OpenREM 1.0.0b2__py3-none-any.whl → 1.0.0b3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (279) hide show
  1. openrem/locale/de/LC_MESSAGES/django.po +1060 -1059
  2. openrem/locale/django.pot +973 -972
  3. openrem/locale/es_MX/LC_MESSAGES/django.po +1049 -1048
  4. openrem/locale/it/LC_MESSAGES/django.po +1044 -1043
  5. openrem/locale/lt/LC_MESSAGES/django.po +989 -988
  6. openrem/locale/nb_NO/LC_MESSAGES/django.po +985 -984
  7. openrem/locale/pt_BR/LC_MESSAGES/django.po +1003 -1002
  8. openrem/manage.py +10 -10
  9. openrem/openremproject/__init__.py +1 -1
  10. openrem/openremproject/local_settings.py.linux +128 -128
  11. openrem/openremproject/local_settings.py.windows +144 -144
  12. openrem/openremproject/local_settings.py.windows-sqlite3 +129 -129
  13. openrem/openremproject/settings.py +278 -278
  14. openrem/openremproject/urls.py +32 -32
  15. openrem/openremproject/wsgi.py.example +28 -28
  16. openrem/remapp/__init__.py +2 -2
  17. openrem/remapp/admin.py +31 -31
  18. openrem/remapp/exports/ct_export.py +780 -753
  19. openrem/remapp/exports/dx_export.py +817 -805
  20. openrem/remapp/exports/export_common.py +931 -951
  21. openrem/remapp/exports/export_common_pandas.py +2422 -0
  22. openrem/remapp/exports/exportviews.py +815 -860
  23. openrem/remapp/exports/mg_csv_nhsbsp.py +292 -292
  24. openrem/remapp/exports/mg_export.py +673 -510
  25. openrem/remapp/exports/nm_export.py +796 -575
  26. openrem/remapp/exports/rf_export.py +1418 -1431
  27. openrem/remapp/extractors/ct_philips.py +424 -414
  28. openrem/remapp/extractors/ct_toshiba.py +2116 -2108
  29. openrem/remapp/extractors/dx.py +1033 -952
  30. openrem/remapp/extractors/extract_common.py +817 -817
  31. openrem/remapp/extractors/import_views.py +426 -426
  32. openrem/remapp/extractors/mam.py +685 -672
  33. openrem/remapp/extractors/nm_image.py +439 -431
  34. openrem/remapp/extractors/ptsizecsv2db.py +368 -368
  35. openrem/remapp/extractors/rdsr.py +667 -654
  36. openrem/remapp/extractors/rdsr_methods.py +1771 -1768
  37. openrem/remapp/extractors/rrdsr_methods.py +630 -622
  38. openrem/remapp/fixtures/openskin_safelist.json +11 -11
  39. openrem/remapp/forms.py +2286 -2277
  40. openrem/remapp/interface/chart_functions.py +2412 -2393
  41. openrem/remapp/interface/mod_filters.py +1241 -1243
  42. openrem/remapp/migrations/0001_initial.py.1-0-upgrade +1043 -1043
  43. openrem/remapp/models.py +3418 -3407
  44. openrem/remapp/netdicom/dicomviews.py +681 -683
  45. openrem/remapp/netdicom/qrscu.py +2646 -2646
  46. openrem/remapp/netdicom/tools.py +134 -134
  47. openrem/remapp/static/css/bootstrap-theme.css +587 -587
  48. openrem/remapp/static/css/bootstrap-theme.min.css +4 -4
  49. openrem/remapp/static/css/bootstrap.css +6800 -6800
  50. openrem/remapp/static/css/bootstrap.min.css +4 -4
  51. openrem/remapp/static/css/datepicker3.css +790 -790
  52. openrem/remapp/static/css/jquery.qtip.min.css +2 -2
  53. openrem/remapp/static/css/openrem-extra.css +442 -442
  54. openrem/remapp/static/css/openrem.css +96 -96
  55. openrem/remapp/static/css/registration.css +34 -34
  56. openrem/remapp/static/fonts/glyphicons-halflings-regular.svg +287 -287
  57. openrem/remapp/static/js/bootstrap-datepicker.js +1671 -1671
  58. openrem/remapp/static/js/bootstrap.js +2363 -2363
  59. openrem/remapp/static/js/bootstrap.min.js +6 -6
  60. openrem/remapp/static/js/charts/chartCommonFunctions.js +75 -75
  61. openrem/remapp/static/js/charts/chartFullScreen.js +41 -41
  62. openrem/remapp/static/js/charts/ctChartAjax.js +331 -331
  63. openrem/remapp/static/js/charts/dxChartAjax.js +290 -290
  64. openrem/remapp/static/js/charts/mgChartAjax.js +144 -144
  65. openrem/remapp/static/js/charts/nmChartAjax.js +64 -64
  66. openrem/remapp/static/js/charts/plotly-2.35.2.min.js +8 -0
  67. openrem/remapp/static/js/charts/rfChartAjax.js +128 -128
  68. openrem/remapp/static/js/chroma.min.js +32 -32
  69. openrem/remapp/static/js/datepicker.js +5 -5
  70. openrem/remapp/static/js/dicom.js +115 -115
  71. openrem/remapp/static/js/django_reverse/reverse.js +13 -13
  72. openrem/remapp/static/js/formatDate.js +7 -7
  73. openrem/remapp/static/js/html5shiv.min.js +8 -8
  74. openrem/remapp/static/js/jquery-1.11.0.min.js +4 -4
  75. openrem/remapp/static/js/npm.js +12 -12
  76. openrem/remapp/static/js/respond.min.js +4 -4
  77. openrem/remapp/static/js/skin-dose-maps/jquery.qtip.min.js +4 -4
  78. openrem/remapp/static/js/skin-dose-maps/rfSkinDoseMap3dHUDObject.js +112 -112
  79. openrem/remapp/static/js/skin-dose-maps/rfSkinDoseMap3dObject.js +367 -367
  80. openrem/remapp/static/js/skin-dose-maps/rfSkinDoseMap3dPersonObject.js +158 -158
  81. openrem/remapp/static/js/skin-dose-maps/rfSkinDoseMapColourScaleObject.js +153 -153
  82. openrem/remapp/static/js/skin-dose-maps/rfSkinDoseMapObject.js +367 -367
  83. openrem/remapp/static/js/skin-dose-maps/rfSkinDoseMapping.js +584 -584
  84. openrem/remapp/static/js/skin-dose-maps/rfSkinDoseMapping3d.js +255 -255
  85. openrem/remapp/static/js/skin-dose-maps/rfSkinDoseMappingAjax.js +267 -212
  86. openrem/remapp/static/js/skin-dose-maps/three.min.js +835 -835
  87. openrem/remapp/static/js/sorttable.js +495 -495
  88. openrem/remapp/templates/base.html +253 -253
  89. openrem/remapp/templates/registration/changepassword.html +25 -25
  90. openrem/remapp/templates/registration/changepassworddone.html +12 -12
  91. openrem/remapp/templates/registration/login.html +42 -42
  92. openrem/remapp/templates/remapp/backgroundtaskmaximumrows_form.html +29 -29
  93. openrem/remapp/templates/remapp/base.html +1 -1
  94. openrem/remapp/templates/remapp/ctdetail.html +235 -235
  95. openrem/remapp/templates/remapp/ctfiltered.html +310 -310
  96. openrem/remapp/templates/remapp/dicomdeletesettings_form.html +31 -31
  97. openrem/remapp/templates/remapp/dicomqr.html +147 -147
  98. openrem/remapp/templates/remapp/dicomquerydetails.html +83 -83
  99. openrem/remapp/templates/remapp/dicomqueryimages.html +49 -49
  100. openrem/remapp/templates/remapp/dicomqueryseries.html +109 -109
  101. openrem/remapp/templates/remapp/dicomquerysummary.html +48 -48
  102. openrem/remapp/templates/remapp/dicomremoteqr_confirm_delete.html +60 -60
  103. openrem/remapp/templates/remapp/dicomremoteqr_form.html +32 -32
  104. openrem/remapp/templates/remapp/dicomstorescp_confirm_delete.html +53 -53
  105. openrem/remapp/templates/remapp/dicomstorescp_form.html +48 -48
  106. openrem/remapp/templates/remapp/dicomsummary.html +257 -257
  107. openrem/remapp/templates/remapp/displaychartoptions.html +184 -184
  108. openrem/remapp/templates/remapp/displayhomepageoptions.html +57 -57
  109. openrem/remapp/templates/remapp/displayname-count.html +6 -6
  110. openrem/remapp/templates/remapp/displayname-last-date.html +3 -3
  111. openrem/remapp/templates/remapp/displayname-modality.html +86 -105
  112. openrem/remapp/templates/remapp/displayname-skinmap.html +18 -18
  113. openrem/remapp/templates/remapp/displaynameupdate.html +100 -100
  114. openrem/remapp/templates/remapp/displaynameview.html +222 -219
  115. openrem/remapp/templates/remapp/dxdetail.html +176 -176
  116. openrem/remapp/templates/remapp/dxfiltered.html +324 -324
  117. openrem/remapp/templates/remapp/exports-active.html +25 -25
  118. openrem/remapp/templates/remapp/exports-complete.html +35 -35
  119. openrem/remapp/templates/remapp/exports-error.html +26 -26
  120. openrem/remapp/templates/remapp/exports-queue.html +18 -18
  121. openrem/remapp/templates/remapp/exports.html +191 -191
  122. openrem/remapp/templates/remapp/failed_summary_list.html +27 -27
  123. openrem/remapp/templates/remapp/filteredbase.html +162 -162
  124. openrem/remapp/templates/remapp/highdosemetricalertsettings_form.html +76 -76
  125. openrem/remapp/templates/remapp/home-list-modalities.html +94 -94
  126. openrem/remapp/templates/remapp/home.html +202 -202
  127. openrem/remapp/templates/remapp/list_filters.html +24 -24
  128. openrem/remapp/templates/remapp/mgdetail.html +160 -138
  129. openrem/remapp/templates/remapp/mgfiltered.html +311 -311
  130. openrem/remapp/templates/remapp/nmdetail.html +300 -300
  131. openrem/remapp/templates/remapp/nmfiltered.html +255 -255
  132. openrem/remapp/templates/remapp/notpatient.html +190 -190
  133. openrem/remapp/templates/remapp/notpatientindicators_form_base.html +81 -81
  134. openrem/remapp/templates/remapp/notpatientindicatorsid_confirm_delete.html +54 -54
  135. openrem/remapp/templates/remapp/notpatientindicatorsid_form.html +23 -23
  136. openrem/remapp/templates/remapp/notpatientindicatorsname_confirm_delete.html +54 -54
  137. openrem/remapp/templates/remapp/notpatientindicatorsname_form.html +23 -23
  138. openrem/remapp/templates/remapp/notpatientindicatorsname_form_base.html +85 -85
  139. openrem/remapp/templates/remapp/openskinsafelist_add.html +130 -130
  140. openrem/remapp/templates/remapp/openskinsafelist_confirm_delete.html +100 -100
  141. openrem/remapp/templates/remapp/openskinsafelist_form.html +207 -207
  142. openrem/remapp/templates/remapp/patientidsettings_form.html +83 -83
  143. openrem/remapp/templates/remapp/populate_summary_progress.html +83 -83
  144. openrem/remapp/templates/remapp/populate_summary_progress_error.html +36 -36
  145. openrem/remapp/templates/remapp/review_failed_imports.html +157 -157
  146. openrem/remapp/templates/remapp/review_failed_study.html +41 -41
  147. openrem/remapp/templates/remapp/review_studies_delete_button.html +20 -20
  148. openrem/remapp/templates/remapp/review_study.html +19 -19
  149. openrem/remapp/templates/remapp/review_summary_list.html +245 -245
  150. openrem/remapp/templates/remapp/rf_dose_alert_email_template.html +14 -1
  151. openrem/remapp/templates/remapp/rfalertnotificationsview.html +59 -59
  152. openrem/remapp/templates/remapp/rfdetail.html +547 -543
  153. openrem/remapp/templates/remapp/rfdetailbase.html +18 -18
  154. openrem/remapp/templates/remapp/rffiltered.html +404 -404
  155. openrem/remapp/templates/remapp/sizeimports.html +119 -119
  156. openrem/remapp/templates/remapp/sizeprocess.html +96 -96
  157. openrem/remapp/templates/remapp/sizeupload.html +110 -110
  158. openrem/remapp/templates/remapp/skindosemapcalcsettings_form.html +28 -28
  159. openrem/remapp/templates/remapp/standardname-modality.html +69 -69
  160. openrem/remapp/templates/remapp/standardnames_confirm_delete.html +71 -71
  161. openrem/remapp/templates/remapp/standardnames_form.html +87 -87
  162. openrem/remapp/templates/remapp/standardnamesettings_form.html +41 -41
  163. openrem/remapp/templates/remapp/standardnamesrefreshall.html +92 -92
  164. openrem/remapp/templates/remapp/standardnameview.html +103 -103
  165. openrem/remapp/templates/remapp/study_confirm_delete.html +147 -147
  166. openrem/remapp/templates/remapp/task_admin.html +265 -265
  167. openrem/remapp/templates/remapp/tasks.html +76 -76
  168. openrem/remapp/templatetags/formfilters.py +13 -13
  169. openrem/remapp/templatetags/proper_paginate.py +38 -38
  170. openrem/remapp/templatetags/remappduration.py +36 -36
  171. openrem/remapp/templatetags/sigdig.py +38 -38
  172. openrem/remapp/templatetags/sort_class_property_value.py +15 -15
  173. openrem/remapp/templatetags/update_variable.py +20 -20
  174. openrem/remapp/templatetags/url_replace.py +25 -25
  175. openrem/remapp/tests/test_charts_common.py +202 -202
  176. openrem/remapp/tests/test_charts_ct.py +7111 -7111
  177. openrem/remapp/tests/test_charts_dx.py +3513 -3513
  178. openrem/remapp/tests/test_charts_mg.py +1116 -1115
  179. openrem/remapp/tests/test_dcmdatetime.py +189 -189
  180. openrem/remapp/tests/test_dicom_qr.py +2580 -2580
  181. openrem/remapp/tests/test_display_name.py +274 -274
  182. openrem/remapp/tests/test_export_ct_xlsx.py +272 -248
  183. openrem/remapp/tests/test_export_dx_xlsx.py +137 -134
  184. openrem/remapp/tests/test_export_mammo_csv.py +242 -242
  185. openrem/remapp/tests/test_export_rf_xlsx.py +246 -246
  186. openrem/remapp/tests/test_files/DX-Im-DRGEM.dcm +0 -0
  187. openrem/remapp/tests/test_files/MG-RDSR-GEPristina-2D.dcm +0 -0
  188. openrem/remapp/tests/test_files/MG-RDSR-GEPristina-DBT.dcm +0 -0
  189. openrem/remapp/tests/test_files/MG-RDSR-Giotto-DBT.dcm +0 -0
  190. openrem/remapp/tests/test_files/skin_map_alphenix.py +590 -590
  191. openrem/remapp/tests/test_files/skin_map_zee.py +354 -354
  192. openrem/remapp/tests/test_filters_ct.py +321 -321
  193. openrem/remapp/tests/test_filters_dx.py +92 -92
  194. openrem/remapp/tests/test_filters_mammo.py +183 -183
  195. openrem/remapp/tests/test_filters_rf.py +118 -118
  196. openrem/remapp/tests/test_get_values.py +72 -72
  197. openrem/remapp/tests/test_hash_id.py +65 -65
  198. openrem/remapp/tests/test_import_ct_esr_ge.py +3034 -3034
  199. openrem/remapp/tests/test_import_ct_philips_rdsr.py +42 -42
  200. openrem/remapp/tests/test_import_ct_rdsr_multiple.py +256 -256
  201. openrem/remapp/tests/test_import_ct_rdsr_siemens.py +827 -827
  202. openrem/remapp/tests/test_import_ct_rdsr_spectrumdynamics.py +91 -91
  203. openrem/remapp/tests/test_import_ct_rdsr_toshiba_dosecheck.py +67 -67
  204. openrem/remapp/tests/test_import_ct_rdsr_toshiba_multivaluesd.py +33 -33
  205. openrem/remapp/tests/test_import_ct_rdsr_toshiba_pixelmed.py +118 -118
  206. openrem/remapp/tests/test_import_ct_sc_philips.py +44 -44
  207. openrem/remapp/tests/test_import_dual_rdsr.py +110 -110
  208. openrem/remapp/tests/test_import_dx.py +1267 -1191
  209. openrem/remapp/tests/test_import_dx_rdsr.py +1250 -1253
  210. openrem/remapp/tests/test_import_mam.py +438 -438
  211. openrem/remapp/tests/test_import_mg_im_hol_proj.py +46 -46
  212. openrem/remapp/tests/test_import_mg_rdsr.py +586 -586
  213. openrem/remapp/tests/test_import_nm_image.py +420 -420
  214. openrem/remapp/tests/test_import_nm_siemens_rdsr.py +396 -396
  215. openrem/remapp/tests/test_import_px.py +161 -161
  216. openrem/remapp/tests/test_import_rf_rdsr.py +420 -418
  217. openrem/remapp/tests/test_missing_date.py +42 -42
  218. openrem/remapp/tests/test_not_patient.py +60 -60
  219. openrem/remapp/tests/test_openskin.py +272 -272
  220. openrem/remapp/tests/test_patient_id_settings.py +72 -72
  221. openrem/remapp/tests/test_pt_size_import.py +232 -232
  222. openrem/remapp/tests/test_rf_detail.py +113 -113
  223. openrem/remapp/tests/test_rf_high_dose_alert.py +361 -361
  224. openrem/remapp/tools/background.py +361 -361
  225. openrem/remapp/tools/check_standard_name_status.py +47 -0
  226. openrem/remapp/tools/check_uid.py +70 -70
  227. openrem/remapp/tools/dcmdatetime.py +248 -248
  228. openrem/remapp/tools/default_import.py +44 -47
  229. openrem/remapp/tools/get_values.py +230 -230
  230. openrem/remapp/tools/hash_id.py +58 -58
  231. openrem/remapp/tools/make_skin_map.py +448 -406
  232. openrem/remapp/tools/not_patient_indicators.py +72 -72
  233. openrem/remapp/tools/openskin/calc_exp_map.py +173 -173
  234. openrem/remapp/tools/openskin/geomclass.py +475 -475
  235. openrem/remapp/tools/openskin/geomfunc.py +433 -432
  236. openrem/remapp/tools/openskin/skinmap.py +417 -417
  237. openrem/remapp/tools/populate_summary.py +185 -193
  238. openrem/remapp/tools/save_skin_map_structure.py +73 -73
  239. openrem/remapp/tools/send_high_dose_alert_emails.py +238 -207
  240. openrem/remapp/urls.py +456 -448
  241. openrem/remapp/version.py +11 -11
  242. openrem/remapp/views.py +1147 -1052
  243. openrem/remapp/views_admin.py +3876 -3936
  244. openrem/remapp/views_charts_ct.py +2110 -2058
  245. openrem/remapp/views_charts_dx.py +1906 -1836
  246. openrem/remapp/views_charts_mg.py +1349 -1196
  247. openrem/remapp/views_charts_nm.py +535 -535
  248. openrem/remapp/views_charts_rf.py +1219 -1241
  249. openrem/remapp/views_openskin.py +379 -384
  250. openrem/sample-config/openrem-consumer.service +12 -12
  251. openrem/sample-config/openrem-gunicorn.service +13 -13
  252. openrem/sample-config/openrem-server +14 -13
  253. openrem/sample-config/openrem_orthanc_config_linux.lua +454 -454
  254. openrem/sample-config/openrem_orthanc_config_windows.lua +455 -455
  255. openrem/sample-config/queue-init.bat +73 -73
  256. openrem/scripts/openrem_ctphilips.py +25 -25
  257. openrem/scripts/openrem_cttoshiba.py +28 -28
  258. openrem/scripts/openrem_dx.py +22 -22
  259. openrem/scripts/openrem_mg.py +22 -22
  260. openrem/scripts/openrem_nm.py +22 -22
  261. openrem/scripts/openrem_ptsizecsv.py +17 -17
  262. openrem/scripts/openrem_qr.py +12 -12
  263. openrem/scripts/openrem_rdsr.py +25 -25
  264. {OpenREM-1.0.0b2.dist-info → openrem-1.0.0b3.dist-info}/METADATA +39 -29
  265. openrem-1.0.0b3.dist-info/RECORD +379 -0
  266. {OpenREM-1.0.0b2.dist-info → openrem-1.0.0b3.dist-info}/WHEEL +1 -1
  267. {OpenREM-1.0.0b2.dist-info → openrem-1.0.0b3.dist-info/licenses}/COPYING-GPLv3 +674 -674
  268. {OpenREM-1.0.0b2.dist-info → openrem-1.0.0b3.dist-info/licenses}/LICENSE +22 -22
  269. OpenREM-1.0.0b2.dist-info/RECORD +0 -373
  270. openrem/remapp/static/js/charts/plotly-2.17.1.min.js +0 -8
  271. {OpenREM-1.0.0b2.data → openrem-1.0.0b3.data}/scripts/openrem_ctphilips.py +0 -0
  272. {OpenREM-1.0.0b2.data → openrem-1.0.0b3.data}/scripts/openrem_cttoshiba.py +0 -0
  273. {OpenREM-1.0.0b2.data → openrem-1.0.0b3.data}/scripts/openrem_dx.py +0 -0
  274. {OpenREM-1.0.0b2.data → openrem-1.0.0b3.data}/scripts/openrem_mg.py +0 -0
  275. {OpenREM-1.0.0b2.data → openrem-1.0.0b3.data}/scripts/openrem_nm.py +0 -0
  276. {OpenREM-1.0.0b2.data → openrem-1.0.0b3.data}/scripts/openrem_ptsizecsv.py +0 -0
  277. {OpenREM-1.0.0b2.data → openrem-1.0.0b3.data}/scripts/openrem_qr.py +0 -0
  278. {OpenREM-1.0.0b2.data → openrem-1.0.0b3.data}/scripts/openrem_rdsr.py +0 -0
  279. {OpenREM-1.0.0b2.dist-info → openrem-1.0.0b3.dist-info}/top_level.txt +0 -0
@@ -1,1836 +1,1906 @@
1
- # pylint: disable=too-many-lines
2
- import logging
3
- from datetime import datetime
4
- from django.conf import settings
5
- from django.contrib.auth.decorators import login_required
6
- from django.core.exceptions import ObjectDoesNotExist
7
- from django.http import JsonResponse
8
- from remapp.forms import (
9
- DXChartOptionsForm,
10
- DXChartOptionsFormIncStandard,
11
- )
12
- from remapp.interface.mod_filters import dx_acq_filter
13
- from remapp.models import (
14
- create_user_profile,
15
- StandardNameSettings,
16
- )
17
- from remapp.views_admin import (
18
- set_average_chart_options,
19
- required_average_choices,
20
- initialise_dx_form_data,
21
- set_dx_chart_options,
22
- set_common_chart_options,
23
- )
24
- from .interface.chart_functions import (
25
- create_dataframe,
26
- create_dataframe_weekdays,
27
- create_dataframe_aggregates,
28
- plotly_boxplot,
29
- plotly_barchart,
30
- plotly_histogram_barchart,
31
- plotly_barchart_weekdays,
32
- plotly_set_default_theme,
33
- plotly_frequency_barchart,
34
- plotly_scatter,
35
- construct_over_time_charts,
36
- generate_average_chart_group,
37
- )
38
-
39
- logger = logging.getLogger(__name__)
40
-
41
-
42
- def generate_required_dx_charts_list(profile):
43
- # pylint: disable=too-many-branches
44
- # pylint: disable=too-many-statements
45
- """Obtain a list of dictionaries containing the title string and base
46
- variable name for each required chart"""
47
-
48
- # Obtain the system-level enable_standard_names setting
49
- try:
50
- StandardNameSettings.objects.get()
51
- except ObjectDoesNotExist:
52
- StandardNameSettings.objects.create()
53
- enable_standard_names = StandardNameSettings.objects.values_list(
54
- "enable_standard_names", flat=True
55
- )[0]
56
-
57
- required_charts = []
58
-
59
- charts_of_interest = [
60
- profile.plotDXAcquisitionMeanDAPOverTime,
61
- profile.plotDXAcquisitionMeanmAsOverTime,
62
- profile.plotDXAcquisitionMeankVpOverTime,
63
- ]
64
- if enable_standard_names:
65
- charts_of_interest.append(profile.plotDXStandardAcquisitionMeanDAPOverTime)
66
- charts_of_interest.append(profile.plotDXStandardAcquisitionMeanmAsOverTime)
67
- charts_of_interest.append(profile.plotDXStandardAcquisitionMeankVpOverTime)
68
-
69
- if any(charts_of_interest):
70
- keys = list(dict(profile.TIME_PERIOD).keys())
71
- values = list(dict(profile.TIME_PERIOD).values())
72
- time_period = (
73
- values[keys.index(profile.plotDXAcquisitionMeanDAPOverTimePeriod)]
74
- ).lower()
75
-
76
- if profile.plotDXAcquisitionMeanDAP:
77
- if profile.plotMean:
78
- required_charts.append(
79
- {
80
- "title": "Chart of mean DAP for each acquisition protocol",
81
- "var_name": "acquisitionMeanDAP",
82
- }
83
- )
84
- if profile.plotMedian:
85
- required_charts.append(
86
- {
87
- "title": "Chart of median DAP for each acquisition protocol",
88
- "var_name": "acquisitionMedianDAP",
89
- }
90
- )
91
- if profile.plotBoxplots:
92
- required_charts.append(
93
- {
94
- "title": "Boxplot of DAP for each acquisition protocol",
95
- "var_name": "acquisitionBoxplotDAP",
96
- }
97
- )
98
- if profile.plotHistograms:
99
- required_charts.append(
100
- {
101
- "title": "Histogram of DAP for each acquisition protocol",
102
- "var_name": "acquisitionHistogramDAP",
103
- }
104
- )
105
-
106
- if profile.plotDXAcquisitionFreq:
107
- required_charts.append(
108
- {
109
- "title": "Chart of acquisition protocol frequency",
110
- "var_name": "acquisitionFrequency",
111
- }
112
- )
113
-
114
- if profile.plotDXAcquisitionMeankVp:
115
- if profile.plotMean:
116
- required_charts.append(
117
- {
118
- "title": "Chart of mean kVp for each acquisition protocol",
119
- "var_name": "acquisitionMeankVp",
120
- }
121
- )
122
- if profile.plotMedian:
123
- required_charts.append(
124
- {
125
- "title": "Chart of median kVp for each acquisition protocol",
126
- "var_name": "acquisitionMediankVp",
127
- }
128
- )
129
- if profile.plotBoxplots:
130
- required_charts.append(
131
- {
132
- "title": "Boxplot of kVp for each acquisition protocol",
133
- "var_name": "acquisitionBoxplotkVp",
134
- }
135
- )
136
- if profile.plotHistograms:
137
- required_charts.append(
138
- {
139
- "title": "Histogram of kVp for each acquisition protocol",
140
- "var_name": "acquisitionHistogramkVp",
141
- }
142
- )
143
-
144
- if profile.plotDXAcquisitionMeanmAs:
145
- if profile.plotMean:
146
- required_charts.append(
147
- {
148
- "title": "Chart of mean mAs for each acquisition protocol",
149
- "var_name": "acquisitionMeanmAs",
150
- }
151
- )
152
- if profile.plotMedian:
153
- required_charts.append(
154
- {
155
- "title": "Chart of median mAs for each acquisition protocol",
156
- "var_name": "acquisitionMedianmAs",
157
- }
158
- )
159
- if profile.plotBoxplots:
160
- required_charts.append(
161
- {
162
- "title": "Boxplot of mAs for each acquisition protocol",
163
- "var_name": "acquisitionBoxplotmAs",
164
- }
165
- )
166
- if profile.plotHistograms:
167
- required_charts.append(
168
- {
169
- "title": "Histogram of mAs for each acquisition protocol",
170
- "var_name": "acquisitionHistogrammAs",
171
- }
172
- )
173
-
174
- if profile.plotDXAcquisitionMeanDAPOverTime:
175
- if profile.plotMean:
176
- required_charts.append(
177
- {
178
- "title": "Chart of mean DAP per acquisition protocol over time ("
179
- + time_period
180
- + ")",
181
- "var_name": "acquisitionMeanDAPOverTime",
182
- }
183
- )
184
- if profile.plotMedian:
185
- required_charts.append(
186
- {
187
- "title": "Chart of median DAP per acquisition protocol over time ("
188
- + time_period
189
- + ")",
190
- "var_name": "acquisitionMedianDAPOverTime",
191
- }
192
- )
193
-
194
- if profile.plotDXAcquisitionMeankVpOverTime:
195
- if profile.plotMean:
196
- required_charts.append(
197
- {
198
- "title": "Chart of mean kVp per acquisition protocol over time ("
199
- + time_period
200
- + ")",
201
- "var_name": "acquisitionMeankVpOverTime",
202
- }
203
- )
204
- if profile.plotMedian:
205
- required_charts.append(
206
- {
207
- "title": "Chart of median kVp per acquisition protocol over time ("
208
- + time_period
209
- + ")",
210
- "var_name": "acquisitionMediankVpOverTime",
211
- }
212
- )
213
-
214
- if profile.plotDXAcquisitionMeanmAsOverTime:
215
- if profile.plotMean:
216
- required_charts.append(
217
- {
218
- "title": "Chart of mean mAs per acquisition protocol over time ("
219
- + time_period
220
- + ")",
221
- "var_name": "acquisitionMeanmAsOverTime",
222
- }
223
- )
224
- if profile.plotMedian:
225
- required_charts.append(
226
- {
227
- "title": "Chart of median mAs per acquisition protocol over time ("
228
- + time_period
229
- + ")",
230
- "var_name": "acquisitionMedianmAsOverTime",
231
- }
232
- )
233
-
234
- if profile.plotDXAcquisitionDAPvsMass:
235
- required_charts.append(
236
- {
237
- "title": "Chart of acquisition protocol DAP vs patient mass",
238
- "var_name": "acquisitionDAPvsMass",
239
- }
240
- )
241
-
242
- if enable_standard_names:
243
- if profile.plotDXStandardAcquisitionMeanDAP:
244
- if profile.plotMean:
245
- required_charts.append(
246
- {
247
- "title": "Chart of mean DAP for each standard acquisition name",
248
- "var_name": "standardAcquisitionMeanDAP",
249
- }
250
- )
251
- if profile.plotMedian:
252
- required_charts.append(
253
- {
254
- "title": "Chart of median DAP for each standard acquisition name",
255
- "var_name": "standardAcquisitionMedianDAP",
256
- }
257
- )
258
- if profile.plotBoxplots:
259
- required_charts.append(
260
- {
261
- "title": "Boxplot of DAP for each standard acquisition name",
262
- "var_name": "standardAcquisitionBoxplotDAP",
263
- }
264
- )
265
- if profile.plotHistograms:
266
- required_charts.append(
267
- {
268
- "title": "Histogram of DAP for each standard acquisition name",
269
- "var_name": "standardAcquisitionHistogramDAP",
270
- }
271
- )
272
-
273
- if profile.plotDXStandardAcquisitionFreq:
274
- required_charts.append(
275
- {
276
- "title": "Chart of standard acquisition name frequency",
277
- "var_name": "standardAcquisitionFrequency",
278
- }
279
- )
280
-
281
- if profile.plotDXStandardAcquisitionMeankVp:
282
- if profile.plotMean:
283
- required_charts.append(
284
- {
285
- "title": "Chart of mean kVp for each standard acquisition name",
286
- "var_name": "standardAcquisitionMeankVp",
287
- }
288
- )
289
- if profile.plotMedian:
290
- required_charts.append(
291
- {
292
- "title": "Chart of median kVp for each standard acquisition name",
293
- "var_name": "standardAcquisitionMediankVp",
294
- }
295
- )
296
- if profile.plotBoxplots:
297
- required_charts.append(
298
- {
299
- "title": "Boxplot of kVp for each standard acquisition name",
300
- "var_name": "standardAcquisitionBoxplotkVp",
301
- }
302
- )
303
- if profile.plotHistograms:
304
- required_charts.append(
305
- {
306
- "title": "Histogram of kVp for each standard acquisition name",
307
- "var_name": "standardAcquisitionHistogramkVp",
308
- }
309
- )
310
-
311
- if profile.plotDXStandardAcquisitionMeanmAs:
312
- if profile.plotMean:
313
- required_charts.append(
314
- {
315
- "title": "Chart of mean mAs for each standard acquisition name",
316
- "var_name": "standardAcquisitionMeanmAs",
317
- }
318
- )
319
- if profile.plotMedian:
320
- required_charts.append(
321
- {
322
- "title": "Chart of median mAs for each standard acquisition name",
323
- "var_name": "standardAcquisitionMedianmAs",
324
- }
325
- )
326
- if profile.plotBoxplots:
327
- required_charts.append(
328
- {
329
- "title": "Boxplot of mAs for each standard acquisition name",
330
- "var_name": "standardAcquisitionBoxplotmAs",
331
- }
332
- )
333
- if profile.plotHistograms:
334
- required_charts.append(
335
- {
336
- "title": "Histogram of mAs for each standard acquisition name",
337
- "var_name": "standardAcquisitionHistogrammAs",
338
- }
339
- )
340
-
341
- if profile.plotDXStandardAcquisitionMeanDAPOverTime:
342
- if profile.plotMean:
343
- required_charts.append(
344
- {
345
- "title": "Chart of mean DAP per standard acquisition name over time ("
346
- + time_period
347
- + ")",
348
- "var_name": "standardAcquisitionMeanDAPOverTime",
349
- }
350
- )
351
- if profile.plotMedian:
352
- required_charts.append(
353
- {
354
- "title": "Chart of median DAP per standard acquisition name over time ("
355
- + time_period
356
- + ")",
357
- "var_name": "standardAcquisitionMedianDAPOverTime",
358
- }
359
- )
360
-
361
- if profile.plotDXStandardAcquisitionMeankVpOverTime:
362
- if profile.plotMean:
363
- required_charts.append(
364
- {
365
- "title": "Chart of mean kVp per standard acquisition name over time ("
366
- + time_period
367
- + ")",
368
- "var_name": "standardAcquisitionMeankVpOverTime",
369
- }
370
- )
371
- if profile.plotMedian:
372
- required_charts.append(
373
- {
374
- "title": "Chart of median kVp per standard acquisition name over time ("
375
- + time_period
376
- + ")",
377
- "var_name": "standardAcquisitionMediankVpOverTime",
378
- }
379
- )
380
-
381
- if profile.plotDXStandardAcquisitionMeanmAsOverTime:
382
- if profile.plotMean:
383
- required_charts.append(
384
- {
385
- "title": "Chart of mean mAs per standard acquisition name over time ("
386
- + time_period
387
- + ")",
388
- "var_name": "standardAcquisitionMeanmAsOverTime",
389
- }
390
- )
391
- if profile.plotMedian:
392
- required_charts.append(
393
- {
394
- "title": "Chart of median mAs per standard acquisition name over time ("
395
- + time_period
396
- + ")",
397
- "var_name": "standardAcquisitionMedianmAsOverTime",
398
- }
399
- )
400
-
401
- if profile.plotDXStandardAcquisitionDAPvsMass:
402
- required_charts.append(
403
- {
404
- "title": "Chart of standard acquisition name DAP vs patient mass",
405
- "var_name": "standardAcquisitionDAPvsMass",
406
- }
407
- )
408
-
409
- if profile.plotDXStandardStudyMeanDAP:
410
- if profile.plotMean:
411
- required_charts.append(
412
- {
413
- "title": "Chart of mean DAP for each standard study name",
414
- "var_name": "standardStudyMeanDAP",
415
- }
416
- )
417
- if profile.plotMedian:
418
- required_charts.append(
419
- {
420
- "title": "Chart of median DAP for each standard study name",
421
- "var_name": "standardStudyMedianDAP",
422
- }
423
- )
424
- if profile.plotBoxplots:
425
- required_charts.append(
426
- {
427
- "title": "Boxplot of DAP for each standard study name",
428
- "var_name": "standardStudyBoxplotDAP",
429
- }
430
- )
431
- if profile.plotHistograms:
432
- required_charts.append(
433
- {
434
- "title": "Histogram of DAP for each standard study name",
435
- "var_name": "standardStudyHistogramDAP",
436
- }
437
- )
438
-
439
- if profile.plotDXStandardStudyFreq:
440
- required_charts.append(
441
- {
442
- "title": "Chart of standard study name frequency",
443
- "var_name": "standardStudyFrequency",
444
- }
445
- )
446
-
447
- if profile.plotDXStandardStudyPerDayAndHour:
448
- required_charts.append(
449
- {
450
- "title": "Chart of standard study name workload",
451
- "var_name": "standardStudyWorkload",
452
- }
453
- )
454
-
455
- if profile.plotDXStandardStudyDAPvsMass:
456
- required_charts.append(
457
- {
458
- "title": "Chart of standard study name DAP vs patient mass",
459
- "var_name": "standardStudyDAPvsMass",
460
- }
461
- )
462
-
463
- if profile.plotDXStudyMeanDAP:
464
- if profile.plotMean:
465
- required_charts.append(
466
- {
467
- "title": "Chart of mean DAP for each study description",
468
- "var_name": "studyMeanDAP",
469
- }
470
- )
471
- if profile.plotMedian:
472
- required_charts.append(
473
- {
474
- "title": "Chart of median DAP for each study description",
475
- "var_name": "studyMedianDAP",
476
- }
477
- )
478
- if profile.plotBoxplots:
479
- required_charts.append(
480
- {
481
- "title": "Boxplot of DAP for each study description",
482
- "var_name": "studyBoxplotDAP",
483
- }
484
- )
485
- if profile.plotHistograms:
486
- required_charts.append(
487
- {
488
- "title": "Histogram of DAP for each study description",
489
- "var_name": "studyHistogramDAP",
490
- }
491
- )
492
-
493
- if profile.plotDXStudyFreq:
494
- required_charts.append(
495
- {
496
- "title": "Chart of study description frequency",
497
- "var_name": "studyFrequency",
498
- }
499
- )
500
-
501
- if profile.plotDXStudyPerDayAndHour:
502
- required_charts.append(
503
- {
504
- "title": "Chart of study description workload",
505
- "var_name": "studyWorkload",
506
- }
507
- )
508
-
509
- if profile.plotDXStudyDAPvsMass:
510
- required_charts.append(
511
- {
512
- "title": "Chart of study description DAP vs patient mass",
513
- "var_name": "studyDAPvsMass",
514
- }
515
- )
516
-
517
- if profile.plotDXRequestMeanDAP:
518
- if profile.plotMean:
519
- required_charts.append(
520
- {
521
- "title": "Chart of mean DAP for each requested procedure",
522
- "var_name": "requestMeanDAP",
523
- }
524
- )
525
- if profile.plotMedian:
526
- required_charts.append(
527
- {
528
- "title": "Chart of median DAP for each requested procedure",
529
- "var_name": "requestMedianDAP",
530
- }
531
- )
532
- if profile.plotBoxplots:
533
- required_charts.append(
534
- {
535
- "title": "Boxplot of DAP for each requested procedure",
536
- "var_name": "requestBoxplotDAP",
537
- }
538
- )
539
- if profile.plotHistograms:
540
- required_charts.append(
541
- {
542
- "title": "Histogram of DAP for each requested procedure",
543
- "var_name": "requestHistogramDAP",
544
- }
545
- )
546
-
547
- if profile.plotDXRequestFreq:
548
- required_charts.append(
549
- {
550
- "title": "Chart of requested procedure frequency",
551
- "var_name": "requestFrequency",
552
- }
553
- )
554
-
555
- if profile.plotDXRequestDAPvsMass:
556
- required_charts.append(
557
- {
558
- "title": "Chart of requested procedure DAP vs patient mass",
559
- "var_name": "requestDAPvsMass",
560
- }
561
- )
562
-
563
- return required_charts
564
-
565
-
566
- @login_required
567
- def dx_summary_chart_data(request):
568
- """Obtain data for Ajax chart call."""
569
- pid = bool(request.user.groups.filter(name="pidgroup"))
570
- f = dx_acq_filter(request.GET, pid=pid)
571
-
572
- try:
573
- # See if the user has plot settings in userprofile
574
- user_profile = request.user.userprofile
575
- except ObjectDoesNotExist:
576
- # Create a default userprofile for the user if one doesn't exist
577
- create_user_profile(sender=request.user, instance=request.user, created=True)
578
- user_profile = request.user.userprofile
579
-
580
- if settings.DEBUG:
581
- start_time = datetime.now()
582
-
583
- return_structure = dx_plot_calculations(f, user_profile)
584
-
585
- if settings.DEBUG:
586
- logger.debug(f"Elapsed time is {datetime.now() - start_time}")
587
-
588
- return JsonResponse(return_structure, safe=False)
589
-
590
-
591
- def dx_plot_calculations(f, user_profile, return_as_dict=False):
592
- # pylint: disable=too-many-locals
593
- # pylint: disable=too-many-branches
594
- # pylint: disable=too-many-statements
595
- """Calculations for radiographic charts."""
596
- # Return an empty structure if the queryset is empty
597
- if not f.qs.exists():
598
- return {}
599
-
600
- # Obtain the system-level enable_standard_names setting
601
- try:
602
- StandardNameSettings.objects.get()
603
- except ObjectDoesNotExist:
604
- StandardNameSettings.objects.create()
605
- enable_standard_names = StandardNameSettings.objects.values_list(
606
- "enable_standard_names", flat=True
607
- )[0]
608
-
609
- # Set the Plotly chart theme
610
- plotly_set_default_theme(user_profile.plotThemeChoice)
611
-
612
- return_structure = {}
613
-
614
- average_choices = []
615
- if user_profile.plotMean:
616
- average_choices.append("mean")
617
- if user_profile.plotMedian:
618
- average_choices.append("median")
619
-
620
- charts_of_interest = [
621
- user_profile.plotDXAcquisitionMeanDAPOverTime,
622
- user_profile.plotDXAcquisitionMeankVpOverTime,
623
- user_profile.plotDXAcquisitionMeanmAsOverTime,
624
- ]
625
- if enable_standard_names:
626
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanDAPOverTime)
627
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeankVpOverTime)
628
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanmAsOverTime)
629
- if any(charts_of_interest):
630
- plot_timeunit_period = user_profile.plotDXAcquisitionMeanDAPOverTimePeriod
631
-
632
- #######################################################################
633
- # Prepare acquisition-level Pandas DataFrame to use for charts
634
- charts_of_interest = [
635
- user_profile.plotDXAcquisitionMeanDAP,
636
- user_profile.plotDXAcquisitionFreq,
637
- user_profile.plotDXAcquisitionMeankVp,
638
- user_profile.plotDXAcquisitionMeanmAs,
639
- user_profile.plotDXAcquisitionMeankVpOverTime,
640
- user_profile.plotDXAcquisitionMeanmAsOverTime,
641
- user_profile.plotDXAcquisitionMeanDAPOverTime,
642
- user_profile.plotDXAcquisitionDAPvsMass,
643
- ]
644
- if enable_standard_names:
645
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanDAP)
646
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionFreq)
647
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeankVp)
648
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanmAs)
649
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeankVpOverTime)
650
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanmAsOverTime)
651
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanDAPOverTime)
652
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionDAPvsMass)
653
-
654
- if any(charts_of_interest):
655
-
656
- name_fields = []
657
- charts_of_interest = [
658
- user_profile.plotDXAcquisitionMeanDAP,
659
- user_profile.plotDXAcquisitionFreq,
660
- user_profile.plotDXAcquisitionMeankVp,
661
- user_profile.plotDXAcquisitionMeanmAs,
662
- user_profile.plotDXAcquisitionMeankVpOverTime,
663
- user_profile.plotDXAcquisitionMeanmAsOverTime,
664
- user_profile.plotDXAcquisitionMeanDAPOverTime,
665
- user_profile.plotDXAcquisitionDAPvsMass,
666
- ]
667
- if any(charts_of_interest):
668
- name_fields.append(
669
- "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
670
- )
671
-
672
- if enable_standard_names:
673
- charts_of_interest = [
674
- user_profile.plotDXStandardAcquisitionMeanDAP,
675
- user_profile.plotDXStandardAcquisitionFreq,
676
- user_profile.plotDXStandardAcquisitionMeankVp,
677
- user_profile.plotDXStandardAcquisitionMeanmAs,
678
- user_profile.plotDXStandardAcquisitionMeankVpOverTime,
679
- user_profile.plotDXStandardAcquisitionMeanmAsOverTime,
680
- user_profile.plotDXStandardAcquisitionMeanDAPOverTime,
681
- user_profile.plotDXStandardAcquisitionDAPvsMass,
682
- ]
683
- if any(charts_of_interest):
684
- name_fields.append(
685
- "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
686
- )
687
-
688
- value_fields = []
689
- value_multipliers = []
690
- charts_of_interest = [
691
- user_profile.plotDXAcquisitionMeanDAP,
692
- user_profile.plotDXAcquisitionMeanDAPOverTime,
693
- user_profile.plotDXAcquisitionDAPvsMass,
694
- ]
695
- if enable_standard_names:
696
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanDAP)
697
- charts_of_interest.append(
698
- user_profile.plotDXStandardAcquisitionMeanDAPOverTime
699
- )
700
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionDAPvsMass)
701
- if any(charts_of_interest):
702
- value_fields.append(
703
- "projectionxrayradiationdose__irradeventxraydata__dose_area_product"
704
- )
705
- value_multipliers.append(1000000)
706
-
707
- charts_of_interest = [
708
- user_profile.plotDXAcquisitionMeankVp,
709
- user_profile.plotDXAcquisitionMeankVpOverTime,
710
- ]
711
- if enable_standard_names:
712
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeankVp)
713
- charts_of_interest.append(
714
- user_profile.plotDXStandardAcquisitionMeankVpOverTime
715
- )
716
- if any(charts_of_interest):
717
- value_fields.append(
718
- "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp"
719
- )
720
- value_multipliers.append(1)
721
-
722
- charts_of_interest = [
723
- user_profile.plotDXAcquisitionMeanmAs,
724
- user_profile.plotDXAcquisitionMeanmAsOverTime,
725
- ]
726
- if enable_standard_names:
727
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanmAs)
728
- charts_of_interest.append(
729
- user_profile.plotDXStandardAcquisitionMeanmAsOverTime
730
- )
731
- if any(charts_of_interest):
732
- value_fields.append(
733
- "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure"
734
- )
735
- value_multipliers.append(0.001)
736
-
737
- charts_of_interest = [user_profile.plotDXAcquisitionDAPvsMass]
738
- if enable_standard_names:
739
- charts_of_interest.append(user_profile.plotDXStandardAcquisitionDAPvsMass)
740
- if any(charts_of_interest):
741
- value_fields.append("patientstudymoduleattr__patient_weight")
742
- value_multipliers.append(1)
743
-
744
- time_fields = []
745
- date_fields = []
746
- charts_of_interest = [
747
- user_profile.plotDXAcquisitionMeanDAPOverTime,
748
- user_profile.plotDXAcquisitionMeankVpOverTime,
749
- user_profile.plotDXAcquisitionMeanmAsOverTime,
750
- ]
751
- if enable_standard_names:
752
- charts_of_interest.append(
753
- user_profile.plotDXStandardAcquisitionMeanDAPOverTime
754
- )
755
- charts_of_interest.append(
756
- user_profile.plotDXStandardAcquisitionMeankVpOverTime
757
- )
758
- charts_of_interest.append(
759
- user_profile.plotDXStandardAcquisitionMeanmAsOverTime
760
- )
761
- if any(charts_of_interest):
762
- date_fields.append("study_date")
763
-
764
- system_field = []
765
- if user_profile.plotSeriesPerSystem:
766
- system_field.append(
767
- "generalequipmentmoduleattr__unique_equipment_name_id__display_name"
768
- )
769
-
770
- fields = {
771
- "names": name_fields,
772
- "values": value_fields,
773
- "dates": date_fields,
774
- "times": time_fields,
775
- "system": system_field,
776
- }
777
-
778
- df = create_dataframe(
779
- f.qs,
780
- fields,
781
- data_point_name_lowercase=user_profile.plotCaseInsensitiveCategories,
782
- data_point_name_remove_whitespace_padding=user_profile.plotRemoveCategoryWhitespacePadding,
783
- data_point_value_multipliers=value_multipliers,
784
- char_wrap=user_profile.plotLabelCharWrap,
785
- uid="projectionxrayradiationdose__irradeventxraydata__pk",
786
- )
787
- #######################################################################
788
-
789
- if user_profile.plotDXAcquisitionMeanDAP:
790
-
791
- name_field = (
792
- "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
793
- )
794
- value_field = (
795
- "projectionxrayradiationdose__irradeventxraydata__dose_area_product"
796
- )
797
- value_text = "DAP"
798
- units_text = "(cGy.cm<sup>2</sup>)"
799
- name_text = "Acquisition protocol"
800
- variable_name_start = "acquisition"
801
- variable_value_name = "DAP"
802
- modality_text = "DX"
803
- chart_message = ""
804
-
805
- new_charts = generate_average_chart_group(
806
- average_choices,
807
- chart_message,
808
- df,
809
- modality_text,
810
- name_field,
811
- name_text,
812
- return_as_dict,
813
- return_structure,
814
- units_text,
815
- user_profile,
816
- value_field,
817
- value_text,
818
- variable_name_start,
819
- variable_value_name,
820
- user_profile.plotDXInitialSortingChoice,
821
- )
822
-
823
- return_structure = {**return_structure, **new_charts}
824
-
825
- if user_profile.plotDXAcquisitionMeankVp:
826
-
827
- name_field = (
828
- "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
829
- )
830
- value_field = "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp"
831
- value_text = "kVp"
832
- units_text = ""
833
- name_text = "Acquisition protocol"
834
- variable_name_start = "acquisition"
835
- variable_value_name = "kVp"
836
- modality_text = "DX"
837
- chart_message = ""
838
-
839
- new_charts = generate_average_chart_group(
840
- average_choices,
841
- chart_message,
842
- df,
843
- modality_text,
844
- name_field,
845
- name_text,
846
- return_as_dict,
847
- return_structure,
848
- units_text,
849
- user_profile,
850
- value_field,
851
- value_text,
852
- variable_name_start,
853
- variable_value_name,
854
- user_profile.plotDXInitialSortingChoice,
855
- )
856
-
857
- return_structure = {**return_structure, **new_charts}
858
-
859
- if user_profile.plotDXAcquisitionMeanmAs:
860
-
861
- name_field = (
862
- "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
863
- )
864
- value_field = "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure" # pylint: disable=line-too-long
865
- value_text = "mAs"
866
- units_text = ""
867
- name_text = "Acquisition protocol"
868
- variable_name_start = "acquisition"
869
- variable_value_name = "mAs"
870
- modality_text = "DX"
871
- chart_message = ""
872
-
873
- new_charts = generate_average_chart_group(
874
- average_choices,
875
- chart_message,
876
- df,
877
- modality_text,
878
- name_field,
879
- name_text,
880
- return_as_dict,
881
- return_structure,
882
- units_text,
883
- user_profile,
884
- value_field,
885
- value_text,
886
- variable_name_start,
887
- variable_value_name,
888
- user_profile.plotDXInitialSortingChoice,
889
- )
890
-
891
- return_structure = {**return_structure, **new_charts}
892
-
893
- if user_profile.plotDXAcquisitionFreq:
894
- parameter_dict = {
895
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
896
- "sorting_choice": [
897
- user_profile.plotInitialSortingDirection,
898
- user_profile.plotDXInitialSortingChoice,
899
- ],
900
- "legend_title": "Acquisition protocol",
901
- "df_x_axis_col": "x_ray_system_name",
902
- "x_axis_title": "System",
903
- "grouping_choice": user_profile.plotGroupingChoice,
904
- "colourmap": user_profile.plotColourMapChoice,
905
- "filename": "OpenREM DX acquisition protocol frequency",
906
- "groupby_cols": None,
907
- "facet_col": None,
908
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
909
- "return_as_dict": return_as_dict,
910
- }
911
- (
912
- return_structure["acquisitionFrequencyData"],
913
- return_structure["acquisitionFrequencyDataCSV"],
914
- ) = plotly_frequency_barchart( # pylint: disable=line-too-long
915
- df,
916
- parameter_dict,
917
- csv_name="acquisitionFrequencyData.csv",
918
- )
919
-
920
- if user_profile.plotDXAcquisitionMeanDAPOverTime:
921
- facet_title = "System"
922
-
923
- if user_profile.plotGroupingChoice == "series":
924
- facet_title = "Acquisition protocol"
925
-
926
- parameter_dict = {
927
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
928
- "df_value_col": "projectionxrayradiationdose__irradeventxraydata__dose_area_product",
929
- "df_date_col": "study_date",
930
- "name_title": "Acquisition protocol",
931
- "value_title": "DAP (cGy.cm<sup>2</sup>)",
932
- "date_title": "Study date",
933
- "facet_title": facet_title,
934
- "sorting_choice": [
935
- user_profile.plotInitialSortingDirection,
936
- user_profile.plotDXInitialSortingChoice,
937
- ],
938
- "time_period": plot_timeunit_period,
939
- "average_choices": average_choices + ["count"],
940
- "grouping_choice": user_profile.plotGroupingChoice,
941
- "colourmap": user_profile.plotColourMapChoice,
942
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
943
- "filename": "OpenREM DX acquisition protocol DAP over time",
944
- "return_as_dict": return_as_dict,
945
- }
946
- result = construct_over_time_charts(
947
- df,
948
- parameter_dict,
949
- )
950
-
951
- if user_profile.plotMean:
952
- return_structure["acquisitionMeanDAPOverTime"] = result["mean"]
953
- if user_profile.plotMedian:
954
- return_structure["acquisitionMedianDAPOverTime"] = result["median"]
955
-
956
- if user_profile.plotDXAcquisitionMeankVpOverTime:
957
- facet_title = "System"
958
-
959
- if user_profile.plotGroupingChoice == "series":
960
- facet_title = "Acquisition protocol"
961
-
962
- parameter_dict = {
963
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
964
- "df_value_col": "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp",
965
- "df_date_col": "study_date",
966
- "name_title": "Acquisition protocol",
967
- "value_title": "kVp",
968
- "date_title": "Study date",
969
- "facet_title": facet_title,
970
- "sorting_choice": [
971
- user_profile.plotInitialSortingDirection,
972
- user_profile.plotDXInitialSortingChoice,
973
- ],
974
- "time_period": plot_timeunit_period,
975
- "average_choices": average_choices + ["count"],
976
- "grouping_choice": user_profile.plotGroupingChoice,
977
- "colourmap": user_profile.plotColourMapChoice,
978
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
979
- "filename": "OpenREM DX acquisition protocol kVp over time",
980
- "return_as_dict": return_as_dict,
981
- }
982
- result = construct_over_time_charts(
983
- df,
984
- parameter_dict,
985
- )
986
-
987
- if user_profile.plotMean:
988
- return_structure["acquisitionMeankVpOverTime"] = result["mean"]
989
- if user_profile.plotMedian:
990
- return_structure["acquisitionMediankVpOverTime"] = result["median"]
991
-
992
- if user_profile.plotDXAcquisitionMeanmAsOverTime:
993
- facet_title = "System"
994
-
995
- if user_profile.plotGroupingChoice == "series":
996
- facet_title = "Acquisition protocol"
997
-
998
- parameter_dict = { # pylint: disable=line-too-long
999
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
1000
- "df_value_col": "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure", # pylint: disable=line-too-long
1001
- "df_date_col": "study_date",
1002
- "name_title": "Acquisition protocol",
1003
- "value_title": "mAs",
1004
- "date_title": "Study date",
1005
- "facet_title": facet_title,
1006
- "sorting_choice": [
1007
- user_profile.plotInitialSortingDirection,
1008
- user_profile.plotDXInitialSortingChoice,
1009
- ],
1010
- "time_period": plot_timeunit_period,
1011
- "average_choices": average_choices + ["count"],
1012
- "grouping_choice": user_profile.plotGroupingChoice,
1013
- "colourmap": user_profile.plotColourMapChoice,
1014
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1015
- "filename": "OpenREM DX acquisition protocol mAs over time",
1016
- "return_as_dict": return_as_dict,
1017
- }
1018
- result = construct_over_time_charts(
1019
- df,
1020
- parameter_dict,
1021
- )
1022
-
1023
- if user_profile.plotMean:
1024
- return_structure["acquisitionMeanmAsOverTime"] = result["mean"]
1025
- if user_profile.plotMedian:
1026
- return_structure["acquisitionMedianmAsOverTime"] = result["median"]
1027
-
1028
- if user_profile.plotDXAcquisitionDAPvsMass:
1029
- parameter_dict = {
1030
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
1031
- "df_x_col": "patientstudymoduleattr__patient_weight",
1032
- "df_y_col": "projectionxrayradiationdose__irradeventxraydata__dose_area_product",
1033
- "sorting_choice": [
1034
- user_profile.plotInitialSortingDirection,
1035
- user_profile.plotDXInitialSortingChoice,
1036
- ],
1037
- "grouping_choice": user_profile.plotGroupingChoice,
1038
- "legend_title": "Acquisition protocol",
1039
- "colourmap": user_profile.plotColourMapChoice,
1040
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1041
- "x_axis_title": "Patient mass (kg)",
1042
- "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1043
- "filename": "OpenREM DX acquisition protocol DAP vs patient mass",
1044
- "return_as_dict": return_as_dict,
1045
- }
1046
- return_structure["acquisitionDAPvsMass"] = plotly_scatter(
1047
- df,
1048
- parameter_dict,
1049
- )
1050
-
1051
- if enable_standard_names:
1052
- charts_of_interest = [
1053
- user_profile.plotDXStandardAcquisitionMeanDAP,
1054
- user_profile.plotDXStandardAcquisitionFreq,
1055
- user_profile.plotDXStandardAcquisitionMeankVp,
1056
- user_profile.plotDXStandardAcquisitionMeanmAs,
1057
- user_profile.plotDXStandardAcquisitionMeankVpOverTime,
1058
- user_profile.plotDXStandardAcquisitionMeanmAsOverTime,
1059
- user_profile.plotDXStandardAcquisitionMeanDAPOverTime,
1060
- user_profile.plotDXStandardAcquisitionDAPvsMass,
1061
- ]
1062
-
1063
- if any(charts_of_interest):
1064
-
1065
- # Exclude "Blank" and "blank" standard_acqusition_name data
1066
- df_without_blanks = df[
1067
- (
1068
- df[
1069
- "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1070
- ]
1071
- != "blank"
1072
- )
1073
- & (
1074
- df[
1075
- "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1076
- ]
1077
- != "Blank"
1078
- )
1079
- ].copy()
1080
- # Remove any unused categories (this will include "Blank" or "blank")
1081
- df_without_blanks[
1082
- "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1083
- ] = df_without_blanks[
1084
- "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1085
- ].cat.remove_unused_categories()
1086
-
1087
- if user_profile.plotDXStandardAcquisitionMeanDAP:
1088
- name_field = "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1089
- value_field = "projectionxrayradiationdose__irradeventxraydata__dose_area_product"
1090
- value_text = "DAP"
1091
- units_text = "(cGy.cm<sup>2</sup>)"
1092
- name_text = "Standard acquisition name"
1093
- variable_name_start = "standardAcquisition"
1094
- variable_value_name = "DAP"
1095
- modality_text = "DX"
1096
- chart_message = ""
1097
-
1098
- new_charts = generate_average_chart_group(
1099
- average_choices,
1100
- chart_message,
1101
- df_without_blanks,
1102
- modality_text,
1103
- name_field,
1104
- name_text,
1105
- return_as_dict,
1106
- return_structure,
1107
- units_text,
1108
- user_profile,
1109
- value_field,
1110
- value_text,
1111
- variable_name_start,
1112
- variable_value_name,
1113
- user_profile.plotDXInitialSortingChoice,
1114
- )
1115
-
1116
- return_structure = {**return_structure, **new_charts}
1117
-
1118
- if user_profile.plotDXStandardAcquisitionMeankVp:
1119
- name_field = "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1120
- value_field = "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp"
1121
- value_text = "kVp"
1122
- units_text = ""
1123
- name_text = "Standard acquisition name"
1124
- variable_name_start = "standardAcquisition"
1125
- variable_value_name = "kVp"
1126
- modality_text = "DX"
1127
- chart_message = ""
1128
-
1129
- new_charts = generate_average_chart_group(
1130
- average_choices,
1131
- chart_message,
1132
- df_without_blanks,
1133
- modality_text,
1134
- name_field,
1135
- name_text,
1136
- return_as_dict,
1137
- return_structure,
1138
- units_text,
1139
- user_profile,
1140
- value_field,
1141
- value_text,
1142
- variable_name_start,
1143
- variable_value_name,
1144
- user_profile.plotDXInitialSortingChoice,
1145
- )
1146
-
1147
- return_structure = {**return_structure, **new_charts}
1148
-
1149
- if user_profile.plotDXStandardAcquisitionMeanmAs:
1150
- name_field = "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1151
- value_field = "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure" # pylint: disable=line-too-long
1152
- value_text = "mAs"
1153
- units_text = ""
1154
- name_text = "Standard acquisition name"
1155
- variable_name_start = "standardAcquisition"
1156
- variable_value_name = "mAs"
1157
- modality_text = "DX"
1158
- chart_message = ""
1159
-
1160
- new_charts = generate_average_chart_group(
1161
- average_choices,
1162
- chart_message,
1163
- df_without_blanks,
1164
- modality_text,
1165
- name_field,
1166
- name_text,
1167
- return_as_dict,
1168
- return_structure,
1169
- units_text,
1170
- user_profile,
1171
- value_field,
1172
- value_text,
1173
- variable_name_start,
1174
- variable_value_name,
1175
- user_profile.plotDXInitialSortingChoice,
1176
- )
1177
-
1178
- return_structure = {**return_structure, **new_charts}
1179
-
1180
- if user_profile.plotDXStandardAcquisitionFreq:
1181
- parameter_dict = {
1182
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1183
- "sorting_choice": [
1184
- user_profile.plotInitialSortingDirection,
1185
- user_profile.plotDXInitialSortingChoice,
1186
- ],
1187
- "legend_title": "Standard acquisition name",
1188
- "df_x_axis_col": "x_ray_system_name",
1189
- "x_axis_title": "System",
1190
- "grouping_choice": user_profile.plotGroupingChoice,
1191
- "colourmap": user_profile.plotColourMapChoice,
1192
- "filename": "OpenREM DX standard acquisition name frequency",
1193
- "groupby_cols": None,
1194
- "facet_col": None,
1195
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1196
- "return_as_dict": return_as_dict,
1197
- }
1198
- (
1199
- return_structure["standardAcquisitionFrequencyData"],
1200
- return_structure["standardAcquisitionFrequencyDataCSV"],
1201
- ) = plotly_frequency_barchart(
1202
- df_without_blanks,
1203
- parameter_dict,
1204
- csv_name="standardAcquisitionFrequencyData.csv",
1205
- )
1206
-
1207
- if user_profile.plotDXStandardAcquisitionMeanDAPOverTime:
1208
- facet_title = "System"
1209
-
1210
- if user_profile.plotGroupingChoice == "series":
1211
- facet_title = "Standard acquisition name"
1212
-
1213
- parameter_dict = {
1214
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1215
- "df_value_col": "projectionxrayradiationdose__irradeventxraydata__dose_area_product",
1216
- "df_date_col": "study_date",
1217
- "name_title": "Standard acquisition name",
1218
- "value_title": "DAP (cGy.cm<sup>2</sup>)",
1219
- "date_title": "Study date",
1220
- "facet_title": facet_title,
1221
- "sorting_choice": [
1222
- user_profile.plotInitialSortingDirection,
1223
- user_profile.plotDXInitialSortingChoice,
1224
- ],
1225
- "time_period": plot_timeunit_period,
1226
- "average_choices": average_choices + ["count"],
1227
- "grouping_choice": user_profile.plotGroupingChoice,
1228
- "colourmap": user_profile.plotColourMapChoice,
1229
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1230
- "filename": "OpenREM DX standard acquisition name DAP over time",
1231
- "return_as_dict": return_as_dict,
1232
- }
1233
- result = construct_over_time_charts(
1234
- df_without_blanks,
1235
- parameter_dict,
1236
- )
1237
-
1238
- if user_profile.plotMean:
1239
- return_structure["standardAcquisitionMeanDAPOverTime"] = result[
1240
- "mean"
1241
- ]
1242
- if user_profile.plotMedian:
1243
- return_structure[
1244
- "standardAcquisitionMedianDAPOverTime"
1245
- ] = result["median"]
1246
-
1247
- if user_profile.plotDXStandardAcquisitionMeankVpOverTime:
1248
- facet_title = "System"
1249
-
1250
- if user_profile.plotGroupingChoice == "series":
1251
- facet_title = "Standard acquisition name"
1252
-
1253
- parameter_dict = {
1254
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1255
- "df_value_col": "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp", # pylint: disable=line-too-long
1256
- "df_date_col": "study_date",
1257
- "name_title": "Standard acquisition name",
1258
- "value_title": "kVp",
1259
- "date_title": "Study date",
1260
- "facet_title": facet_title,
1261
- "sorting_choice": [
1262
- user_profile.plotInitialSortingDirection,
1263
- user_profile.plotDXInitialSortingChoice,
1264
- ],
1265
- "time_period": plot_timeunit_period,
1266
- "average_choices": average_choices + ["count"],
1267
- "grouping_choice": user_profile.plotGroupingChoice,
1268
- "colourmap": user_profile.plotColourMapChoice,
1269
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1270
- "filename": "OpenREM DX standard acquisition name kVp over time",
1271
- "return_as_dict": return_as_dict,
1272
- }
1273
- result = construct_over_time_charts(
1274
- df_without_blanks,
1275
- parameter_dict,
1276
- )
1277
-
1278
- if user_profile.plotMean:
1279
- return_structure["standardAcquisitionMeankVpOverTime"] = result[
1280
- "mean"
1281
- ]
1282
- if user_profile.plotMedian:
1283
- return_structure[
1284
- "standardAcquisitionMediankVpOverTime"
1285
- ] = result["median"]
1286
-
1287
- if user_profile.plotDXStandardAcquisitionMeanmAsOverTime:
1288
- facet_title = "System"
1289
-
1290
- if user_profile.plotGroupingChoice == "series":
1291
- facet_title = "Standard acquisition name"
1292
-
1293
- parameter_dict = {
1294
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1295
- "df_value_col": "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure", # pylint: disable=line-too-long
1296
- "df_date_col": "study_date",
1297
- "name_title": "Standard acquisition name",
1298
- "value_title": "mAs",
1299
- "date_title": "Study date",
1300
- "facet_title": facet_title,
1301
- "sorting_choice": [
1302
- user_profile.plotInitialSortingDirection,
1303
- user_profile.plotDXInitialSortingChoice,
1304
- ],
1305
- "time_period": plot_timeunit_period,
1306
- "average_choices": average_choices + ["count"],
1307
- "grouping_choice": user_profile.plotGroupingChoice,
1308
- "colourmap": user_profile.plotColourMapChoice,
1309
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1310
- "filename": "OpenREM DX standard acquisition name mAs over time",
1311
- "return_as_dict": return_as_dict,
1312
- }
1313
- result = construct_over_time_charts(
1314
- df_without_blanks,
1315
- parameter_dict,
1316
- )
1317
-
1318
- if user_profile.plotMean:
1319
- return_structure["standardAcquisitionMeanmAsOverTime"] = result[
1320
- "mean"
1321
- ]
1322
- if user_profile.plotMedian:
1323
- return_structure[
1324
- "standardAcquisitionMedianmAsOverTime"
1325
- ] = result["median"]
1326
-
1327
- if user_profile.plotDXStandardAcquisitionDAPvsMass:
1328
- parameter_dict = {
1329
- "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1330
- "df_x_col": "patientstudymoduleattr__patient_weight",
1331
- "df_y_col": "projectionxrayradiationdose__irradeventxraydata__dose_area_product",
1332
- "sorting_choice": [
1333
- user_profile.plotInitialSortingDirection,
1334
- user_profile.plotDXInitialSortingChoice,
1335
- ],
1336
- "grouping_choice": user_profile.plotGroupingChoice,
1337
- "legend_title": "Standard acquisition name",
1338
- "colourmap": user_profile.plotColourMapChoice,
1339
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1340
- "x_axis_title": "Patient mass (kg)",
1341
- "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1342
- "filename": "OpenREM DX standard acquisition name DAP vs patient mass",
1343
- "return_as_dict": return_as_dict,
1344
- }
1345
- return_structure["standardAcquisitionDAPvsMass"] = plotly_scatter(
1346
- df_without_blanks,
1347
- parameter_dict,
1348
- )
1349
-
1350
- #######################################################################
1351
- # Prepare study- and request-level Pandas DataFrame to use for charts
1352
- charts_of_interest = [
1353
- user_profile.plotDXStudyMeanDAP,
1354
- user_profile.plotDXStudyFreq,
1355
- user_profile.plotDXStudyPerDayAndHour,
1356
- user_profile.plotDXStudyDAPvsMass,
1357
- user_profile.plotDXRequestMeanDAP,
1358
- user_profile.plotDXRequestFreq,
1359
- user_profile.plotDXRequestDAPvsMass,
1360
- ]
1361
- if enable_standard_names:
1362
- charts_of_interest.append(user_profile.plotDXStandardStudyMeanDAP)
1363
- charts_of_interest.append(user_profile.plotDXStandardStudyFreq)
1364
- charts_of_interest.append(user_profile.plotDXStandardStudyPerDayAndHour)
1365
- charts_of_interest.append(user_profile.plotDXStandardStudyDAPvsMass)
1366
-
1367
- if any(charts_of_interest):
1368
-
1369
- name_fields = []
1370
- charts_of_interest = [
1371
- user_profile.plotDXStudyMeanDAP,
1372
- user_profile.plotDXStudyFreq,
1373
- user_profile.plotDXStudyPerDayAndHour,
1374
- user_profile.plotDXStudyDAPvsMass,
1375
- ]
1376
- if any(charts_of_interest):
1377
- name_fields.append("study_description")
1378
-
1379
- charts_of_interest = [
1380
- user_profile.plotDXRequestMeanDAP,
1381
- user_profile.plotDXRequestFreq,
1382
- user_profile.plotDXRequestDAPvsMass,
1383
- ]
1384
- if any(charts_of_interest):
1385
- name_fields.append("requested_procedure_code_meaning")
1386
-
1387
- if enable_standard_names:
1388
- charts_of_interest = [
1389
- user_profile.plotDXStandardStudyMeanDAP,
1390
- user_profile.plotDXStandardStudyFreq,
1391
- user_profile.plotDXStandardStudyPerDayAndHour,
1392
- user_profile.plotDXStandardStudyDAPvsMass,
1393
- ]
1394
- if any(charts_of_interest):
1395
- name_fields.append("standard_names__standard_name")
1396
-
1397
- value_fields = []
1398
- value_multipliers = []
1399
- charts_of_interest = [
1400
- user_profile.plotDXStudyMeanDAP,
1401
- user_profile.plotDXRequestMeanDAP,
1402
- user_profile.plotDXStudyDAPvsMass,
1403
- user_profile.plotDXRequestDAPvsMass,
1404
- ]
1405
- if enable_standard_names:
1406
- charts_of_interest.append(user_profile.plotDXStandardStudyMeanDAP)
1407
- charts_of_interest.append(user_profile.plotDXStandardStudyDAPvsMass)
1408
-
1409
- if any(charts_of_interest):
1410
- value_fields.append("total_dap")
1411
- value_multipliers.append(1000000)
1412
-
1413
- charts_of_interest = [
1414
- user_profile.plotDXStudyDAPvsMass,
1415
- user_profile.plotDXRequestDAPvsMass,
1416
- ]
1417
- if enable_standard_names:
1418
- charts_of_interest.append(user_profile.plotDXStandardStudyDAPvsMass)
1419
-
1420
- if any(charts_of_interest):
1421
- value_fields.append("patientstudymoduleattr__patient_weight")
1422
- value_multipliers.append(1)
1423
-
1424
- date_fields = []
1425
- time_fields = []
1426
- charts_of_interest = [user_profile.plotDXStudyPerDayAndHour]
1427
- if enable_standard_names:
1428
- charts_of_interest.append(user_profile.plotDXStandardStudyPerDayAndHour)
1429
-
1430
- if any(charts_of_interest):
1431
- date_fields.append("study_date")
1432
- time_fields.append("study_time")
1433
-
1434
- system_field = []
1435
- if user_profile.plotSeriesPerSystem:
1436
- system_field.append(
1437
- "generalequipmentmoduleattr__unique_equipment_name_id__display_name"
1438
- )
1439
-
1440
- fields = {
1441
- "names": name_fields,
1442
- "values": value_fields,
1443
- "dates": date_fields,
1444
- "times": time_fields,
1445
- "system": system_field,
1446
- }
1447
-
1448
- # If only standard_names__standard_name is required then exclude all entries where these are None as these are
1449
- # not required for standard name charts.
1450
- queryset = f.qs
1451
- if name_fields == ["standard_names__standard_name"]:
1452
- queryset = queryset.exclude(standard_names__standard_name__isnull=True)
1453
-
1454
- df = create_dataframe(
1455
- queryset,
1456
- fields,
1457
- data_point_name_lowercase=user_profile.plotCaseInsensitiveCategories,
1458
- data_point_name_remove_whitespace_padding=user_profile.plotRemoveCategoryWhitespacePadding,
1459
- data_point_value_multipliers=value_multipliers,
1460
- char_wrap=user_profile.plotLabelCharWrap,
1461
- uid="pk",
1462
- )
1463
- #######################################################################
1464
-
1465
- if user_profile.plotDXStudyMeanDAP:
1466
-
1467
- name_field = "study_description"
1468
- value_field = "total_dap"
1469
- value_text = "DAP"
1470
- units_text = "(cGy.cm<sup>2</sup>)"
1471
- name_text = "Study description"
1472
- variable_name_start = "study"
1473
- variable_value_name = "DAP"
1474
- modality_text = "DX"
1475
- chart_message = ""
1476
-
1477
- new_charts = generate_average_chart_group(
1478
- average_choices,
1479
- chart_message,
1480
- df,
1481
- modality_text,
1482
- name_field,
1483
- name_text,
1484
- return_as_dict,
1485
- return_structure,
1486
- units_text,
1487
- user_profile,
1488
- value_field,
1489
- value_text,
1490
- variable_name_start,
1491
- variable_value_name,
1492
- user_profile.plotDXInitialSortingChoice,
1493
- )
1494
-
1495
- return_structure = {**return_structure, **new_charts}
1496
-
1497
- if user_profile.plotDXStudyFreq:
1498
- parameter_dict = {
1499
- "df_name_col": "study_description",
1500
- "sorting_choice": [
1501
- user_profile.plotInitialSortingDirection,
1502
- user_profile.plotDXInitialSortingChoice,
1503
- ],
1504
- "legend_title": "Study description",
1505
- "df_x_axis_col": "x_ray_system_name",
1506
- "x_axis_title": "System",
1507
- "grouping_choice": user_profile.plotGroupingChoice,
1508
- "colourmap": user_profile.plotColourMapChoice,
1509
- "filename": "OpenREM DX study description frequency",
1510
- "groupby_cols": None,
1511
- "facet_col": None,
1512
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1513
- "return_as_dict": return_as_dict,
1514
- }
1515
- (
1516
- return_structure["studyFrequencyData"],
1517
- return_structure["studyFrequencyDataCSV"],
1518
- ) = plotly_frequency_barchart( # pylint: disable=line-too-long
1519
- df,
1520
- parameter_dict,
1521
- csv_name="studyFrequencyData.csv",
1522
- )
1523
-
1524
- if user_profile.plotDXRequestMeanDAP:
1525
-
1526
- name_field = "requested_procedure_code_meaning"
1527
- value_field = "total_dap"
1528
- value_text = "DAP"
1529
- units_text = "(cGy.cm<sup>2</sup>)"
1530
- name_text = "Requested procedure"
1531
- variable_name_start = "request"
1532
- variable_value_name = "DAP"
1533
- modality_text = "DX"
1534
- chart_message = ""
1535
-
1536
- new_charts = generate_average_chart_group(
1537
- average_choices,
1538
- chart_message,
1539
- df,
1540
- modality_text,
1541
- name_field,
1542
- name_text,
1543
- return_as_dict,
1544
- return_structure,
1545
- units_text,
1546
- user_profile,
1547
- value_field,
1548
- value_text,
1549
- variable_name_start,
1550
- variable_value_name,
1551
- user_profile.plotDXInitialSortingChoice,
1552
- )
1553
-
1554
- return_structure = {**return_structure, **new_charts}
1555
-
1556
- if user_profile.plotDXRequestFreq:
1557
- parameter_dict = {
1558
- "df_name_col": "requested_procedure_code_meaning",
1559
- "sorting_choice": [
1560
- user_profile.plotInitialSortingDirection,
1561
- user_profile.plotDXInitialSortingChoice,
1562
- ],
1563
- "legend_title": "Requested procedure",
1564
- "df_x_axis_col": "x_ray_system_name",
1565
- "x_axis_title": "System",
1566
- "grouping_choice": user_profile.plotGroupingChoice,
1567
- "colourmap": user_profile.plotColourMapChoice,
1568
- "filename": "OpenREM DX requested procedure frequency",
1569
- "groupby_cols": None,
1570
- "facet_col": None,
1571
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1572
- "return_as_dict": return_as_dict,
1573
- }
1574
- (
1575
- return_structure["requestFrequencyData"],
1576
- return_structure["requestFrequencyDataCSV"],
1577
- ) = plotly_frequency_barchart( # pylint: disable=line-too-long
1578
- df,
1579
- parameter_dict,
1580
- csv_name="requestFrequencyData.csv",
1581
- )
1582
-
1583
- if user_profile.plotDXStudyPerDayAndHour:
1584
- df_time_series_per_weekday = create_dataframe_weekdays(
1585
- df, "study_description", df_date_col="study_date"
1586
- )
1587
-
1588
- return_structure["studyWorkloadData"] = plotly_barchart_weekdays(
1589
- df_time_series_per_weekday,
1590
- "weekday",
1591
- "study_description",
1592
- name_axis_title="Weekday",
1593
- value_axis_title="Frequency",
1594
- colourmap=user_profile.plotColourMapChoice,
1595
- filename="OpenREM DX study description workload",
1596
- facet_col_wrap=user_profile.plotFacetColWrapVal,
1597
- sorting_choice=[
1598
- user_profile.plotInitialSortingDirection,
1599
- user_profile.plotDXInitialSortingChoice,
1600
- ],
1601
- return_as_dict=return_as_dict,
1602
- )
1603
-
1604
- if user_profile.plotDXStudyDAPvsMass:
1605
- parameter_dict = {
1606
- "df_name_col": "study_description",
1607
- "df_x_col": "patientstudymoduleattr__patient_weight",
1608
- "df_y_col": "total_dap",
1609
- "sorting_choice": [
1610
- user_profile.plotInitialSortingDirection,
1611
- user_profile.plotDXInitialSortingChoice,
1612
- ],
1613
- "grouping_choice": user_profile.plotGroupingChoice,
1614
- "legend_title": "Study description",
1615
- "colourmap": user_profile.plotColourMapChoice,
1616
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1617
- "x_axis_title": "Patient mass (kg)",
1618
- "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1619
- "filename": "OpenREM DX study description DAP vs patient mass",
1620
- "return_as_dict": return_as_dict,
1621
- }
1622
- return_structure["studyDAPvsMass"] = plotly_scatter(
1623
- df,
1624
- parameter_dict,
1625
- )
1626
-
1627
- if user_profile.plotDXRequestDAPvsMass:
1628
- parameter_dict = {
1629
- "df_name_col": "requested_procedure_code_meaning",
1630
- "df_x_col": "patientstudymoduleattr__patient_weight",
1631
- "df_y_col": "total_dap",
1632
- "sorting_choice": [
1633
- user_profile.plotInitialSortingDirection,
1634
- user_profile.plotDXInitialSortingChoice,
1635
- ],
1636
- "grouping_choice": user_profile.plotGroupingChoice,
1637
- "legend_title": "Requested procedure",
1638
- "colourmap": user_profile.plotColourMapChoice,
1639
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1640
- "x_axis_title": "Patient mass (kg)",
1641
- "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1642
- "filename": "OpenREM DX requested procedure DAP vs patient mass",
1643
- "return_as_dict": return_as_dict,
1644
- }
1645
- return_structure["requestDAPvsMass"] = plotly_scatter(
1646
- df,
1647
- parameter_dict,
1648
- )
1649
-
1650
- if enable_standard_names:
1651
- charts_of_interest = [
1652
- user_profile.plotDXStandardStudyMeanDAP,
1653
- user_profile.plotDXStandardStudyFreq,
1654
- user_profile.plotDXStandardStudyPerDayAndHour,
1655
- user_profile.plotDXStandardStudyDAPvsMass,
1656
- ]
1657
-
1658
- if any(charts_of_interest):
1659
-
1660
- # Create a standard name data frame - remove any blank standard names
1661
- standard_name_df = df[
1662
- (df["standard_names__standard_name"] != "blank")
1663
- & (df["standard_names__standard_name"] != "Blank")
1664
- ].copy()
1665
- # Remove any unused categories (this will include "Blank" or "blank")
1666
- standard_name_df["standard_names__standard_name"] = standard_name_df[
1667
- "standard_names__standard_name"
1668
- ].cat.remove_unused_categories()
1669
-
1670
- if user_profile.plotDXStandardStudyMeanDAP:
1671
-
1672
- name_field = "standard_names__standard_name"
1673
- value_field = "total_dap"
1674
- value_text = "DAP"
1675
- units_text = "(cGy.cm<sup>2</sup>)"
1676
- name_text = "Standard study name"
1677
- variable_name_start = "standardStudy"
1678
- variable_value_name = "DAP"
1679
- modality_text = "DX"
1680
- chart_message = ""
1681
-
1682
- new_charts = generate_average_chart_group(
1683
- average_choices,
1684
- chart_message,
1685
- standard_name_df,
1686
- modality_text,
1687
- name_field,
1688
- name_text,
1689
- return_as_dict,
1690
- return_structure,
1691
- units_text,
1692
- user_profile,
1693
- value_field,
1694
- value_text,
1695
- variable_name_start,
1696
- variable_value_name,
1697
- user_profile.plotDXInitialSortingChoice,
1698
- )
1699
-
1700
- return_structure = {**return_structure, **new_charts}
1701
-
1702
- if user_profile.plotDXStandardStudyFreq:
1703
- parameter_dict = {
1704
- "df_name_col": "standard_names__standard_name",
1705
- "sorting_choice": [
1706
- user_profile.plotInitialSortingDirection,
1707
- user_profile.plotDXInitialSortingChoice,
1708
- ],
1709
- "legend_title": "Standard study name",
1710
- "df_x_axis_col": "x_ray_system_name",
1711
- "x_axis_title": "System",
1712
- "grouping_choice": user_profile.plotGroupingChoice,
1713
- "colourmap": user_profile.plotColourMapChoice,
1714
- "filename": "OpenREM DX standard study name frequency",
1715
- "groupby_cols": None,
1716
- "facet_col": None,
1717
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1718
- "return_as_dict": return_as_dict,
1719
- }
1720
- (
1721
- return_structure["standardStudyFrequencyData"],
1722
- return_structure["standardStudyFrequencyDataCSV"],
1723
- ) = plotly_frequency_barchart( # pylint: disable=line-too-long
1724
- standard_name_df,
1725
- parameter_dict,
1726
- csv_name="standardStudyFrequencyData.csv",
1727
- )
1728
-
1729
- if user_profile.plotDXStandardStudyPerDayAndHour:
1730
- df_time_series_per_weekday = create_dataframe_weekdays(
1731
- standard_name_df,
1732
- "standard_names__standard_name",
1733
- df_date_col="study_date",
1734
- )
1735
-
1736
- return_structure[
1737
- "standardStudyWorkloadData"
1738
- ] = plotly_barchart_weekdays(
1739
- df_time_series_per_weekday,
1740
- "weekday",
1741
- "standard_names__standard_name",
1742
- name_axis_title="Weekday",
1743
- value_axis_title="Frequency",
1744
- colourmap=user_profile.plotColourMapChoice,
1745
- filename="OpenREM DX standard study name workload",
1746
- facet_col_wrap=user_profile.plotFacetColWrapVal,
1747
- sorting_choice=[
1748
- user_profile.plotInitialSortingDirection,
1749
- user_profile.plotDXInitialSortingChoice,
1750
- ],
1751
- return_as_dict=return_as_dict,
1752
- )
1753
-
1754
- if user_profile.plotDXStandardStudyDAPvsMass:
1755
- parameter_dict = {
1756
- "df_name_col": "standard_names__standard_name",
1757
- "df_x_col": "patientstudymoduleattr__patient_weight",
1758
- "df_y_col": "total_dap",
1759
- "sorting_choice": [
1760
- user_profile.plotInitialSortingDirection,
1761
- user_profile.plotDXInitialSortingChoice,
1762
- ],
1763
- "grouping_choice": user_profile.plotGroupingChoice,
1764
- "legend_title": "Standard study name",
1765
- "colourmap": user_profile.plotColourMapChoice,
1766
- "facet_col_wrap": user_profile.plotFacetColWrapVal,
1767
- "x_axis_title": "Patient mass (kg)",
1768
- "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1769
- "filename": "OpenREM DX standard study name DAP vs patient mass",
1770
- "return_as_dict": return_as_dict,
1771
- }
1772
- return_structure["standardStudyDAPvsMass"] = plotly_scatter(
1773
- standard_name_df,
1774
- parameter_dict,
1775
- )
1776
-
1777
- return return_structure
1778
-
1779
-
1780
- def dx_chart_form_processing(request, user_profile):
1781
- # pylint: disable=too-many-statements
1782
-
1783
- # Obtain the system-level enable_standard_names setting
1784
- try:
1785
- StandardNameSettings.objects.get()
1786
- except ObjectDoesNotExist:
1787
- StandardNameSettings.objects.create()
1788
- enable_standard_names = StandardNameSettings.objects.values_list(
1789
- "enable_standard_names", flat=True
1790
- )[0]
1791
-
1792
- # Obtain the chart options from the request
1793
- chart_options_form = None
1794
- if enable_standard_names:
1795
- chart_options_form = DXChartOptionsFormIncStandard(request.GET)
1796
- else:
1797
- chart_options_form = DXChartOptionsForm(request.GET)
1798
-
1799
- # check whether the form data is valid
1800
- if chart_options_form.is_valid():
1801
- # Use the form data if the user clicked on the submit button
1802
- if "submit" in request.GET:
1803
- # process the data in form.cleaned_data as required
1804
-
1805
- set_common_chart_options(chart_options_form, user_profile)
1806
-
1807
- set_average_chart_options(chart_options_form, user_profile)
1808
-
1809
- set_dx_chart_options(chart_options_form, user_profile)
1810
-
1811
- user_profile.save()
1812
-
1813
- # If submit was not clicked then use the settings already stored in the user's profile
1814
- else:
1815
- average_choices = required_average_choices(user_profile)
1816
-
1817
- dx_form_data = initialise_dx_form_data(user_profile)
1818
-
1819
- form_data = {
1820
- "plotCharts": user_profile.plotCharts,
1821
- "plotGrouping": user_profile.plotGroupingChoice,
1822
- "plotSeriesPerSystem": user_profile.plotSeriesPerSystem,
1823
- "plotHistograms": user_profile.plotHistograms,
1824
- "plotInitialSortingDirection": user_profile.plotInitialSortingDirection,
1825
- "plotAverageChoice": average_choices,
1826
- }
1827
-
1828
- form_data = {**form_data, **dx_form_data}
1829
-
1830
- chart_options_form = None
1831
- if enable_standard_names:
1832
- chart_options_form = DXChartOptionsFormIncStandard(form_data)
1833
- else:
1834
- chart_options_form = DXChartOptionsForm(form_data)
1835
-
1836
- return chart_options_form
1
+ # pylint: disable=too-many-lines
2
+ import logging
3
+ from datetime import datetime
4
+ from django.conf import settings
5
+ from django.contrib.auth.decorators import login_required
6
+ from django.core.exceptions import ObjectDoesNotExist
7
+ from django.http import JsonResponse
8
+ from remapp.forms import (
9
+ DXChartOptionsForm,
10
+ DXChartOptionsFormIncStandard,
11
+ )
12
+ from remapp.interface.mod_filters import dx_acq_filter
13
+ from remapp.models import (
14
+ create_user_profile,
15
+ StandardNameSettings,
16
+ )
17
+ from remapp.views_admin import (
18
+ set_average_chart_options,
19
+ required_average_choices,
20
+ initialise_dx_form_data,
21
+ set_dx_chart_options,
22
+ set_common_chart_options,
23
+ )
24
+ from .interface.chart_functions import (
25
+ create_dataframe,
26
+ create_dataframe_weekdays,
27
+ create_dataframe_aggregates,
28
+ plotly_boxplot,
29
+ plotly_barchart,
30
+ plotly_histogram_barchart,
31
+ plotly_barchart_weekdays,
32
+ plotly_set_default_theme,
33
+ plotly_frequency_barchart,
34
+ plotly_scatter,
35
+ construct_over_time_charts,
36
+ generate_average_chart_group,
37
+ )
38
+ from .tools.check_standard_name_status import are_standard_names_enabled
39
+
40
+ logger = logging.getLogger(__name__)
41
+
42
+
43
+ def generate_required_dx_charts_list(profile):
44
+ # pylint: disable=too-many-branches
45
+ # pylint: disable=too-many-statements
46
+ """Obtain a list of dictionaries containing the title string and base
47
+ variable name for each required chart"""
48
+
49
+ # Obtain the system-level enable_standard_names setting
50
+ enable_standard_names = are_standard_names_enabled()
51
+
52
+ required_charts = []
53
+
54
+ charts_of_interest = [
55
+ profile.plotDXAcquisitionMeanDAPOverTime,
56
+ profile.plotDXAcquisitionMeanmAsOverTime,
57
+ profile.plotDXAcquisitionMeankVpOverTime,
58
+ ]
59
+ if enable_standard_names:
60
+ charts_of_interest.append(profile.plotDXStandardAcquisitionMeanDAPOverTime)
61
+ charts_of_interest.append(profile.plotDXStandardAcquisitionMeanmAsOverTime)
62
+ charts_of_interest.append(profile.plotDXStandardAcquisitionMeankVpOverTime)
63
+
64
+ if any(charts_of_interest):
65
+ keys = list(dict(profile.TIME_PERIOD).keys())
66
+ values = list(dict(profile.TIME_PERIOD).values())
67
+ time_period = (
68
+ values[keys.index(profile.plotDXAcquisitionMeanDAPOverTimePeriod)]
69
+ ).lower()
70
+
71
+ if profile.plotDXAcquisitionMeanDAP:
72
+ if profile.plotMean:
73
+ required_charts.append(
74
+ {
75
+ "title": "Chart of mean DAP for each acquisition protocol",
76
+ "var_name": "acquisitionMeanDAP",
77
+ }
78
+ )
79
+ if profile.plotMedian:
80
+ required_charts.append(
81
+ {
82
+ "title": "Chart of median DAP for each acquisition protocol",
83
+ "var_name": "acquisitionMedianDAP",
84
+ }
85
+ )
86
+ if profile.plotBoxplots:
87
+ required_charts.append(
88
+ {
89
+ "title": "Boxplot of DAP for each acquisition protocol",
90
+ "var_name": "acquisitionBoxplotDAP",
91
+ }
92
+ )
93
+ if profile.plotHistograms:
94
+ required_charts.append(
95
+ {
96
+ "title": "Histogram of DAP for each acquisition protocol",
97
+ "var_name": "acquisitionHistogramDAP",
98
+ }
99
+ )
100
+
101
+ if profile.plotDXAcquisitionFreq:
102
+ required_charts.append(
103
+ {
104
+ "title": "Chart of acquisition protocol frequency",
105
+ "var_name": "acquisitionFrequency",
106
+ }
107
+ )
108
+
109
+ if profile.plotDXAcquisitionMeankVp:
110
+ if profile.plotMean:
111
+ required_charts.append(
112
+ {
113
+ "title": "Chart of mean kVp for each acquisition protocol",
114
+ "var_name": "acquisitionMeankVp",
115
+ }
116
+ )
117
+ if profile.plotMedian:
118
+ required_charts.append(
119
+ {
120
+ "title": "Chart of median kVp for each acquisition protocol",
121
+ "var_name": "acquisitionMediankVp",
122
+ }
123
+ )
124
+ if profile.plotBoxplots:
125
+ required_charts.append(
126
+ {
127
+ "title": "Boxplot of kVp for each acquisition protocol",
128
+ "var_name": "acquisitionBoxplotkVp",
129
+ }
130
+ )
131
+ if profile.plotHistograms:
132
+ required_charts.append(
133
+ {
134
+ "title": "Histogram of kVp for each acquisition protocol",
135
+ "var_name": "acquisitionHistogramkVp",
136
+ }
137
+ )
138
+
139
+ if profile.plotDXAcquisitionMeanmAs:
140
+ if profile.plotMean:
141
+ required_charts.append(
142
+ {
143
+ "title": "Chart of mean mAs for each acquisition protocol",
144
+ "var_name": "acquisitionMeanmAs",
145
+ }
146
+ )
147
+ if profile.plotMedian:
148
+ required_charts.append(
149
+ {
150
+ "title": "Chart of median mAs for each acquisition protocol",
151
+ "var_name": "acquisitionMedianmAs",
152
+ }
153
+ )
154
+ if profile.plotBoxplots:
155
+ required_charts.append(
156
+ {
157
+ "title": "Boxplot of mAs for each acquisition protocol",
158
+ "var_name": "acquisitionBoxplotmAs",
159
+ }
160
+ )
161
+ if profile.plotHistograms:
162
+ required_charts.append(
163
+ {
164
+ "title": "Histogram of mAs for each acquisition protocol",
165
+ "var_name": "acquisitionHistogrammAs",
166
+ }
167
+ )
168
+
169
+ if profile.plotDXAcquisitionMeanDAPOverTime:
170
+ if profile.plotMean:
171
+ required_charts.append(
172
+ {
173
+ "title": "Chart of mean DAP per acquisition protocol over time ("
174
+ + time_period
175
+ + ")",
176
+ "var_name": "acquisitionMeanDAPOverTime",
177
+ }
178
+ )
179
+ if profile.plotMedian:
180
+ required_charts.append(
181
+ {
182
+ "title": "Chart of median DAP per acquisition protocol over time ("
183
+ + time_period
184
+ + ")",
185
+ "var_name": "acquisitionMedianDAPOverTime",
186
+ }
187
+ )
188
+
189
+ if profile.plotDXAcquisitionMeankVpOverTime:
190
+ if profile.plotMean:
191
+ required_charts.append(
192
+ {
193
+ "title": "Chart of mean kVp per acquisition protocol over time ("
194
+ + time_period
195
+ + ")",
196
+ "var_name": "acquisitionMeankVpOverTime",
197
+ }
198
+ )
199
+ if profile.plotMedian:
200
+ required_charts.append(
201
+ {
202
+ "title": "Chart of median kVp per acquisition protocol over time ("
203
+ + time_period
204
+ + ")",
205
+ "var_name": "acquisitionMediankVpOverTime",
206
+ }
207
+ )
208
+
209
+ if profile.plotDXAcquisitionMeanmAsOverTime:
210
+ if profile.plotMean:
211
+ required_charts.append(
212
+ {
213
+ "title": "Chart of mean mAs per acquisition protocol over time ("
214
+ + time_period
215
+ + ")",
216
+ "var_name": "acquisitionMeanmAsOverTime",
217
+ }
218
+ )
219
+ if profile.plotMedian:
220
+ required_charts.append(
221
+ {
222
+ "title": "Chart of median mAs per acquisition protocol over time ("
223
+ + time_period
224
+ + ")",
225
+ "var_name": "acquisitionMedianmAsOverTime",
226
+ }
227
+ )
228
+
229
+ if profile.plotDXAcquisitionDAPvsMass:
230
+ required_charts.append(
231
+ {
232
+ "title": "Chart of acquisition protocol DAP vs patient mass",
233
+ "var_name": "acquisitionDAPvsMass",
234
+ }
235
+ )
236
+
237
+ if enable_standard_names:
238
+ if profile.plotDXStandardAcquisitionMeanDAP:
239
+ if profile.plotMean:
240
+ required_charts.append(
241
+ {
242
+ "title": "Chart of mean DAP for each standard acquisition name",
243
+ "var_name": "standardAcquisitionMeanDAP",
244
+ }
245
+ )
246
+ if profile.plotMedian:
247
+ required_charts.append(
248
+ {
249
+ "title": "Chart of median DAP for each standard acquisition name",
250
+ "var_name": "standardAcquisitionMedianDAP",
251
+ }
252
+ )
253
+ if profile.plotBoxplots:
254
+ required_charts.append(
255
+ {
256
+ "title": "Boxplot of DAP for each standard acquisition name",
257
+ "var_name": "standardAcquisitionBoxplotDAP",
258
+ }
259
+ )
260
+ if profile.plotHistograms:
261
+ required_charts.append(
262
+ {
263
+ "title": "Histogram of DAP for each standard acquisition name",
264
+ "var_name": "standardAcquisitionHistogramDAP",
265
+ }
266
+ )
267
+
268
+ if profile.plotDXStandardAcquisitionFreq:
269
+ required_charts.append(
270
+ {
271
+ "title": "Chart of standard acquisition name frequency",
272
+ "var_name": "standardAcquisitionFrequency",
273
+ }
274
+ )
275
+
276
+ if profile.plotDXStandardAcquisitionMeankVp:
277
+ if profile.plotMean:
278
+ required_charts.append(
279
+ {
280
+ "title": "Chart of mean kVp for each standard acquisition name",
281
+ "var_name": "standardAcquisitionMeankVp",
282
+ }
283
+ )
284
+ if profile.plotMedian:
285
+ required_charts.append(
286
+ {
287
+ "title": "Chart of median kVp for each standard acquisition name",
288
+ "var_name": "standardAcquisitionMediankVp",
289
+ }
290
+ )
291
+ if profile.plotBoxplots:
292
+ required_charts.append(
293
+ {
294
+ "title": "Boxplot of kVp for each standard acquisition name",
295
+ "var_name": "standardAcquisitionBoxplotkVp",
296
+ }
297
+ )
298
+ if profile.plotHistograms:
299
+ required_charts.append(
300
+ {
301
+ "title": "Histogram of kVp for each standard acquisition name",
302
+ "var_name": "standardAcquisitionHistogramkVp",
303
+ }
304
+ )
305
+
306
+ if profile.plotDXStandardAcquisitionMeanmAs:
307
+ if profile.plotMean:
308
+ required_charts.append(
309
+ {
310
+ "title": "Chart of mean mAs for each standard acquisition name",
311
+ "var_name": "standardAcquisitionMeanmAs",
312
+ }
313
+ )
314
+ if profile.plotMedian:
315
+ required_charts.append(
316
+ {
317
+ "title": "Chart of median mAs for each standard acquisition name",
318
+ "var_name": "standardAcquisitionMedianmAs",
319
+ }
320
+ )
321
+ if profile.plotBoxplots:
322
+ required_charts.append(
323
+ {
324
+ "title": "Boxplot of mAs for each standard acquisition name",
325
+ "var_name": "standardAcquisitionBoxplotmAs",
326
+ }
327
+ )
328
+ if profile.plotHistograms:
329
+ required_charts.append(
330
+ {
331
+ "title": "Histogram of mAs for each standard acquisition name",
332
+ "var_name": "standardAcquisitionHistogrammAs",
333
+ }
334
+ )
335
+
336
+ if profile.plotDXStandardAcquisitionMeanDAPOverTime:
337
+ if profile.plotMean:
338
+ required_charts.append(
339
+ {
340
+ "title": "Chart of mean DAP per standard acquisition name over time ("
341
+ + time_period
342
+ + ")",
343
+ "var_name": "standardAcquisitionMeanDAPOverTime",
344
+ }
345
+ )
346
+ if profile.plotMedian:
347
+ required_charts.append(
348
+ {
349
+ "title": "Chart of median DAP per standard acquisition name over time ("
350
+ + time_period
351
+ + ")",
352
+ "var_name": "standardAcquisitionMedianDAPOverTime",
353
+ }
354
+ )
355
+
356
+ if profile.plotDXStandardAcquisitionMeankVpOverTime:
357
+ if profile.plotMean:
358
+ required_charts.append(
359
+ {
360
+ "title": "Chart of mean kVp per standard acquisition name over time ("
361
+ + time_period
362
+ + ")",
363
+ "var_name": "standardAcquisitionMeankVpOverTime",
364
+ }
365
+ )
366
+ if profile.plotMedian:
367
+ required_charts.append(
368
+ {
369
+ "title": "Chart of median kVp per standard acquisition name over time ("
370
+ + time_period
371
+ + ")",
372
+ "var_name": "standardAcquisitionMediankVpOverTime",
373
+ }
374
+ )
375
+
376
+ if profile.plotDXStandardAcquisitionMeanmAsOverTime:
377
+ if profile.plotMean:
378
+ required_charts.append(
379
+ {
380
+ "title": "Chart of mean mAs per standard acquisition name over time ("
381
+ + time_period
382
+ + ")",
383
+ "var_name": "standardAcquisitionMeanmAsOverTime",
384
+ }
385
+ )
386
+ if profile.plotMedian:
387
+ required_charts.append(
388
+ {
389
+ "title": "Chart of median mAs per standard acquisition name over time ("
390
+ + time_period
391
+ + ")",
392
+ "var_name": "standardAcquisitionMedianmAsOverTime",
393
+ }
394
+ )
395
+
396
+ if profile.plotDXStandardAcquisitionDAPvsMass:
397
+ required_charts.append(
398
+ {
399
+ "title": "Chart of standard acquisition name DAP vs patient mass",
400
+ "var_name": "standardAcquisitionDAPvsMass",
401
+ }
402
+ )
403
+
404
+ if profile.plotDXStandardStudyMeanDAP:
405
+ if profile.plotMean:
406
+ required_charts.append(
407
+ {
408
+ "title": "Chart of mean DAP for each standard study name",
409
+ "var_name": "standardStudyMeanDAP",
410
+ }
411
+ )
412
+ if profile.plotMedian:
413
+ required_charts.append(
414
+ {
415
+ "title": "Chart of median DAP for each standard study name",
416
+ "var_name": "standardStudyMedianDAP",
417
+ }
418
+ )
419
+ if profile.plotBoxplots:
420
+ required_charts.append(
421
+ {
422
+ "title": "Boxplot of DAP for each standard study name",
423
+ "var_name": "standardStudyBoxplotDAP",
424
+ }
425
+ )
426
+ if profile.plotHistograms:
427
+ required_charts.append(
428
+ {
429
+ "title": "Histogram of DAP for each standard study name",
430
+ "var_name": "standardStudyHistogramDAP",
431
+ }
432
+ )
433
+
434
+ if profile.plotDXStandardStudyFreq:
435
+ required_charts.append(
436
+ {
437
+ "title": "Chart of standard study name frequency",
438
+ "var_name": "standardStudyFrequency",
439
+ }
440
+ )
441
+
442
+ if profile.plotDXStandardStudyPerDayAndHour:
443
+ required_charts.append(
444
+ {
445
+ "title": "Chart of standard study name workload",
446
+ "var_name": "standardStudyWorkload",
447
+ }
448
+ )
449
+
450
+ if profile.plotDXStandardStudyDAPvsMass:
451
+ required_charts.append(
452
+ {
453
+ "title": "Chart of standard study name DAP vs patient mass",
454
+ "var_name": "standardStudyDAPvsMass",
455
+ }
456
+ )
457
+
458
+ if profile.plotDXStudyMeanDAP:
459
+ if profile.plotMean:
460
+ required_charts.append(
461
+ {
462
+ "title": "Chart of mean DAP for each study description",
463
+ "var_name": "studyMeanDAP",
464
+ }
465
+ )
466
+ if profile.plotMedian:
467
+ required_charts.append(
468
+ {
469
+ "title": "Chart of median DAP for each study description",
470
+ "var_name": "studyMedianDAP",
471
+ }
472
+ )
473
+ if profile.plotBoxplots:
474
+ required_charts.append(
475
+ {
476
+ "title": "Boxplot of DAP for each study description",
477
+ "var_name": "studyBoxplotDAP",
478
+ }
479
+ )
480
+ if profile.plotHistograms:
481
+ required_charts.append(
482
+ {
483
+ "title": "Histogram of DAP for each study description",
484
+ "var_name": "studyHistogramDAP",
485
+ }
486
+ )
487
+
488
+ if profile.plotDXStudyFreq:
489
+ required_charts.append(
490
+ {
491
+ "title": "Chart of study description frequency",
492
+ "var_name": "studyFrequency",
493
+ }
494
+ )
495
+
496
+ if profile.plotDXStudyPerDayAndHour:
497
+ required_charts.append(
498
+ {
499
+ "title": "Chart of study description workload",
500
+ "var_name": "studyWorkload",
501
+ }
502
+ )
503
+
504
+ if profile.plotDXStudyDAPvsMass:
505
+ required_charts.append(
506
+ {
507
+ "title": "Chart of study description DAP vs patient mass",
508
+ "var_name": "studyDAPvsMass",
509
+ }
510
+ )
511
+
512
+ if profile.plotDXRequestMeanDAP:
513
+ if profile.plotMean:
514
+ required_charts.append(
515
+ {
516
+ "title": "Chart of mean DAP for each requested procedure",
517
+ "var_name": "requestMeanDAP",
518
+ }
519
+ )
520
+ if profile.plotMedian:
521
+ required_charts.append(
522
+ {
523
+ "title": "Chart of median DAP for each requested procedure",
524
+ "var_name": "requestMedianDAP",
525
+ }
526
+ )
527
+ if profile.plotBoxplots:
528
+ required_charts.append(
529
+ {
530
+ "title": "Boxplot of DAP for each requested procedure",
531
+ "var_name": "requestBoxplotDAP",
532
+ }
533
+ )
534
+ if profile.plotHistograms:
535
+ required_charts.append(
536
+ {
537
+ "title": "Histogram of DAP for each requested procedure",
538
+ "var_name": "requestHistogramDAP",
539
+ }
540
+ )
541
+
542
+ if profile.plotDXRequestFreq:
543
+ required_charts.append(
544
+ {
545
+ "title": "Chart of requested procedure frequency",
546
+ "var_name": "requestFrequency",
547
+ }
548
+ )
549
+
550
+ if profile.plotDXRequestDAPvsMass:
551
+ required_charts.append(
552
+ {
553
+ "title": "Chart of requested procedure DAP vs patient mass",
554
+ "var_name": "requestDAPvsMass",
555
+ }
556
+ )
557
+
558
+ return required_charts
559
+
560
+
561
+ @login_required
562
+ def dx_summary_chart_data(request):
563
+ """Obtain data for Ajax chart call."""
564
+ pid = bool(request.user.groups.filter(name="pidgroup"))
565
+ f = dx_acq_filter(request.GET, pid=pid)
566
+
567
+ try:
568
+ # See if the user has plot settings in userprofile
569
+ user_profile = request.user.userprofile
570
+ except ObjectDoesNotExist:
571
+ # Create a default userprofile for the user if one doesn't exist
572
+ create_user_profile(sender=request.user, instance=request.user, created=True)
573
+ user_profile = request.user.userprofile
574
+
575
+ if settings.DEBUG:
576
+ start_time = datetime.now()
577
+
578
+ return_structure = dx_plot_calculations(f, user_profile)
579
+
580
+ if settings.DEBUG:
581
+ logger.debug(f"Elapsed time is {datetime.now() - start_time}")
582
+
583
+ return JsonResponse(return_structure, safe=False)
584
+
585
+
586
+ def dx_plot_calculations(f, user_profile, return_as_dict=False):
587
+ # pylint: disable=too-many-locals
588
+ # pylint: disable=too-many-branches
589
+ # pylint: disable=too-many-statements
590
+ """Calculations for radiographic charts."""
591
+ # Return an empty structure if the queryset is empty
592
+ if not f.qs.exists():
593
+ return {}
594
+
595
+ # Obtain the system-level enable_standard_names setting
596
+ enable_standard_names = are_standard_names_enabled()
597
+
598
+ # Set the Plotly chart theme
599
+ plotly_set_default_theme(user_profile.plotThemeChoice)
600
+
601
+ return_structure = {}
602
+
603
+ average_choices = []
604
+ if user_profile.plotMean:
605
+ average_choices.append("mean")
606
+ if user_profile.plotMedian:
607
+ average_choices.append("median")
608
+
609
+ charts_of_interest = [
610
+ user_profile.plotDXAcquisitionMeanDAPOverTime,
611
+ user_profile.plotDXAcquisitionMeankVpOverTime,
612
+ user_profile.plotDXAcquisitionMeanmAsOverTime,
613
+ ]
614
+ if enable_standard_names:
615
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanDAPOverTime)
616
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeankVpOverTime)
617
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanmAsOverTime)
618
+ if any(charts_of_interest):
619
+ plot_timeunit_period = user_profile.plotDXAcquisitionMeanDAPOverTimePeriod
620
+
621
+ #######################################################################
622
+ # Prepare acquisition-level Pandas DataFrame to use for charts
623
+ charts_of_interest = [
624
+ user_profile.plotDXAcquisitionMeanDAP,
625
+ user_profile.plotDXAcquisitionFreq,
626
+ user_profile.plotDXAcquisitionMeankVp,
627
+ user_profile.plotDXAcquisitionMeanmAs,
628
+ user_profile.plotDXAcquisitionMeankVpOverTime,
629
+ user_profile.plotDXAcquisitionMeanmAsOverTime,
630
+ user_profile.plotDXAcquisitionMeanDAPOverTime,
631
+ user_profile.plotDXAcquisitionDAPvsMass,
632
+ ]
633
+ if enable_standard_names:
634
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanDAP)
635
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionFreq)
636
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeankVp)
637
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanmAs)
638
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeankVpOverTime)
639
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanmAsOverTime)
640
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanDAPOverTime)
641
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionDAPvsMass)
642
+
643
+ if any(charts_of_interest):
644
+
645
+ name_fields = []
646
+ charts_of_interest = [
647
+ user_profile.plotDXAcquisitionMeanDAP,
648
+ user_profile.plotDXAcquisitionFreq,
649
+ user_profile.plotDXAcquisitionMeankVp,
650
+ user_profile.plotDXAcquisitionMeanmAs,
651
+ user_profile.plotDXAcquisitionMeankVpOverTime,
652
+ user_profile.plotDXAcquisitionMeanmAsOverTime,
653
+ user_profile.plotDXAcquisitionMeanDAPOverTime,
654
+ user_profile.plotDXAcquisitionDAPvsMass,
655
+ ]
656
+ if any(charts_of_interest):
657
+ name_fields.append(
658
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
659
+ )
660
+
661
+ if enable_standard_names:
662
+ charts_of_interest = [
663
+ user_profile.plotDXStandardAcquisitionMeanDAP,
664
+ user_profile.plotDXStandardAcquisitionFreq,
665
+ user_profile.plotDXStandardAcquisitionMeankVp,
666
+ user_profile.plotDXStandardAcquisitionMeanmAs,
667
+ user_profile.plotDXStandardAcquisitionMeankVpOverTime,
668
+ user_profile.plotDXStandardAcquisitionMeanmAsOverTime,
669
+ user_profile.plotDXStandardAcquisitionMeanDAPOverTime,
670
+ user_profile.plotDXStandardAcquisitionDAPvsMass,
671
+ ]
672
+ if any(charts_of_interest):
673
+ name_fields.append(
674
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
675
+ )
676
+
677
+ value_fields = []
678
+ value_multipliers = []
679
+ charts_of_interest = [
680
+ user_profile.plotDXAcquisitionMeanDAP,
681
+ user_profile.plotDXAcquisitionMeanDAPOverTime,
682
+ user_profile.plotDXAcquisitionDAPvsMass,
683
+ ]
684
+ if enable_standard_names:
685
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanDAP)
686
+ charts_of_interest.append(
687
+ user_profile.plotDXStandardAcquisitionMeanDAPOverTime
688
+ )
689
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionDAPvsMass)
690
+ if any(charts_of_interest):
691
+ value_fields.append(
692
+ "projectionxrayradiationdose__irradeventxraydata__dose_area_product"
693
+ )
694
+ value_multipliers.append(1000000)
695
+
696
+ charts_of_interest = [
697
+ user_profile.plotDXAcquisitionMeankVp,
698
+ user_profile.plotDXAcquisitionMeankVpOverTime,
699
+ ]
700
+ if enable_standard_names:
701
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeankVp)
702
+ charts_of_interest.append(
703
+ user_profile.plotDXStandardAcquisitionMeankVpOverTime
704
+ )
705
+ if any(charts_of_interest):
706
+ value_fields.append(
707
+ "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp"
708
+ )
709
+ value_multipliers.append(1)
710
+
711
+ charts_of_interest = [
712
+ user_profile.plotDXAcquisitionMeanmAs,
713
+ user_profile.plotDXAcquisitionMeanmAsOverTime,
714
+ ]
715
+ if enable_standard_names:
716
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionMeanmAs)
717
+ charts_of_interest.append(
718
+ user_profile.plotDXStandardAcquisitionMeanmAsOverTime
719
+ )
720
+ if any(charts_of_interest):
721
+ value_fields.append(
722
+ "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure"
723
+ )
724
+ value_multipliers.append(0.001)
725
+
726
+ charts_of_interest = [user_profile.plotDXAcquisitionDAPvsMass]
727
+ if enable_standard_names:
728
+ charts_of_interest.append(user_profile.plotDXStandardAcquisitionDAPvsMass)
729
+ if any(charts_of_interest):
730
+ value_fields.append("patientstudymoduleattr__patient_weight")
731
+ value_multipliers.append(1)
732
+
733
+ time_fields = []
734
+ date_fields = []
735
+ charts_of_interest = [
736
+ user_profile.plotDXAcquisitionMeanDAPOverTime,
737
+ user_profile.plotDXAcquisitionMeankVpOverTime,
738
+ user_profile.plotDXAcquisitionMeanmAsOverTime,
739
+ ]
740
+ if enable_standard_names:
741
+ charts_of_interest.append(
742
+ user_profile.plotDXStandardAcquisitionMeanDAPOverTime
743
+ )
744
+ charts_of_interest.append(
745
+ user_profile.plotDXStandardAcquisitionMeankVpOverTime
746
+ )
747
+ charts_of_interest.append(
748
+ user_profile.plotDXStandardAcquisitionMeanmAsOverTime
749
+ )
750
+ if any(charts_of_interest):
751
+ date_fields.append("study_date")
752
+
753
+ system_field = []
754
+ if user_profile.plotSeriesPerSystem:
755
+ system_field.append(
756
+ "generalequipmentmoduleattr__unique_equipment_name_id__display_name"
757
+ )
758
+
759
+ fields = {
760
+ "names": name_fields,
761
+ "values": value_fields,
762
+ "dates": date_fields,
763
+ "times": time_fields,
764
+ "system": system_field,
765
+ }
766
+
767
+ df = create_dataframe(
768
+ f.qs,
769
+ fields,
770
+ data_point_name_lowercase=user_profile.plotCaseInsensitiveCategories,
771
+ data_point_name_remove_whitespace_padding=user_profile.plotRemoveCategoryWhitespacePadding,
772
+ data_point_value_multipliers=value_multipliers,
773
+ char_wrap=user_profile.plotLabelCharWrap,
774
+ uid="projectionxrayradiationdose__irradeventxraydata__pk",
775
+ )
776
+ #######################################################################
777
+
778
+ #######################################################################
779
+ # Addressing issue 1050 (https://bitbucket.org/openrem/openrem/issues/1050)
780
+ # Filter data frame using acquisition protocol name, min / max event DAP,
781
+ # and standard acquisition name filters.
782
+ if "event_dap_min" in f.data:
783
+ if f.data["event_dap_min"]:
784
+ df = df[
785
+ df[
786
+ "projectionxrayradiationdose__irradeventxraydata__dose_area_product"
787
+ ]
788
+ >= float(f.data["event_dap_min"])
789
+ ]
790
+
791
+ if "event_dap_max" in f.data:
792
+ if f.data["event_dap_max"]:
793
+ df = df[
794
+ df[
795
+ "projectionxrayradiationdose__irradeventxraydata__dose_area_product"
796
+ ]
797
+ <= float(f.data["event_dap_max"])
798
+ ]
799
+
800
+ if (
801
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
802
+ in f.data
803
+ ):
804
+ if f.data[
805
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
806
+ ]:
807
+ df[
808
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
809
+ ] = df[
810
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
811
+ ].astype(
812
+ "object"
813
+ )
814
+ df = df[
815
+ df[
816
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
817
+ ].str.contains(
818
+ f.data[
819
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
820
+ ],
821
+ case=False,
822
+ )
823
+ ]
824
+ df[
825
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
826
+ ] = df[
827
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
828
+ ].astype(
829
+ "category"
830
+ )
831
+
832
+ if (
833
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
834
+ in f.data
835
+ ):
836
+ if f.data[
837
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
838
+ ]:
839
+ df[
840
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
841
+ ] = df[
842
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
843
+ ].astype(
844
+ "object"
845
+ )
846
+ df = df[
847
+ df[
848
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
849
+ ].str.contains(
850
+ f.data[
851
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
852
+ ],
853
+ case=False,
854
+ )
855
+ ]
856
+ df[
857
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
858
+ ] = df[
859
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
860
+ ].astype(
861
+ "category"
862
+ )
863
+ #######################################################################
864
+
865
+ if user_profile.plotDXAcquisitionMeanDAP:
866
+
867
+ name_field = (
868
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
869
+ )
870
+ value_field = (
871
+ "projectionxrayradiationdose__irradeventxraydata__dose_area_product"
872
+ )
873
+ value_text = "DAP"
874
+ units_text = "(cGy.cm<sup>2</sup>)"
875
+ name_text = "Acquisition protocol"
876
+ variable_name_start = "acquisition"
877
+ variable_value_name = "DAP"
878
+ modality_text = "DX"
879
+ chart_message = ""
880
+
881
+ new_charts = generate_average_chart_group(
882
+ average_choices,
883
+ chart_message,
884
+ df,
885
+ modality_text,
886
+ name_field,
887
+ name_text,
888
+ return_as_dict,
889
+ return_structure,
890
+ units_text,
891
+ user_profile,
892
+ value_field,
893
+ value_text,
894
+ variable_name_start,
895
+ variable_value_name,
896
+ user_profile.plotDXInitialSortingChoice,
897
+ )
898
+
899
+ return_structure = {**return_structure, **new_charts}
900
+
901
+ if user_profile.plotDXAcquisitionMeankVp:
902
+
903
+ name_field = (
904
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
905
+ )
906
+ value_field = "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp"
907
+ value_text = "kVp"
908
+ units_text = ""
909
+ name_text = "Acquisition protocol"
910
+ variable_name_start = "acquisition"
911
+ variable_value_name = "kVp"
912
+ modality_text = "DX"
913
+ chart_message = ""
914
+
915
+ new_charts = generate_average_chart_group(
916
+ average_choices,
917
+ chart_message,
918
+ df,
919
+ modality_text,
920
+ name_field,
921
+ name_text,
922
+ return_as_dict,
923
+ return_structure,
924
+ units_text,
925
+ user_profile,
926
+ value_field,
927
+ value_text,
928
+ variable_name_start,
929
+ variable_value_name,
930
+ user_profile.plotDXInitialSortingChoice,
931
+ )
932
+
933
+ return_structure = {**return_structure, **new_charts}
934
+
935
+ if user_profile.plotDXAcquisitionMeanmAs:
936
+
937
+ name_field = (
938
+ "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol"
939
+ )
940
+ value_field = "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure" # pylint: disable=line-too-long
941
+ value_text = "mAs"
942
+ units_text = ""
943
+ name_text = "Acquisition protocol"
944
+ variable_name_start = "acquisition"
945
+ variable_value_name = "mAs"
946
+ modality_text = "DX"
947
+ chart_message = ""
948
+
949
+ new_charts = generate_average_chart_group(
950
+ average_choices,
951
+ chart_message,
952
+ df,
953
+ modality_text,
954
+ name_field,
955
+ name_text,
956
+ return_as_dict,
957
+ return_structure,
958
+ units_text,
959
+ user_profile,
960
+ value_field,
961
+ value_text,
962
+ variable_name_start,
963
+ variable_value_name,
964
+ user_profile.plotDXInitialSortingChoice,
965
+ )
966
+
967
+ return_structure = {**return_structure, **new_charts}
968
+
969
+ if user_profile.plotDXAcquisitionFreq:
970
+ parameter_dict = {
971
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
972
+ "sorting_choice": [
973
+ user_profile.plotInitialSortingDirection,
974
+ user_profile.plotDXInitialSortingChoice,
975
+ ],
976
+ "legend_title": "Acquisition protocol",
977
+ "df_x_axis_col": "x_ray_system_name",
978
+ "x_axis_title": "System",
979
+ "grouping_choice": user_profile.plotGroupingChoice,
980
+ "colourmap": user_profile.plotColourMapChoice,
981
+ "filename": "OpenREM DX acquisition protocol frequency",
982
+ "groupby_cols": None,
983
+ "facet_col": None,
984
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
985
+ "return_as_dict": return_as_dict,
986
+ }
987
+ (
988
+ return_structure["acquisitionFrequencyData"],
989
+ return_structure["acquisitionFrequencyDataCSV"],
990
+ ) = plotly_frequency_barchart( # pylint: disable=line-too-long
991
+ df,
992
+ parameter_dict,
993
+ csv_name="acquisitionFrequencyData.csv",
994
+ )
995
+
996
+ if user_profile.plotDXAcquisitionMeanDAPOverTime:
997
+ facet_title = "System"
998
+
999
+ if user_profile.plotGroupingChoice == "series":
1000
+ facet_title = "Acquisition protocol"
1001
+
1002
+ parameter_dict = {
1003
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
1004
+ "df_value_col": "projectionxrayradiationdose__irradeventxraydata__dose_area_product",
1005
+ "df_date_col": "study_date",
1006
+ "name_title": "Acquisition protocol",
1007
+ "value_title": "DAP (cGy.cm<sup>2</sup>)",
1008
+ "date_title": "Study date",
1009
+ "facet_title": facet_title,
1010
+ "sorting_choice": [
1011
+ user_profile.plotInitialSortingDirection,
1012
+ user_profile.plotDXInitialSortingChoice,
1013
+ ],
1014
+ "time_period": plot_timeunit_period,
1015
+ "average_choices": average_choices + ["count"],
1016
+ "grouping_choice": user_profile.plotGroupingChoice,
1017
+ "colourmap": user_profile.plotColourMapChoice,
1018
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1019
+ "filename": "OpenREM DX acquisition protocol DAP over time",
1020
+ "return_as_dict": return_as_dict,
1021
+ }
1022
+ result = construct_over_time_charts(
1023
+ df,
1024
+ parameter_dict,
1025
+ )
1026
+
1027
+ if user_profile.plotMean:
1028
+ return_structure["acquisitionMeanDAPOverTime"] = result["mean"]
1029
+ if user_profile.plotMedian:
1030
+ return_structure["acquisitionMedianDAPOverTime"] = result["median"]
1031
+
1032
+ if user_profile.plotDXAcquisitionMeankVpOverTime:
1033
+ facet_title = "System"
1034
+
1035
+ if user_profile.plotGroupingChoice == "series":
1036
+ facet_title = "Acquisition protocol"
1037
+
1038
+ parameter_dict = {
1039
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
1040
+ "df_value_col": "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp",
1041
+ "df_date_col": "study_date",
1042
+ "name_title": "Acquisition protocol",
1043
+ "value_title": "kVp",
1044
+ "date_title": "Study date",
1045
+ "facet_title": facet_title,
1046
+ "sorting_choice": [
1047
+ user_profile.plotInitialSortingDirection,
1048
+ user_profile.plotDXInitialSortingChoice,
1049
+ ],
1050
+ "time_period": plot_timeunit_period,
1051
+ "average_choices": average_choices + ["count"],
1052
+ "grouping_choice": user_profile.plotGroupingChoice,
1053
+ "colourmap": user_profile.plotColourMapChoice,
1054
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1055
+ "filename": "OpenREM DX acquisition protocol kVp over time",
1056
+ "return_as_dict": return_as_dict,
1057
+ }
1058
+ result = construct_over_time_charts(
1059
+ df,
1060
+ parameter_dict,
1061
+ )
1062
+
1063
+ if user_profile.plotMean:
1064
+ return_structure["acquisitionMeankVpOverTime"] = result["mean"]
1065
+ if user_profile.plotMedian:
1066
+ return_structure["acquisitionMediankVpOverTime"] = result["median"]
1067
+
1068
+ if user_profile.plotDXAcquisitionMeanmAsOverTime:
1069
+ facet_title = "System"
1070
+
1071
+ if user_profile.plotGroupingChoice == "series":
1072
+ facet_title = "Acquisition protocol"
1073
+
1074
+ parameter_dict = { # pylint: disable=line-too-long
1075
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
1076
+ "df_value_col": "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure", # pylint: disable=line-too-long
1077
+ "df_date_col": "study_date",
1078
+ "name_title": "Acquisition protocol",
1079
+ "value_title": "mAs",
1080
+ "date_title": "Study date",
1081
+ "facet_title": facet_title,
1082
+ "sorting_choice": [
1083
+ user_profile.plotInitialSortingDirection,
1084
+ user_profile.plotDXInitialSortingChoice,
1085
+ ],
1086
+ "time_period": plot_timeunit_period,
1087
+ "average_choices": average_choices + ["count"],
1088
+ "grouping_choice": user_profile.plotGroupingChoice,
1089
+ "colourmap": user_profile.plotColourMapChoice,
1090
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1091
+ "filename": "OpenREM DX acquisition protocol mAs over time",
1092
+ "return_as_dict": return_as_dict,
1093
+ }
1094
+ result = construct_over_time_charts(
1095
+ df,
1096
+ parameter_dict,
1097
+ )
1098
+
1099
+ if user_profile.plotMean:
1100
+ return_structure["acquisitionMeanmAsOverTime"] = result["mean"]
1101
+ if user_profile.plotMedian:
1102
+ return_structure["acquisitionMedianmAsOverTime"] = result["median"]
1103
+
1104
+ if user_profile.plotDXAcquisitionDAPvsMass:
1105
+ parameter_dict = {
1106
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__acquisition_protocol",
1107
+ "df_x_col": "patientstudymoduleattr__patient_weight",
1108
+ "df_y_col": "projectionxrayradiationdose__irradeventxraydata__dose_area_product",
1109
+ "sorting_choice": [
1110
+ user_profile.plotInitialSortingDirection,
1111
+ user_profile.plotDXInitialSortingChoice,
1112
+ ],
1113
+ "grouping_choice": user_profile.plotGroupingChoice,
1114
+ "legend_title": "Acquisition protocol",
1115
+ "colourmap": user_profile.plotColourMapChoice,
1116
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1117
+ "x_axis_title": "Patient mass (kg)",
1118
+ "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1119
+ "filename": "OpenREM DX acquisition protocol DAP vs patient mass",
1120
+ "return_as_dict": return_as_dict,
1121
+ }
1122
+ return_structure["acquisitionDAPvsMass"] = plotly_scatter(
1123
+ df,
1124
+ parameter_dict,
1125
+ )
1126
+
1127
+ if enable_standard_names:
1128
+ charts_of_interest = [
1129
+ user_profile.plotDXStandardAcquisitionMeanDAP,
1130
+ user_profile.plotDXStandardAcquisitionFreq,
1131
+ user_profile.plotDXStandardAcquisitionMeankVp,
1132
+ user_profile.plotDXStandardAcquisitionMeanmAs,
1133
+ user_profile.plotDXStandardAcquisitionMeankVpOverTime,
1134
+ user_profile.plotDXStandardAcquisitionMeanmAsOverTime,
1135
+ user_profile.plotDXStandardAcquisitionMeanDAPOverTime,
1136
+ user_profile.plotDXStandardAcquisitionDAPvsMass,
1137
+ ]
1138
+
1139
+ if any(charts_of_interest):
1140
+
1141
+ # Exclude "Blank" and "blank" standard_acqusition_name data
1142
+ df_without_blanks = df[
1143
+ (
1144
+ df[
1145
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1146
+ ]
1147
+ != "blank"
1148
+ )
1149
+ & (
1150
+ df[
1151
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1152
+ ]
1153
+ != "Blank"
1154
+ )
1155
+ ].copy()
1156
+ # Remove any unused categories (this will include "Blank" or "blank")
1157
+ df_without_blanks[
1158
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1159
+ ] = df_without_blanks[
1160
+ "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1161
+ ].cat.remove_unused_categories()
1162
+
1163
+ if user_profile.plotDXStandardAcquisitionMeanDAP:
1164
+ name_field = "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1165
+ value_field = "projectionxrayradiationdose__irradeventxraydata__dose_area_product"
1166
+ value_text = "DAP"
1167
+ units_text = "(cGy.cm<sup>2</sup>)"
1168
+ name_text = "Standard acquisition name"
1169
+ variable_name_start = "standardAcquisition"
1170
+ variable_value_name = "DAP"
1171
+ modality_text = "DX"
1172
+ chart_message = ""
1173
+
1174
+ new_charts = generate_average_chart_group(
1175
+ average_choices,
1176
+ chart_message,
1177
+ df_without_blanks,
1178
+ modality_text,
1179
+ name_field,
1180
+ name_text,
1181
+ return_as_dict,
1182
+ return_structure,
1183
+ units_text,
1184
+ user_profile,
1185
+ value_field,
1186
+ value_text,
1187
+ variable_name_start,
1188
+ variable_value_name,
1189
+ user_profile.plotDXInitialSortingChoice,
1190
+ )
1191
+
1192
+ return_structure = {**return_structure, **new_charts}
1193
+
1194
+ if user_profile.plotDXStandardAcquisitionMeankVp:
1195
+ name_field = "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1196
+ value_field = "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp"
1197
+ value_text = "kVp"
1198
+ units_text = ""
1199
+ name_text = "Standard acquisition name"
1200
+ variable_name_start = "standardAcquisition"
1201
+ variable_value_name = "kVp"
1202
+ modality_text = "DX"
1203
+ chart_message = ""
1204
+
1205
+ new_charts = generate_average_chart_group(
1206
+ average_choices,
1207
+ chart_message,
1208
+ df_without_blanks,
1209
+ modality_text,
1210
+ name_field,
1211
+ name_text,
1212
+ return_as_dict,
1213
+ return_structure,
1214
+ units_text,
1215
+ user_profile,
1216
+ value_field,
1217
+ value_text,
1218
+ variable_name_start,
1219
+ variable_value_name,
1220
+ user_profile.plotDXInitialSortingChoice,
1221
+ )
1222
+
1223
+ return_structure = {**return_structure, **new_charts}
1224
+
1225
+ if user_profile.plotDXStandardAcquisitionMeanmAs:
1226
+ name_field = "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name"
1227
+ value_field = "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure" # pylint: disable=line-too-long
1228
+ value_text = "mAs"
1229
+ units_text = ""
1230
+ name_text = "Standard acquisition name"
1231
+ variable_name_start = "standardAcquisition"
1232
+ variable_value_name = "mAs"
1233
+ modality_text = "DX"
1234
+ chart_message = ""
1235
+
1236
+ new_charts = generate_average_chart_group(
1237
+ average_choices,
1238
+ chart_message,
1239
+ df_without_blanks,
1240
+ modality_text,
1241
+ name_field,
1242
+ name_text,
1243
+ return_as_dict,
1244
+ return_structure,
1245
+ units_text,
1246
+ user_profile,
1247
+ value_field,
1248
+ value_text,
1249
+ variable_name_start,
1250
+ variable_value_name,
1251
+ user_profile.plotDXInitialSortingChoice,
1252
+ )
1253
+
1254
+ return_structure = {**return_structure, **new_charts}
1255
+
1256
+ if user_profile.plotDXStandardAcquisitionFreq:
1257
+ parameter_dict = {
1258
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1259
+ "sorting_choice": [
1260
+ user_profile.plotInitialSortingDirection,
1261
+ user_profile.plotDXInitialSortingChoice,
1262
+ ],
1263
+ "legend_title": "Standard acquisition name",
1264
+ "df_x_axis_col": "x_ray_system_name",
1265
+ "x_axis_title": "System",
1266
+ "grouping_choice": user_profile.plotGroupingChoice,
1267
+ "colourmap": user_profile.plotColourMapChoice,
1268
+ "filename": "OpenREM DX standard acquisition name frequency",
1269
+ "groupby_cols": None,
1270
+ "facet_col": None,
1271
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1272
+ "return_as_dict": return_as_dict,
1273
+ }
1274
+ (
1275
+ return_structure["standardAcquisitionFrequencyData"],
1276
+ return_structure["standardAcquisitionFrequencyDataCSV"],
1277
+ ) = plotly_frequency_barchart(
1278
+ df_without_blanks,
1279
+ parameter_dict,
1280
+ csv_name="standardAcquisitionFrequencyData.csv",
1281
+ )
1282
+
1283
+ if user_profile.plotDXStandardAcquisitionMeanDAPOverTime:
1284
+ facet_title = "System"
1285
+
1286
+ if user_profile.plotGroupingChoice == "series":
1287
+ facet_title = "Standard acquisition name"
1288
+
1289
+ parameter_dict = {
1290
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1291
+ "df_value_col": "projectionxrayradiationdose__irradeventxraydata__dose_area_product",
1292
+ "df_date_col": "study_date",
1293
+ "name_title": "Standard acquisition name",
1294
+ "value_title": "DAP (cGy.cm<sup>2</sup>)",
1295
+ "date_title": "Study date",
1296
+ "facet_title": facet_title,
1297
+ "sorting_choice": [
1298
+ user_profile.plotInitialSortingDirection,
1299
+ user_profile.plotDXInitialSortingChoice,
1300
+ ],
1301
+ "time_period": plot_timeunit_period,
1302
+ "average_choices": average_choices + ["count"],
1303
+ "grouping_choice": user_profile.plotGroupingChoice,
1304
+ "colourmap": user_profile.plotColourMapChoice,
1305
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1306
+ "filename": "OpenREM DX standard acquisition name DAP over time",
1307
+ "return_as_dict": return_as_dict,
1308
+ }
1309
+ result = construct_over_time_charts(
1310
+ df_without_blanks,
1311
+ parameter_dict,
1312
+ )
1313
+
1314
+ if user_profile.plotMean:
1315
+ return_structure["standardAcquisitionMeanDAPOverTime"] = result[
1316
+ "mean"
1317
+ ]
1318
+ if user_profile.plotMedian:
1319
+ return_structure["standardAcquisitionMedianDAPOverTime"] = (
1320
+ result["median"]
1321
+ )
1322
+
1323
+ if user_profile.plotDXStandardAcquisitionMeankVpOverTime:
1324
+ facet_title = "System"
1325
+
1326
+ if user_profile.plotGroupingChoice == "series":
1327
+ facet_title = "Standard acquisition name"
1328
+
1329
+ parameter_dict = {
1330
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1331
+ "df_value_col": "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__kvp__kvp", # pylint: disable=line-too-long
1332
+ "df_date_col": "study_date",
1333
+ "name_title": "Standard acquisition name",
1334
+ "value_title": "kVp",
1335
+ "date_title": "Study date",
1336
+ "facet_title": facet_title,
1337
+ "sorting_choice": [
1338
+ user_profile.plotInitialSortingDirection,
1339
+ user_profile.plotDXInitialSortingChoice,
1340
+ ],
1341
+ "time_period": plot_timeunit_period,
1342
+ "average_choices": average_choices + ["count"],
1343
+ "grouping_choice": user_profile.plotGroupingChoice,
1344
+ "colourmap": user_profile.plotColourMapChoice,
1345
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1346
+ "filename": "OpenREM DX standard acquisition name kVp over time",
1347
+ "return_as_dict": return_as_dict,
1348
+ }
1349
+ result = construct_over_time_charts(
1350
+ df_without_blanks,
1351
+ parameter_dict,
1352
+ )
1353
+
1354
+ if user_profile.plotMean:
1355
+ return_structure["standardAcquisitionMeankVpOverTime"] = result[
1356
+ "mean"
1357
+ ]
1358
+ if user_profile.plotMedian:
1359
+ return_structure["standardAcquisitionMediankVpOverTime"] = (
1360
+ result["median"]
1361
+ )
1362
+
1363
+ if user_profile.plotDXStandardAcquisitionMeanmAsOverTime:
1364
+ facet_title = "System"
1365
+
1366
+ if user_profile.plotGroupingChoice == "series":
1367
+ facet_title = "Standard acquisition name"
1368
+
1369
+ parameter_dict = {
1370
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1371
+ "df_value_col": "projectionxrayradiationdose__irradeventxraydata__irradeventxraysourcedata__exposure__exposure", # pylint: disable=line-too-long
1372
+ "df_date_col": "study_date",
1373
+ "name_title": "Standard acquisition name",
1374
+ "value_title": "mAs",
1375
+ "date_title": "Study date",
1376
+ "facet_title": facet_title,
1377
+ "sorting_choice": [
1378
+ user_profile.plotInitialSortingDirection,
1379
+ user_profile.plotDXInitialSortingChoice,
1380
+ ],
1381
+ "time_period": plot_timeunit_period,
1382
+ "average_choices": average_choices + ["count"],
1383
+ "grouping_choice": user_profile.plotGroupingChoice,
1384
+ "colourmap": user_profile.plotColourMapChoice,
1385
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1386
+ "filename": "OpenREM DX standard acquisition name mAs over time",
1387
+ "return_as_dict": return_as_dict,
1388
+ }
1389
+ result = construct_over_time_charts(
1390
+ df_without_blanks,
1391
+ parameter_dict,
1392
+ )
1393
+
1394
+ if user_profile.plotMean:
1395
+ return_structure["standardAcquisitionMeanmAsOverTime"] = result[
1396
+ "mean"
1397
+ ]
1398
+ if user_profile.plotMedian:
1399
+ return_structure["standardAcquisitionMedianmAsOverTime"] = (
1400
+ result["median"]
1401
+ )
1402
+
1403
+ if user_profile.plotDXStandardAcquisitionDAPvsMass:
1404
+ parameter_dict = {
1405
+ "df_name_col": "projectionxrayradiationdose__irradeventxraydata__standard_protocols__standard_name", # pylint: disable=line-too-long
1406
+ "df_x_col": "patientstudymoduleattr__patient_weight",
1407
+ "df_y_col": "projectionxrayradiationdose__irradeventxraydata__dose_area_product",
1408
+ "sorting_choice": [
1409
+ user_profile.plotInitialSortingDirection,
1410
+ user_profile.plotDXInitialSortingChoice,
1411
+ ],
1412
+ "grouping_choice": user_profile.plotGroupingChoice,
1413
+ "legend_title": "Standard acquisition name",
1414
+ "colourmap": user_profile.plotColourMapChoice,
1415
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1416
+ "x_axis_title": "Patient mass (kg)",
1417
+ "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1418
+ "filename": "OpenREM DX standard acquisition name DAP vs patient mass",
1419
+ "return_as_dict": return_as_dict,
1420
+ }
1421
+ return_structure["standardAcquisitionDAPvsMass"] = plotly_scatter(
1422
+ df_without_blanks,
1423
+ parameter_dict,
1424
+ )
1425
+
1426
+ #######################################################################
1427
+ # Prepare study- and request-level Pandas DataFrame to use for charts
1428
+ charts_of_interest = [
1429
+ user_profile.plotDXStudyMeanDAP,
1430
+ user_profile.plotDXStudyFreq,
1431
+ user_profile.plotDXStudyPerDayAndHour,
1432
+ user_profile.plotDXStudyDAPvsMass,
1433
+ user_profile.plotDXRequestMeanDAP,
1434
+ user_profile.plotDXRequestFreq,
1435
+ user_profile.plotDXRequestDAPvsMass,
1436
+ ]
1437
+ if enable_standard_names:
1438
+ charts_of_interest.append(user_profile.plotDXStandardStudyMeanDAP)
1439
+ charts_of_interest.append(user_profile.plotDXStandardStudyFreq)
1440
+ charts_of_interest.append(user_profile.plotDXStandardStudyPerDayAndHour)
1441
+ charts_of_interest.append(user_profile.plotDXStandardStudyDAPvsMass)
1442
+
1443
+ if any(charts_of_interest):
1444
+
1445
+ name_fields = []
1446
+ charts_of_interest = [
1447
+ user_profile.plotDXStudyMeanDAP,
1448
+ user_profile.plotDXStudyFreq,
1449
+ user_profile.plotDXStudyPerDayAndHour,
1450
+ user_profile.plotDXStudyDAPvsMass,
1451
+ ]
1452
+ if any(charts_of_interest):
1453
+ name_fields.append("study_description")
1454
+
1455
+ charts_of_interest = [
1456
+ user_profile.plotDXRequestMeanDAP,
1457
+ user_profile.plotDXRequestFreq,
1458
+ user_profile.plotDXRequestDAPvsMass,
1459
+ ]
1460
+ if any(charts_of_interest):
1461
+ name_fields.append("requested_procedure_code_meaning")
1462
+
1463
+ if enable_standard_names:
1464
+ charts_of_interest = [
1465
+ user_profile.plotDXStandardStudyMeanDAP,
1466
+ user_profile.plotDXStandardStudyFreq,
1467
+ user_profile.plotDXStandardStudyPerDayAndHour,
1468
+ user_profile.plotDXStandardStudyDAPvsMass,
1469
+ ]
1470
+ if any(charts_of_interest):
1471
+ name_fields.append("standard_names__standard_name")
1472
+
1473
+ value_fields = []
1474
+ value_multipliers = []
1475
+ charts_of_interest = [
1476
+ user_profile.plotDXStudyMeanDAP,
1477
+ user_profile.plotDXRequestMeanDAP,
1478
+ user_profile.plotDXStudyDAPvsMass,
1479
+ user_profile.plotDXRequestDAPvsMass,
1480
+ ]
1481
+ if enable_standard_names:
1482
+ charts_of_interest.append(user_profile.plotDXStandardStudyMeanDAP)
1483
+ charts_of_interest.append(user_profile.plotDXStandardStudyDAPvsMass)
1484
+
1485
+ if any(charts_of_interest):
1486
+ value_fields.append("total_dap")
1487
+ value_multipliers.append(1000000)
1488
+
1489
+ charts_of_interest = [
1490
+ user_profile.plotDXStudyDAPvsMass,
1491
+ user_profile.plotDXRequestDAPvsMass,
1492
+ ]
1493
+ if enable_standard_names:
1494
+ charts_of_interest.append(user_profile.plotDXStandardStudyDAPvsMass)
1495
+
1496
+ if any(charts_of_interest):
1497
+ value_fields.append("patientstudymoduleattr__patient_weight")
1498
+ value_multipliers.append(1)
1499
+
1500
+ date_fields = []
1501
+ time_fields = []
1502
+ charts_of_interest = [user_profile.plotDXStudyPerDayAndHour]
1503
+ if enable_standard_names:
1504
+ charts_of_interest.append(user_profile.plotDXStandardStudyPerDayAndHour)
1505
+
1506
+ if any(charts_of_interest):
1507
+ date_fields.append("study_date")
1508
+ time_fields.append("study_time")
1509
+
1510
+ system_field = []
1511
+ if user_profile.plotSeriesPerSystem:
1512
+ system_field.append(
1513
+ "generalequipmentmoduleattr__unique_equipment_name_id__display_name"
1514
+ )
1515
+
1516
+ fields = {
1517
+ "names": name_fields,
1518
+ "values": value_fields,
1519
+ "dates": date_fields,
1520
+ "times": time_fields,
1521
+ "system": system_field,
1522
+ }
1523
+
1524
+ # If only standard_names__standard_name is required then exclude all entries where these are None as these are
1525
+ # not required for standard name charts.
1526
+ queryset = f.qs
1527
+ if name_fields == ["standard_names__standard_name"]:
1528
+ queryset = queryset.exclude(standard_names__standard_name__isnull=True)
1529
+
1530
+ df = create_dataframe(
1531
+ queryset,
1532
+ fields,
1533
+ data_point_name_lowercase=user_profile.plotCaseInsensitiveCategories,
1534
+ data_point_name_remove_whitespace_padding=user_profile.plotRemoveCategoryWhitespacePadding,
1535
+ data_point_value_multipliers=value_multipliers,
1536
+ char_wrap=user_profile.plotLabelCharWrap,
1537
+ uid="pk",
1538
+ )
1539
+ #######################################################################
1540
+
1541
+ if user_profile.plotDXStudyMeanDAP:
1542
+
1543
+ name_field = "study_description"
1544
+ value_field = "total_dap"
1545
+ value_text = "DAP"
1546
+ units_text = "(cGy.cm<sup>2</sup>)"
1547
+ name_text = "Study description"
1548
+ variable_name_start = "study"
1549
+ variable_value_name = "DAP"
1550
+ modality_text = "DX"
1551
+ chart_message = ""
1552
+
1553
+ new_charts = generate_average_chart_group(
1554
+ average_choices,
1555
+ chart_message,
1556
+ df,
1557
+ modality_text,
1558
+ name_field,
1559
+ name_text,
1560
+ return_as_dict,
1561
+ return_structure,
1562
+ units_text,
1563
+ user_profile,
1564
+ value_field,
1565
+ value_text,
1566
+ variable_name_start,
1567
+ variable_value_name,
1568
+ user_profile.plotDXInitialSortingChoice,
1569
+ )
1570
+
1571
+ return_structure = {**return_structure, **new_charts}
1572
+
1573
+ if user_profile.plotDXStudyFreq:
1574
+ parameter_dict = {
1575
+ "df_name_col": "study_description",
1576
+ "sorting_choice": [
1577
+ user_profile.plotInitialSortingDirection,
1578
+ user_profile.plotDXInitialSortingChoice,
1579
+ ],
1580
+ "legend_title": "Study description",
1581
+ "df_x_axis_col": "x_ray_system_name",
1582
+ "x_axis_title": "System",
1583
+ "grouping_choice": user_profile.plotGroupingChoice,
1584
+ "colourmap": user_profile.plotColourMapChoice,
1585
+ "filename": "OpenREM DX study description frequency",
1586
+ "groupby_cols": None,
1587
+ "facet_col": None,
1588
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1589
+ "return_as_dict": return_as_dict,
1590
+ }
1591
+ (
1592
+ return_structure["studyFrequencyData"],
1593
+ return_structure["studyFrequencyDataCSV"],
1594
+ ) = plotly_frequency_barchart( # pylint: disable=line-too-long
1595
+ df,
1596
+ parameter_dict,
1597
+ csv_name="studyFrequencyData.csv",
1598
+ )
1599
+
1600
+ if user_profile.plotDXRequestMeanDAP:
1601
+
1602
+ name_field = "requested_procedure_code_meaning"
1603
+ value_field = "total_dap"
1604
+ value_text = "DAP"
1605
+ units_text = "(cGy.cm<sup>2</sup>)"
1606
+ name_text = "Requested procedure"
1607
+ variable_name_start = "request"
1608
+ variable_value_name = "DAP"
1609
+ modality_text = "DX"
1610
+ chart_message = ""
1611
+
1612
+ new_charts = generate_average_chart_group(
1613
+ average_choices,
1614
+ chart_message,
1615
+ df,
1616
+ modality_text,
1617
+ name_field,
1618
+ name_text,
1619
+ return_as_dict,
1620
+ return_structure,
1621
+ units_text,
1622
+ user_profile,
1623
+ value_field,
1624
+ value_text,
1625
+ variable_name_start,
1626
+ variable_value_name,
1627
+ user_profile.plotDXInitialSortingChoice,
1628
+ )
1629
+
1630
+ return_structure = {**return_structure, **new_charts}
1631
+
1632
+ if user_profile.plotDXRequestFreq:
1633
+ parameter_dict = {
1634
+ "df_name_col": "requested_procedure_code_meaning",
1635
+ "sorting_choice": [
1636
+ user_profile.plotInitialSortingDirection,
1637
+ user_profile.plotDXInitialSortingChoice,
1638
+ ],
1639
+ "legend_title": "Requested procedure",
1640
+ "df_x_axis_col": "x_ray_system_name",
1641
+ "x_axis_title": "System",
1642
+ "grouping_choice": user_profile.plotGroupingChoice,
1643
+ "colourmap": user_profile.plotColourMapChoice,
1644
+ "filename": "OpenREM DX requested procedure frequency",
1645
+ "groupby_cols": None,
1646
+ "facet_col": None,
1647
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1648
+ "return_as_dict": return_as_dict,
1649
+ }
1650
+ (
1651
+ return_structure["requestFrequencyData"],
1652
+ return_structure["requestFrequencyDataCSV"],
1653
+ ) = plotly_frequency_barchart( # pylint: disable=line-too-long
1654
+ df,
1655
+ parameter_dict,
1656
+ csv_name="requestFrequencyData.csv",
1657
+ )
1658
+
1659
+ if user_profile.plotDXStudyPerDayAndHour:
1660
+ df_time_series_per_weekday = create_dataframe_weekdays(
1661
+ df, "study_description", df_date_col="study_date"
1662
+ )
1663
+
1664
+ return_structure["studyWorkloadData"] = plotly_barchart_weekdays(
1665
+ df_time_series_per_weekday,
1666
+ "weekday",
1667
+ "study_description",
1668
+ name_axis_title="Weekday",
1669
+ value_axis_title="Frequency",
1670
+ colourmap=user_profile.plotColourMapChoice,
1671
+ filename="OpenREM DX study description workload",
1672
+ facet_col_wrap=user_profile.plotFacetColWrapVal,
1673
+ sorting_choice=[
1674
+ user_profile.plotInitialSortingDirection,
1675
+ user_profile.plotDXInitialSortingChoice,
1676
+ ],
1677
+ return_as_dict=return_as_dict,
1678
+ )
1679
+
1680
+ if user_profile.plotDXStudyDAPvsMass:
1681
+ parameter_dict = {
1682
+ "df_name_col": "study_description",
1683
+ "df_x_col": "patientstudymoduleattr__patient_weight",
1684
+ "df_y_col": "total_dap",
1685
+ "sorting_choice": [
1686
+ user_profile.plotInitialSortingDirection,
1687
+ user_profile.plotDXInitialSortingChoice,
1688
+ ],
1689
+ "grouping_choice": user_profile.plotGroupingChoice,
1690
+ "legend_title": "Study description",
1691
+ "colourmap": user_profile.plotColourMapChoice,
1692
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1693
+ "x_axis_title": "Patient mass (kg)",
1694
+ "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1695
+ "filename": "OpenREM DX study description DAP vs patient mass",
1696
+ "return_as_dict": return_as_dict,
1697
+ }
1698
+ return_structure["studyDAPvsMass"] = plotly_scatter(
1699
+ df,
1700
+ parameter_dict,
1701
+ )
1702
+
1703
+ if user_profile.plotDXRequestDAPvsMass:
1704
+ parameter_dict = {
1705
+ "df_name_col": "requested_procedure_code_meaning",
1706
+ "df_x_col": "patientstudymoduleattr__patient_weight",
1707
+ "df_y_col": "total_dap",
1708
+ "sorting_choice": [
1709
+ user_profile.plotInitialSortingDirection,
1710
+ user_profile.plotDXInitialSortingChoice,
1711
+ ],
1712
+ "grouping_choice": user_profile.plotGroupingChoice,
1713
+ "legend_title": "Requested procedure",
1714
+ "colourmap": user_profile.plotColourMapChoice,
1715
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1716
+ "x_axis_title": "Patient mass (kg)",
1717
+ "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1718
+ "filename": "OpenREM DX requested procedure DAP vs patient mass",
1719
+ "return_as_dict": return_as_dict,
1720
+ }
1721
+ return_structure["requestDAPvsMass"] = plotly_scatter(
1722
+ df,
1723
+ parameter_dict,
1724
+ )
1725
+
1726
+ if enable_standard_names:
1727
+ charts_of_interest = [
1728
+ user_profile.plotDXStandardStudyMeanDAP,
1729
+ user_profile.plotDXStandardStudyFreq,
1730
+ user_profile.plotDXStandardStudyPerDayAndHour,
1731
+ user_profile.plotDXStandardStudyDAPvsMass,
1732
+ ]
1733
+
1734
+ if any(charts_of_interest):
1735
+
1736
+ # Create a standard name data frame - remove any blank standard names
1737
+ standard_name_df = df[
1738
+ (df["standard_names__standard_name"] != "blank")
1739
+ & (df["standard_names__standard_name"] != "Blank")
1740
+ ].copy()
1741
+ # Remove any unused categories (this will include "Blank" or "blank")
1742
+ standard_name_df["standard_names__standard_name"] = standard_name_df[
1743
+ "standard_names__standard_name"
1744
+ ].cat.remove_unused_categories()
1745
+
1746
+ if user_profile.plotDXStandardStudyMeanDAP:
1747
+
1748
+ name_field = "standard_names__standard_name"
1749
+ value_field = "total_dap"
1750
+ value_text = "DAP"
1751
+ units_text = "(cGy.cm<sup>2</sup>)"
1752
+ name_text = "Standard study name"
1753
+ variable_name_start = "standardStudy"
1754
+ variable_value_name = "DAP"
1755
+ modality_text = "DX"
1756
+ chart_message = ""
1757
+
1758
+ new_charts = generate_average_chart_group(
1759
+ average_choices,
1760
+ chart_message,
1761
+ standard_name_df,
1762
+ modality_text,
1763
+ name_field,
1764
+ name_text,
1765
+ return_as_dict,
1766
+ return_structure,
1767
+ units_text,
1768
+ user_profile,
1769
+ value_field,
1770
+ value_text,
1771
+ variable_name_start,
1772
+ variable_value_name,
1773
+ user_profile.plotDXInitialSortingChoice,
1774
+ )
1775
+
1776
+ return_structure = {**return_structure, **new_charts}
1777
+
1778
+ if user_profile.plotDXStandardStudyFreq:
1779
+ parameter_dict = {
1780
+ "df_name_col": "standard_names__standard_name",
1781
+ "sorting_choice": [
1782
+ user_profile.plotInitialSortingDirection,
1783
+ user_profile.plotDXInitialSortingChoice,
1784
+ ],
1785
+ "legend_title": "Standard study name",
1786
+ "df_x_axis_col": "x_ray_system_name",
1787
+ "x_axis_title": "System",
1788
+ "grouping_choice": user_profile.plotGroupingChoice,
1789
+ "colourmap": user_profile.plotColourMapChoice,
1790
+ "filename": "OpenREM DX standard study name frequency",
1791
+ "groupby_cols": None,
1792
+ "facet_col": None,
1793
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1794
+ "return_as_dict": return_as_dict,
1795
+ }
1796
+ (
1797
+ return_structure["standardStudyFrequencyData"],
1798
+ return_structure["standardStudyFrequencyDataCSV"],
1799
+ ) = plotly_frequency_barchart( # pylint: disable=line-too-long
1800
+ standard_name_df,
1801
+ parameter_dict,
1802
+ csv_name="standardStudyFrequencyData.csv",
1803
+ )
1804
+
1805
+ if user_profile.plotDXStandardStudyPerDayAndHour:
1806
+ df_time_series_per_weekday = create_dataframe_weekdays(
1807
+ standard_name_df,
1808
+ "standard_names__standard_name",
1809
+ df_date_col="study_date",
1810
+ )
1811
+
1812
+ return_structure["standardStudyWorkloadData"] = (
1813
+ plotly_barchart_weekdays(
1814
+ df_time_series_per_weekday,
1815
+ "weekday",
1816
+ "standard_names__standard_name",
1817
+ name_axis_title="Weekday",
1818
+ value_axis_title="Frequency",
1819
+ colourmap=user_profile.plotColourMapChoice,
1820
+ filename="OpenREM DX standard study name workload",
1821
+ facet_col_wrap=user_profile.plotFacetColWrapVal,
1822
+ sorting_choice=[
1823
+ user_profile.plotInitialSortingDirection,
1824
+ user_profile.plotDXInitialSortingChoice,
1825
+ ],
1826
+ return_as_dict=return_as_dict,
1827
+ )
1828
+ )
1829
+
1830
+ if user_profile.plotDXStandardStudyDAPvsMass:
1831
+ parameter_dict = {
1832
+ "df_name_col": "standard_names__standard_name",
1833
+ "df_x_col": "patientstudymoduleattr__patient_weight",
1834
+ "df_y_col": "total_dap",
1835
+ "sorting_choice": [
1836
+ user_profile.plotInitialSortingDirection,
1837
+ user_profile.plotDXInitialSortingChoice,
1838
+ ],
1839
+ "grouping_choice": user_profile.plotGroupingChoice,
1840
+ "legend_title": "Standard study name",
1841
+ "colourmap": user_profile.plotColourMapChoice,
1842
+ "facet_col_wrap": user_profile.plotFacetColWrapVal,
1843
+ "x_axis_title": "Patient mass (kg)",
1844
+ "y_axis_title": "DAP (mGy.cm<sup>2</sub>)",
1845
+ "filename": "OpenREM DX standard study name DAP vs patient mass",
1846
+ "return_as_dict": return_as_dict,
1847
+ }
1848
+ return_structure["standardStudyDAPvsMass"] = plotly_scatter(
1849
+ standard_name_df,
1850
+ parameter_dict,
1851
+ )
1852
+
1853
+ return return_structure
1854
+
1855
+
1856
+ def dx_chart_form_processing(request, user_profile):
1857
+ # pylint: disable=too-many-statements
1858
+
1859
+ # Obtain the system-level enable_standard_names setting
1860
+ enable_standard_names = are_standard_names_enabled()
1861
+
1862
+ # Obtain the chart options from the request
1863
+ chart_options_form = None
1864
+ if enable_standard_names:
1865
+ chart_options_form = DXChartOptionsFormIncStandard(request.GET)
1866
+ else:
1867
+ chart_options_form = DXChartOptionsForm(request.GET)
1868
+
1869
+ # check whether the form data is valid
1870
+ if chart_options_form.is_valid():
1871
+ # Use the form data if the user clicked on the submit button
1872
+ if "submit" in request.GET:
1873
+ # process the data in form.cleaned_data as required
1874
+
1875
+ set_common_chart_options(chart_options_form, user_profile)
1876
+
1877
+ set_average_chart_options(chart_options_form, user_profile)
1878
+
1879
+ set_dx_chart_options(chart_options_form, user_profile)
1880
+
1881
+ user_profile.save()
1882
+
1883
+ # If submit was not clicked then use the settings already stored in the user's profile
1884
+ else:
1885
+ average_choices = required_average_choices(user_profile)
1886
+
1887
+ dx_form_data = initialise_dx_form_data(user_profile)
1888
+
1889
+ form_data = {
1890
+ "plotCharts": user_profile.plotCharts,
1891
+ "plotGrouping": user_profile.plotGroupingChoice,
1892
+ "plotSeriesPerSystem": user_profile.plotSeriesPerSystem,
1893
+ "plotHistograms": user_profile.plotHistograms,
1894
+ "plotInitialSortingDirection": user_profile.plotInitialSortingDirection,
1895
+ "plotAverageChoice": average_choices,
1896
+ }
1897
+
1898
+ form_data = {**form_data, **dx_form_data}
1899
+
1900
+ chart_options_form = None
1901
+ if enable_standard_names:
1902
+ chart_options_form = DXChartOptionsFormIncStandard(form_data)
1903
+ else:
1904
+ chart_options_form = DXChartOptionsForm(form_data)
1905
+
1906
+ return chart_options_form