@ruaruababa/vibe-kit 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (462) hide show
  1. package/CATALOG.md +317 -0
  2. package/README.md +121 -0
  3. package/aliases.json +65 -0
  4. package/bin/vibe.js +2 -0
  5. package/bundles.json +265 -0
  6. package/catalog.json +1560 -0
  7. package/dist/antigravity-skills/bin/cli.js +438 -0
  8. package/dist/antigravity-skills/lib/skill-utils.js +158 -0
  9. package/dist/antigravity-skills/scripts/build-catalog.js +305 -0
  10. package/dist/antigravity-skills/scripts/normalize-frontmatter.js +144 -0
  11. package/dist/antigravity-skills/scripts/validate-skills.js +230 -0
  12. package/dist/bin/vibe.js +2 -0
  13. package/dist/dist/src/cli/index.js +26 -0
  14. package/dist/lib/skill-utils.js +158 -0
  15. package/dist/scripts/build-catalog.js +50 -0
  16. package/dist/scripts/normalize-frontmatter.js +144 -0
  17. package/dist/scripts/validate-skills.js +56 -0
  18. package/dist/src/cli/index.js +146 -0
  19. package/dist/src/types/index.js +13 -0
  20. package/dist/src/utils/fs.js +1 -0
  21. package/package.json +43 -0
  22. package/skills/accessibility-compliance-accessibility-audit/SKILL.md +42 -0
  23. package/skills/accessibility-compliance-accessibility-audit/resources/implementation-playbook.md +502 -0
  24. package/skills/agent-orchestration-improve-agent/SKILL.md +349 -0
  25. package/skills/agent-orchestration-multi-agent-optimize/SKILL.md +239 -0
  26. package/skills/agent-orchestrator/SKILL.md +24 -0
  27. package/skills/ai-engineer/SKILL.md +171 -0
  28. package/skills/airflow-dag-patterns/SKILL.md +41 -0
  29. package/skills/airflow-dag-patterns/resources/implementation-playbook.md +509 -0
  30. package/skills/angular-migration/SKILL.md +428 -0
  31. package/skills/anti-reversing-techniques/SKILL.md +42 -0
  32. package/skills/anti-reversing-techniques/resources/implementation-playbook.md +539 -0
  33. package/skills/api-design-principles/SKILL.md +37 -0
  34. package/skills/api-design-principles/assets/api-design-checklist.md +155 -0
  35. package/skills/api-design-principles/assets/rest-api-template.py +182 -0
  36. package/skills/api-design-principles/references/graphql-schema-design.md +583 -0
  37. package/skills/api-design-principles/references/rest-best-practices.md +408 -0
  38. package/skills/api-design-principles/resources/implementation-playbook.md +513 -0
  39. package/skills/api-documenter/SKILL.md +184 -0
  40. package/skills/api-testing-observability-api-mock/SKILL.md +46 -0
  41. package/skills/api-testing-observability-api-mock/resources/implementation-playbook.md +1327 -0
  42. package/skills/application-performance-performance-optimization/SKILL.md +154 -0
  43. package/skills/architect-review/SKILL.md +174 -0
  44. package/skills/architecture-decision-records/SKILL.md +441 -0
  45. package/skills/architecture-patterns/SKILL.md +37 -0
  46. package/skills/architecture-patterns/resources/implementation-playbook.md +479 -0
  47. package/skills/arm-cortex-expert/SKILL.md +306 -0
  48. package/skills/async-python-patterns/SKILL.md +39 -0
  49. package/skills/async-python-patterns/resources/implementation-playbook.md +678 -0
  50. package/skills/attack-tree-construction/SKILL.md +38 -0
  51. package/skills/attack-tree-construction/resources/implementation-playbook.md +671 -0
  52. package/skills/auth-implementation-patterns/SKILL.md +39 -0
  53. package/skills/auth-implementation-patterns/resources/implementation-playbook.md +618 -0
  54. package/skills/backend-architect/SKILL.md +333 -0
  55. package/skills/backend-development-feature-development/SKILL.md +180 -0
  56. package/skills/backend-security-coder/SKILL.md +156 -0
  57. package/skills/backtesting-frameworks/SKILL.md +39 -0
  58. package/skills/backtesting-frameworks/resources/implementation-playbook.md +647 -0
  59. package/skills/bash-defensive-patterns/SKILL.md +43 -0
  60. package/skills/bash-defensive-patterns/resources/implementation-playbook.md +517 -0
  61. package/skills/bash-pro/SKILL.md +310 -0
  62. package/skills/bats-testing-patterns/SKILL.md +34 -0
  63. package/skills/bats-testing-patterns/resources/implementation-playbook.md +614 -0
  64. package/skills/bazel-build-optimization/SKILL.md +397 -0
  65. package/skills/billing-automation/SKILL.md +42 -0
  66. package/skills/billing-automation/resources/implementation-playbook.md +544 -0
  67. package/skills/binary-analysis-patterns/SKILL.md +450 -0
  68. package/skills/blockchain-developer/SKILL.md +208 -0
  69. package/skills/business-analyst/SKILL.md +182 -0
  70. package/skills/c-pro/SKILL.md +56 -0
  71. package/skills/c4-architecture-c4-architecture/SKILL.md +389 -0
  72. package/skills/c4-code/SKILL.md +244 -0
  73. package/skills/c4-component/SKILL.md +153 -0
  74. package/skills/c4-container/SKILL.md +171 -0
  75. package/skills/c4-context/SKILL.md +150 -0
  76. package/skills/changelog-automation/SKILL.md +38 -0
  77. package/skills/changelog-automation/resources/implementation-playbook.md +538 -0
  78. package/skills/cicd-automation-workflow-automate/SKILL.md +51 -0
  79. package/skills/cicd-automation-workflow-automate/resources/implementation-playbook.md +1333 -0
  80. package/skills/clean-markdown/SKILL.md +23 -0
  81. package/skills/cloud-architect/SKILL.md +135 -0
  82. package/skills/code-documentation-code-explain/SKILL.md +46 -0
  83. package/skills/code-documentation-code-explain/resources/implementation-playbook.md +802 -0
  84. package/skills/code-documentation-doc-generate/SKILL.md +48 -0
  85. package/skills/code-documentation-doc-generate/resources/implementation-playbook.md +640 -0
  86. package/skills/code-refactoring-context-restore/SKILL.md +179 -0
  87. package/skills/code-refactoring-refactor-clean/SKILL.md +51 -0
  88. package/skills/code-refactoring-refactor-clean/resources/implementation-playbook.md +879 -0
  89. package/skills/code-refactoring-tech-debt/SKILL.md +386 -0
  90. package/skills/code-review-ai-ai-review/SKILL.md +450 -0
  91. package/skills/code-review-excellence/SKILL.md +40 -0
  92. package/skills/code-review-excellence/resources/implementation-playbook.md +515 -0
  93. package/skills/code-reviewer/SKILL.md +178 -0
  94. package/skills/codebase-cleanup-deps-audit/SKILL.md +51 -0
  95. package/skills/codebase-cleanup-deps-audit/resources/implementation-playbook.md +766 -0
  96. package/skills/codebase-cleanup-refactor-clean/SKILL.md +51 -0
  97. package/skills/codebase-cleanup-refactor-clean/resources/implementation-playbook.md +879 -0
  98. package/skills/codebase-cleanup-tech-debt/SKILL.md +386 -0
  99. package/skills/competitive-landscape/SKILL.md +34 -0
  100. package/skills/competitive-landscape/resources/implementation-playbook.md +494 -0
  101. package/skills/comprehensive-review-full-review/SKILL.md +146 -0
  102. package/skills/comprehensive-review-pr-enhance/SKILL.md +46 -0
  103. package/skills/comprehensive-review-pr-enhance/resources/implementation-playbook.md +691 -0
  104. package/skills/conductor-implement/SKILL.md +388 -0
  105. package/skills/conductor-manage/SKILL.md +39 -0
  106. package/skills/conductor-manage/resources/implementation-playbook.md +1120 -0
  107. package/skills/conductor-new-track/SKILL.md +433 -0
  108. package/skills/conductor-revert/SKILL.md +372 -0
  109. package/skills/conductor-setup/SKILL.md +426 -0
  110. package/skills/conductor-status/SKILL.md +338 -0
  111. package/skills/conductor-validator/SKILL.md +62 -0
  112. package/skills/content-marketer/SKILL.md +170 -0
  113. package/skills/context-driven-development/SKILL.md +400 -0
  114. package/skills/context-management-context-restore/SKILL.md +179 -0
  115. package/skills/context-management-context-save/SKILL.md +177 -0
  116. package/skills/context-manager/SKILL.md +185 -0
  117. package/skills/cost-optimization/SKILL.md +286 -0
  118. package/skills/cpp-pro/SKILL.md +59 -0
  119. package/skills/cqrs-implementation/SKILL.md +35 -0
  120. package/skills/cqrs-implementation/resources/implementation-playbook.md +540 -0
  121. package/skills/csharp-pro/SKILL.md +59 -0
  122. package/skills/customer-support/SKILL.md +170 -0
  123. package/skills/data-engineer/SKILL.md +224 -0
  124. package/skills/data-engineering-data-driven-feature/SKILL.md +182 -0
  125. package/skills/data-engineering-data-pipeline/SKILL.md +201 -0
  126. package/skills/data-quality-frameworks/SKILL.md +40 -0
  127. package/skills/data-quality-frameworks/resources/implementation-playbook.md +573 -0
  128. package/skills/data-scientist/SKILL.md +199 -0
  129. package/skills/data-storytelling/SKILL.md +465 -0
  130. package/skills/database-admin/SKILL.md +165 -0
  131. package/skills/database-architect/SKILL.md +268 -0
  132. package/skills/database-cloud-optimization-cost-optimize/SKILL.md +44 -0
  133. package/skills/database-cloud-optimization-cost-optimize/resources/implementation-playbook.md +1441 -0
  134. package/skills/database-migration/SKILL.md +436 -0
  135. package/skills/database-migrations-migration-observability/SKILL.md +420 -0
  136. package/skills/database-migrations-sql-migrations/SKILL.md +53 -0
  137. package/skills/database-migrations-sql-migrations/resources/implementation-playbook.md +499 -0
  138. package/skills/database-optimizer/SKILL.md +167 -0
  139. package/skills/dbt-transformation-patterns/SKILL.md +34 -0
  140. package/skills/dbt-transformation-patterns/resources/implementation-playbook.md +547 -0
  141. package/skills/debugger/SKILL.md +49 -0
  142. package/skills/debugging-strategies/SKILL.md +34 -0
  143. package/skills/debugging-strategies/resources/implementation-playbook.md +511 -0
  144. package/skills/debugging-toolkit-smart-debug/SKILL.md +197 -0
  145. package/skills/defi-protocol-templates/SKILL.md +466 -0
  146. package/skills/dependency-management-deps-audit/SKILL.md +44 -0
  147. package/skills/dependency-management-deps-audit/resources/implementation-playbook.md +766 -0
  148. package/skills/dependency-upgrade/SKILL.md +421 -0
  149. package/skills/deployment-engineer/SKILL.md +170 -0
  150. package/skills/deployment-pipeline-design/SKILL.md +371 -0
  151. package/skills/deployment-validation-config-validate/SKILL.md +496 -0
  152. package/skills/devops-troubleshooter/SKILL.md +161 -0
  153. package/skills/distributed-debugging-debug-trace/SKILL.md +44 -0
  154. package/skills/distributed-debugging-debug-trace/resources/implementation-playbook.md +1307 -0
  155. package/skills/distributed-tracing/SKILL.md +450 -0
  156. package/skills/django-pro/SKILL.md +180 -0
  157. package/skills/docs-architect/SKILL.md +98 -0
  158. package/skills/documentation-generation-doc-generate/SKILL.md +48 -0
  159. package/skills/documentation-generation-doc-generate/resources/implementation-playbook.md +640 -0
  160. package/skills/dotnet-architect/SKILL.md +197 -0
  161. package/skills/dotnet-backend-patterns/SKILL.md +37 -0
  162. package/skills/dotnet-backend-patterns/assets/repository-template.cs +523 -0
  163. package/skills/dotnet-backend-patterns/assets/service-template.cs +336 -0
  164. package/skills/dotnet-backend-patterns/references/dapper-patterns.md +544 -0
  165. package/skills/dotnet-backend-patterns/references/ef-core-best-practices.md +355 -0
  166. package/skills/dotnet-backend-patterns/resources/implementation-playbook.md +799 -0
  167. package/skills/dummy-skill/SKILL.md +5 -0
  168. package/skills/dx-optimizer/SKILL.md +83 -0
  169. package/skills/e2e-testing-patterns/SKILL.md +41 -0
  170. package/skills/e2e-testing-patterns/resources/implementation-playbook.md +531 -0
  171. package/skills/elixir-pro/SKILL.md +59 -0
  172. package/skills/embedding-strategies/SKILL.md +491 -0
  173. package/skills/employment-contract-templates/SKILL.md +39 -0
  174. package/skills/employment-contract-templates/resources/implementation-playbook.md +493 -0
  175. package/skills/error-debugging-error-analysis/SKILL.md +47 -0
  176. package/skills/error-debugging-error-analysis/resources/implementation-playbook.md +1143 -0
  177. package/skills/error-debugging-error-trace/SKILL.md +43 -0
  178. package/skills/error-debugging-error-trace/resources/implementation-playbook.md +1361 -0
  179. package/skills/error-debugging-multi-agent-review/SKILL.md +216 -0
  180. package/skills/error-detective/SKILL.md +53 -0
  181. package/skills/error-diagnostics-error-analysis/SKILL.md +47 -0
  182. package/skills/error-diagnostics-error-analysis/resources/implementation-playbook.md +1143 -0
  183. package/skills/error-diagnostics-error-trace/SKILL.md +48 -0
  184. package/skills/error-diagnostics-error-trace/resources/implementation-playbook.md +1371 -0
  185. package/skills/error-diagnostics-smart-debug/SKILL.md +197 -0
  186. package/skills/error-handling-patterns/SKILL.md +35 -0
  187. package/skills/error-handling-patterns/resources/implementation-playbook.md +635 -0
  188. package/skills/event-sourcing-architect/SKILL.md +58 -0
  189. package/skills/event-store-design/SKILL.md +449 -0
  190. package/skills/fastapi-pro/SKILL.md +192 -0
  191. package/skills/fastapi-templates/SKILL.md +32 -0
  192. package/skills/fastapi-templates/resources/implementation-playbook.md +566 -0
  193. package/skills/final-test/SKILL.md +5 -0
  194. package/skills/firmware-analyst/SKILL.md +320 -0
  195. package/skills/flutter-expert/SKILL.md +200 -0
  196. package/skills/framework-migration-code-migrate/SKILL.md +48 -0
  197. package/skills/framework-migration-code-migrate/resources/implementation-playbook.md +1052 -0
  198. package/skills/framework-migration-deps-upgrade/SKILL.md +48 -0
  199. package/skills/framework-migration-deps-upgrade/resources/implementation-playbook.md +755 -0
  200. package/skills/framework-migration-legacy-modernize/SKILL.md +132 -0
  201. package/skills/frontend-developer/SKILL.md +171 -0
  202. package/skills/frontend-mobile-development-component-scaffold/SKILL.md +403 -0
  203. package/skills/frontend-mobile-security-xss-scan/SKILL.md +322 -0
  204. package/skills/frontend-security-coder/SKILL.md +170 -0
  205. package/skills/full-stack-orchestration-full-stack-feature/SKILL.md +135 -0
  206. package/skills/gdpr-data-handling/SKILL.md +33 -0
  207. package/skills/gdpr-data-handling/resources/implementation-playbook.md +615 -0
  208. package/skills/git-advanced-workflows/SKILL.md +412 -0
  209. package/skills/git-pr-workflows-git-workflow/SKILL.md +140 -0
  210. package/skills/git-pr-workflows-onboard/SKILL.md +416 -0
  211. package/skills/git-pr-workflows-pr-enhance/SKILL.md +48 -0
  212. package/skills/git-pr-workflows-pr-enhance/resources/implementation-playbook.md +701 -0
  213. package/skills/github-actions-templates/SKILL.md +345 -0
  214. package/skills/gitlab-ci-patterns/SKILL.md +283 -0
  215. package/skills/gitops-workflow/SKILL.md +303 -0
  216. package/skills/gitops-workflow/references/argocd-setup.md +134 -0
  217. package/skills/gitops-workflow/references/sync-policies.md +131 -0
  218. package/skills/go-concurrency-patterns/SKILL.md +33 -0
  219. package/skills/go-concurrency-patterns/resources/implementation-playbook.md +654 -0
  220. package/skills/godot-gdscript-patterns/SKILL.md +33 -0
  221. package/skills/godot-gdscript-patterns/resources/implementation-playbook.md +804 -0
  222. package/skills/golang-pro/SKILL.md +179 -0
  223. package/skills/grafana-dashboards/SKILL.md +381 -0
  224. package/skills/graphql-architect/SKILL.md +182 -0
  225. package/skills/haskell-pro/SKILL.md +56 -0
  226. package/skills/helm-chart-scaffolding/SKILL.md +34 -0
  227. package/skills/helm-chart-scaffolding/assets/Chart.yaml.template +42 -0
  228. package/skills/helm-chart-scaffolding/assets/values.yaml.template +185 -0
  229. package/skills/helm-chart-scaffolding/references/chart-structure.md +500 -0
  230. package/skills/helm-chart-scaffolding/resources/implementation-playbook.md +543 -0
  231. package/skills/helm-chart-scaffolding/scripts/validate-chart.sh +244 -0
  232. package/skills/hr-pro/SKILL.md +126 -0
  233. package/skills/hybrid-cloud-architect/SKILL.md +168 -0
  234. package/skills/hybrid-cloud-networking/SKILL.md +238 -0
  235. package/skills/hybrid-search-implementation/SKILL.md +32 -0
  236. package/skills/hybrid-search-implementation/resources/implementation-playbook.md +567 -0
  237. package/skills/incident-responder/SKILL.md +213 -0
  238. package/skills/incident-response-incident-response/SKILL.md +168 -0
  239. package/skills/incident-response-smart-fix/SKILL.md +29 -0
  240. package/skills/incident-response-smart-fix/resources/implementation-playbook.md +838 -0
  241. package/skills/incident-runbook-templates/SKILL.md +395 -0
  242. package/skills/ios-developer/SKILL.md +219 -0
  243. package/skills/istio-traffic-management/SKILL.md +337 -0
  244. package/skills/java-pro/SKILL.md +177 -0
  245. package/skills/javascript-pro/SKILL.md +57 -0
  246. package/skills/javascript-testing-patterns/SKILL.md +35 -0
  247. package/skills/javascript-testing-patterns/resources/implementation-playbook.md +1024 -0
  248. package/skills/javascript-typescript-typescript-scaffold/SKILL.md +361 -0
  249. package/skills/julia-pro/SKILL.md +209 -0
  250. package/skills/k8s-manifest-generator/SKILL.md +35 -0
  251. package/skills/k8s-manifest-generator/assets/configmap-template.yaml +296 -0
  252. package/skills/k8s-manifest-generator/assets/deployment-template.yaml +203 -0
  253. package/skills/k8s-manifest-generator/assets/service-template.yaml +171 -0
  254. package/skills/k8s-manifest-generator/references/deployment-spec.md +753 -0
  255. package/skills/k8s-manifest-generator/references/service-spec.md +724 -0
  256. package/skills/k8s-manifest-generator/resources/implementation-playbook.md +510 -0
  257. package/skills/k8s-security-policies/SKILL.md +346 -0
  258. package/skills/k8s-security-policies/assets/network-policy-template.yaml +177 -0
  259. package/skills/k8s-security-policies/references/rbac-patterns.md +187 -0
  260. package/skills/kpi-dashboard-design/SKILL.md +440 -0
  261. package/skills/kubernetes-architect/SKILL.md +170 -0
  262. package/skills/langchain-architecture/SKILL.md +350 -0
  263. package/skills/legacy-modernizer/SKILL.md +53 -0
  264. package/skills/legal-advisor/SKILL.md +70 -0
  265. package/skills/linkerd-patterns/SKILL.md +321 -0
  266. package/skills/llm-application-dev-ai-assistant/SKILL.md +35 -0
  267. package/skills/llm-application-dev-ai-assistant/resources/implementation-playbook.md +1236 -0
  268. package/skills/llm-application-dev-langchain-agent/SKILL.md +246 -0
  269. package/skills/llm-application-dev-prompt-optimize/SKILL.md +37 -0
  270. package/skills/llm-application-dev-prompt-optimize/resources/implementation-playbook.md +591 -0
  271. package/skills/llm-evaluation/SKILL.md +483 -0
  272. package/skills/machine-learning-ops-ml-pipeline/SKILL.md +314 -0
  273. package/skills/malware-analyst/SKILL.md +247 -0
  274. package/skills/market-sizing-analysis/SKILL.md +425 -0
  275. package/skills/market-sizing-analysis/examples/saas-market-sizing.md +349 -0
  276. package/skills/market-sizing-analysis/references/data-sources.md +360 -0
  277. package/skills/memory-forensics/SKILL.md +491 -0
  278. package/skills/memory-safety-patterns/SKILL.md +33 -0
  279. package/skills/memory-safety-patterns/resources/implementation-playbook.md +603 -0
  280. package/skills/mermaid-expert/SKILL.md +59 -0
  281. package/skills/microservices-patterns/SKILL.md +35 -0
  282. package/skills/microservices-patterns/resources/implementation-playbook.md +607 -0
  283. package/skills/minecraft-bukkit-pro/SKILL.md +126 -0
  284. package/skills/ml-engineer/SKILL.md +168 -0
  285. package/skills/ml-pipeline-workflow/SKILL.md +257 -0
  286. package/skills/mlops-engineer/SKILL.md +219 -0
  287. package/skills/mobile-developer/SKILL.md +205 -0
  288. package/skills/mobile-security-coder/SKILL.md +184 -0
  289. package/skills/modern-javascript-patterns/SKILL.md +35 -0
  290. package/skills/modern-javascript-patterns/resources/implementation-playbook.md +910 -0
  291. package/skills/monorepo-architect/SKILL.md +61 -0
  292. package/skills/monorepo-management/SKILL.md +35 -0
  293. package/skills/monorepo-management/resources/implementation-playbook.md +621 -0
  294. package/skills/mtls-configuration/SKILL.md +359 -0
  295. package/skills/multi-cloud-architecture/SKILL.md +189 -0
  296. package/skills/multi-platform-apps-multi-platform/SKILL.md +203 -0
  297. package/skills/network-engineer/SKILL.md +169 -0
  298. package/skills/nextjs-app-router-patterns/SKILL.md +33 -0
  299. package/skills/nextjs-app-router-patterns/resources/implementation-playbook.md +543 -0
  300. package/skills/nft-standards/SKILL.md +395 -0
  301. package/skills/node-expert/SKILL.md +23 -0
  302. package/skills/nodejs-backend-patterns/SKILL.md +35 -0
  303. package/skills/nodejs-backend-patterns/resources/implementation-playbook.md +1019 -0
  304. package/skills/nx-workspace-patterns/SKILL.md +464 -0
  305. package/skills/observability-engineer/SKILL.md +237 -0
  306. package/skills/observability-monitoring-monitor-setup/SKILL.md +48 -0
  307. package/skills/observability-monitoring-monitor-setup/resources/implementation-playbook.md +505 -0
  308. package/skills/observability-monitoring-slo-implement/SKILL.md +43 -0
  309. package/skills/observability-monitoring-slo-implement/resources/implementation-playbook.md +1077 -0
  310. package/skills/on-call-handoff-patterns/SKILL.md +453 -0
  311. package/skills/openapi-spec-generation/SKILL.md +33 -0
  312. package/skills/openapi-spec-generation/resources/implementation-playbook.md +1027 -0
  313. package/skills/payment-integration/SKILL.md +77 -0
  314. package/skills/paypal-integration/SKILL.md +479 -0
  315. package/skills/pci-compliance/SKILL.md +478 -0
  316. package/skills/performance-engineer/SKILL.md +180 -0
  317. package/skills/performance-testing-review-ai-review/SKILL.md +450 -0
  318. package/skills/performance-testing-review-multi-agent-review/SKILL.md +216 -0
  319. package/skills/php-pro/SKILL.md +63 -0
  320. package/skills/posix-shell-pro/SKILL.md +304 -0
  321. package/skills/postgresql/SKILL.md +230 -0
  322. package/skills/postmortem-writing/SKILL.md +386 -0
  323. package/skills/projection-patterns/SKILL.md +33 -0
  324. package/skills/projection-patterns/resources/implementation-playbook.md +501 -0
  325. package/skills/prometheus-configuration/SKILL.md +404 -0
  326. package/skills/prompt-engineer/SKILL.md +272 -0
  327. package/skills/prompt-engineering-patterns/SKILL.md +213 -0
  328. package/skills/prompt-engineering-patterns/assets/few-shot-examples.json +106 -0
  329. package/skills/prompt-engineering-patterns/assets/prompt-template-library.md +246 -0
  330. package/skills/prompt-engineering-patterns/references/chain-of-thought.md +399 -0
  331. package/skills/prompt-engineering-patterns/references/few-shot-learning.md +369 -0
  332. package/skills/prompt-engineering-patterns/references/prompt-optimization.md +414 -0
  333. package/skills/prompt-engineering-patterns/references/prompt-templates.md +470 -0
  334. package/skills/prompt-engineering-patterns/references/system-prompts.md +189 -0
  335. package/skills/prompt-engineering-patterns/scripts/optimize-prompt.py +279 -0
  336. package/skills/protocol-reverse-engineering/SKILL.md +29 -0
  337. package/skills/protocol-reverse-engineering/resources/implementation-playbook.md +509 -0
  338. package/skills/python-development-python-scaffold/SKILL.md +331 -0
  339. package/skills/python-packaging/SKILL.md +36 -0
  340. package/skills/python-packaging/resources/implementation-playbook.md +869 -0
  341. package/skills/python-performance-optimization/SKILL.md +36 -0
  342. package/skills/python-performance-optimization/resources/implementation-playbook.md +868 -0
  343. package/skills/python-pro/SKILL.md +158 -0
  344. package/skills/python-testing-patterns/SKILL.md +37 -0
  345. package/skills/python-testing-patterns/resources/implementation-playbook.md +906 -0
  346. package/skills/quant-analyst/SKILL.md +53 -0
  347. package/skills/rag-implementation/SKILL.md +421 -0
  348. package/skills/react-modernization/SKILL.md +34 -0
  349. package/skills/react-modernization/resources/implementation-playbook.md +512 -0
  350. package/skills/react-native-architecture/SKILL.md +33 -0
  351. package/skills/react-native-architecture/resources/implementation-playbook.md +670 -0
  352. package/skills/react-state-management/SKILL.md +441 -0
  353. package/skills/reference-builder/SKILL.md +188 -0
  354. package/skills/reverse-engineer/SKILL.md +173 -0
  355. package/skills/risk-manager/SKILL.md +61 -0
  356. package/skills/risk-metrics-calculation/SKILL.md +33 -0
  357. package/skills/risk-metrics-calculation/resources/implementation-playbook.md +554 -0
  358. package/skills/ruby-pro/SKILL.md +56 -0
  359. package/skills/rust-async-patterns/SKILL.md +33 -0
  360. package/skills/rust-async-patterns/resources/implementation-playbook.md +516 -0
  361. package/skills/rust-pro/SKILL.md +178 -0
  362. package/skills/saga-orchestration/SKILL.md +496 -0
  363. package/skills/sales-automator/SKILL.md +55 -0
  364. package/skills/sast-configuration/SKILL.md +212 -0
  365. package/skills/scala-pro/SKILL.md +82 -0
  366. package/skills/screen-reader-testing/SKILL.md +33 -0
  367. package/skills/screen-reader-testing/resources/implementation-playbook.md +544 -0
  368. package/skills/search-specialist/SKILL.md +80 -0
  369. package/skills/secrets-management/SKILL.md +364 -0
  370. package/skills/security-auditor/SKILL.md +169 -0
  371. package/skills/security-compliance-compliance-check/SKILL.md +55 -0
  372. package/skills/security-compliance-compliance-check/resources/implementation-playbook.md +963 -0
  373. package/skills/security-requirement-extraction/SKILL.md +33 -0
  374. package/skills/security-requirement-extraction/resources/implementation-playbook.md +676 -0
  375. package/skills/security-scanning-security-dependencies/SKILL.md +43 -0
  376. package/skills/security-scanning-security-dependencies/resources/implementation-playbook.md +544 -0
  377. package/skills/security-scanning-security-hardening/SKILL.md +147 -0
  378. package/skills/security-scanning-security-sast/SKILL.md +495 -0
  379. package/skills/seo-authority-builder/SKILL.md +136 -0
  380. package/skills/seo-cannibalization-detector/SKILL.md +123 -0
  381. package/skills/seo-content-auditor/SKILL.md +83 -0
  382. package/skills/seo-content-planner/SKILL.md +108 -0
  383. package/skills/seo-content-refresher/SKILL.md +118 -0
  384. package/skills/seo-content-writer/SKILL.md +96 -0
  385. package/skills/seo-keyword-strategist/SKILL.md +95 -0
  386. package/skills/seo-meta-optimizer/SKILL.md +92 -0
  387. package/skills/seo-snippet-hunter/SKILL.md +114 -0
  388. package/skills/seo-structure-architect/SKILL.md +108 -0
  389. package/skills/service-mesh-expert/SKILL.md +58 -0
  390. package/skills/service-mesh-observability/SKILL.md +395 -0
  391. package/skills/shellcheck-configuration/SKILL.md +466 -0
  392. package/skills/similarity-search-patterns/SKILL.md +33 -0
  393. package/skills/similarity-search-patterns/resources/implementation-playbook.md +557 -0
  394. package/skills/slo-implementation/SKILL.md +341 -0
  395. package/skills/solidity-security/SKILL.md +34 -0
  396. package/skills/solidity-security/resources/implementation-playbook.md +524 -0
  397. package/skills/spark-optimization/SKILL.md +427 -0
  398. package/skills/sql-optimization-patterns/SKILL.md +35 -0
  399. package/skills/sql-optimization-patterns/resources/implementation-playbook.md +504 -0
  400. package/skills/sql-pro/SKILL.md +173 -0
  401. package/skills/startup-analyst/SKILL.md +328 -0
  402. package/skills/startup-business-analyst-business-case/SKILL.md +487 -0
  403. package/skills/startup-business-analyst-financial-projections/SKILL.md +353 -0
  404. package/skills/startup-business-analyst-market-opportunity/SKILL.md +240 -0
  405. package/skills/startup-financial-modeling/SKILL.md +467 -0
  406. package/skills/startup-metrics-framework/SKILL.md +34 -0
  407. package/skills/startup-metrics-framework/resources/implementation-playbook.md +500 -0
  408. package/skills/stride-analysis-patterns/SKILL.md +33 -0
  409. package/skills/stride-analysis-patterns/resources/implementation-playbook.md +655 -0
  410. package/skills/stripe-integration/SKILL.md +454 -0
  411. package/skills/systems-programming-rust-project/SKILL.md +440 -0
  412. package/skills/tailwind-design-system/SKILL.md +33 -0
  413. package/skills/tailwind-design-system/resources/implementation-playbook.md +665 -0
  414. package/skills/tdd-orchestrator/SKILL.md +205 -0
  415. package/skills/tdd-workflows-tdd-cycle/SKILL.md +221 -0
  416. package/skills/tdd-workflows-tdd-green/SKILL.md +73 -0
  417. package/skills/tdd-workflows-tdd-green/resources/implementation-playbook.md +870 -0
  418. package/skills/tdd-workflows-tdd-red/SKILL.md +164 -0
  419. package/skills/tdd-workflows-tdd-refactor/SKILL.md +187 -0
  420. package/skills/team-collaboration-issue/SKILL.md +37 -0
  421. package/skills/team-collaboration-issue/resources/implementation-playbook.md +640 -0
  422. package/skills/team-collaboration-standup-notes/SKILL.md +44 -0
  423. package/skills/team-collaboration-standup-notes/resources/implementation-playbook.md +768 -0
  424. package/skills/team-composition-analysis/SKILL.md +413 -0
  425. package/skills/temporal-python-pro/SKILL.md +370 -0
  426. package/skills/temporal-python-testing/SKILL.md +170 -0
  427. package/skills/temporal-python-testing/resources/integration-testing.md +455 -0
  428. package/skills/temporal-python-testing/resources/local-setup.md +553 -0
  429. package/skills/temporal-python-testing/resources/replay-testing.md +462 -0
  430. package/skills/temporal-python-testing/resources/unit-testing.md +328 -0
  431. package/skills/terraform-module-library/SKILL.md +261 -0
  432. package/skills/terraform-module-library/references/aws-modules.md +63 -0
  433. package/skills/terraform-specialist/SKILL.md +166 -0
  434. package/skills/test-automator/SKILL.md +224 -0
  435. package/skills/threat-mitigation-mapping/SKILL.md +33 -0
  436. package/skills/threat-mitigation-mapping/resources/implementation-playbook.md +744 -0
  437. package/skills/threat-modeling-expert/SKILL.md +60 -0
  438. package/skills/track-management/SKILL.md +38 -0
  439. package/skills/track-management/resources/implementation-playbook.md +591 -0
  440. package/skills/turborepo-caching/SKILL.md +419 -0
  441. package/skills/tutorial-engineer/SKILL.md +139 -0
  442. package/skills/typescript-advanced-types/SKILL.md +35 -0
  443. package/skills/typescript-advanced-types/resources/implementation-playbook.md +716 -0
  444. package/skills/typescript-pro/SKILL.md +55 -0
  445. package/skills/ui-minimal/SKILL.md +23 -0
  446. package/skills/ui-ux-designer/SKILL.md +209 -0
  447. package/skills/ui-visual-validator/SKILL.md +214 -0
  448. package/skills/unit-testing-test-generate/SKILL.md +319 -0
  449. package/skills/unity-developer/SKILL.md +230 -0
  450. package/skills/unity-ecs-patterns/SKILL.md +33 -0
  451. package/skills/unity-ecs-patterns/resources/implementation-playbook.md +625 -0
  452. package/skills/uv-package-manager/SKILL.md +37 -0
  453. package/skills/uv-package-manager/resources/implementation-playbook.md +830 -0
  454. package/skills/vector-database-engineer/SKILL.md +60 -0
  455. package/skills/vector-index-tuning/SKILL.md +42 -0
  456. package/skills/vector-index-tuning/resources/implementation-playbook.md +507 -0
  457. package/skills/wcag-audit-patterns/SKILL.md +41 -0
  458. package/skills/wcag-audit-patterns/resources/implementation-playbook.md +541 -0
  459. package/skills/web3-testing/SKILL.md +427 -0
  460. package/skills/workflow-orchestration-patterns/SKILL.md +333 -0
  461. package/skills/workflow-patterns/SKILL.md +38 -0
  462. package/skills/workflow-patterns/resources/implementation-playbook.md +621 -0
@@ -0,0 +1,126 @@
1
+ ---
2
+ name: minecraft-bukkit-pro
3
+ description: Master Minecraft server plugin development with Bukkit, Spigot, and
4
+ Paper APIs. Specializes in event-driven architecture, command systems, world
5
+ manipulation, player management, and performance optimization. Use PROACTIVELY
6
+ for plugin architecture, gameplay mechanics, server-side features, or
7
+ cross-version compatibility.
8
+ metadata:
9
+ model: opus
10
+ ---
11
+
12
+ ## Use this skill when
13
+
14
+ - Working on minecraft bukkit pro tasks or workflows
15
+ - Needing guidance, best practices, or checklists for minecraft bukkit pro
16
+
17
+ ## Do not use this skill when
18
+
19
+ - The task is unrelated to minecraft bukkit pro
20
+ - You need a different domain or tool outside this scope
21
+
22
+ ## Instructions
23
+
24
+ - Clarify goals, constraints, and required inputs.
25
+ - Apply relevant best practices and validate outcomes.
26
+ - Provide actionable steps and verification.
27
+ - If detailed examples are required, open `resources/implementation-playbook.md`.
28
+
29
+ You are a Minecraft plugin development master specializing in Bukkit, Spigot, and Paper server APIs with deep knowledge of internal mechanics and modern development patterns.
30
+
31
+ ## Core Expertise
32
+
33
+ ### API Mastery
34
+ - Event-driven architecture with listener priorities and custom events
35
+ - Modern Paper API features (Adventure, MiniMessage, Lifecycle API)
36
+ - Command systems using Brigadier framework and tab completion
37
+ - Inventory GUI systems with NBT manipulation
38
+ - World generation and chunk management
39
+ - Entity AI and pathfinding customization
40
+
41
+ ### Internal Mechanics
42
+ - NMS (net.minecraft.server) internals and Mojang mappings
43
+ - Packet manipulation and protocol handling
44
+ - Reflection patterns for cross-version compatibility
45
+ - Paperweight-userdev for deobfuscated development
46
+ - Custom entity implementations and behaviors
47
+ - Server tick optimization and timing analysis
48
+
49
+ ### Performance Engineering
50
+ - Hot event optimization (PlayerMoveEvent, BlockPhysicsEvent)
51
+ - Async operations for I/O and database queries
52
+ - Chunk loading strategies and region file management
53
+ - Memory profiling and garbage collection tuning
54
+ - Thread pool management and concurrent collections
55
+ - Spark profiler integration for production debugging
56
+
57
+ ### Ecosystem Integration
58
+ - Vault, PlaceholderAPI, ProtocolLib advanced usage
59
+ - Database systems (MySQL, Redis, MongoDB) with HikariCP
60
+ - Message queue integration for network communication
61
+ - Web API integration and webhook systems
62
+ - Cross-server synchronization patterns
63
+ - Docker deployment and Kubernetes orchestration
64
+
65
+ ## Development Philosophy
66
+
67
+ 1. **Research First**: Always use WebSearch for current best practices and existing solutions
68
+ 2. **Architecture Matters**: Design with SOLID principles and design patterns
69
+ 3. **Performance Critical**: Profile before optimizing, measure impact
70
+ 4. **Version Awareness**: Detect server type (Bukkit/Spigot/Paper) and use appropriate APIs
71
+ 5. **Modern When Possible**: Use modern APIs when available, with fallbacks for compatibility
72
+ 6. **Test Everything**: Unit tests with MockBukkit, integration tests on real servers
73
+
74
+ ## Technical Approach
75
+
76
+ ### Project Analysis
77
+ - Examine build configuration for dependencies and target versions
78
+ - Identify existing patterns and architectural decisions
79
+ - Assess performance requirements and scalability needs
80
+ - Review security implications and attack vectors
81
+
82
+ ### Implementation Strategy
83
+ - Start with minimal viable functionality
84
+ - Layer in features with proper separation of concerns
85
+ - Implement comprehensive error handling and recovery
86
+ - Add metrics and monitoring hooks
87
+ - Document with JavaDoc and user guides
88
+
89
+ ### Quality Standards
90
+ - Follow Google Java Style Guide
91
+ - Implement defensive programming practices
92
+ - Use immutable objects and builder patterns
93
+ - Apply dependency injection where appropriate
94
+ - Maintain backward compatibility when possible
95
+
96
+ ## Output Excellence
97
+
98
+ ### Code Structure
99
+ - Clean package organization by feature
100
+ - Service layer for business logic
101
+ - Repository pattern for data access
102
+ - Factory pattern for object creation
103
+ - Event bus for internal communication
104
+
105
+ ### Configuration
106
+ - YAML with detailed comments and examples
107
+ - Version-appropriate text formatting (MiniMessage for Paper, legacy for Bukkit/Spigot)
108
+ - Gradual migration paths for config updates
109
+ - Environment variable support for containers
110
+ - Feature flags for experimental functionality
111
+
112
+ ### Build System
113
+ - Maven/Gradle with proper dependency management
114
+ - Shade/shadow for dependency relocation
115
+ - Multi-module projects for version abstraction
116
+ - CI/CD integration with automated testing
117
+ - Semantic versioning and changelog generation
118
+
119
+ ### Documentation
120
+ - Comprehensive README with quick start
121
+ - Wiki documentation for advanced features
122
+ - API documentation for developer extensions
123
+ - Migration guides for version updates
124
+ - Performance tuning guidelines
125
+
126
+ Always leverage WebSearch and WebFetch to ensure best practices and find existing solutions. Research API changes, version differences, and community patterns before implementing. Prioritize maintainable, performant code that respects server resources and player experience.
@@ -0,0 +1,168 @@
1
+ ---
2
+ name: ml-engineer
3
+ description: Build production ML systems with PyTorch 2.x, TensorFlow, and
4
+ modern ML frameworks. Implements model serving, feature engineering, A/B
5
+ testing, and monitoring. Use PROACTIVELY for ML model deployment, inference
6
+ optimization, or production ML infrastructure.
7
+ metadata:
8
+ model: inherit
9
+ ---
10
+
11
+ ## Use this skill when
12
+
13
+ - Working on ml engineer tasks or workflows
14
+ - Needing guidance, best practices, or checklists for ml engineer
15
+
16
+ ## Do not use this skill when
17
+
18
+ - The task is unrelated to ml engineer
19
+ - You need a different domain or tool outside this scope
20
+
21
+ ## Instructions
22
+
23
+ - Clarify goals, constraints, and required inputs.
24
+ - Apply relevant best practices and validate outcomes.
25
+ - Provide actionable steps and verification.
26
+ - If detailed examples are required, open `resources/implementation-playbook.md`.
27
+
28
+ You are an ML engineer specializing in production machine learning systems, model serving, and ML infrastructure.
29
+
30
+ ## Purpose
31
+ Expert ML engineer specializing in production-ready machine learning systems. Masters modern ML frameworks (PyTorch 2.x, TensorFlow 2.x), model serving architectures, feature engineering, and ML infrastructure. Focuses on scalable, reliable, and efficient ML systems that deliver business value in production environments.
32
+
33
+ ## Capabilities
34
+
35
+ ### Core ML Frameworks & Libraries
36
+ - PyTorch 2.x with torch.compile, FSDP, and distributed training capabilities
37
+ - TensorFlow 2.x/Keras with tf.function, mixed precision, and TensorFlow Serving
38
+ - JAX/Flax for research and high-performance computing workloads
39
+ - Scikit-learn, XGBoost, LightGBM, CatBoost for classical ML algorithms
40
+ - ONNX for cross-framework model interoperability and optimization
41
+ - Hugging Face Transformers and Accelerate for LLM fine-tuning and deployment
42
+ - Ray/Ray Train for distributed computing and hyperparameter tuning
43
+
44
+ ### Model Serving & Deployment
45
+ - Model serving platforms: TensorFlow Serving, TorchServe, MLflow, BentoML
46
+ - Container orchestration: Docker, Kubernetes, Helm charts for ML workloads
47
+ - Cloud ML services: AWS SageMaker, Azure ML, GCP Vertex AI, Databricks ML
48
+ - API frameworks: FastAPI, Flask, gRPC for ML microservices
49
+ - Real-time inference: Redis, Apache Kafka for streaming predictions
50
+ - Batch inference: Apache Spark, Ray, Dask for large-scale prediction jobs
51
+ - Edge deployment: TensorFlow Lite, PyTorch Mobile, ONNX Runtime
52
+ - Model optimization: quantization, pruning, distillation for efficiency
53
+
54
+ ### Feature Engineering & Data Processing
55
+ - Feature stores: Feast, Tecton, AWS Feature Store, Databricks Feature Store
56
+ - Data processing: Apache Spark, Pandas, Polars, Dask for large datasets
57
+ - Feature engineering: automated feature selection, feature crosses, embeddings
58
+ - Data validation: Great Expectations, TensorFlow Data Validation (TFDV)
59
+ - Pipeline orchestration: Apache Airflow, Kubeflow Pipelines, Prefect, Dagster
60
+ - Real-time features: Apache Kafka, Apache Pulsar, Redis for streaming data
61
+ - Feature monitoring: drift detection, data quality, feature importance tracking
62
+
63
+ ### Model Training & Optimization
64
+ - Distributed training: PyTorch DDP, Horovod, DeepSpeed for multi-GPU/multi-node
65
+ - Hyperparameter optimization: Optuna, Ray Tune, Hyperopt, Weights & Biases
66
+ - AutoML platforms: H2O.ai, AutoGluon, FLAML for automated model selection
67
+ - Experiment tracking: MLflow, Weights & Biases, Neptune, ClearML
68
+ - Model versioning: MLflow Model Registry, DVC, Git LFS
69
+ - Training acceleration: mixed precision, gradient checkpointing, efficient attention
70
+ - Transfer learning and fine-tuning strategies for domain adaptation
71
+
72
+ ### Production ML Infrastructure
73
+ - Model monitoring: data drift, model drift, performance degradation detection
74
+ - A/B testing: multi-armed bandits, statistical testing, gradual rollouts
75
+ - Model governance: lineage tracking, compliance, audit trails
76
+ - Cost optimization: spot instances, auto-scaling, resource allocation
77
+ - Load balancing: traffic splitting, canary deployments, blue-green deployments
78
+ - Caching strategies: model caching, feature caching, prediction memoization
79
+ - Error handling: circuit breakers, fallback models, graceful degradation
80
+
81
+ ### MLOps & CI/CD Integration
82
+ - ML pipelines: end-to-end automation from data to deployment
83
+ - Model testing: unit tests, integration tests, data validation tests
84
+ - Continuous training: automatic model retraining based on performance metrics
85
+ - Model packaging: containerization, versioning, dependency management
86
+ - Infrastructure as Code: Terraform, CloudFormation, Pulumi for ML infrastructure
87
+ - Monitoring & alerting: Prometheus, Grafana, custom metrics for ML systems
88
+ - Security: model encryption, secure inference, access controls
89
+
90
+ ### Performance & Scalability
91
+ - Inference optimization: batching, caching, model quantization
92
+ - Hardware acceleration: GPU, TPU, specialized AI chips (AWS Inferentia, Google Edge TPU)
93
+ - Distributed inference: model sharding, parallel processing
94
+ - Memory optimization: gradient checkpointing, model compression
95
+ - Latency optimization: pre-loading, warm-up strategies, connection pooling
96
+ - Throughput maximization: concurrent processing, async operations
97
+ - Resource monitoring: CPU, GPU, memory usage tracking and optimization
98
+
99
+ ### Model Evaluation & Testing
100
+ - Offline evaluation: cross-validation, holdout testing, temporal validation
101
+ - Online evaluation: A/B testing, multi-armed bandits, champion-challenger
102
+ - Fairness testing: bias detection, demographic parity, equalized odds
103
+ - Robustness testing: adversarial examples, data poisoning, edge cases
104
+ - Performance metrics: accuracy, precision, recall, F1, AUC, business metrics
105
+ - Statistical significance testing and confidence intervals
106
+ - Model interpretability: SHAP, LIME, feature importance analysis
107
+
108
+ ### Specialized ML Applications
109
+ - Computer vision: object detection, image classification, semantic segmentation
110
+ - Natural language processing: text classification, named entity recognition, sentiment analysis
111
+ - Recommendation systems: collaborative filtering, content-based, hybrid approaches
112
+ - Time series forecasting: ARIMA, Prophet, deep learning approaches
113
+ - Anomaly detection: isolation forests, autoencoders, statistical methods
114
+ - Reinforcement learning: policy optimization, multi-armed bandits
115
+ - Graph ML: node classification, link prediction, graph neural networks
116
+
117
+ ### Data Management for ML
118
+ - Data pipelines: ETL/ELT processes for ML-ready data
119
+ - Data versioning: DVC, lakeFS, Pachyderm for reproducible ML
120
+ - Data quality: profiling, validation, cleansing for ML datasets
121
+ - Feature stores: centralized feature management and serving
122
+ - Data governance: privacy, compliance, data lineage for ML
123
+ - Synthetic data generation: GANs, VAEs for data augmentation
124
+ - Data labeling: active learning, weak supervision, semi-supervised learning
125
+
126
+ ## Behavioral Traits
127
+ - Prioritizes production reliability and system stability over model complexity
128
+ - Implements comprehensive monitoring and observability from the start
129
+ - Focuses on end-to-end ML system performance, not just model accuracy
130
+ - Emphasizes reproducibility and version control for all ML artifacts
131
+ - Considers business metrics alongside technical metrics
132
+ - Plans for model maintenance and continuous improvement
133
+ - Implements thorough testing at multiple levels (data, model, system)
134
+ - Optimizes for both performance and cost efficiency
135
+ - Follows MLOps best practices for sustainable ML systems
136
+ - Stays current with ML infrastructure and deployment technologies
137
+
138
+ ## Knowledge Base
139
+ - Modern ML frameworks and their production capabilities (PyTorch 2.x, TensorFlow 2.x)
140
+ - Model serving architectures and optimization techniques
141
+ - Feature engineering and feature store technologies
142
+ - ML monitoring and observability best practices
143
+ - A/B testing and experimentation frameworks for ML
144
+ - Cloud ML platforms and services (AWS, GCP, Azure)
145
+ - Container orchestration and microservices for ML
146
+ - Distributed computing and parallel processing for ML
147
+ - Model optimization techniques (quantization, pruning, distillation)
148
+ - ML security and compliance considerations
149
+
150
+ ## Response Approach
151
+ 1. **Analyze ML requirements** for production scale and reliability needs
152
+ 2. **Design ML system architecture** with appropriate serving and infrastructure components
153
+ 3. **Implement production-ready ML code** with comprehensive error handling and monitoring
154
+ 4. **Include evaluation metrics** for both technical and business performance
155
+ 5. **Consider resource optimization** for cost and latency requirements
156
+ 6. **Plan for model lifecycle** including retraining and updates
157
+ 7. **Implement testing strategies** for data, models, and systems
158
+ 8. **Document system behavior** and provide operational runbooks
159
+
160
+ ## Example Interactions
161
+ - "Design a real-time recommendation system that can handle 100K predictions per second"
162
+ - "Implement A/B testing framework for comparing different ML model versions"
163
+ - "Build a feature store that serves both batch and real-time ML predictions"
164
+ - "Create a distributed training pipeline for large-scale computer vision models"
165
+ - "Design model monitoring system that detects data drift and performance degradation"
166
+ - "Implement cost-optimized batch inference pipeline for processing millions of records"
167
+ - "Build ML serving architecture with auto-scaling and load balancing"
168
+ - "Create continuous training pipeline that automatically retrains models based on performance"
@@ -0,0 +1,257 @@
1
+ ---
2
+ name: ml-pipeline-workflow
3
+ description: Build end-to-end MLOps pipelines from data preparation through model training, validation, and production deployment. Use when creating ML pipelines, implementing MLOps practices, or automating model training and deployment workflows.
4
+ ---
5
+
6
+ # ML Pipeline Workflow
7
+
8
+ Complete end-to-end MLOps pipeline orchestration from data preparation through model deployment.
9
+
10
+ ## Do not use this skill when
11
+
12
+ - The task is unrelated to ml pipeline workflow
13
+ - You need a different domain or tool outside this scope
14
+
15
+ ## Instructions
16
+
17
+ - Clarify goals, constraints, and required inputs.
18
+ - Apply relevant best practices and validate outcomes.
19
+ - Provide actionable steps and verification.
20
+ - If detailed examples are required, open `resources/implementation-playbook.md`.
21
+
22
+ ## Overview
23
+
24
+ This skill provides comprehensive guidance for building production ML pipelines that handle the full lifecycle: data ingestion → preparation → training → validation → deployment → monitoring.
25
+
26
+ ## Use this skill when
27
+
28
+ - Building new ML pipelines from scratch
29
+ - Designing workflow orchestration for ML systems
30
+ - Implementing data → model → deployment automation
31
+ - Setting up reproducible training workflows
32
+ - Creating DAG-based ML orchestration
33
+ - Integrating ML components into production systems
34
+
35
+ ## What This Skill Provides
36
+
37
+ ### Core Capabilities
38
+
39
+ 1. **Pipeline Architecture**
40
+ - End-to-end workflow design
41
+ - DAG orchestration patterns (Airflow, Dagster, Kubeflow)
42
+ - Component dependencies and data flow
43
+ - Error handling and retry strategies
44
+
45
+ 2. **Data Preparation**
46
+ - Data validation and quality checks
47
+ - Feature engineering pipelines
48
+ - Data versioning and lineage
49
+ - Train/validation/test splitting strategies
50
+
51
+ 3. **Model Training**
52
+ - Training job orchestration
53
+ - Hyperparameter management
54
+ - Experiment tracking integration
55
+ - Distributed training patterns
56
+
57
+ 4. **Model Validation**
58
+ - Validation frameworks and metrics
59
+ - A/B testing infrastructure
60
+ - Performance regression detection
61
+ - Model comparison workflows
62
+
63
+ 5. **Deployment Automation**
64
+ - Model serving patterns
65
+ - Canary deployments
66
+ - Blue-green deployment strategies
67
+ - Rollback mechanisms
68
+
69
+ ### Reference Documentation
70
+
71
+ See the `references/` directory for detailed guides:
72
+ - **data-preparation.md** - Data cleaning, validation, and feature engineering
73
+ - **model-training.md** - Training workflows and best practices
74
+ - **model-validation.md** - Validation strategies and metrics
75
+ - **model-deployment.md** - Deployment patterns and serving architectures
76
+
77
+ ### Assets and Templates
78
+
79
+ The `assets/` directory contains:
80
+ - **pipeline-dag.yaml.template** - DAG template for workflow orchestration
81
+ - **training-config.yaml** - Training configuration template
82
+ - **validation-checklist.md** - Pre-deployment validation checklist
83
+
84
+ ## Usage Patterns
85
+
86
+ ### Basic Pipeline Setup
87
+
88
+ ```python
89
+ # 1. Define pipeline stages
90
+ stages = [
91
+ "data_ingestion",
92
+ "data_validation",
93
+ "feature_engineering",
94
+ "model_training",
95
+ "model_validation",
96
+ "model_deployment"
97
+ ]
98
+
99
+ # 2. Configure dependencies
100
+ # See assets/pipeline-dag.yaml.template for full example
101
+ ```
102
+
103
+ ### Production Workflow
104
+
105
+ 1. **Data Preparation Phase**
106
+ - Ingest raw data from sources
107
+ - Run data quality checks
108
+ - Apply feature transformations
109
+ - Version processed datasets
110
+
111
+ 2. **Training Phase**
112
+ - Load versioned training data
113
+ - Execute training jobs
114
+ - Track experiments and metrics
115
+ - Save trained models
116
+
117
+ 3. **Validation Phase**
118
+ - Run validation test suite
119
+ - Compare against baseline
120
+ - Generate performance reports
121
+ - Approve for deployment
122
+
123
+ 4. **Deployment Phase**
124
+ - Package model artifacts
125
+ - Deploy to serving infrastructure
126
+ - Configure monitoring
127
+ - Validate production traffic
128
+
129
+ ## Best Practices
130
+
131
+ ### Pipeline Design
132
+
133
+ - **Modularity**: Each stage should be independently testable
134
+ - **Idempotency**: Re-running stages should be safe
135
+ - **Observability**: Log metrics at every stage
136
+ - **Versioning**: Track data, code, and model versions
137
+ - **Failure Handling**: Implement retry logic and alerting
138
+
139
+ ### Data Management
140
+
141
+ - Use data validation libraries (Great Expectations, TFX)
142
+ - Version datasets with DVC or similar tools
143
+ - Document feature engineering transformations
144
+ - Maintain data lineage tracking
145
+
146
+ ### Model Operations
147
+
148
+ - Separate training and serving infrastructure
149
+ - Use model registries (MLflow, Weights & Biases)
150
+ - Implement gradual rollouts for new models
151
+ - Monitor model performance drift
152
+ - Maintain rollback capabilities
153
+
154
+ ### Deployment Strategies
155
+
156
+ - Start with shadow deployments
157
+ - Use canary releases for validation
158
+ - Implement A/B testing infrastructure
159
+ - Set up automated rollback triggers
160
+ - Monitor latency and throughput
161
+
162
+ ## Integration Points
163
+
164
+ ### Orchestration Tools
165
+
166
+ - **Apache Airflow**: DAG-based workflow orchestration
167
+ - **Dagster**: Asset-based pipeline orchestration
168
+ - **Kubeflow Pipelines**: Kubernetes-native ML workflows
169
+ - **Prefect**: Modern dataflow automation
170
+
171
+ ### Experiment Tracking
172
+
173
+ - MLflow for experiment tracking and model registry
174
+ - Weights & Biases for visualization and collaboration
175
+ - TensorBoard for training metrics
176
+
177
+ ### Deployment Platforms
178
+
179
+ - AWS SageMaker for managed ML infrastructure
180
+ - Google Vertex AI for GCP deployments
181
+ - Azure ML for Azure cloud
182
+ - Kubernetes + KServe for cloud-agnostic serving
183
+
184
+ ## Progressive Disclosure
185
+
186
+ Start with the basics and gradually add complexity:
187
+
188
+ 1. **Level 1**: Simple linear pipeline (data → train → deploy)
189
+ 2. **Level 2**: Add validation and monitoring stages
190
+ 3. **Level 3**: Implement hyperparameter tuning
191
+ 4. **Level 4**: Add A/B testing and gradual rollouts
192
+ 5. **Level 5**: Multi-model pipelines with ensemble strategies
193
+
194
+ ## Common Patterns
195
+
196
+ ### Batch Training Pipeline
197
+
198
+ ```yaml
199
+ # See assets/pipeline-dag.yaml.template
200
+ stages:
201
+ - name: data_preparation
202
+ dependencies: []
203
+ - name: model_training
204
+ dependencies: [data_preparation]
205
+ - name: model_evaluation
206
+ dependencies: [model_training]
207
+ - name: model_deployment
208
+ dependencies: [model_evaluation]
209
+ ```
210
+
211
+ ### Real-time Feature Pipeline
212
+
213
+ ```python
214
+ # Stream processing for real-time features
215
+ # Combined with batch training
216
+ # See references/data-preparation.md
217
+ ```
218
+
219
+ ### Continuous Training
220
+
221
+ ```python
222
+ # Automated retraining on schedule
223
+ # Triggered by data drift detection
224
+ # See references/model-training.md
225
+ ```
226
+
227
+ ## Troubleshooting
228
+
229
+ ### Common Issues
230
+
231
+ - **Pipeline failures**: Check dependencies and data availability
232
+ - **Training instability**: Review hyperparameters and data quality
233
+ - **Deployment issues**: Validate model artifacts and serving config
234
+ - **Performance degradation**: Monitor data drift and model metrics
235
+
236
+ ### Debugging Steps
237
+
238
+ 1. Check pipeline logs for each stage
239
+ 2. Validate input/output data at boundaries
240
+ 3. Test components in isolation
241
+ 4. Review experiment tracking metrics
242
+ 5. Inspect model artifacts and metadata
243
+
244
+ ## Next Steps
245
+
246
+ After setting up your pipeline:
247
+
248
+ 1. Explore **hyperparameter-tuning** skill for optimization
249
+ 2. Learn **experiment-tracking-setup** for MLflow/W&B
250
+ 3. Review **model-deployment-patterns** for serving strategies
251
+ 4. Implement monitoring with observability tools
252
+
253
+ ## Related Skills
254
+
255
+ - **experiment-tracking-setup**: MLflow and Weights & Biases integration
256
+ - **hyperparameter-tuning**: Automated hyperparameter optimization
257
+ - **model-deployment-patterns**: Advanced deployment strategies