn.Module):
|
|
59
|
+
|
|
60
|
+
def __init__(self, config: cfg.ModelConfig) -> None:
|
|
61
|
+
"""Initialize an instance of the TransformerBlock.
|
|
62
|
+
|
|
63
|
+
Args:
|
|
64
|
+
config (cfg.ModelConfig): the configuration object
|
|
65
|
+
for this transformer block.
|
|
66
|
+
"""
|
|
67
|
+
|
|
68
|
+
super().__init__()
|
|
69
|
+
self.pre_atten_norm = builder.build_norm(
|
|
70
|
+
config.embedding_dim, config.pre_attention_norm_config
|
|
71
|
+
)
|
|
72
|
+
self.atten_func = CausalSelfAttention(
|
|
73
|
+
config.batch_size,
|
|
74
|
+
config.embedding_dim,
|
|
75
|
+
config.attn_config,
|
|
76
|
+
config.kv_cache_max,
|
|
77
|
+
config.enable_hlfb,
|
|
78
|
+
)
|
|
79
|
+
self.pre_ff_norm = builder.build_norm(
|
|
80
|
+
config.embedding_dim, config.pre_ff_norm_config
|
|
81
|
+
)
|
|
82
|
+
self.ff = builder.build_ff(config.embedding_dim, config.ff_config)
|
|
83
|
+
self.config = config
|
|
84
|
+
|
|
85
|
+
def forward(
|
|
86
|
+
self,
|
|
87
|
+
x: torch.Tensor,
|
|
88
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
89
|
+
mask: Optional[torch.Tensor] = None,
|
|
90
|
+
input_pos: Optional[torch.Tensor] = None,
|
|
91
|
+
) -> torch.Tensor:
|
|
92
|
+
"""Forward function of the TransformerBlock.
|
|
93
|
+
|
|
94
|
+
Args:
|
|
95
|
+
x (torch.Tensor): the input tensor.
|
|
96
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
|
97
|
+
mask (torch.Tensor): the optional mask tensor.
|
|
98
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
|
99
|
+
|
|
100
|
+
Returns:
|
|
101
|
+
output activation from this transformer block.
|
|
102
|
+
"""
|
|
103
|
+
|
|
104
|
+
if self.config.parallel_residual:
|
|
105
|
+
x_norm = self.pre_atten_norm(x)
|
|
106
|
+
attn_out = self.atten_func(x_norm, rope, mask, input_pos)
|
|
107
|
+
ff_out = self.ff(x_norm)
|
|
108
|
+
output = x + attn_out + ff_out
|
|
109
|
+
else:
|
|
110
|
+
x_norm = self.pre_atten_norm(x)
|
|
111
|
+
attn_out = self.atten_func(x_norm, rope, mask, input_pos)
|
|
112
|
+
x = x + attn_out
|
|
113
|
+
x_norm = self.pre_ff_norm(x)
|
|
114
|
+
output = x + self.ff(x_norm)
|
|
115
|
+
|
|
116
|
+
return output
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
class CausalSelfAttention(nn.Module):
|
|
120
|
+
|
|
121
|
+
def __init__(
|
|
122
|
+
self,
|
|
123
|
+
batch_size: int,
|
|
124
|
+
dim: int,
|
|
125
|
+
config: cfg.AttentionConfig,
|
|
126
|
+
kv_cache_max: int,
|
|
127
|
+
enable_hlfb: bool,
|
|
128
|
+
) -> None:
|
|
129
|
+
"""Initialize an instance of CausalSelfAttention.
|
|
130
|
+
|
|
131
|
+
Args:
|
|
132
|
+
batch_size (int): batch size of the input tensor.
|
|
133
|
+
dim (int): causal attention's input/output dimmension.
|
|
134
|
+
config (cfg.AttentionConfig): attention specific configurations.
|
|
135
|
+
kv_cache_max (int): determines the size of the KV Cache buffer, if enabled.
|
|
136
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
|
137
|
+
"""
|
|
138
|
+
super().__init__()
|
|
139
|
+
self.head_dim = dim // config.num_heads
|
|
140
|
+
shape = (config.num_heads + 2 * config.num_query_groups) * self.head_dim
|
|
141
|
+
# Key, query, value projections for all heads.
|
|
142
|
+
self.qkv_projection = nn.Linear(dim, shape, bias=config.qkv_use_bias)
|
|
143
|
+
self.output_projection = nn.Linear(dim, dim, bias=config.output_proj_use_bias)
|
|
144
|
+
self.config = config
|
|
145
|
+
self.kv_cache = None
|
|
146
|
+
self.batch_size = batch_size
|
|
147
|
+
|
|
148
|
+
# Build a k/v cache with size (batch_size, kv_cache_max, n_heads, head_dim).
|
|
149
|
+
if config.enable_kv_cache:
|
|
150
|
+
self.kv_cache = KVCache(
|
|
151
|
+
batch_size,
|
|
152
|
+
kv_cache_max,
|
|
153
|
+
config.num_query_groups,
|
|
154
|
+
self.head_dim,
|
|
155
|
+
enable_hlfb,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
if enable_hlfb:
|
|
159
|
+
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
|
160
|
+
else:
|
|
161
|
+
self.sdpa_func = scaled_dot_product_attention
|
|
162
|
+
|
|
163
|
+
def forward(
|
|
164
|
+
self,
|
|
165
|
+
x: torch.Tensor,
|
|
166
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
167
|
+
mask: Optional[torch.Tensor] = None,
|
|
168
|
+
input_pos: Optional[torch.Tensor] = None,
|
|
169
|
+
) -> torch.Tensor:
|
|
170
|
+
"""Forward function of the CausalSelfAttention layer, which can support
|
|
171
|
+
MQA, GQA and MHA.
|
|
172
|
+
|
|
173
|
+
Args:
|
|
174
|
+
x (torch.Tensor): the input tensor.
|
|
175
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
|
176
|
+
mask (torch.Tensor): the optional mask tensor.
|
|
177
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
|
178
|
+
|
|
179
|
+
Returns:
|
|
180
|
+
output activation from this self attention layer.
|
|
181
|
+
"""
|
|
182
|
+
# Batch size, sequence length, embedding dimensionality.
|
|
183
|
+
B, T, E = x.size()
|
|
184
|
+
assert (
|
|
185
|
+
B == self.batch_size
|
|
186
|
+
), "batch size of input tensor must match with the batch size specified in the model configuration."
|
|
187
|
+
|
|
188
|
+
qkv = self.qkv_projection(x)
|
|
189
|
+
|
|
190
|
+
# Assemble into a number of query groups to support MHA, MQA and GQA.
|
|
191
|
+
q_per_kv = self.config.num_heads // self.config.num_query_groups
|
|
192
|
+
# Each group has >=1 queries, 1 key, and 1 value.
|
|
193
|
+
if self.config.qkv_transpose_before_split:
|
|
194
|
+
qkv = qkv.view(B, T, -1, self.head_dim)
|
|
195
|
+
q, k, v = qkv.split(
|
|
196
|
+
(
|
|
197
|
+
q_per_kv * self.config.num_query_groups,
|
|
198
|
+
self.config.num_query_groups,
|
|
199
|
+
self.config.num_query_groups,
|
|
200
|
+
),
|
|
201
|
+
dim=-2,
|
|
202
|
+
)
|
|
203
|
+
else:
|
|
204
|
+
qkv = qkv.view(B, T, self.config.num_query_groups, -1)
|
|
205
|
+
q, k, v = qkv.split(
|
|
206
|
+
(q_per_kv * self.head_dim, self.head_dim, self.head_dim), dim=-1
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
q = q.reshape(B, T, -1, self.head_dim)
|
|
210
|
+
k = k.reshape(B, T, -1, self.head_dim)
|
|
211
|
+
v = v.reshape(B, T, -1, self.head_dim)
|
|
212
|
+
|
|
213
|
+
# Compute rotary positional embedding for query and key.
|
|
214
|
+
n_elem = int(self.config.rotary_percentage * self.head_dim)
|
|
215
|
+
q, k = _embed_rope(q, k, n_elem, rope)
|
|
216
|
+
|
|
217
|
+
if self.kv_cache is not None:
|
|
218
|
+
# TODO(haoliang): Handle when execeeding max sequence length.
|
|
219
|
+
k, v = self.kv_cache.update_cache(input_pos, k, v)
|
|
220
|
+
|
|
221
|
+
y = self.sdpa_func(q, k, v, self.head_dim, mask=mask)
|
|
222
|
+
y = y.reshape(B, T, E)
|
|
223
|
+
|
|
224
|
+
# Compute the output projection.
|
|
225
|
+
y = self.output_projection(y)
|
|
226
|
+
return y
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
class SelfAttention(CausalSelfAttention):
|
|
230
|
+
"""Non-causal Self Attention module, which is equivalent to CausalSelfAttention without mask."""
|
|
231
|
+
|
|
232
|
+
def forward(
|
|
233
|
+
self,
|
|
234
|
+
x: torch.Tensor,
|
|
235
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
236
|
+
input_pos: Optional[torch.Tensor] = None,
|
|
237
|
+
) -> torch.Tensor:
|
|
238
|
+
"""Forward function of the SelfAttention layer, which can support MQA, GQA and MHA.
|
|
239
|
+
|
|
240
|
+
Args:
|
|
241
|
+
x (torch.Tensor): the input tensor.
|
|
242
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
|
243
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
|
244
|
+
|
|
245
|
+
Returns:
|
|
246
|
+
output activation from this self attention layer.
|
|
247
|
+
"""
|
|
248
|
+
B, T, _ = x.size()
|
|
249
|
+
return super().forward(
|
|
250
|
+
x,
|
|
251
|
+
rope=rope,
|
|
252
|
+
mask=torch.zeros((B, 1, T, T), dtype=torch.float32),
|
|
253
|
+
input_pos=input_pos,
|
|
254
|
+
)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
class CrossAttention(nn.Module):
|
|
258
|
+
|
|
259
|
+
def __init__(
|
|
260
|
+
self,
|
|
261
|
+
batch_size: int,
|
|
262
|
+
query_dim: int,
|
|
263
|
+
cross_dim: int,
|
|
264
|
+
config: cfg.AttentionConfig,
|
|
265
|
+
kv_cache_max: int,
|
|
266
|
+
enable_hlfb: bool,
|
|
267
|
+
) -> None:
|
|
268
|
+
"""Initialize an instance of CrossAttention.
|
|
269
|
+
|
|
270
|
+
Args:
|
|
271
|
+
batch_size (int): batch size of the input tensor.
|
|
272
|
+
query_dim (int): query tensor's dimension.
|
|
273
|
+
cross_dim (int): cross attention's dimensions, for key and value tensors.
|
|
274
|
+
config (cfg.AttentionConfig): attention specific configurations.
|
|
275
|
+
kv_cache_max (int): determines the size of the KV Cache buffer, if enabled.
|
|
276
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
|
277
|
+
"""
|
|
278
|
+
super().__init__()
|
|
279
|
+
self.config = config
|
|
280
|
+
self.head_dim = query_dim // config.num_heads
|
|
281
|
+
self.n_heads = config.num_heads
|
|
282
|
+
self.q_projection = nn.Linear(query_dim, query_dim, bias=config.qkv_use_bias)
|
|
283
|
+
self.k_projection = nn.Linear(cross_dim, query_dim, bias=config.qkv_use_bias)
|
|
284
|
+
self.v_projection = nn.Linear(cross_dim, query_dim, bias=config.qkv_use_bias)
|
|
285
|
+
self.output_projection = nn.Linear(
|
|
286
|
+
query_dim, query_dim, bias=config.output_proj_use_bias
|
|
287
|
+
)
|
|
288
|
+
|
|
289
|
+
self.kv_cache = None
|
|
290
|
+
# Build a k/v cache with size (batch_size, kv_cache_max, n_heads, head_dim).
|
|
291
|
+
if config.enable_kv_cache:
|
|
292
|
+
self.kv_cache = KVCache(
|
|
293
|
+
batch_size,
|
|
294
|
+
kv_cache_max,
|
|
295
|
+
config.num_query_groups,
|
|
296
|
+
self.head_dim,
|
|
297
|
+
enable_hlfb,
|
|
298
|
+
)
|
|
299
|
+
|
|
300
|
+
if enable_hlfb:
|
|
301
|
+
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
|
302
|
+
else:
|
|
303
|
+
self.sdpa_func = scaled_dot_product_attention
|
|
304
|
+
|
|
305
|
+
def forward(
|
|
306
|
+
self,
|
|
307
|
+
x: torch.Tensor,
|
|
308
|
+
y: torch.Tensor,
|
|
309
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
310
|
+
mask: Optional[torch.Tensor] = None,
|
|
311
|
+
input_pos: Optional[torch.Tensor] = None,
|
|
312
|
+
):
|
|
313
|
+
"""Forward function of the CrossAttention layer.
|
|
314
|
+
|
|
315
|
+
Args:
|
|
316
|
+
x (torch.Tensor): the target tensor, with shape [B, target_seq_len, ...].
|
|
317
|
+
y (torch.Tensor): the source tensor, with shape [B, source_seq_len, ...].
|
|
318
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the optional input rope tensor.
|
|
319
|
+
mask (torch.Tensor): the optional mask tensor can be broadcaseted to shape [B, n_heads, target_seq_len, source_seq_len].
|
|
320
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
|
321
|
+
|
|
322
|
+
Returns:
|
|
323
|
+
output activation from this cross attention layer.
|
|
324
|
+
"""
|
|
325
|
+
batch_size = x.size()[0]
|
|
326
|
+
target_seq_len = x.size()[1]
|
|
327
|
+
source_seq_len = y.size()[1]
|
|
328
|
+
|
|
329
|
+
q = self.q_projection(x)
|
|
330
|
+
k = self.k_projection(y)
|
|
331
|
+
v = self.v_projection(y)
|
|
332
|
+
|
|
333
|
+
interim_shape = (batch_size, -1, self.n_heads, self.head_dim)
|
|
334
|
+
q = q.view(interim_shape)
|
|
335
|
+
k = k.view(interim_shape)
|
|
336
|
+
v = v.view(interim_shape)
|
|
337
|
+
|
|
338
|
+
# Compute rotary positional embedding for query and key.
|
|
339
|
+
n_elem = int(self.config.rotary_percentage * self.head_dim)
|
|
340
|
+
q, k = _embed_rope(q, k, n_elem, rope)
|
|
341
|
+
|
|
342
|
+
if self.kv_cache is not None:
|
|
343
|
+
# TODO(haoliang): Handle when execeeding max sequence length.
|
|
344
|
+
k, v = self.kv_cache.update_cache(input_pos, k, v)
|
|
345
|
+
if mask is None:
|
|
346
|
+
mask = torch.zeros(
|
|
347
|
+
(batch_size, 1, target_seq_len, source_seq_len), dtype=torch.float32
|
|
348
|
+
)
|
|
349
|
+
y = self.sdpa_func(q, k, v, self.head_dim, mask=mask)
|
|
350
|
+
y = y.reshape(batch_size, target_seq_len, -1)
|
|
351
|
+
|
|
352
|
+
# Compute the output projection.
|
|
353
|
+
y = self.output_projection(y)
|
|
354
|
+
return y
|