tech-hub-skills 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +21 -0
- package/README.md +250 -0
- package/bin/cli.js +241 -0
- package/bin/copilot.js +182 -0
- package/bin/postinstall.js +42 -0
- package/package.json +46 -0
- package/tech_hub_skills/roles/ai-engineer/skills/01-prompt-engineering/README.md +252 -0
- package/tech_hub_skills/roles/ai-engineer/skills/02-rag-pipeline/README.md +448 -0
- package/tech_hub_skills/roles/ai-engineer/skills/03-agent-orchestration/README.md +599 -0
- package/tech_hub_skills/roles/ai-engineer/skills/04-llm-guardrails/README.md +735 -0
- package/tech_hub_skills/roles/ai-engineer/skills/05-vector-embeddings/README.md +711 -0
- package/tech_hub_skills/roles/ai-engineer/skills/06-llm-evaluation/README.md +777 -0
- package/tech_hub_skills/roles/azure/skills/01-infrastructure-fundamentals/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/02-data-factory/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/03-synapse-analytics/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/04-databricks/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/05-functions/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/06-kubernetes-service/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/07-openai-service/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/08-machine-learning/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/09-storage-adls/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/10-networking/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/11-sql-cosmos/README.md +264 -0
- package/tech_hub_skills/roles/azure/skills/12-event-hubs/README.md +264 -0
- package/tech_hub_skills/roles/code-review/skills/01-automated-code-review/README.md +394 -0
- package/tech_hub_skills/roles/code-review/skills/02-pr-review-workflow/README.md +427 -0
- package/tech_hub_skills/roles/code-review/skills/03-code-quality-gates/README.md +518 -0
- package/tech_hub_skills/roles/code-review/skills/04-reviewer-assignment/README.md +504 -0
- package/tech_hub_skills/roles/code-review/skills/05-review-analytics/README.md +540 -0
- package/tech_hub_skills/roles/data-engineer/skills/01-lakehouse-architecture/README.md +550 -0
- package/tech_hub_skills/roles/data-engineer/skills/02-etl-pipeline/README.md +580 -0
- package/tech_hub_skills/roles/data-engineer/skills/03-data-quality/README.md +579 -0
- package/tech_hub_skills/roles/data-engineer/skills/04-streaming-pipelines/README.md +608 -0
- package/tech_hub_skills/roles/data-engineer/skills/05-performance-optimization/README.md +547 -0
- package/tech_hub_skills/roles/data-governance/skills/01-data-catalog/README.md +112 -0
- package/tech_hub_skills/roles/data-governance/skills/02-data-lineage/README.md +129 -0
- package/tech_hub_skills/roles/data-governance/skills/03-data-quality-framework/README.md +182 -0
- package/tech_hub_skills/roles/data-governance/skills/04-access-control/README.md +39 -0
- package/tech_hub_skills/roles/data-governance/skills/05-master-data-management/README.md +40 -0
- package/tech_hub_skills/roles/data-governance/skills/06-compliance-privacy/README.md +46 -0
- package/tech_hub_skills/roles/data-scientist/skills/01-eda-automation/README.md +230 -0
- package/tech_hub_skills/roles/data-scientist/skills/02-statistical-modeling/README.md +264 -0
- package/tech_hub_skills/roles/data-scientist/skills/03-feature-engineering/README.md +264 -0
- package/tech_hub_skills/roles/data-scientist/skills/04-predictive-modeling/README.md +264 -0
- package/tech_hub_skills/roles/data-scientist/skills/05-customer-analytics/README.md +264 -0
- package/tech_hub_skills/roles/data-scientist/skills/06-campaign-analysis/README.md +264 -0
- package/tech_hub_skills/roles/data-scientist/skills/07-experimentation/README.md +264 -0
- package/tech_hub_skills/roles/data-scientist/skills/08-data-visualization/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/01-cicd-pipeline/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/02-container-orchestration/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/03-infrastructure-as-code/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/04-gitops/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/05-environment-management/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/06-automated-testing/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/07-release-management/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/08-monitoring-alerting/README.md +264 -0
- package/tech_hub_skills/roles/devops/skills/09-devsecops/README.md +265 -0
- package/tech_hub_skills/roles/finops/skills/01-cost-visibility/README.md +264 -0
- package/tech_hub_skills/roles/finops/skills/02-resource-tagging/README.md +264 -0
- package/tech_hub_skills/roles/finops/skills/03-budget-management/README.md +264 -0
- package/tech_hub_skills/roles/finops/skills/04-reserved-instances/README.md +264 -0
- package/tech_hub_skills/roles/finops/skills/05-spot-optimization/README.md +264 -0
- package/tech_hub_skills/roles/finops/skills/06-storage-tiering/README.md +264 -0
- package/tech_hub_skills/roles/finops/skills/07-compute-rightsizing/README.md +264 -0
- package/tech_hub_skills/roles/finops/skills/08-chargeback/README.md +264 -0
- package/tech_hub_skills/roles/ml-engineer/skills/01-mlops-pipeline/README.md +566 -0
- package/tech_hub_skills/roles/ml-engineer/skills/02-feature-engineering/README.md +655 -0
- package/tech_hub_skills/roles/ml-engineer/skills/03-model-training/README.md +704 -0
- package/tech_hub_skills/roles/ml-engineer/skills/04-model-serving/README.md +845 -0
- package/tech_hub_skills/roles/ml-engineer/skills/05-model-monitoring/README.md +874 -0
- package/tech_hub_skills/roles/mlops/skills/01-ml-pipeline-orchestration/README.md +264 -0
- package/tech_hub_skills/roles/mlops/skills/02-experiment-tracking/README.md +264 -0
- package/tech_hub_skills/roles/mlops/skills/03-model-registry/README.md +264 -0
- package/tech_hub_skills/roles/mlops/skills/04-feature-store/README.md +264 -0
- package/tech_hub_skills/roles/mlops/skills/05-model-deployment/README.md +264 -0
- package/tech_hub_skills/roles/mlops/skills/06-model-observability/README.md +264 -0
- package/tech_hub_skills/roles/mlops/skills/07-data-versioning/README.md +264 -0
- package/tech_hub_skills/roles/mlops/skills/08-ab-testing/README.md +264 -0
- package/tech_hub_skills/roles/mlops/skills/09-automated-retraining/README.md +264 -0
- package/tech_hub_skills/roles/platform-engineer/skills/01-internal-developer-platform/README.md +153 -0
- package/tech_hub_skills/roles/platform-engineer/skills/02-self-service-infrastructure/README.md +57 -0
- package/tech_hub_skills/roles/platform-engineer/skills/03-slo-sli-management/README.md +59 -0
- package/tech_hub_skills/roles/platform-engineer/skills/04-developer-experience/README.md +57 -0
- package/tech_hub_skills/roles/platform-engineer/skills/05-incident-management/README.md +73 -0
- package/tech_hub_skills/roles/platform-engineer/skills/06-capacity-management/README.md +59 -0
- package/tech_hub_skills/roles/product-designer/skills/01-requirements-discovery/README.md +407 -0
- package/tech_hub_skills/roles/product-designer/skills/02-user-research/README.md +382 -0
- package/tech_hub_skills/roles/product-designer/skills/03-brainstorming-ideation/README.md +437 -0
- package/tech_hub_skills/roles/product-designer/skills/04-ux-design/README.md +496 -0
- package/tech_hub_skills/roles/product-designer/skills/05-product-market-fit/README.md +376 -0
- package/tech_hub_skills/roles/product-designer/skills/06-stakeholder-management/README.md +412 -0
- package/tech_hub_skills/roles/security-architect/skills/01-pii-detection/README.md +319 -0
- package/tech_hub_skills/roles/security-architect/skills/02-threat-modeling/README.md +264 -0
- package/tech_hub_skills/roles/security-architect/skills/03-infrastructure-security/README.md +264 -0
- package/tech_hub_skills/roles/security-architect/skills/04-iam/README.md +264 -0
- package/tech_hub_skills/roles/security-architect/skills/05-application-security/README.md +264 -0
- package/tech_hub_skills/roles/security-architect/skills/06-secrets-management/README.md +264 -0
- package/tech_hub_skills/roles/security-architect/skills/07-security-monitoring/README.md +264 -0
- package/tech_hub_skills/roles/system-design/skills/01-architecture-patterns/README.md +337 -0
- package/tech_hub_skills/roles/system-design/skills/02-requirements-engineering/README.md +264 -0
- package/tech_hub_skills/roles/system-design/skills/03-scalability/README.md +264 -0
- package/tech_hub_skills/roles/system-design/skills/04-high-availability/README.md +264 -0
- package/tech_hub_skills/roles/system-design/skills/05-cost-optimization-design/README.md +264 -0
- package/tech_hub_skills/roles/system-design/skills/06-api-design/README.md +264 -0
- package/tech_hub_skills/roles/system-design/skills/07-observability-architecture/README.md +264 -0
- package/tech_hub_skills/roles/system-design/skills/08-process-automation/PROCESS_TEMPLATE.md +336 -0
- package/tech_hub_skills/roles/system-design/skills/08-process-automation/README.md +521 -0
- package/tech_hub_skills/skills/README.md +336 -0
- package/tech_hub_skills/skills/ai-engineer.md +104 -0
- package/tech_hub_skills/skills/azure.md +149 -0
- package/tech_hub_skills/skills/code-review.md +399 -0
- package/tech_hub_skills/skills/compliance-automation.md +747 -0
- package/tech_hub_skills/skills/data-engineer.md +113 -0
- package/tech_hub_skills/skills/data-governance.md +102 -0
- package/tech_hub_skills/skills/data-scientist.md +123 -0
- package/tech_hub_skills/skills/devops.md +160 -0
- package/tech_hub_skills/skills/docker.md +160 -0
- package/tech_hub_skills/skills/enterprise-dashboard.md +613 -0
- package/tech_hub_skills/skills/finops.md +184 -0
- package/tech_hub_skills/skills/ml-engineer.md +115 -0
- package/tech_hub_skills/skills/mlops.md +187 -0
- package/tech_hub_skills/skills/optimization-advisor.md +329 -0
- package/tech_hub_skills/skills/orchestrator.md +497 -0
- package/tech_hub_skills/skills/platform-engineer.md +102 -0
- package/tech_hub_skills/skills/process-automation.md +226 -0
- package/tech_hub_skills/skills/process-changelog.md +184 -0
- package/tech_hub_skills/skills/process-documentation.md +484 -0
- package/tech_hub_skills/skills/process-kanban.md +324 -0
- package/tech_hub_skills/skills/process-versioning.md +214 -0
- package/tech_hub_skills/skills/product-designer.md +104 -0
- package/tech_hub_skills/skills/project-starter.md +443 -0
- package/tech_hub_skills/skills/security-architect.md +135 -0
- package/tech_hub_skills/skills/system-design.md +126 -0
|
@@ -0,0 +1,521 @@
|
|
|
1
|
+
# Skill 8: Process Automation Analysis & Planning
|
|
2
|
+
|
|
3
|
+
## Overview
|
|
4
|
+
|
|
5
|
+
A comprehensive skill for analyzing work processes, identifying automation opportunities, creating implementation plans, and mapping the right roles/skills to execute automation initiatives.
|
|
6
|
+
|
|
7
|
+
## Connections
|
|
8
|
+
|
|
9
|
+
| Role | Connection Type | Purpose | Key Skills |
|
|
10
|
+
|------|----------------|---------|------------|
|
|
11
|
+
| **All Roles** | Downstream | Routes automation tasks to appropriate specialists | All skills |
|
|
12
|
+
| **Data Engineer** | Primary | Automates data pipelines, ETL, data quality | de-01, de-02, de-03 |
|
|
13
|
+
| **ML Engineer** | Primary | Automates model training, deployment, monitoring | ml-01, ml-02, ml-04 |
|
|
14
|
+
| **AI Engineer** | Primary | Automates content generation, RAG, agents | ai-01, ai-02, ai-03, ai-07 |
|
|
15
|
+
| **DevOps** | Primary | Automates CI/CD, infrastructure, deployments | do-01, do-03, do-04, do-08 |
|
|
16
|
+
| **Security Architect** | Supporting | Ensures compliance in automated processes | sa-01, sa-02, sa-06 |
|
|
17
|
+
| **Data Scientist** | Supporting | Analyzes process metrics, identifies patterns | ds-01, ds-08 |
|
|
18
|
+
| **FinOps** | Supporting | Cost analysis for automation ROI | fo-01, fo-03, fo-07 |
|
|
19
|
+
| **System Design** | Supporting | Architecture patterns for automation systems | sd-01, sd-05 |
|
|
20
|
+
|
|
21
|
+
## Tools Included
|
|
22
|
+
|
|
23
|
+
### 1. `process_analyzer.py`
|
|
24
|
+
Analyzes existing work processes to identify automation candidates.
|
|
25
|
+
|
|
26
|
+
**Features:**
|
|
27
|
+
- Process decomposition into steps and tasks
|
|
28
|
+
- Automation feasibility scoring (0-100)
|
|
29
|
+
- Bottleneck identification
|
|
30
|
+
- Time/cost analysis per process step
|
|
31
|
+
- Complexity classification (simple, moderate, complex, enterprise)
|
|
32
|
+
|
|
33
|
+
### 2. `automation_recommender.py`
|
|
34
|
+
Recommends optimal automation strategies based on process characteristics.
|
|
35
|
+
|
|
36
|
+
**Features:**
|
|
37
|
+
- Automation pattern matching (RPA, workflow, ML-based, AI-powered)
|
|
38
|
+
- Tool and technology recommendations
|
|
39
|
+
- Build vs. buy analysis
|
|
40
|
+
- Risk assessment
|
|
41
|
+
- Priority ranking by ROI
|
|
42
|
+
|
|
43
|
+
### 3. `role_matcher.py`
|
|
44
|
+
Maps processes to the most suitable roles and skills for implementation.
|
|
45
|
+
|
|
46
|
+
**Features:**
|
|
47
|
+
- Skill requirement extraction from process analysis
|
|
48
|
+
- Role affinity scoring
|
|
49
|
+
- Team composition recommendations
|
|
50
|
+
- Skill gap identification
|
|
51
|
+
- Cross-functional dependency mapping
|
|
52
|
+
|
|
53
|
+
### 4. `plan_generator.py`
|
|
54
|
+
Generates comprehensive automation implementation plans.
|
|
55
|
+
|
|
56
|
+
**Features:**
|
|
57
|
+
- Phase-based implementation roadmap
|
|
58
|
+
- Milestone and deliverable definitions
|
|
59
|
+
- Resource requirements
|
|
60
|
+
- Risk mitigation strategies
|
|
61
|
+
- Documentation templates (ADRs, PRDs, technical specs)
|
|
62
|
+
|
|
63
|
+
### 5. `process_parser.py` (AI-Ready)
|
|
64
|
+
Parses natural language process descriptions for AI-driven analysis.
|
|
65
|
+
|
|
66
|
+
**Features:**
|
|
67
|
+
- Markdown and plain text parsing
|
|
68
|
+
- Automatic step extraction from numbered lists
|
|
69
|
+
- Pain point and bottleneck detection
|
|
70
|
+
- Tool and data source identification
|
|
71
|
+
- Confidence scoring for parsed data
|
|
72
|
+
|
|
73
|
+
### 6. `ai_prompt_generator.py` (AI-Ready)
|
|
74
|
+
Generates optimized prompts for AI assistants (GitHub Copilot, Claude, ChatGPT).
|
|
75
|
+
|
|
76
|
+
**Features:**
|
|
77
|
+
- Multiple prompt styles (Copilot, Structured, Step-by-step)
|
|
78
|
+
- Configurable analysis depth
|
|
79
|
+
- Follow-up prompt suggestions
|
|
80
|
+
- Tech Hub context injection
|
|
81
|
+
- Implementation-ready code prompts
|
|
82
|
+
|
|
83
|
+
### 7. `PROCESS_TEMPLATE.md`
|
|
84
|
+
Ready-to-use template for documenting processes for AI analysis.
|
|
85
|
+
|
|
86
|
+
---
|
|
87
|
+
|
|
88
|
+
## AI-Driven Automation Discovery
|
|
89
|
+
|
|
90
|
+
### The Dynamic Workflow
|
|
91
|
+
|
|
92
|
+
This skill is designed to work seamlessly with AI assistants. Simply write your process in natural language, and the AI will suggest automation solutions.
|
|
93
|
+
|
|
94
|
+
```
|
|
95
|
+
┌─────────────────────┐
|
|
96
|
+
│ Write Process Doc │ ← Use PROCESS_TEMPLATE.md
|
|
97
|
+
│ (Natural Language) │
|
|
98
|
+
└──────────┬──────────┘
|
|
99
|
+
▼
|
|
100
|
+
┌─────────────────────┐
|
|
101
|
+
│ Process Parser │ ← Extracts structured data
|
|
102
|
+
│ (Automatic) │
|
|
103
|
+
└──────────┬──────────┘
|
|
104
|
+
▼
|
|
105
|
+
┌─────────────────────┐
|
|
106
|
+
│ AI Prompt Generator│ ← Creates optimized prompts
|
|
107
|
+
│ │
|
|
108
|
+
└──────────┬──────────┘
|
|
109
|
+
▼
|
|
110
|
+
┌─────────────────────┐
|
|
111
|
+
│ GitHub Copilot / │ ← Analyzes and suggests
|
|
112
|
+
│ Claude / ChatGPT │
|
|
113
|
+
└──────────┬──────────┘
|
|
114
|
+
▼
|
|
115
|
+
┌─────────────────────┐
|
|
116
|
+
│ Automation Plan + │ ← Ready to implement!
|
|
117
|
+
│ Code Snippets │
|
|
118
|
+
└─────────────────────┘
|
|
119
|
+
```
|
|
120
|
+
|
|
121
|
+
### Quick Start: VS Code + GitHub Copilot
|
|
122
|
+
|
|
123
|
+
**Method 1: One-Line Analysis**
|
|
124
|
+
|
|
125
|
+
```python
|
|
126
|
+
from ai_prompt_generator import quick_analyze
|
|
127
|
+
|
|
128
|
+
# Paste your process description
|
|
129
|
+
process = """
|
|
130
|
+
# Monthly Invoice Processing
|
|
131
|
+
Every month we process 200+ invoices manually...
|
|
132
|
+
[Your full process description]
|
|
133
|
+
"""
|
|
134
|
+
|
|
135
|
+
# Get the prompt for Copilot
|
|
136
|
+
prompt = quick_analyze(process)
|
|
137
|
+
print(prompt) # Copy this to Copilot Chat!
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
**Method 2: Full Pipeline**
|
|
141
|
+
|
|
142
|
+
```python
|
|
143
|
+
from process_parser import ProcessParser
|
|
144
|
+
from ai_prompt_generator import AIPromptGenerator, PromptStyle, AnalysisDepth
|
|
145
|
+
|
|
146
|
+
# 1. Parse your process documentation
|
|
147
|
+
parser = ProcessParser()
|
|
148
|
+
with open('my_process.md', 'r') as f:
|
|
149
|
+
parsed = parser.parse(f.read())
|
|
150
|
+
|
|
151
|
+
# 2. Generate AI prompt
|
|
152
|
+
generator = AIPromptGenerator()
|
|
153
|
+
result = generator.generate_discovery_prompt(
|
|
154
|
+
parsed,
|
|
155
|
+
style=PromptStyle.COPILOT,
|
|
156
|
+
depth=AnalysisDepth.IMPLEMENTATION
|
|
157
|
+
)
|
|
158
|
+
|
|
159
|
+
# 3. Use the prompt
|
|
160
|
+
print(result.prompt) # Main prompt for Copilot
|
|
161
|
+
print(result.follow_up_prompts) # Follow-up questions
|
|
162
|
+
```
|
|
163
|
+
|
|
164
|
+
**Method 3: Direct Template**
|
|
165
|
+
|
|
166
|
+
1. Copy `PROCESS_TEMPLATE.md` to your project
|
|
167
|
+
2. Fill in your process details
|
|
168
|
+
3. Open GitHub Copilot Chat
|
|
169
|
+
4. Paste the entire document and ask:
|
|
170
|
+
> "Analyze this process and suggest automation solutions"
|
|
171
|
+
|
|
172
|
+
### Prompt Styles
|
|
173
|
+
|
|
174
|
+
| Style | Best For | Output |
|
|
175
|
+
|-------|----------|--------|
|
|
176
|
+
| `COPILOT` | VS Code GitHub Copilot | Structured with code snippets |
|
|
177
|
+
| `STRUCTURED` | JSON/YAML workflows | Machine-readable format |
|
|
178
|
+
| `STEP_BY_STEP` | Complex processes | Iterative deep dive |
|
|
179
|
+
| `DETAILED` | Comprehensive analysis | Full documentation |
|
|
180
|
+
| `CONVERSATIONAL` | Exploration | Chat-style discovery |
|
|
181
|
+
|
|
182
|
+
### Analysis Depths
|
|
183
|
+
|
|
184
|
+
| Depth | Time | Output |
|
|
185
|
+
|-------|------|--------|
|
|
186
|
+
| `QUICK` | ~1 min | Top 3 opportunities |
|
|
187
|
+
| `STANDARD` | ~3 min | Balanced analysis |
|
|
188
|
+
| `DEEP` | ~5 min | Edge cases, optimization |
|
|
189
|
+
| `IMPLEMENTATION` | ~10 min | Production-ready code |
|
|
190
|
+
|
|
191
|
+
---
|
|
192
|
+
|
|
193
|
+
## Automation Patterns
|
|
194
|
+
|
|
195
|
+
### Pattern Categories
|
|
196
|
+
|
|
197
|
+
| Pattern | Use When | Primary Role | Complexity |
|
|
198
|
+
|---------|----------|--------------|------------|
|
|
199
|
+
| **RPA (Robotic Process Automation)** | Repetitive, rule-based tasks | DevOps | Low |
|
|
200
|
+
| **Workflow Automation** | Multi-step business processes | Data Engineer | Medium |
|
|
201
|
+
| **Data Pipeline Automation** | ETL/ELT, data quality | Data Engineer | Medium |
|
|
202
|
+
| **ML-Based Automation** | Prediction, classification tasks | ML Engineer | High |
|
|
203
|
+
| **AI-Powered Automation** | Content generation, reasoning | AI Engineer | High |
|
|
204
|
+
| **Infrastructure Automation** | Provisioning, scaling | DevOps | Medium |
|
|
205
|
+
| **Security Automation** | Compliance, monitoring | Security Architect | Medium |
|
|
206
|
+
|
|
207
|
+
### Decision Matrix
|
|
208
|
+
|
|
209
|
+
```
|
|
210
|
+
Process Characteristics → Recommended Automation
|
|
211
|
+
|
|
212
|
+
High Volume + Low Complexity → RPA
|
|
213
|
+
High Volume + Medium Complexity → Workflow Automation
|
|
214
|
+
Data-Centric + Transformations → Data Pipeline
|
|
215
|
+
Prediction Required → ML-Based
|
|
216
|
+
Natural Language/Content → AI-Powered
|
|
217
|
+
Infrastructure Related → IaC/DevOps
|
|
218
|
+
Security/Compliance → Security Automation
|
|
219
|
+
```
|
|
220
|
+
|
|
221
|
+
## Quick Start
|
|
222
|
+
|
|
223
|
+
```python
|
|
224
|
+
from process_analyzer import ProcessAnalyzer
|
|
225
|
+
from automation_recommender import AutomationRecommender
|
|
226
|
+
from role_matcher import RoleMatcher
|
|
227
|
+
from plan_generator import PlanGenerator
|
|
228
|
+
|
|
229
|
+
# 1. Analyze the process
|
|
230
|
+
analyzer = ProcessAnalyzer()
|
|
231
|
+
analysis = analyzer.analyze_process(
|
|
232
|
+
name="Monthly Report Generation",
|
|
233
|
+
description="Generate monthly sales reports from multiple data sources",
|
|
234
|
+
steps=[
|
|
235
|
+
{"name": "Extract data from CRM", "time_minutes": 30, "manual": True},
|
|
236
|
+
{"name": "Extract data from ERP", "time_minutes": 45, "manual": True},
|
|
237
|
+
{"name": "Merge and clean data", "time_minutes": 60, "manual": True},
|
|
238
|
+
{"name": "Calculate metrics", "time_minutes": 30, "manual": True},
|
|
239
|
+
{"name": "Generate visualizations", "time_minutes": 45, "manual": True},
|
|
240
|
+
{"name": "Write summary", "time_minutes": 60, "manual": True},
|
|
241
|
+
{"name": "Review and send", "time_minutes": 30, "manual": True}
|
|
242
|
+
],
|
|
243
|
+
frequency="monthly",
|
|
244
|
+
stakeholders=["Sales", "Finance", "Executive"]
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
# 2. Get automation recommendations
|
|
248
|
+
recommender = AutomationRecommender()
|
|
249
|
+
recommendations = recommender.recommend(analysis)
|
|
250
|
+
|
|
251
|
+
# 3. Match to roles and skills
|
|
252
|
+
matcher = RoleMatcher()
|
|
253
|
+
team = matcher.match_roles(analysis, recommendations)
|
|
254
|
+
|
|
255
|
+
# 4. Generate implementation plan
|
|
256
|
+
planner = PlanGenerator()
|
|
257
|
+
plan = planner.generate_plan(
|
|
258
|
+
analysis=analysis,
|
|
259
|
+
recommendations=recommendations,
|
|
260
|
+
team_composition=team
|
|
261
|
+
)
|
|
262
|
+
|
|
263
|
+
# Output the plan
|
|
264
|
+
print(plan.to_markdown())
|
|
265
|
+
```
|
|
266
|
+
|
|
267
|
+
## Output Example
|
|
268
|
+
|
|
269
|
+
```markdown
|
|
270
|
+
# Automation Plan: Monthly Report Generation
|
|
271
|
+
|
|
272
|
+
## Executive Summary
|
|
273
|
+
- **Automation Potential**: 85/100
|
|
274
|
+
- **Estimated Time Savings**: 4.5 hours/month
|
|
275
|
+
- **Recommended Approach**: Data Pipeline + AI-Powered
|
|
276
|
+
|
|
277
|
+
## Recommended Team
|
|
278
|
+
| Role | Skills Required | Effort |
|
|
279
|
+
|------|-----------------|--------|
|
|
280
|
+
| Data Engineer | de-02 (ETL), de-03 (Quality) | 60% |
|
|
281
|
+
| AI Engineer | ai-01 (Prompts), ai-07 (LLM API) | 30% |
|
|
282
|
+
| DevOps | do-01 (CI/CD), do-08 (Monitoring) | 10% |
|
|
283
|
+
|
|
284
|
+
## Implementation Phases
|
|
285
|
+
### Phase 1: Data Pipeline (Week 1-2)
|
|
286
|
+
- Set up automated data extraction from CRM/ERP
|
|
287
|
+
- Implement data quality checks
|
|
288
|
+
- Create merge and transformation logic
|
|
289
|
+
|
|
290
|
+
### Phase 2: Analytics Automation (Week 3)
|
|
291
|
+
- Automate metric calculations
|
|
292
|
+
- Set up visualization generation
|
|
293
|
+
- Configure scheduled runs
|
|
294
|
+
|
|
295
|
+
### Phase 3: AI Integration (Week 4)
|
|
296
|
+
- Implement LLM-based summary generation
|
|
297
|
+
- Add quality checks for generated content
|
|
298
|
+
- Set up review workflow
|
|
299
|
+
|
|
300
|
+
## Success Metrics
|
|
301
|
+
- Report generation time < 30 minutes
|
|
302
|
+
- Manual intervention < 10%
|
|
303
|
+
- Stakeholder satisfaction > 4/5
|
|
304
|
+
```
|
|
305
|
+
|
|
306
|
+
## Process Complexity Levels
|
|
307
|
+
|
|
308
|
+
### Simple (Automation Score: 80-100)
|
|
309
|
+
- Linear workflow, few decision points
|
|
310
|
+
- Standard data formats
|
|
311
|
+
- Single system involved
|
|
312
|
+
- **Time to automate**: Days to 1 week
|
|
313
|
+
|
|
314
|
+
### Moderate (Automation Score: 60-79)
|
|
315
|
+
- Some branching logic
|
|
316
|
+
- Multiple data sources
|
|
317
|
+
- Moderate transformations
|
|
318
|
+
- **Time to automate**: 1-2 weeks
|
|
319
|
+
|
|
320
|
+
### Complex (Automation Score: 40-59)
|
|
321
|
+
- Many decision points
|
|
322
|
+
- Unstructured data handling
|
|
323
|
+
- Multiple system integrations
|
|
324
|
+
- ML/AI components needed
|
|
325
|
+
- **Time to automate**: 2-4 weeks
|
|
326
|
+
|
|
327
|
+
### Enterprise (Automation Score: 20-39)
|
|
328
|
+
- Cross-departmental processes
|
|
329
|
+
- Compliance requirements
|
|
330
|
+
- Legacy system integration
|
|
331
|
+
- Human-in-the-loop required
|
|
332
|
+
- **Time to automate**: 1-3 months
|
|
333
|
+
|
|
334
|
+
## Integration with Tech Hub Skills
|
|
335
|
+
|
|
336
|
+
This skill connects to all other Tech Hub skills through the central orchestrator:
|
|
337
|
+
|
|
338
|
+
```mermaid
|
|
339
|
+
graph TB
|
|
340
|
+
PA[Process Automation<br/>sd-08] --> Analysis{Process<br/>Analysis}
|
|
341
|
+
|
|
342
|
+
Analysis --> |Data-Centric| DE[Data Engineer<br/>de-01, de-02, de-03]
|
|
343
|
+
Analysis --> |ML Required| ML[ML Engineer<br/>ml-01, ml-04]
|
|
344
|
+
Analysis --> |AI/Content| AI[AI Engineer<br/>ai-01, ai-03, ai-07]
|
|
345
|
+
Analysis --> |Infrastructure| DO[DevOps<br/>do-01, do-03]
|
|
346
|
+
Analysis --> |Security| SA[Security Architect<br/>sa-01, sa-02]
|
|
347
|
+
Analysis --> |Analytics| DS[Data Scientist<br/>ds-01, ds-08]
|
|
348
|
+
|
|
349
|
+
DE --> |Pipeline Ready| MO[MLOps<br/>mo-01]
|
|
350
|
+
ML --> MO
|
|
351
|
+
AI --> MO
|
|
352
|
+
|
|
353
|
+
MO --> |Deployed| FO[FinOps<br/>fo-01, fo-07]
|
|
354
|
+
```
|
|
355
|
+
|
|
356
|
+
## Best Practices
|
|
357
|
+
|
|
358
|
+
### Process Analysis
|
|
359
|
+
1. **Start with observation** - Document current state before recommending changes
|
|
360
|
+
2. **Measure everything** - Capture time, cost, error rates for each step
|
|
361
|
+
3. **Identify stakeholders** - Understand who benefits and who's impacted
|
|
362
|
+
4. **Find the bottlenecks** - Focus automation on highest-impact areas
|
|
363
|
+
|
|
364
|
+
### Automation Selection
|
|
365
|
+
1. **Start simple** - Automate easy wins first to build momentum
|
|
366
|
+
2. **Consider maintenance** - Factor in ongoing operational costs
|
|
367
|
+
3. **Plan for exceptions** - Design graceful fallbacks for edge cases
|
|
368
|
+
4. **Security first** - Involve Security Architect early for sensitive processes
|
|
369
|
+
|
|
370
|
+
### Implementation
|
|
371
|
+
1. **Iterate incrementally** - Automate in phases, not all at once
|
|
372
|
+
2. **Keep humans in the loop** - Maintain oversight for critical decisions
|
|
373
|
+
3. **Monitor continuously** - Set up alerts for automation failures
|
|
374
|
+
4. **Document thoroughly** - Future maintainers will thank you
|
|
375
|
+
|
|
376
|
+
## Metrics & KPIs
|
|
377
|
+
|
|
378
|
+
| Metric | Description | Target |
|
|
379
|
+
|--------|-------------|--------|
|
|
380
|
+
| **Time Saved** | Hours saved per execution | >70% reduction |
|
|
381
|
+
| **Error Rate** | Errors per 100 executions | <5% |
|
|
382
|
+
| **Adoption Rate** | % of processes automated | >60% candidates |
|
|
383
|
+
| **ROI** | (Value gained - Cost) / Cost | >200% Year 1 |
|
|
384
|
+
| **MTTR** | Mean time to resolve failures | <30 minutes |
|
|
385
|
+
|
|
386
|
+
## Related Skills
|
|
387
|
+
|
|
388
|
+
- `sd-01`: Architecture Pattern Selection
|
|
389
|
+
- `sd-02`: Requirements Engineering
|
|
390
|
+
- `sd-05`: Cost Optimization Design
|
|
391
|
+
- `de-02`: ETL/ELT Pipeline Orchestration
|
|
392
|
+
- `ml-01`: MLOps Pipeline Automation
|
|
393
|
+
- `ai-03`: LLM Agent Orchestration
|
|
394
|
+
- `do-01`: CI/CD Pipeline Design
|
|
395
|
+
|
|
396
|
+
---
|
|
397
|
+
|
|
398
|
+
## Advanced AI Workflows
|
|
399
|
+
|
|
400
|
+
### Comparing Automation Approaches
|
|
401
|
+
|
|
402
|
+
```python
|
|
403
|
+
from process_parser import ProcessParser
|
|
404
|
+
from ai_prompt_generator import AIPromptGenerator
|
|
405
|
+
|
|
406
|
+
parser = ProcessParser()
|
|
407
|
+
parsed = parser.parse(process_doc)
|
|
408
|
+
|
|
409
|
+
generator = AIPromptGenerator()
|
|
410
|
+
comparison = generator.generate_comparison_prompt(
|
|
411
|
+
parsed,
|
|
412
|
+
approaches=[
|
|
413
|
+
"Azure Logic Apps + Power Automate",
|
|
414
|
+
"Python + Airflow",
|
|
415
|
+
"Azure Data Factory",
|
|
416
|
+
"Custom microservices"
|
|
417
|
+
]
|
|
418
|
+
)
|
|
419
|
+
|
|
420
|
+
print(comparison.prompt) # Asks AI to compare approaches
|
|
421
|
+
```
|
|
422
|
+
|
|
423
|
+
### Getting Implementation Code
|
|
424
|
+
|
|
425
|
+
```python
|
|
426
|
+
# Get code for a specific step
|
|
427
|
+
impl_prompt = generator.generate_implementation_prompt(
|
|
428
|
+
parsed,
|
|
429
|
+
target_step=2, # Step number to implement
|
|
430
|
+
technology="python" # Or "terraform", "sql", etc.
|
|
431
|
+
)
|
|
432
|
+
|
|
433
|
+
print(impl_prompt.prompt) # Paste in Copilot for working code
|
|
434
|
+
```
|
|
435
|
+
|
|
436
|
+
### Iterative Refinement
|
|
437
|
+
|
|
438
|
+
The AI-driven workflow supports iterative refinement:
|
|
439
|
+
|
|
440
|
+
1. **Initial Analysis** → Get broad automation suggestions
|
|
441
|
+
2. **Deep Dive** → Ask follow-up questions on specific areas
|
|
442
|
+
3. **Implementation** → Request code for chosen approach
|
|
443
|
+
4. **Review** → Ask AI to review and improve code
|
|
444
|
+
5. **Documentation** → Generate ADRs, runbooks, tests
|
|
445
|
+
|
|
446
|
+
### Example: Full Automation Discovery Session
|
|
447
|
+
|
|
448
|
+
```python
|
|
449
|
+
# Session workflow
|
|
450
|
+
from process_parser import ProcessParser
|
|
451
|
+
from ai_prompt_generator import AIPromptGenerator, PromptStyle, AnalysisDepth
|
|
452
|
+
|
|
453
|
+
# Step 1: Document your process
|
|
454
|
+
process_doc = open('my_process.md').read()
|
|
455
|
+
|
|
456
|
+
# Step 2: Parse and analyze
|
|
457
|
+
parser = ProcessParser()
|
|
458
|
+
parsed = parser.parse(process_doc)
|
|
459
|
+
|
|
460
|
+
print(f"Parsed {len(parsed.steps)} steps with {parsed.confidence_score}% confidence")
|
|
461
|
+
print(f"Pain points detected: {parsed.pain_points}")
|
|
462
|
+
print(f"Tools found: {parsed.current_tools}")
|
|
463
|
+
|
|
464
|
+
# Step 3: Generate discovery prompt
|
|
465
|
+
generator = AIPromptGenerator()
|
|
466
|
+
discovery = generator.generate_discovery_prompt(
|
|
467
|
+
parsed,
|
|
468
|
+
style=PromptStyle.COPILOT,
|
|
469
|
+
depth=AnalysisDepth.STANDARD
|
|
470
|
+
)
|
|
471
|
+
|
|
472
|
+
print("=" * 50)
|
|
473
|
+
print("PASTE THIS INTO GITHUB COPILOT CHAT:")
|
|
474
|
+
print("=" * 50)
|
|
475
|
+
print(discovery.prompt)
|
|
476
|
+
|
|
477
|
+
# Step 4: After getting response, use follow-ups
|
|
478
|
+
print("\nFOLLOW-UP QUESTIONS:")
|
|
479
|
+
for q in discovery.follow_up_prompts:
|
|
480
|
+
print(f" → {q}")
|
|
481
|
+
|
|
482
|
+
# Step 5: Request implementation for chosen approach
|
|
483
|
+
impl = generator.generate_implementation_prompt(
|
|
484
|
+
parsed,
|
|
485
|
+
target_step=1,
|
|
486
|
+
technology="python"
|
|
487
|
+
)
|
|
488
|
+
```
|
|
489
|
+
|
|
490
|
+
### Integration with Existing Tools
|
|
491
|
+
|
|
492
|
+
The AI prompt generator includes Tech Hub context, so responses will reference:
|
|
493
|
+
|
|
494
|
+
- Relevant Tech Hub skills (de-01, ai-02, ml-04, etc.)
|
|
495
|
+
- Azure-native services
|
|
496
|
+
- Production-ready patterns
|
|
497
|
+
- Team role recommendations
|
|
498
|
+
|
|
499
|
+
This ensures AI suggestions align with your organization's capabilities.
|
|
500
|
+
|
|
501
|
+
---
|
|
502
|
+
|
|
503
|
+
## File Reference
|
|
504
|
+
|
|
505
|
+
| File | Purpose | When to Use |
|
|
506
|
+
|------|---------|-------------|
|
|
507
|
+
| `PROCESS_TEMPLATE.md` | Document your process | Starting point - copy and fill in |
|
|
508
|
+
| `process_parser.py` | Parse documentation | Automatic - called by other tools |
|
|
509
|
+
| `ai_prompt_generator.py` | Generate AI prompts | When using Copilot/Claude/ChatGPT |
|
|
510
|
+
| `process_analyzer.py` | Structured analysis | For programmatic analysis |
|
|
511
|
+
| `automation_recommender.py` | Strategy recommendations | After analysis |
|
|
512
|
+
| `role_matcher.py` | Team composition | When planning implementation |
|
|
513
|
+
| `plan_generator.py` | Full implementation plan | Final planning step |
|
|
514
|
+
|
|
515
|
+
---
|
|
516
|
+
|
|
517
|
+
**Skill ID**: `sd-08`
|
|
518
|
+
**Complexity**: Medium
|
|
519
|
+
**Dependencies**: `sd-01`, `sd-02`
|
|
520
|
+
**Estimated Time**: 2-8 hours (per process analysis)
|
|
521
|
+
**Business Value**: High
|