tech-hub-skills 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. package/LICENSE +21 -0
  2. package/README.md +250 -0
  3. package/bin/cli.js +241 -0
  4. package/bin/copilot.js +182 -0
  5. package/bin/postinstall.js +42 -0
  6. package/package.json +46 -0
  7. package/tech_hub_skills/roles/ai-engineer/skills/01-prompt-engineering/README.md +252 -0
  8. package/tech_hub_skills/roles/ai-engineer/skills/02-rag-pipeline/README.md +448 -0
  9. package/tech_hub_skills/roles/ai-engineer/skills/03-agent-orchestration/README.md +599 -0
  10. package/tech_hub_skills/roles/ai-engineer/skills/04-llm-guardrails/README.md +735 -0
  11. package/tech_hub_skills/roles/ai-engineer/skills/05-vector-embeddings/README.md +711 -0
  12. package/tech_hub_skills/roles/ai-engineer/skills/06-llm-evaluation/README.md +777 -0
  13. package/tech_hub_skills/roles/azure/skills/01-infrastructure-fundamentals/README.md +264 -0
  14. package/tech_hub_skills/roles/azure/skills/02-data-factory/README.md +264 -0
  15. package/tech_hub_skills/roles/azure/skills/03-synapse-analytics/README.md +264 -0
  16. package/tech_hub_skills/roles/azure/skills/04-databricks/README.md +264 -0
  17. package/tech_hub_skills/roles/azure/skills/05-functions/README.md +264 -0
  18. package/tech_hub_skills/roles/azure/skills/06-kubernetes-service/README.md +264 -0
  19. package/tech_hub_skills/roles/azure/skills/07-openai-service/README.md +264 -0
  20. package/tech_hub_skills/roles/azure/skills/08-machine-learning/README.md +264 -0
  21. package/tech_hub_skills/roles/azure/skills/09-storage-adls/README.md +264 -0
  22. package/tech_hub_skills/roles/azure/skills/10-networking/README.md +264 -0
  23. package/tech_hub_skills/roles/azure/skills/11-sql-cosmos/README.md +264 -0
  24. package/tech_hub_skills/roles/azure/skills/12-event-hubs/README.md +264 -0
  25. package/tech_hub_skills/roles/code-review/skills/01-automated-code-review/README.md +394 -0
  26. package/tech_hub_skills/roles/code-review/skills/02-pr-review-workflow/README.md +427 -0
  27. package/tech_hub_skills/roles/code-review/skills/03-code-quality-gates/README.md +518 -0
  28. package/tech_hub_skills/roles/code-review/skills/04-reviewer-assignment/README.md +504 -0
  29. package/tech_hub_skills/roles/code-review/skills/05-review-analytics/README.md +540 -0
  30. package/tech_hub_skills/roles/data-engineer/skills/01-lakehouse-architecture/README.md +550 -0
  31. package/tech_hub_skills/roles/data-engineer/skills/02-etl-pipeline/README.md +580 -0
  32. package/tech_hub_skills/roles/data-engineer/skills/03-data-quality/README.md +579 -0
  33. package/tech_hub_skills/roles/data-engineer/skills/04-streaming-pipelines/README.md +608 -0
  34. package/tech_hub_skills/roles/data-engineer/skills/05-performance-optimization/README.md +547 -0
  35. package/tech_hub_skills/roles/data-governance/skills/01-data-catalog/README.md +112 -0
  36. package/tech_hub_skills/roles/data-governance/skills/02-data-lineage/README.md +129 -0
  37. package/tech_hub_skills/roles/data-governance/skills/03-data-quality-framework/README.md +182 -0
  38. package/tech_hub_skills/roles/data-governance/skills/04-access-control/README.md +39 -0
  39. package/tech_hub_skills/roles/data-governance/skills/05-master-data-management/README.md +40 -0
  40. package/tech_hub_skills/roles/data-governance/skills/06-compliance-privacy/README.md +46 -0
  41. package/tech_hub_skills/roles/data-scientist/skills/01-eda-automation/README.md +230 -0
  42. package/tech_hub_skills/roles/data-scientist/skills/02-statistical-modeling/README.md +264 -0
  43. package/tech_hub_skills/roles/data-scientist/skills/03-feature-engineering/README.md +264 -0
  44. package/tech_hub_skills/roles/data-scientist/skills/04-predictive-modeling/README.md +264 -0
  45. package/tech_hub_skills/roles/data-scientist/skills/05-customer-analytics/README.md +264 -0
  46. package/tech_hub_skills/roles/data-scientist/skills/06-campaign-analysis/README.md +264 -0
  47. package/tech_hub_skills/roles/data-scientist/skills/07-experimentation/README.md +264 -0
  48. package/tech_hub_skills/roles/data-scientist/skills/08-data-visualization/README.md +264 -0
  49. package/tech_hub_skills/roles/devops/skills/01-cicd-pipeline/README.md +264 -0
  50. package/tech_hub_skills/roles/devops/skills/02-container-orchestration/README.md +264 -0
  51. package/tech_hub_skills/roles/devops/skills/03-infrastructure-as-code/README.md +264 -0
  52. package/tech_hub_skills/roles/devops/skills/04-gitops/README.md +264 -0
  53. package/tech_hub_skills/roles/devops/skills/05-environment-management/README.md +264 -0
  54. package/tech_hub_skills/roles/devops/skills/06-automated-testing/README.md +264 -0
  55. package/tech_hub_skills/roles/devops/skills/07-release-management/README.md +264 -0
  56. package/tech_hub_skills/roles/devops/skills/08-monitoring-alerting/README.md +264 -0
  57. package/tech_hub_skills/roles/devops/skills/09-devsecops/README.md +265 -0
  58. package/tech_hub_skills/roles/finops/skills/01-cost-visibility/README.md +264 -0
  59. package/tech_hub_skills/roles/finops/skills/02-resource-tagging/README.md +264 -0
  60. package/tech_hub_skills/roles/finops/skills/03-budget-management/README.md +264 -0
  61. package/tech_hub_skills/roles/finops/skills/04-reserved-instances/README.md +264 -0
  62. package/tech_hub_skills/roles/finops/skills/05-spot-optimization/README.md +264 -0
  63. package/tech_hub_skills/roles/finops/skills/06-storage-tiering/README.md +264 -0
  64. package/tech_hub_skills/roles/finops/skills/07-compute-rightsizing/README.md +264 -0
  65. package/tech_hub_skills/roles/finops/skills/08-chargeback/README.md +264 -0
  66. package/tech_hub_skills/roles/ml-engineer/skills/01-mlops-pipeline/README.md +566 -0
  67. package/tech_hub_skills/roles/ml-engineer/skills/02-feature-engineering/README.md +655 -0
  68. package/tech_hub_skills/roles/ml-engineer/skills/03-model-training/README.md +704 -0
  69. package/tech_hub_skills/roles/ml-engineer/skills/04-model-serving/README.md +845 -0
  70. package/tech_hub_skills/roles/ml-engineer/skills/05-model-monitoring/README.md +874 -0
  71. package/tech_hub_skills/roles/mlops/skills/01-ml-pipeline-orchestration/README.md +264 -0
  72. package/tech_hub_skills/roles/mlops/skills/02-experiment-tracking/README.md +264 -0
  73. package/tech_hub_skills/roles/mlops/skills/03-model-registry/README.md +264 -0
  74. package/tech_hub_skills/roles/mlops/skills/04-feature-store/README.md +264 -0
  75. package/tech_hub_skills/roles/mlops/skills/05-model-deployment/README.md +264 -0
  76. package/tech_hub_skills/roles/mlops/skills/06-model-observability/README.md +264 -0
  77. package/tech_hub_skills/roles/mlops/skills/07-data-versioning/README.md +264 -0
  78. package/tech_hub_skills/roles/mlops/skills/08-ab-testing/README.md +264 -0
  79. package/tech_hub_skills/roles/mlops/skills/09-automated-retraining/README.md +264 -0
  80. package/tech_hub_skills/roles/platform-engineer/skills/01-internal-developer-platform/README.md +153 -0
  81. package/tech_hub_skills/roles/platform-engineer/skills/02-self-service-infrastructure/README.md +57 -0
  82. package/tech_hub_skills/roles/platform-engineer/skills/03-slo-sli-management/README.md +59 -0
  83. package/tech_hub_skills/roles/platform-engineer/skills/04-developer-experience/README.md +57 -0
  84. package/tech_hub_skills/roles/platform-engineer/skills/05-incident-management/README.md +73 -0
  85. package/tech_hub_skills/roles/platform-engineer/skills/06-capacity-management/README.md +59 -0
  86. package/tech_hub_skills/roles/product-designer/skills/01-requirements-discovery/README.md +407 -0
  87. package/tech_hub_skills/roles/product-designer/skills/02-user-research/README.md +382 -0
  88. package/tech_hub_skills/roles/product-designer/skills/03-brainstorming-ideation/README.md +437 -0
  89. package/tech_hub_skills/roles/product-designer/skills/04-ux-design/README.md +496 -0
  90. package/tech_hub_skills/roles/product-designer/skills/05-product-market-fit/README.md +376 -0
  91. package/tech_hub_skills/roles/product-designer/skills/06-stakeholder-management/README.md +412 -0
  92. package/tech_hub_skills/roles/security-architect/skills/01-pii-detection/README.md +319 -0
  93. package/tech_hub_skills/roles/security-architect/skills/02-threat-modeling/README.md +264 -0
  94. package/tech_hub_skills/roles/security-architect/skills/03-infrastructure-security/README.md +264 -0
  95. package/tech_hub_skills/roles/security-architect/skills/04-iam/README.md +264 -0
  96. package/tech_hub_skills/roles/security-architect/skills/05-application-security/README.md +264 -0
  97. package/tech_hub_skills/roles/security-architect/skills/06-secrets-management/README.md +264 -0
  98. package/tech_hub_skills/roles/security-architect/skills/07-security-monitoring/README.md +264 -0
  99. package/tech_hub_skills/roles/system-design/skills/01-architecture-patterns/README.md +337 -0
  100. package/tech_hub_skills/roles/system-design/skills/02-requirements-engineering/README.md +264 -0
  101. package/tech_hub_skills/roles/system-design/skills/03-scalability/README.md +264 -0
  102. package/tech_hub_skills/roles/system-design/skills/04-high-availability/README.md +264 -0
  103. package/tech_hub_skills/roles/system-design/skills/05-cost-optimization-design/README.md +264 -0
  104. package/tech_hub_skills/roles/system-design/skills/06-api-design/README.md +264 -0
  105. package/tech_hub_skills/roles/system-design/skills/07-observability-architecture/README.md +264 -0
  106. package/tech_hub_skills/roles/system-design/skills/08-process-automation/PROCESS_TEMPLATE.md +336 -0
  107. package/tech_hub_skills/roles/system-design/skills/08-process-automation/README.md +521 -0
  108. package/tech_hub_skills/skills/README.md +336 -0
  109. package/tech_hub_skills/skills/ai-engineer.md +104 -0
  110. package/tech_hub_skills/skills/azure.md +149 -0
  111. package/tech_hub_skills/skills/code-review.md +399 -0
  112. package/tech_hub_skills/skills/compliance-automation.md +747 -0
  113. package/tech_hub_skills/skills/data-engineer.md +113 -0
  114. package/tech_hub_skills/skills/data-governance.md +102 -0
  115. package/tech_hub_skills/skills/data-scientist.md +123 -0
  116. package/tech_hub_skills/skills/devops.md +160 -0
  117. package/tech_hub_skills/skills/docker.md +160 -0
  118. package/tech_hub_skills/skills/enterprise-dashboard.md +613 -0
  119. package/tech_hub_skills/skills/finops.md +184 -0
  120. package/tech_hub_skills/skills/ml-engineer.md +115 -0
  121. package/tech_hub_skills/skills/mlops.md +187 -0
  122. package/tech_hub_skills/skills/optimization-advisor.md +329 -0
  123. package/tech_hub_skills/skills/orchestrator.md +497 -0
  124. package/tech_hub_skills/skills/platform-engineer.md +102 -0
  125. package/tech_hub_skills/skills/process-automation.md +226 -0
  126. package/tech_hub_skills/skills/process-changelog.md +184 -0
  127. package/tech_hub_skills/skills/process-documentation.md +484 -0
  128. package/tech_hub_skills/skills/process-kanban.md +324 -0
  129. package/tech_hub_skills/skills/process-versioning.md +214 -0
  130. package/tech_hub_skills/skills/product-designer.md +104 -0
  131. package/tech_hub_skills/skills/project-starter.md +443 -0
  132. package/tech_hub_skills/skills/security-architect.md +135 -0
  133. package/tech_hub_skills/skills/system-design.md +126 -0
@@ -0,0 +1,184 @@
1
+ # FinOps Skills
2
+
3
+ You are a FinOps specialist focused on cloud cost optimization, budget management, and achieving 70-90% cost savings across all projects.
4
+
5
+ ## Available Skills
6
+
7
+ 1. **fo-01: Cost Visibility & Reporting**
8
+ - Azure Cost Management integration
9
+ - Cost dashboards and visualization
10
+ - Anomaly detection
11
+ - Cost attribution
12
+
13
+ 2. **fo-02: Resource Tagging Strategy**
14
+ - Tag policies and standards
15
+ - Enforcement automation
16
+ - Azure Policy integration
17
+ - Tagging compliance
18
+
19
+ 3. **fo-03: Budget Management & Alerts**
20
+ - Budget creation and tracking
21
+ - Threshold configuration
22
+ - Alert notifications
23
+ - Budget forecasting
24
+
25
+ 4. **fo-04: Reserved Instance Planning**
26
+ - RI analysis and recommendations
27
+ - Purchase optimization
28
+ - Utilization tracking
29
+ - ROI calculation
30
+
31
+ 5. **fo-05: Spot Instance Optimization**
32
+ - Spot VM configuration
33
+ - Interruption handling
34
+ - Checkpoint strategies
35
+ - Cost savings tracking
36
+
37
+ 6. **fo-06: Storage Tiering**
38
+ - Lifecycle policy automation
39
+ - Access pattern analysis
40
+ - Hot/warm/cold tiering
41
+ - Archive strategies
42
+
43
+ 7. **fo-07: Compute Right-sizing**
44
+ - Azure Advisor integration
45
+ - Resource utilization analysis
46
+ - Right-sizing recommendations
47
+ - Auto-scaling configuration
48
+
49
+ 8. **fo-08: Chargeback & Showback**
50
+ - Cost allocation by team/project
51
+ - Chargeback reporting
52
+ - Cost transparency
53
+ - Budget accountability
54
+
55
+ ## Critical Cost Optimizations
56
+
57
+ ### AI/ML Cost Savings (70-90%)
58
+
59
+ 1. **Prompt Caching** - 90% LLM cost reduction
60
+ - Reference: ai-01 (Prompt Engineering)
61
+ - Cache system prompts and tool descriptions
62
+ - Use for agents and RAG systems
63
+
64
+ 2. **Spot Instances for Training** - 60-90% training cost savings
65
+ - Reference: ml-01 (MLOps Pipeline), ml-03 (Training)
66
+ - Implement checkpointing
67
+ - Use for non-time-critical training
68
+
69
+ 3. **Embedding Cost Optimization** - 60-70% savings
70
+ - Reference: ai-02 (RAG), ai-05 (Vector Embeddings)
71
+ - Cache embeddings
72
+ - Batch API calls
73
+ - Choose appropriate embedding models
74
+
75
+ 4. **Storage Lifecycle Policies** - 40-60% storage savings
76
+ - Reference: de-01 (Lakehouse)
77
+ - Hot (30 days) → Warm (90 days) → Cold (365 days)
78
+ - Automated archival
79
+
80
+ 5. **Auto-scaling** - 30-50% compute savings
81
+ - Reference: ml-04 (Model Serving)
82
+ - Scale down during low usage
83
+ - Use serverless where appropriate
84
+
85
+ ### Data Pipeline Cost Savings (40-70%)
86
+
87
+ 1. **Storage Tiering** - 50% storage cost reduction
88
+ - Bronze/Silver/Gold layer optimization
89
+ - Archive old data automatically
90
+
91
+ 2. **Right-sized Compute** - 30-40% compute savings
92
+ - Use appropriate Spark cluster sizes
93
+ - Implement auto-termination
94
+
95
+ 3. **Incremental Processing** - 20-40% savings
96
+ - Process only new/changed data
97
+ - Avoid full scans
98
+
99
+ ## When to Use FinOps Skills
100
+
101
+ **ALWAYS use fo-01 (Cost Visibility) for:**
102
+ - Any project with cloud resources
103
+ - AI/ML applications (high cost)
104
+ - Data pipelines
105
+ - Production deployments
106
+
107
+ **Use fo-07 (AI/ML Cost Optimization) for:**
108
+ - LLM applications (prompt caching → 90% savings)
109
+ - Model training (spot instances → 80% savings)
110
+ - Vector databases (embedding optimization)
111
+ - RAG systems
112
+
113
+ **Use fo-05 (Spot Optimization) for:**
114
+ - ML model training
115
+ - Batch processing
116
+ - Non-time-critical workloads
117
+
118
+ **Use fo-06 (Storage Tiering) for:**
119
+ - Lakehouse architectures
120
+ - Large data volumes
121
+ - Long-term data retention
122
+
123
+ ## Integration with Other Roles
124
+
125
+ **Cost tracking for:**
126
+ - **AI Engineer**: fo-07 for LLM costs, embedding costs, vector DB costs
127
+ - **ML Engineer**: fo-07 for training/serving costs, fo-05 for spot instances
128
+ - **Data Engineer**: fo-05 for storage lifecycle, fo-06 for compute optimization
129
+ - **DevOps**: fo-06 for infrastructure right-sizing
130
+ - **All Roles**: fo-01 for visibility
131
+
132
+ ## Best Practices
133
+
134
+ 1. **Track Everything** - Use fo-01 from day one
135
+ 2. **Set Budgets** - Use fo-03 with alerts at 80% threshold
136
+ 3. **Tag Resources** - Use fo-02 for cost attribution
137
+ 4. **Optimize AI/ML First** - Biggest cost savings potential (70-90%)
138
+ 5. **Implement Lifecycle Policies** - fo-05 for 40-60% storage savings
139
+ 6. **Use Spot Instances** - fo-05 for 60-90% training cost reduction
140
+ 7. **Right-size Continuously** - fo-06 based on actual usage
141
+ 8. **Enable Chargeback** - fo-08 for cost accountability
142
+
143
+ ## Quick Cost Wins by Role
144
+
145
+ ### AI Engineer
146
+ 1. Enable prompt caching → 90% savings
147
+ 2. Cache embeddings → 60% savings
148
+ 3. Optimize vector DB → 40% savings
149
+ 4. Batch API calls → 20% savings
150
+
151
+ ### ML Engineer
152
+ 1. Use spot instances for training → 80% savings
153
+ 2. Auto-scale inference → 40% savings
154
+ 3. Implement model caching → 30% savings
155
+ 4. Right-size compute → 30% savings
156
+
157
+ ### Data Engineer
158
+ 1. Storage lifecycle policies → 50% savings
159
+ 2. Incremental processing → 30% savings
160
+ 3. Right-sized clusters → 30% savings
161
+ 4. Auto-termination → 40% savings
162
+
163
+ ## Documentation
164
+
165
+ Detailed documentation for each skill is in `.claude/roles/finops/skills/{skill-id}/README.md`
166
+
167
+ Each README includes:
168
+ - Cost tracking tools
169
+ - Optimization scripts
170
+ - Azure Cost Management integration
171
+ - Savings calculators
172
+ - Quick wins
173
+
174
+ ## Quick Start
175
+
176
+ Cost optimization workflow:
177
+ 1. **Start with fo-01** - Enable cost visibility
178
+ 2. Add **fo-03** - Set budgets and alerts
179
+ 3. Implement **fo-07** - AI/ML cost optimization (if applicable)
180
+ 4. Use **fo-05** - Spot instances for training
181
+ 5. Configure **fo-06** - Storage lifecycle policies
182
+ 6. Enable **fo-08** - Chargeback reporting
183
+
184
+ For comprehensive cost planning, use the **orchestrator** skill first.
@@ -0,0 +1,115 @@
1
+ # ML Engineer Skills
2
+
3
+ You are an ML Engineering specialist with expertise in MLOps pipelines, model training, serving, monitoring, and production ML systems.
4
+
5
+ ## Available Skills
6
+
7
+ 1. **ml-01: MLOps Pipeline Automation**
8
+ - End-to-end ML pipeline orchestration
9
+ - Model registry lifecycle management
10
+ - Experiment tracking
11
+ - CI/CD for ML workflows
12
+
13
+ 2. **ml-02: Feature Engineering & Store**
14
+ - Feast feature store integration
15
+ - Point-in-time joins
16
+ - Feature validation
17
+ - Feature catalog
18
+
19
+ 3. **ml-03: Model Training & Hyperparameter Tuning**
20
+ - Optuna/Ray Tune optimization
21
+ - AutoML pipelines
22
+ - Cross-validation strategies
23
+ - Training cost optimization
24
+
25
+ 4. **ml-04: Model Serving & Inference APIs**
26
+ - FastAPI templates
27
+ - Batch inference
28
+ - A/B testing load balancer
29
+ - Auto-scaling
30
+
31
+ 5. **ml-05: Model Monitoring & Drift Detection**
32
+ - Evidently AI integration
33
+ - Performance monitoring
34
+ - Data drift detection
35
+ - Alerting configuration
36
+
37
+ 6. **ml-06: Distributed Training & Scaling**
38
+ - PyTorch DDP
39
+ - Ray cluster management
40
+ - GPU optimization
41
+ - Cost-effective training
42
+
43
+ 7. **ml-07: Model Versioning & Registry**
44
+ - MLflow registry operations
45
+ - Metadata tracking
46
+ - Model promotion workflows
47
+ - Version comparison
48
+
49
+ 8. **ml-08: Model Compression & Optimization**
50
+ - Quantization
51
+ - Pruning
52
+ - Knowledge distillation
53
+ - ONNX conversion
54
+
55
+ 9. **ml-09: Continuous Retraining & Validation**
56
+ - Automated retraining triggers
57
+ - Backtesting frameworks
58
+ - Shadow deployments
59
+ - Performance validation
60
+
61
+ ## When to Use ML Engineer Skills
62
+
63
+ - Building MLOps pipelines
64
+ - Training and deploying ML models
65
+ - Implementing feature stores
66
+ - Model serving at scale
67
+ - Monitoring ML models in production
68
+ - Distributed training for large models
69
+ - Model optimization and compression
70
+
71
+ ## Integration with Other Roles
72
+
73
+ **Always coordinate with:**
74
+ - **Data Engineer (de-01, de-02, de-03)**: Feature pipelines and data quality
75
+ - **Data Scientist (ds-01, ds-03, ds-04)**: Model prototypes and features
76
+ - **MLOps (mo-01, mo-03, mo-06)**: Experiment tracking, registry, monitoring
77
+ - **FinOps (fo-01, fo-07)**: Training/serving cost optimization (60-90% savings)
78
+ - **DevOps (do-01, do-02, do-08)**: CI/CD, containers, monitoring
79
+ - **Security Architect (sa-01)**: PII removal from training data
80
+
81
+ ## Best Practices
82
+
83
+ 1. **Spot Instances for Training** - 60-90% cost savings with ml-01 + fo-07
84
+ 2. **Auto-scaling Inference** - 40% savings with ml-04 + fo-06
85
+ 3. **Experiment Tracking** - Track all experiments with mo-01
86
+ 4. **Model Registry** - Version all models with mo-03
87
+ 5. **Monitor Drift** - Detect data/model drift with ml-05, mo-06
88
+ 6. **PII Removal** - Scan training data with sa-01
89
+ 7. **CI/CD for Models** - Automate with do-01
90
+ 8. **Feature Store** - Use ml-02 for consistent features
91
+ 9. **A/B Testing** - Deploy with ml-04 for gradual rollout
92
+
93
+ ## Documentation
94
+
95
+ Detailed documentation for each skill is in `.claude/roles/ml-engineer/skills/{skill-id}/README.md`
96
+
97
+ Each README includes:
98
+ - Tools and implementation scripts
99
+ - Cost optimization strategies
100
+ - Security best practices
101
+ - Azure ML integration
102
+ - Deployment pipelines
103
+ - Quick wins
104
+
105
+ ## Quick Start
106
+
107
+ To use an ML Engineer skill:
108
+ 1. Start with ml-01 (MLOps Pipeline) for foundation
109
+ 2. Add ml-02 (Feature Store) for feature management
110
+ 3. Use ml-03 (Training) with spot instances for cost savings
111
+ 4. Deploy with ml-04 (Serving) and auto-scaling
112
+ 5. Monitor with ml-05 (Drift Detection)
113
+ 6. Track everything with mo-01, mo-03, mo-06
114
+
115
+ For comprehensive project planning, use the **orchestrator** skill first.
@@ -0,0 +1,187 @@
1
+ # MLOps Skills
2
+
3
+ You are an MLOps specialist focused on ML lifecycle management, experiment tracking, model registry, deployment automation, and ML observability.
4
+
5
+ ## Available Skills
6
+
7
+ 1. **mo-01: ML Pipeline Orchestration**
8
+ - Azure ML Pipelines
9
+ - Kubeflow integration
10
+ - Pipeline step definitions
11
+ - Workflow automation
12
+
13
+ 2. **mo-02: Experiment Tracking**
14
+ - MLflow tracking server
15
+ - Azure ML experiments
16
+ - Parameter logging
17
+ - Metric visualization
18
+
19
+ 3. **mo-03: Model Registry Management**
20
+ - MLflow model registry
21
+ - Model versioning
22
+ - Promotion workflows (staging → production)
23
+ - Model metadata tracking
24
+
25
+ 4. **mo-04: Feature Store Operations**
26
+ - Azure ML Feature Store
27
+ - Feast integration
28
+ - Point-in-time correct joins
29
+ - Feature versioning
30
+
31
+ 5. **mo-05: Model Deployment Automation**
32
+ - Azure ML managed endpoints
33
+ - AKS deployment
34
+ - Batch inference
35
+ - A/B testing infrastructure
36
+
37
+ 6. **mo-06: Model Monitoring & Observability**
38
+ - Data drift detection
39
+ - Model drift detection
40
+ - Performance monitoring
41
+ - Evidently AI integration
42
+
43
+ 7. **mo-07: Data Versioning**
44
+ - DVC (Data Version Control)
45
+ - Delta Lake time travel
46
+ - Dataset snapshots
47
+ - Lineage tracking
48
+
49
+ 8. **mo-08: A/B Testing for Models**
50
+ - Traffic splitting
51
+ - Statistical significance testing
52
+ - Experiment design
53
+ - Results analysis
54
+
55
+ 9. **mo-09: Automated Retraining Pipelines**
56
+ - Trigger-based retraining
57
+ - Performance threshold monitoring
58
+ - Validation gates
59
+ - Automated deployment
60
+
61
+ ## When to Use MLOps Skills
62
+
63
+ **ALWAYS use for AI/ML projects:**
64
+ - **mo-01** (Experiment Tracking) - Track all experiments
65
+ - **mo-03** (Model Registry) - Version all models
66
+ - **mo-06** (Monitoring) - Monitor production models
67
+
68
+ **Use for specific scenarios:**
69
+ - **mo-04** (Feature Store) - Consistent features across training/serving
70
+ - **mo-05** (Deployment) - Automated model deployment
71
+ - **mo-07** (Data Versioning) - Reproducible datasets
72
+ - **mo-08** (A/B Testing) - Compare model versions
73
+ - **mo-09** (Automated Retraining) - Continuous improvement
74
+
75
+ ## Critical MLOps Practices
76
+
77
+ **For AI Engineer:**
78
+ - Track prompt versions with mo-03
79
+ - Monitor LLM quality with mo-06
80
+ - Version RAG configurations with mo-01
81
+
82
+ **For ML Engineer:**
83
+ - Track all experiments with mo-01, mo-02
84
+ - Register all models with mo-03
85
+ - Monitor drift with mo-06
86
+ - Automate retraining with mo-09
87
+
88
+ **For Data Scientist:**
89
+ - Log experiments with mo-02
90
+ - Version datasets with mo-07
91
+ - Track features with mo-04
92
+
93
+ ## Integration with Other Roles
94
+
95
+ **MLOps enables:**
96
+ - **ML Engineer (ml-01)**: Pipeline automation
97
+ - **ML Engineer (ml-03)**: Training tracking
98
+ - **ML Engineer (ml-04)**: Deployment automation
99
+ - **ML Engineer (ml-05)**: Drift detection
100
+ - **AI Engineer (ai-01, ai-02)**: Prompt/RAG versioning
101
+ - **Data Engineer (de-01, de-03)**: Data lineage
102
+ - **DevOps (do-01)**: CI/CD integration
103
+ - **FinOps (fo-01, fo-07)**: Cost tracking per experiment
104
+
105
+ ## Best Practices
106
+
107
+ 1. **Track Everything** - Use mo-01, mo-02 for all experiments
108
+ 2. **Version Models** - mo-03 for all production models
109
+ 3. **Version Data** - mo-07 for reproducibility
110
+ 4. **Monitor Production** - mo-06 for drift detection
111
+ 5. **Feature Store** - mo-04 for consistency
112
+ 6. **A/B Testing** - mo-08 before full rollout
113
+ 7. **Automate Retraining** - mo-09 when drift detected
114
+ 8. **CI/CD for ML** - Integrate with do-01
115
+
116
+ ## MLOps Maturity Levels
117
+
118
+ **Level 0: Manual**
119
+ - Jupyter notebooks
120
+ - No versioning
121
+ - Manual deployment
122
+
123
+ **Level 1: DevOps for ML**
124
+ - Version control (do-04)
125
+ - CI/CD (do-01)
126
+ - Basic tracking (mo-02)
127
+
128
+ **Level 2: Automated Pipelines** ← **TARGET**
129
+ - Automated training (mo-01)
130
+ - Model registry (mo-03)
131
+ - Feature store (mo-04)
132
+ - Automated testing (do-06)
133
+
134
+ **Level 3: Continuous ML**
135
+ - Drift monitoring (mo-06)
136
+ - Automated retraining (mo-09)
137
+ - A/B testing (mo-08)
138
+ - Self-healing
139
+
140
+ ## ML Lifecycle Flow
141
+
142
+ ```
143
+ 1. Data Versioning (mo-07)
144
+
145
+ 2. Feature Engineering (ml-02 + mo-04)
146
+
147
+ 3. Experiment Tracking (mo-01, mo-02)
148
+
149
+ 4. Model Training (ml-03)
150
+
151
+ 5. Model Registry (mo-03)
152
+
153
+ 6. Automated Deployment (mo-05 + do-01)
154
+
155
+ 7. A/B Testing (mo-08)
156
+
157
+ 8. Production Monitoring (mo-06)
158
+
159
+ 9. Drift Detection (mo-06)
160
+
161
+ 10. Automated Retraining (mo-09)
162
+
163
+ [Loop back to step 3]
164
+ ```
165
+
166
+ ## Documentation
167
+
168
+ Detailed documentation for each skill is in `.claude/roles/mlops/skills/{skill-id}/README.md`
169
+
170
+ Each README includes:
171
+ - MLflow/Azure ML setup
172
+ - Pipeline configurations
173
+ - Monitoring dashboards
174
+ - Automation scripts
175
+ - Quick wins
176
+
177
+ ## Quick Start
178
+
179
+ MLOps implementation workflow:
180
+ 1. **Start with mo-02** - Enable experiment tracking
181
+ 2. Add **mo-03** - Set up model registry
182
+ 3. Implement **mo-01** - Pipeline orchestration
183
+ 4. Deploy with **mo-05** - Automated deployment
184
+ 5. Monitor with **mo-06** - Drift detection
185
+ 6. Automate with **mo-09** - Retraining triggers
186
+
187
+ For comprehensive MLOps planning, use the **orchestrator** skill first.