tech-hub-skills 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. package/LICENSE +21 -0
  2. package/README.md +250 -0
  3. package/bin/cli.js +241 -0
  4. package/bin/copilot.js +182 -0
  5. package/bin/postinstall.js +42 -0
  6. package/package.json +46 -0
  7. package/tech_hub_skills/roles/ai-engineer/skills/01-prompt-engineering/README.md +252 -0
  8. package/tech_hub_skills/roles/ai-engineer/skills/02-rag-pipeline/README.md +448 -0
  9. package/tech_hub_skills/roles/ai-engineer/skills/03-agent-orchestration/README.md +599 -0
  10. package/tech_hub_skills/roles/ai-engineer/skills/04-llm-guardrails/README.md +735 -0
  11. package/tech_hub_skills/roles/ai-engineer/skills/05-vector-embeddings/README.md +711 -0
  12. package/tech_hub_skills/roles/ai-engineer/skills/06-llm-evaluation/README.md +777 -0
  13. package/tech_hub_skills/roles/azure/skills/01-infrastructure-fundamentals/README.md +264 -0
  14. package/tech_hub_skills/roles/azure/skills/02-data-factory/README.md +264 -0
  15. package/tech_hub_skills/roles/azure/skills/03-synapse-analytics/README.md +264 -0
  16. package/tech_hub_skills/roles/azure/skills/04-databricks/README.md +264 -0
  17. package/tech_hub_skills/roles/azure/skills/05-functions/README.md +264 -0
  18. package/tech_hub_skills/roles/azure/skills/06-kubernetes-service/README.md +264 -0
  19. package/tech_hub_skills/roles/azure/skills/07-openai-service/README.md +264 -0
  20. package/tech_hub_skills/roles/azure/skills/08-machine-learning/README.md +264 -0
  21. package/tech_hub_skills/roles/azure/skills/09-storage-adls/README.md +264 -0
  22. package/tech_hub_skills/roles/azure/skills/10-networking/README.md +264 -0
  23. package/tech_hub_skills/roles/azure/skills/11-sql-cosmos/README.md +264 -0
  24. package/tech_hub_skills/roles/azure/skills/12-event-hubs/README.md +264 -0
  25. package/tech_hub_skills/roles/code-review/skills/01-automated-code-review/README.md +394 -0
  26. package/tech_hub_skills/roles/code-review/skills/02-pr-review-workflow/README.md +427 -0
  27. package/tech_hub_skills/roles/code-review/skills/03-code-quality-gates/README.md +518 -0
  28. package/tech_hub_skills/roles/code-review/skills/04-reviewer-assignment/README.md +504 -0
  29. package/tech_hub_skills/roles/code-review/skills/05-review-analytics/README.md +540 -0
  30. package/tech_hub_skills/roles/data-engineer/skills/01-lakehouse-architecture/README.md +550 -0
  31. package/tech_hub_skills/roles/data-engineer/skills/02-etl-pipeline/README.md +580 -0
  32. package/tech_hub_skills/roles/data-engineer/skills/03-data-quality/README.md +579 -0
  33. package/tech_hub_skills/roles/data-engineer/skills/04-streaming-pipelines/README.md +608 -0
  34. package/tech_hub_skills/roles/data-engineer/skills/05-performance-optimization/README.md +547 -0
  35. package/tech_hub_skills/roles/data-governance/skills/01-data-catalog/README.md +112 -0
  36. package/tech_hub_skills/roles/data-governance/skills/02-data-lineage/README.md +129 -0
  37. package/tech_hub_skills/roles/data-governance/skills/03-data-quality-framework/README.md +182 -0
  38. package/tech_hub_skills/roles/data-governance/skills/04-access-control/README.md +39 -0
  39. package/tech_hub_skills/roles/data-governance/skills/05-master-data-management/README.md +40 -0
  40. package/tech_hub_skills/roles/data-governance/skills/06-compliance-privacy/README.md +46 -0
  41. package/tech_hub_skills/roles/data-scientist/skills/01-eda-automation/README.md +230 -0
  42. package/tech_hub_skills/roles/data-scientist/skills/02-statistical-modeling/README.md +264 -0
  43. package/tech_hub_skills/roles/data-scientist/skills/03-feature-engineering/README.md +264 -0
  44. package/tech_hub_skills/roles/data-scientist/skills/04-predictive-modeling/README.md +264 -0
  45. package/tech_hub_skills/roles/data-scientist/skills/05-customer-analytics/README.md +264 -0
  46. package/tech_hub_skills/roles/data-scientist/skills/06-campaign-analysis/README.md +264 -0
  47. package/tech_hub_skills/roles/data-scientist/skills/07-experimentation/README.md +264 -0
  48. package/tech_hub_skills/roles/data-scientist/skills/08-data-visualization/README.md +264 -0
  49. package/tech_hub_skills/roles/devops/skills/01-cicd-pipeline/README.md +264 -0
  50. package/tech_hub_skills/roles/devops/skills/02-container-orchestration/README.md +264 -0
  51. package/tech_hub_skills/roles/devops/skills/03-infrastructure-as-code/README.md +264 -0
  52. package/tech_hub_skills/roles/devops/skills/04-gitops/README.md +264 -0
  53. package/tech_hub_skills/roles/devops/skills/05-environment-management/README.md +264 -0
  54. package/tech_hub_skills/roles/devops/skills/06-automated-testing/README.md +264 -0
  55. package/tech_hub_skills/roles/devops/skills/07-release-management/README.md +264 -0
  56. package/tech_hub_skills/roles/devops/skills/08-monitoring-alerting/README.md +264 -0
  57. package/tech_hub_skills/roles/devops/skills/09-devsecops/README.md +265 -0
  58. package/tech_hub_skills/roles/finops/skills/01-cost-visibility/README.md +264 -0
  59. package/tech_hub_skills/roles/finops/skills/02-resource-tagging/README.md +264 -0
  60. package/tech_hub_skills/roles/finops/skills/03-budget-management/README.md +264 -0
  61. package/tech_hub_skills/roles/finops/skills/04-reserved-instances/README.md +264 -0
  62. package/tech_hub_skills/roles/finops/skills/05-spot-optimization/README.md +264 -0
  63. package/tech_hub_skills/roles/finops/skills/06-storage-tiering/README.md +264 -0
  64. package/tech_hub_skills/roles/finops/skills/07-compute-rightsizing/README.md +264 -0
  65. package/tech_hub_skills/roles/finops/skills/08-chargeback/README.md +264 -0
  66. package/tech_hub_skills/roles/ml-engineer/skills/01-mlops-pipeline/README.md +566 -0
  67. package/tech_hub_skills/roles/ml-engineer/skills/02-feature-engineering/README.md +655 -0
  68. package/tech_hub_skills/roles/ml-engineer/skills/03-model-training/README.md +704 -0
  69. package/tech_hub_skills/roles/ml-engineer/skills/04-model-serving/README.md +845 -0
  70. package/tech_hub_skills/roles/ml-engineer/skills/05-model-monitoring/README.md +874 -0
  71. package/tech_hub_skills/roles/mlops/skills/01-ml-pipeline-orchestration/README.md +264 -0
  72. package/tech_hub_skills/roles/mlops/skills/02-experiment-tracking/README.md +264 -0
  73. package/tech_hub_skills/roles/mlops/skills/03-model-registry/README.md +264 -0
  74. package/tech_hub_skills/roles/mlops/skills/04-feature-store/README.md +264 -0
  75. package/tech_hub_skills/roles/mlops/skills/05-model-deployment/README.md +264 -0
  76. package/tech_hub_skills/roles/mlops/skills/06-model-observability/README.md +264 -0
  77. package/tech_hub_skills/roles/mlops/skills/07-data-versioning/README.md +264 -0
  78. package/tech_hub_skills/roles/mlops/skills/08-ab-testing/README.md +264 -0
  79. package/tech_hub_skills/roles/mlops/skills/09-automated-retraining/README.md +264 -0
  80. package/tech_hub_skills/roles/platform-engineer/skills/01-internal-developer-platform/README.md +153 -0
  81. package/tech_hub_skills/roles/platform-engineer/skills/02-self-service-infrastructure/README.md +57 -0
  82. package/tech_hub_skills/roles/platform-engineer/skills/03-slo-sli-management/README.md +59 -0
  83. package/tech_hub_skills/roles/platform-engineer/skills/04-developer-experience/README.md +57 -0
  84. package/tech_hub_skills/roles/platform-engineer/skills/05-incident-management/README.md +73 -0
  85. package/tech_hub_skills/roles/platform-engineer/skills/06-capacity-management/README.md +59 -0
  86. package/tech_hub_skills/roles/product-designer/skills/01-requirements-discovery/README.md +407 -0
  87. package/tech_hub_skills/roles/product-designer/skills/02-user-research/README.md +382 -0
  88. package/tech_hub_skills/roles/product-designer/skills/03-brainstorming-ideation/README.md +437 -0
  89. package/tech_hub_skills/roles/product-designer/skills/04-ux-design/README.md +496 -0
  90. package/tech_hub_skills/roles/product-designer/skills/05-product-market-fit/README.md +376 -0
  91. package/tech_hub_skills/roles/product-designer/skills/06-stakeholder-management/README.md +412 -0
  92. package/tech_hub_skills/roles/security-architect/skills/01-pii-detection/README.md +319 -0
  93. package/tech_hub_skills/roles/security-architect/skills/02-threat-modeling/README.md +264 -0
  94. package/tech_hub_skills/roles/security-architect/skills/03-infrastructure-security/README.md +264 -0
  95. package/tech_hub_skills/roles/security-architect/skills/04-iam/README.md +264 -0
  96. package/tech_hub_skills/roles/security-architect/skills/05-application-security/README.md +264 -0
  97. package/tech_hub_skills/roles/security-architect/skills/06-secrets-management/README.md +264 -0
  98. package/tech_hub_skills/roles/security-architect/skills/07-security-monitoring/README.md +264 -0
  99. package/tech_hub_skills/roles/system-design/skills/01-architecture-patterns/README.md +337 -0
  100. package/tech_hub_skills/roles/system-design/skills/02-requirements-engineering/README.md +264 -0
  101. package/tech_hub_skills/roles/system-design/skills/03-scalability/README.md +264 -0
  102. package/tech_hub_skills/roles/system-design/skills/04-high-availability/README.md +264 -0
  103. package/tech_hub_skills/roles/system-design/skills/05-cost-optimization-design/README.md +264 -0
  104. package/tech_hub_skills/roles/system-design/skills/06-api-design/README.md +264 -0
  105. package/tech_hub_skills/roles/system-design/skills/07-observability-architecture/README.md +264 -0
  106. package/tech_hub_skills/roles/system-design/skills/08-process-automation/PROCESS_TEMPLATE.md +336 -0
  107. package/tech_hub_skills/roles/system-design/skills/08-process-automation/README.md +521 -0
  108. package/tech_hub_skills/skills/README.md +336 -0
  109. package/tech_hub_skills/skills/ai-engineer.md +104 -0
  110. package/tech_hub_skills/skills/azure.md +149 -0
  111. package/tech_hub_skills/skills/code-review.md +399 -0
  112. package/tech_hub_skills/skills/compliance-automation.md +747 -0
  113. package/tech_hub_skills/skills/data-engineer.md +113 -0
  114. package/tech_hub_skills/skills/data-governance.md +102 -0
  115. package/tech_hub_skills/skills/data-scientist.md +123 -0
  116. package/tech_hub_skills/skills/devops.md +160 -0
  117. package/tech_hub_skills/skills/docker.md +160 -0
  118. package/tech_hub_skills/skills/enterprise-dashboard.md +613 -0
  119. package/tech_hub_skills/skills/finops.md +184 -0
  120. package/tech_hub_skills/skills/ml-engineer.md +115 -0
  121. package/tech_hub_skills/skills/mlops.md +187 -0
  122. package/tech_hub_skills/skills/optimization-advisor.md +329 -0
  123. package/tech_hub_skills/skills/orchestrator.md +497 -0
  124. package/tech_hub_skills/skills/platform-engineer.md +102 -0
  125. package/tech_hub_skills/skills/process-automation.md +226 -0
  126. package/tech_hub_skills/skills/process-changelog.md +184 -0
  127. package/tech_hub_skills/skills/process-documentation.md +484 -0
  128. package/tech_hub_skills/skills/process-kanban.md +324 -0
  129. package/tech_hub_skills/skills/process-versioning.md +214 -0
  130. package/tech_hub_skills/skills/product-designer.md +104 -0
  131. package/tech_hub_skills/skills/project-starter.md +443 -0
  132. package/tech_hub_skills/skills/security-architect.md +135 -0
  133. package/tech_hub_skills/skills/system-design.md +126 -0
@@ -0,0 +1,521 @@
1
+ # Skill 8: Process Automation Analysis & Planning
2
+
3
+ ## Overview
4
+
5
+ A comprehensive skill for analyzing work processes, identifying automation opportunities, creating implementation plans, and mapping the right roles/skills to execute automation initiatives.
6
+
7
+ ## Connections
8
+
9
+ | Role | Connection Type | Purpose | Key Skills |
10
+ |------|----------------|---------|------------|
11
+ | **All Roles** | Downstream | Routes automation tasks to appropriate specialists | All skills |
12
+ | **Data Engineer** | Primary | Automates data pipelines, ETL, data quality | de-01, de-02, de-03 |
13
+ | **ML Engineer** | Primary | Automates model training, deployment, monitoring | ml-01, ml-02, ml-04 |
14
+ | **AI Engineer** | Primary | Automates content generation, RAG, agents | ai-01, ai-02, ai-03, ai-07 |
15
+ | **DevOps** | Primary | Automates CI/CD, infrastructure, deployments | do-01, do-03, do-04, do-08 |
16
+ | **Security Architect** | Supporting | Ensures compliance in automated processes | sa-01, sa-02, sa-06 |
17
+ | **Data Scientist** | Supporting | Analyzes process metrics, identifies patterns | ds-01, ds-08 |
18
+ | **FinOps** | Supporting | Cost analysis for automation ROI | fo-01, fo-03, fo-07 |
19
+ | **System Design** | Supporting | Architecture patterns for automation systems | sd-01, sd-05 |
20
+
21
+ ## Tools Included
22
+
23
+ ### 1. `process_analyzer.py`
24
+ Analyzes existing work processes to identify automation candidates.
25
+
26
+ **Features:**
27
+ - Process decomposition into steps and tasks
28
+ - Automation feasibility scoring (0-100)
29
+ - Bottleneck identification
30
+ - Time/cost analysis per process step
31
+ - Complexity classification (simple, moderate, complex, enterprise)
32
+
33
+ ### 2. `automation_recommender.py`
34
+ Recommends optimal automation strategies based on process characteristics.
35
+
36
+ **Features:**
37
+ - Automation pattern matching (RPA, workflow, ML-based, AI-powered)
38
+ - Tool and technology recommendations
39
+ - Build vs. buy analysis
40
+ - Risk assessment
41
+ - Priority ranking by ROI
42
+
43
+ ### 3. `role_matcher.py`
44
+ Maps processes to the most suitable roles and skills for implementation.
45
+
46
+ **Features:**
47
+ - Skill requirement extraction from process analysis
48
+ - Role affinity scoring
49
+ - Team composition recommendations
50
+ - Skill gap identification
51
+ - Cross-functional dependency mapping
52
+
53
+ ### 4. `plan_generator.py`
54
+ Generates comprehensive automation implementation plans.
55
+
56
+ **Features:**
57
+ - Phase-based implementation roadmap
58
+ - Milestone and deliverable definitions
59
+ - Resource requirements
60
+ - Risk mitigation strategies
61
+ - Documentation templates (ADRs, PRDs, technical specs)
62
+
63
+ ### 5. `process_parser.py` (AI-Ready)
64
+ Parses natural language process descriptions for AI-driven analysis.
65
+
66
+ **Features:**
67
+ - Markdown and plain text parsing
68
+ - Automatic step extraction from numbered lists
69
+ - Pain point and bottleneck detection
70
+ - Tool and data source identification
71
+ - Confidence scoring for parsed data
72
+
73
+ ### 6. `ai_prompt_generator.py` (AI-Ready)
74
+ Generates optimized prompts for AI assistants (GitHub Copilot, Claude, ChatGPT).
75
+
76
+ **Features:**
77
+ - Multiple prompt styles (Copilot, Structured, Step-by-step)
78
+ - Configurable analysis depth
79
+ - Follow-up prompt suggestions
80
+ - Tech Hub context injection
81
+ - Implementation-ready code prompts
82
+
83
+ ### 7. `PROCESS_TEMPLATE.md`
84
+ Ready-to-use template for documenting processes for AI analysis.
85
+
86
+ ---
87
+
88
+ ## AI-Driven Automation Discovery
89
+
90
+ ### The Dynamic Workflow
91
+
92
+ This skill is designed to work seamlessly with AI assistants. Simply write your process in natural language, and the AI will suggest automation solutions.
93
+
94
+ ```
95
+ ┌─────────────────────┐
96
+ │ Write Process Doc │ ← Use PROCESS_TEMPLATE.md
97
+ │ (Natural Language) │
98
+ └──────────┬──────────┘
99
+
100
+ ┌─────────────────────┐
101
+ │ Process Parser │ ← Extracts structured data
102
+ │ (Automatic) │
103
+ └──────────┬──────────┘
104
+
105
+ ┌─────────────────────┐
106
+ │ AI Prompt Generator│ ← Creates optimized prompts
107
+ │ │
108
+ └──────────┬──────────┘
109
+
110
+ ┌─────────────────────┐
111
+ │ GitHub Copilot / │ ← Analyzes and suggests
112
+ │ Claude / ChatGPT │
113
+ └──────────┬──────────┘
114
+
115
+ ┌─────────────────────┐
116
+ │ Automation Plan + │ ← Ready to implement!
117
+ │ Code Snippets │
118
+ └─────────────────────┘
119
+ ```
120
+
121
+ ### Quick Start: VS Code + GitHub Copilot
122
+
123
+ **Method 1: One-Line Analysis**
124
+
125
+ ```python
126
+ from ai_prompt_generator import quick_analyze
127
+
128
+ # Paste your process description
129
+ process = """
130
+ # Monthly Invoice Processing
131
+ Every month we process 200+ invoices manually...
132
+ [Your full process description]
133
+ """
134
+
135
+ # Get the prompt for Copilot
136
+ prompt = quick_analyze(process)
137
+ print(prompt) # Copy this to Copilot Chat!
138
+ ```
139
+
140
+ **Method 2: Full Pipeline**
141
+
142
+ ```python
143
+ from process_parser import ProcessParser
144
+ from ai_prompt_generator import AIPromptGenerator, PromptStyle, AnalysisDepth
145
+
146
+ # 1. Parse your process documentation
147
+ parser = ProcessParser()
148
+ with open('my_process.md', 'r') as f:
149
+ parsed = parser.parse(f.read())
150
+
151
+ # 2. Generate AI prompt
152
+ generator = AIPromptGenerator()
153
+ result = generator.generate_discovery_prompt(
154
+ parsed,
155
+ style=PromptStyle.COPILOT,
156
+ depth=AnalysisDepth.IMPLEMENTATION
157
+ )
158
+
159
+ # 3. Use the prompt
160
+ print(result.prompt) # Main prompt for Copilot
161
+ print(result.follow_up_prompts) # Follow-up questions
162
+ ```
163
+
164
+ **Method 3: Direct Template**
165
+
166
+ 1. Copy `PROCESS_TEMPLATE.md` to your project
167
+ 2. Fill in your process details
168
+ 3. Open GitHub Copilot Chat
169
+ 4. Paste the entire document and ask:
170
+ > "Analyze this process and suggest automation solutions"
171
+
172
+ ### Prompt Styles
173
+
174
+ | Style | Best For | Output |
175
+ |-------|----------|--------|
176
+ | `COPILOT` | VS Code GitHub Copilot | Structured with code snippets |
177
+ | `STRUCTURED` | JSON/YAML workflows | Machine-readable format |
178
+ | `STEP_BY_STEP` | Complex processes | Iterative deep dive |
179
+ | `DETAILED` | Comprehensive analysis | Full documentation |
180
+ | `CONVERSATIONAL` | Exploration | Chat-style discovery |
181
+
182
+ ### Analysis Depths
183
+
184
+ | Depth | Time | Output |
185
+ |-------|------|--------|
186
+ | `QUICK` | ~1 min | Top 3 opportunities |
187
+ | `STANDARD` | ~3 min | Balanced analysis |
188
+ | `DEEP` | ~5 min | Edge cases, optimization |
189
+ | `IMPLEMENTATION` | ~10 min | Production-ready code |
190
+
191
+ ---
192
+
193
+ ## Automation Patterns
194
+
195
+ ### Pattern Categories
196
+
197
+ | Pattern | Use When | Primary Role | Complexity |
198
+ |---------|----------|--------------|------------|
199
+ | **RPA (Robotic Process Automation)** | Repetitive, rule-based tasks | DevOps | Low |
200
+ | **Workflow Automation** | Multi-step business processes | Data Engineer | Medium |
201
+ | **Data Pipeline Automation** | ETL/ELT, data quality | Data Engineer | Medium |
202
+ | **ML-Based Automation** | Prediction, classification tasks | ML Engineer | High |
203
+ | **AI-Powered Automation** | Content generation, reasoning | AI Engineer | High |
204
+ | **Infrastructure Automation** | Provisioning, scaling | DevOps | Medium |
205
+ | **Security Automation** | Compliance, monitoring | Security Architect | Medium |
206
+
207
+ ### Decision Matrix
208
+
209
+ ```
210
+ Process Characteristics → Recommended Automation
211
+
212
+ High Volume + Low Complexity → RPA
213
+ High Volume + Medium Complexity → Workflow Automation
214
+ Data-Centric + Transformations → Data Pipeline
215
+ Prediction Required → ML-Based
216
+ Natural Language/Content → AI-Powered
217
+ Infrastructure Related → IaC/DevOps
218
+ Security/Compliance → Security Automation
219
+ ```
220
+
221
+ ## Quick Start
222
+
223
+ ```python
224
+ from process_analyzer import ProcessAnalyzer
225
+ from automation_recommender import AutomationRecommender
226
+ from role_matcher import RoleMatcher
227
+ from plan_generator import PlanGenerator
228
+
229
+ # 1. Analyze the process
230
+ analyzer = ProcessAnalyzer()
231
+ analysis = analyzer.analyze_process(
232
+ name="Monthly Report Generation",
233
+ description="Generate monthly sales reports from multiple data sources",
234
+ steps=[
235
+ {"name": "Extract data from CRM", "time_minutes": 30, "manual": True},
236
+ {"name": "Extract data from ERP", "time_minutes": 45, "manual": True},
237
+ {"name": "Merge and clean data", "time_minutes": 60, "manual": True},
238
+ {"name": "Calculate metrics", "time_minutes": 30, "manual": True},
239
+ {"name": "Generate visualizations", "time_minutes": 45, "manual": True},
240
+ {"name": "Write summary", "time_minutes": 60, "manual": True},
241
+ {"name": "Review and send", "time_minutes": 30, "manual": True}
242
+ ],
243
+ frequency="monthly",
244
+ stakeholders=["Sales", "Finance", "Executive"]
245
+ )
246
+
247
+ # 2. Get automation recommendations
248
+ recommender = AutomationRecommender()
249
+ recommendations = recommender.recommend(analysis)
250
+
251
+ # 3. Match to roles and skills
252
+ matcher = RoleMatcher()
253
+ team = matcher.match_roles(analysis, recommendations)
254
+
255
+ # 4. Generate implementation plan
256
+ planner = PlanGenerator()
257
+ plan = planner.generate_plan(
258
+ analysis=analysis,
259
+ recommendations=recommendations,
260
+ team_composition=team
261
+ )
262
+
263
+ # Output the plan
264
+ print(plan.to_markdown())
265
+ ```
266
+
267
+ ## Output Example
268
+
269
+ ```markdown
270
+ # Automation Plan: Monthly Report Generation
271
+
272
+ ## Executive Summary
273
+ - **Automation Potential**: 85/100
274
+ - **Estimated Time Savings**: 4.5 hours/month
275
+ - **Recommended Approach**: Data Pipeline + AI-Powered
276
+
277
+ ## Recommended Team
278
+ | Role | Skills Required | Effort |
279
+ |------|-----------------|--------|
280
+ | Data Engineer | de-02 (ETL), de-03 (Quality) | 60% |
281
+ | AI Engineer | ai-01 (Prompts), ai-07 (LLM API) | 30% |
282
+ | DevOps | do-01 (CI/CD), do-08 (Monitoring) | 10% |
283
+
284
+ ## Implementation Phases
285
+ ### Phase 1: Data Pipeline (Week 1-2)
286
+ - Set up automated data extraction from CRM/ERP
287
+ - Implement data quality checks
288
+ - Create merge and transformation logic
289
+
290
+ ### Phase 2: Analytics Automation (Week 3)
291
+ - Automate metric calculations
292
+ - Set up visualization generation
293
+ - Configure scheduled runs
294
+
295
+ ### Phase 3: AI Integration (Week 4)
296
+ - Implement LLM-based summary generation
297
+ - Add quality checks for generated content
298
+ - Set up review workflow
299
+
300
+ ## Success Metrics
301
+ - Report generation time < 30 minutes
302
+ - Manual intervention < 10%
303
+ - Stakeholder satisfaction > 4/5
304
+ ```
305
+
306
+ ## Process Complexity Levels
307
+
308
+ ### Simple (Automation Score: 80-100)
309
+ - Linear workflow, few decision points
310
+ - Standard data formats
311
+ - Single system involved
312
+ - **Time to automate**: Days to 1 week
313
+
314
+ ### Moderate (Automation Score: 60-79)
315
+ - Some branching logic
316
+ - Multiple data sources
317
+ - Moderate transformations
318
+ - **Time to automate**: 1-2 weeks
319
+
320
+ ### Complex (Automation Score: 40-59)
321
+ - Many decision points
322
+ - Unstructured data handling
323
+ - Multiple system integrations
324
+ - ML/AI components needed
325
+ - **Time to automate**: 2-4 weeks
326
+
327
+ ### Enterprise (Automation Score: 20-39)
328
+ - Cross-departmental processes
329
+ - Compliance requirements
330
+ - Legacy system integration
331
+ - Human-in-the-loop required
332
+ - **Time to automate**: 1-3 months
333
+
334
+ ## Integration with Tech Hub Skills
335
+
336
+ This skill connects to all other Tech Hub skills through the central orchestrator:
337
+
338
+ ```mermaid
339
+ graph TB
340
+ PA[Process Automation<br/>sd-08] --> Analysis{Process<br/>Analysis}
341
+
342
+ Analysis --> |Data-Centric| DE[Data Engineer<br/>de-01, de-02, de-03]
343
+ Analysis --> |ML Required| ML[ML Engineer<br/>ml-01, ml-04]
344
+ Analysis --> |AI/Content| AI[AI Engineer<br/>ai-01, ai-03, ai-07]
345
+ Analysis --> |Infrastructure| DO[DevOps<br/>do-01, do-03]
346
+ Analysis --> |Security| SA[Security Architect<br/>sa-01, sa-02]
347
+ Analysis --> |Analytics| DS[Data Scientist<br/>ds-01, ds-08]
348
+
349
+ DE --> |Pipeline Ready| MO[MLOps<br/>mo-01]
350
+ ML --> MO
351
+ AI --> MO
352
+
353
+ MO --> |Deployed| FO[FinOps<br/>fo-01, fo-07]
354
+ ```
355
+
356
+ ## Best Practices
357
+
358
+ ### Process Analysis
359
+ 1. **Start with observation** - Document current state before recommending changes
360
+ 2. **Measure everything** - Capture time, cost, error rates for each step
361
+ 3. **Identify stakeholders** - Understand who benefits and who's impacted
362
+ 4. **Find the bottlenecks** - Focus automation on highest-impact areas
363
+
364
+ ### Automation Selection
365
+ 1. **Start simple** - Automate easy wins first to build momentum
366
+ 2. **Consider maintenance** - Factor in ongoing operational costs
367
+ 3. **Plan for exceptions** - Design graceful fallbacks for edge cases
368
+ 4. **Security first** - Involve Security Architect early for sensitive processes
369
+
370
+ ### Implementation
371
+ 1. **Iterate incrementally** - Automate in phases, not all at once
372
+ 2. **Keep humans in the loop** - Maintain oversight for critical decisions
373
+ 3. **Monitor continuously** - Set up alerts for automation failures
374
+ 4. **Document thoroughly** - Future maintainers will thank you
375
+
376
+ ## Metrics & KPIs
377
+
378
+ | Metric | Description | Target |
379
+ |--------|-------------|--------|
380
+ | **Time Saved** | Hours saved per execution | >70% reduction |
381
+ | **Error Rate** | Errors per 100 executions | <5% |
382
+ | **Adoption Rate** | % of processes automated | >60% candidates |
383
+ | **ROI** | (Value gained - Cost) / Cost | >200% Year 1 |
384
+ | **MTTR** | Mean time to resolve failures | <30 minutes |
385
+
386
+ ## Related Skills
387
+
388
+ - `sd-01`: Architecture Pattern Selection
389
+ - `sd-02`: Requirements Engineering
390
+ - `sd-05`: Cost Optimization Design
391
+ - `de-02`: ETL/ELT Pipeline Orchestration
392
+ - `ml-01`: MLOps Pipeline Automation
393
+ - `ai-03`: LLM Agent Orchestration
394
+ - `do-01`: CI/CD Pipeline Design
395
+
396
+ ---
397
+
398
+ ## Advanced AI Workflows
399
+
400
+ ### Comparing Automation Approaches
401
+
402
+ ```python
403
+ from process_parser import ProcessParser
404
+ from ai_prompt_generator import AIPromptGenerator
405
+
406
+ parser = ProcessParser()
407
+ parsed = parser.parse(process_doc)
408
+
409
+ generator = AIPromptGenerator()
410
+ comparison = generator.generate_comparison_prompt(
411
+ parsed,
412
+ approaches=[
413
+ "Azure Logic Apps + Power Automate",
414
+ "Python + Airflow",
415
+ "Azure Data Factory",
416
+ "Custom microservices"
417
+ ]
418
+ )
419
+
420
+ print(comparison.prompt) # Asks AI to compare approaches
421
+ ```
422
+
423
+ ### Getting Implementation Code
424
+
425
+ ```python
426
+ # Get code for a specific step
427
+ impl_prompt = generator.generate_implementation_prompt(
428
+ parsed,
429
+ target_step=2, # Step number to implement
430
+ technology="python" # Or "terraform", "sql", etc.
431
+ )
432
+
433
+ print(impl_prompt.prompt) # Paste in Copilot for working code
434
+ ```
435
+
436
+ ### Iterative Refinement
437
+
438
+ The AI-driven workflow supports iterative refinement:
439
+
440
+ 1. **Initial Analysis** → Get broad automation suggestions
441
+ 2. **Deep Dive** → Ask follow-up questions on specific areas
442
+ 3. **Implementation** → Request code for chosen approach
443
+ 4. **Review** → Ask AI to review and improve code
444
+ 5. **Documentation** → Generate ADRs, runbooks, tests
445
+
446
+ ### Example: Full Automation Discovery Session
447
+
448
+ ```python
449
+ # Session workflow
450
+ from process_parser import ProcessParser
451
+ from ai_prompt_generator import AIPromptGenerator, PromptStyle, AnalysisDepth
452
+
453
+ # Step 1: Document your process
454
+ process_doc = open('my_process.md').read()
455
+
456
+ # Step 2: Parse and analyze
457
+ parser = ProcessParser()
458
+ parsed = parser.parse(process_doc)
459
+
460
+ print(f"Parsed {len(parsed.steps)} steps with {parsed.confidence_score}% confidence")
461
+ print(f"Pain points detected: {parsed.pain_points}")
462
+ print(f"Tools found: {parsed.current_tools}")
463
+
464
+ # Step 3: Generate discovery prompt
465
+ generator = AIPromptGenerator()
466
+ discovery = generator.generate_discovery_prompt(
467
+ parsed,
468
+ style=PromptStyle.COPILOT,
469
+ depth=AnalysisDepth.STANDARD
470
+ )
471
+
472
+ print("=" * 50)
473
+ print("PASTE THIS INTO GITHUB COPILOT CHAT:")
474
+ print("=" * 50)
475
+ print(discovery.prompt)
476
+
477
+ # Step 4: After getting response, use follow-ups
478
+ print("\nFOLLOW-UP QUESTIONS:")
479
+ for q in discovery.follow_up_prompts:
480
+ print(f" → {q}")
481
+
482
+ # Step 5: Request implementation for chosen approach
483
+ impl = generator.generate_implementation_prompt(
484
+ parsed,
485
+ target_step=1,
486
+ technology="python"
487
+ )
488
+ ```
489
+
490
+ ### Integration with Existing Tools
491
+
492
+ The AI prompt generator includes Tech Hub context, so responses will reference:
493
+
494
+ - Relevant Tech Hub skills (de-01, ai-02, ml-04, etc.)
495
+ - Azure-native services
496
+ - Production-ready patterns
497
+ - Team role recommendations
498
+
499
+ This ensures AI suggestions align with your organization's capabilities.
500
+
501
+ ---
502
+
503
+ ## File Reference
504
+
505
+ | File | Purpose | When to Use |
506
+ |------|---------|-------------|
507
+ | `PROCESS_TEMPLATE.md` | Document your process | Starting point - copy and fill in |
508
+ | `process_parser.py` | Parse documentation | Automatic - called by other tools |
509
+ | `ai_prompt_generator.py` | Generate AI prompts | When using Copilot/Claude/ChatGPT |
510
+ | `process_analyzer.py` | Structured analysis | For programmatic analysis |
511
+ | `automation_recommender.py` | Strategy recommendations | After analysis |
512
+ | `role_matcher.py` | Team composition | When planning implementation |
513
+ | `plan_generator.py` | Full implementation plan | Final planning step |
514
+
515
+ ---
516
+
517
+ **Skill ID**: `sd-08`
518
+ **Complexity**: Medium
519
+ **Dependencies**: `sd-01`, `sd-02`
520
+ **Estimated Time**: 2-8 hours (per process analysis)
521
+ **Business Value**: High