@lobehub/chat 1.51.8 → 1.51.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. package/CHANGELOG.md +25 -0
  2. package/changelog/v1.json +9 -0
  3. package/locales/ar/common.json +1 -1
  4. package/locales/ar/modelProvider.json +0 -20
  5. package/locales/ar/models.json +108 -3
  6. package/locales/bg-BG/common.json +1 -1
  7. package/locales/bg-BG/modelProvider.json +0 -20
  8. package/locales/bg-BG/models.json +108 -3
  9. package/locales/de-DE/common.json +1 -1
  10. package/locales/de-DE/modelProvider.json +0 -20
  11. package/locales/de-DE/models.json +108 -3
  12. package/locales/en-US/common.json +1 -1
  13. package/locales/en-US/modelProvider.json +0 -20
  14. package/locales/en-US/models.json +108 -3
  15. package/locales/es-ES/common.json +1 -1
  16. package/locales/es-ES/modelProvider.json +0 -20
  17. package/locales/es-ES/models.json +108 -3
  18. package/locales/fa-IR/common.json +1 -1
  19. package/locales/fa-IR/modelProvider.json +0 -20
  20. package/locales/fa-IR/models.json +108 -3
  21. package/locales/fr-FR/common.json +1 -1
  22. package/locales/fr-FR/modelProvider.json +0 -20
  23. package/locales/fr-FR/models.json +108 -3
  24. package/locales/it-IT/common.json +1 -1
  25. package/locales/it-IT/modelProvider.json +0 -20
  26. package/locales/it-IT/models.json +108 -3
  27. package/locales/ja-JP/common.json +1 -1
  28. package/locales/ja-JP/modelProvider.json +0 -20
  29. package/locales/ja-JP/models.json +108 -3
  30. package/locales/ko-KR/common.json +1 -1
  31. package/locales/ko-KR/modelProvider.json +0 -20
  32. package/locales/ko-KR/models.json +108 -3
  33. package/locales/nl-NL/common.json +1 -1
  34. package/locales/nl-NL/modelProvider.json +0 -20
  35. package/locales/nl-NL/models.json +108 -3
  36. package/locales/pl-PL/common.json +1 -1
  37. package/locales/pl-PL/modelProvider.json +0 -20
  38. package/locales/pl-PL/models.json +108 -3
  39. package/locales/pt-BR/common.json +1 -1
  40. package/locales/pt-BR/modelProvider.json +0 -20
  41. package/locales/pt-BR/models.json +108 -3
  42. package/locales/ru-RU/common.json +1 -1
  43. package/locales/ru-RU/modelProvider.json +0 -20
  44. package/locales/ru-RU/models.json +108 -3
  45. package/locales/tr-TR/common.json +1 -1
  46. package/locales/tr-TR/modelProvider.json +0 -20
  47. package/locales/tr-TR/models.json +108 -3
  48. package/locales/vi-VN/common.json +1 -1
  49. package/locales/vi-VN/modelProvider.json +0 -20
  50. package/locales/vi-VN/models.json +108 -3
  51. package/locales/zh-CN/common.json +1 -1
  52. package/locales/zh-CN/modelProvider.json +0 -20
  53. package/locales/zh-CN/models.json +113 -8
  54. package/locales/zh-TW/common.json +1 -1
  55. package/locales/zh-TW/modelProvider.json +0 -20
  56. package/locales/zh-TW/models.json +108 -3
  57. package/package.json +1 -1
  58. package/src/app/[variants]/(main)/chat/_layout/Desktop/SessionPanel.tsx +2 -1
  59. package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +2 -1
  60. package/src/app/[variants]/(main)/chat/layout.ts +0 -2
  61. package/src/app/[variants]/(main)/settings/provider/(detail)/[id]/page.tsx +2 -0
  62. package/src/features/User/PlanTag.tsx +2 -2
  63. package/src/locales/default/common.ts +1 -1
@@ -23,6 +23,9 @@
23
23
  "360gpt2-pro": {
24
24
  "description": "360GPT2 Pro 是 360 公司推出的高级自然语言处理模型,具备卓越的文本生成和理解能力,尤其在生成与创作领域表现出色,能够处理复杂的语言转换和角色演绎任务。"
25
25
  },
26
+ "360zhinao2-o1": {
27
+ "description": "360zhinao2-o1 使用树搜索构建思维链,并引入了反思机制,使用强化学习训练,模型具备自我反思与纠错的能力。"
28
+ },
26
29
  "4.0Ultra": {
27
30
  "description": "Spark Ultra 是星火大模型系列中最为强大的版本,在升级联网搜索链路同时,提升对文本内容的理解和总结能力。它是用于提升办公生产力和准确响应需求的全方位解决方案,是引领行业的智能产品。"
28
31
  },
@@ -44,6 +47,18 @@
44
47
  "Baichuan4-Turbo": {
45
48
  "description": "模型能力国内第一,在知识百科、长文本、生成创作等中文任务上超越国外主流模型。还具备行业领先的多模态能力,多项权威评测基准表现优异。"
46
49
  },
50
+ "DeepSeek-R1-Distill-Qwen-1.5B": {
51
+ "description": "基于 Qwen2.5-Math-1.5B 的 DeepSeek-R1 蒸馏模型,通过强化学习与冷启动数据优化推理性能,开源模型刷新多任务标杆。"
52
+ },
53
+ "DeepSeek-R1-Distill-Qwen-14B": {
54
+ "description": "基于 Qwen2.5-14B 的 DeepSeek-R1 蒸馏模型,通过强化学习与冷启动数据优化推理性能,开源模型刷新多任务标杆。"
55
+ },
56
+ "DeepSeek-R1-Distill-Qwen-32B": {
57
+ "description": "DeepSeek-R1 系列通过强化学习与冷启动数据优化推理性能,开源模型刷新多任务标杆,超越 OpenAI-o1-mini 水平。"
58
+ },
59
+ "DeepSeek-R1-Distill-Qwen-7B": {
60
+ "description": "基于 Qwen2.5-Math-7B 的 DeepSeek-R1 蒸馏模型,通过强化学习与冷启动数据优化推理性能,开源模型刷新多任务标杆。"
61
+ },
47
62
  "Doubao-lite-128k": {
48
63
  "description": "Doubao-lite 拥有极致的响应速度,更好的性价比,为客户不同场景提供更灵活的选择。支持128k上下文窗口的推理和精调。"
49
64
  },
@@ -77,9 +92,6 @@
77
92
  "ERNIE-4.0-8K-Preview": {
78
93
  "description": "百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。"
79
94
  },
80
- "ERNIE-4.0-Turbo-128K": {
81
- "description": "百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀"
82
- },
83
95
  "ERNIE-4.0-Turbo-8K-Latest": {
84
96
  "description": "百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀"
85
97
  },
@@ -176,6 +188,9 @@
176
188
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
189
  "description": "Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月"
178
190
  },
191
+ "QwQ-32B-Preview": {
192
+ "description": "QwQ-32B-Preview 是一款独具创新的自然语言处理模型,能够高效处理复杂的对话生成与上下文理解任务。"
193
+ },
179
194
  "Qwen/QVQ-72B-Preview": {
180
195
  "description": "QVQ-72B-Preview 是由 Qwen 团队开发的专注于视觉推理能力的研究型模型,其在复杂场景理解和解决视觉相关的数学问题方面具有独特优势。"
181
196
  },
@@ -525,13 +540,31 @@
525
540
  "description": "DBRX Instruct 提供高可靠性的指令处理能力,支持多行业应用。"
526
541
  },
527
542
  "deepseek-ai/DeepSeek-R1": {
528
- "description": "DeepSeek-R1 是一款强化学习(RL)驱动的推理模型,解决了模型中的重复性和可读性问题。在 RL 之前,DeepSeek-R1 引入了冷启动数据,进一步优化了推理性能。它在数学、代码和推理任务中与 OpenAI-o1 表现相当,并且通过精心设计的训练方法,提升了整体效果。"
543
+ "description": "DeepSeek-R1 系列通过强化学习与冷启动数据优化推理性能,开源模型刷新多任务标杆,超越 OpenAI-o1-mini 水平。"
544
+ },
545
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
546
+ "description": "DeepSeek-R1 蒸馏模型,通过强化学习与冷启动数据优化推理性能,开源模型刷新多任务标杆。"
547
+ },
548
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
549
+ "description": "DeepSeek-R1-Distill-Llama-8B 是基于 Llama-3.1-8B 开发的蒸馏模型。该模型使用 DeepSeek-R1 生成的样本进行微调,展现出优秀的推理能力。在多个基准测试中表现不俗,其中在 MATH-500 上达到了 89.1% 的准确率,在 AIME 2024 上达到了 50.4% 的通过率,在 CodeForces 上获得了 1205 的评分,作为 8B 规模的模型展示了较强的数学和编程能力。"
550
+ },
551
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
552
+ "description": "DeepSeek-R1 蒸馏模型,通过强化学习与冷启动数据优化推理性能,开源模型刷新多任务标杆。"
553
+ },
554
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
555
+ "description": "DeepSeek-R1 蒸馏模型,通过强化学习与冷启动数据优化推理性能,开源模型刷新多任务标杆。"
556
+ },
557
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
558
+ "description": "DeepSeek-R1-Distill-Qwen-32B 是基于 Qwen2.5-32B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,在数学、编程和推理等多个领域展现出卓越的性能。在 AIME 2024、MATH-500、GPQA Diamond 等多个基准测试中都取得了优异成绩,其中在 MATH-500 上达到了 94.3% 的准确率,展现出强大的数学推理能力。"
559
+ },
560
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
561
+ "description": "DeepSeek-R1-Distill-Qwen-7B 是基于 Qwen2.5-Math-7B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,展现出优秀的推理能力。在多个基准测试中表现出色,其中在 MATH-500 上达到了 92.8% 的准确率,在 AIME 2024 上达到了 55.5% 的通过率,在 CodeForces 上获得了 1189 的评分,作为 7B 规模的模型展示了较强的数学和编程能力。"
529
562
  },
530
563
  "deepseek-ai/DeepSeek-V2.5": {
531
564
  "description": "DeepSeek-V2.5 是 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的升级版本,集成了两个先前版本的通用和编码能力。该模型在多个方面进行了优化,包括写作和指令跟随能力,更好地与人类偏好保持一致。DeepSeek-V2.5 在各种评估基准上都取得了显著的提升,如 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 等。"
532
565
  },
533
566
  "deepseek-ai/DeepSeek-V3": {
534
- "description": "DeepSeek-V3 是一款拥有 6710 亿参数的混合专家(MoE)语言模型,采用多头潜在注意力(MLA)和 DeepSeekMoE 架构,结合无辅助损失的负载平衡策略,优化推理和训练效率。通过在 14.8 万亿高质量tokens上预训练,并进行监督微调和强化学习,DeepSeek-V3 在性能上超越其他开源模型,接近领先闭源模型。"
567
+ "description": "最新模型 DeepSeek-V3 多项评测成绩超越 Qwen2.5-72B Llama-3.1-405B 等开源模型,性能对齐领军闭源模型 GPT-4o 与 Claude-3.5-Sonnet。"
535
568
  },
536
569
  "deepseek-ai/deepseek-llm-67b-chat": {
537
570
  "description": "DeepSeek LLM Chat (67B) 是创新的 AI 模型 提供深度语言理解和互动能力。"
@@ -552,7 +585,10 @@
552
585
  "description": "DeepSeek Coder V2 是开源的混合专家代码模型,在代码任务方面表现优异,与 GPT4-Turbo 相媲美。"
553
586
  },
554
587
  "deepseek-r1": {
555
- "description": "DeepSeek-R1 是一款强化学习(RL)驱动的推理模型,解决了模型中的重复性和可读性问题。在 RL 之前,DeepSeek-R1 引入了冷启动数据,进一步优化了推理性能。它在数学、代码和推理任务中与 OpenAI-o1 表现相当,并且通过精心设计的训练方法,提升了整体效果。"
588
+ "description": "DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。"
589
+ },
590
+ "deepseek-r1-distill-llama-70b": {
591
+ "description": "DeepSeek R1——DeepSeek 套件中更大更智能的模型——被蒸馏到 Llama 70B 架构中。基于基准测试和人工评估,该模型比原始 Llama 70B 更智能,尤其在需要数学和事实精确性的任务上表现出色。"
556
592
  },
557
593
  "deepseek-reasoner": {
558
594
  "description": "DeepSeek 推出的推理模型。在输出最终回答之前,模型会先输出一段思维链内容,以提升最终答案的准确性。"
@@ -563,12 +599,63 @@
563
599
  "deepseek-v2:236b": {
564
600
  "description": "DeepSeek V2 236B 是 DeepSeek 的设计代码模型,提供强大的代码生成能力。"
565
601
  },
602
+ "deepseek-v3": {
603
+ "description": "DeepSeek-V3 为杭州深度求索人工智能基础技术研究有限公司自研的 MoE 模型,其多项评测成绩突出,在主流榜单中位列开源模型榜首。V3 相比 V2.5 模型生成速度实现 3 倍提升,为用户带来更加迅速流畅的使用体验。"
604
+ },
566
605
  "deepseek/deepseek-chat": {
567
606
  "description": "融合通用与代码能力的全新开源模型, 不仅保留了原有 Chat 模型的通用对话能力和 Coder 模型的强大代码处理能力,还更好地对齐了人类偏好。此外,DeepSeek-V2.5 在写作任务、指令跟随等多个方面也实现了大幅提升。"
568
607
  },
569
608
  "emohaa": {
570
609
  "description": "Emohaa 是心理模型,具备专业咨询能力,帮助用户理解情感问题。"
571
610
  },
611
+ "ernie-3.5-128k": {
612
+ "description": "百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。"
613
+ },
614
+ "ernie-3.5-8k": {
615
+ "description": "百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。"
616
+ },
617
+ "ernie-3.5-8k-preview": {
618
+ "description": "百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。"
619
+ },
620
+ "ernie-4.0-8k-latest": {
621
+ "description": "百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。"
622
+ },
623
+ "ernie-4.0-8k-preview": {
624
+ "description": "百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。"
625
+ },
626
+ "ernie-4.0-turbo-128k": {
627
+ "description": "百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀"
628
+ },
629
+ "ernie-4.0-turbo-8k-latest": {
630
+ "description": "百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀"
631
+ },
632
+ "ernie-4.0-turbo-8k-preview": {
633
+ "description": "百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀"
634
+ },
635
+ "ernie-char-8k": {
636
+ "description": "百度自研的垂直场景大语言模型,适合游戏NPC、客服对话、对话角色扮演等应用场景,人设风格更为鲜明、一致,指令遵循能力更强,推理性能更优。"
637
+ },
638
+ "ernie-char-fiction-8k": {
639
+ "description": "百度自研的垂直场景大语言模型,适合游戏NPC、客服对话、对话角色扮演等应用场景,人设风格更为鲜明、一致,指令遵循能力更强,推理性能更优。"
640
+ },
641
+ "ernie-lite-8k": {
642
+ "description": "ERNIE Lite是百度自研的轻量级大语言模型,兼顾优异的模型效果与推理性能,适合低算力AI加速卡推理使用。"
643
+ },
644
+ "ernie-lite-pro-128k": {
645
+ "description": "百度自研的轻量级大语言模型,兼顾优异的模型效果与推理性能,效果比ERNIE Lite更优,适合低算力AI加速卡推理使用。"
646
+ },
647
+ "ernie-novel-8k": {
648
+ "description": "百度自研通用大语言模型,在小说续写能力上有明显优势,也可用在短剧、电影等场景。"
649
+ },
650
+ "ernie-speed-128k": {
651
+ "description": "百度2024年最新发布的自研高性能大语言模型,通用能力优异,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。"
652
+ },
653
+ "ernie-speed-pro-128k": {
654
+ "description": "百度2024年最新发布的自研高性能大语言模型,通用能力优异,效果比ERNIE Speed更优,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。"
655
+ },
656
+ "ernie-tiny-8k": {
657
+ "description": "ERNIE Tiny是百度自研的超高性能大语言模型,部署与精调成本在文心系列模型中最低。"
658
+ },
572
659
  "gemini-1.0-pro-001": {
573
660
  "description": "Gemini 1.0 Pro 001 (Tuning) 提供稳定并可调优的性能,是复杂任务解决方案的理想选择。"
574
661
  },
@@ -867,10 +954,13 @@
867
954
  "description": "InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域"
868
955
  },
869
956
  "internlm2-pro-chat": {
870
- "description": "我们仍在维护的老版本模型,有 7B、20B 多种模型参数量可选。"
957
+ "description": "InternLM2 版本最大的模型,专注于高度复杂的任务"
871
958
  },
872
959
  "internlm2.5-latest": {
873
- "description": "我们最新的模型系列,有着卓越的推理性能,支持 1M 的上下文长度以及更强的指令跟随和工具调用能力。"
960
+ "description": "我们仍在维护的老版本模型,经过多轮迭代有着极其优异且稳定的性能,包含 7B、20B 多种模型参数量可选,支持 1M 的上下文长度以及更强的指令跟随和工具调用能力。默认指向我们最新发布的 InternLM2.5 系列模型"
961
+ },
962
+ "internlm3-latest": {
963
+ "description": "我们最新的模型系列,有着卓越的推理性能,领跑同量级开源模型。默认指向我们最新发布的 InternLM3 系列模型"
874
964
  },
875
965
  "learnlm-1.5-pro-experimental": {
876
966
  "description": "LearnLM 是一个实验性的、特定于任务的语言模型,经过训练以符合学习科学原则,可在教学和学习场景中遵循系统指令,充当专家导师等。"
@@ -986,6 +1076,9 @@
986
1076
  "meta-llama/Llama-3.3-70B-Instruct": {
987
1077
  "description": "Llama 3.3 是 Llama 系列最先进的多语言开源大型语言模型,以极低成本体验媲美 405B 模型的性能。基于 Transformer 结构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)提升有用性和安全性。其指令调优版本专为多语言对话优化,在多项行业基准上表现优于众多开源和封闭聊天模型。知识截止日期为 2023 年 12 月"
988
1078
  },
1079
+ "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1080
+ "description": "Meta Llama 3.3 多语言大语言模型 ( LLM ) 是 70B(文本输入/文本输出)中的预训练和指令调整生成模型。 Llama 3.3 指令调整的纯文本模型针对多语言对话用例进行了优化,并且在常见行业基准上优于许多可用的开源和封闭式聊天模型。"
1081
+ },
989
1082
  "meta-llama/Llama-Vision-Free": {
990
1083
  "description": "LLaMA 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。"
991
1084
  },
@@ -1256,6 +1349,9 @@
1256
1349
  "qwen-vl-max-latest": {
1257
1350
  "description": "通义千问超大规模视觉语言模型。相比增强版,再次提升视觉推理能力和指令遵循能力,提供更高的视觉感知和认知水平。"
1258
1351
  },
1352
+ "qwen-vl-ocr-latest": {
1353
+ "description": "通义千问OCR是文字提取专有模型,专注于文档、表格、试题、手写体文字等类型图像的文字提取能力。它能够识别多种文字,目前支持的语言有:汉语、英语、法语、日语、韩语、德语、俄语、意大利语、越南语、阿拉伯语。"
1354
+ },
1259
1355
  "qwen-vl-plus-latest": {
1260
1356
  "description": "通义千问大规模视觉语言模型增强版。大幅提升细节识别能力和文字识别能力,支持超百万像素分辨率和任意长宽比规格的图像。"
1261
1357
  },
@@ -1274,6 +1370,9 @@
1274
1370
  "qwen2.5-14b-instruct": {
1275
1371
  "description": "通义千问2.5对外开源的14B规模的模型。"
1276
1372
  },
1373
+ "qwen2.5-14b-instruct-1m": {
1374
+ "description": "通义千问2.5对外开源的72B规模的模型。"
1375
+ },
1277
1376
  "qwen2.5-32b-instruct": {
1278
1377
  "description": "通义千问2.5对外开源的32B规模的模型。"
1279
1378
  },
@@ -1301,6 +1400,12 @@
1301
1400
  "qwen2.5-math-7b-instruct": {
1302
1401
  "description": "Qwen-Math 模型具有强大的数学解题能力。"
1303
1402
  },
1403
+ "qwen2.5-vl-72b-instruct": {
1404
+ "description": "指令跟随、数学、解题、代码整体提升,万物识别能力提升,支持多样格式直接精准定位视觉元素,支持对长视频文件(最长10分钟)进行理解和秒级别的事件时刻定位,能理解时间先后和快慢,基于解析和定位能力支持操控OS或Mobile的Agent,关键信息抽取能力和Json格式输出能力强,此版本为72B版本,本系列能力最强的版本。"
1405
+ },
1406
+ "qwen2.5-vl-7b-instruct": {
1407
+ "description": "指令跟随、数学、解题、代码整体提升,万物识别能力提升,支持多样格式直接精准定位视觉元素,支持对长视频文件(最长10分钟)进行理解和秒级别的事件时刻定位,能理解时间先后和快慢,基于解析和定位能力支持操控OS或Mobile的Agent,关键信息抽取能力和Json格式输出能力强,此版本为72B版本,本系列能力最强的版本。"
1408
+ },
1304
1409
  "qwen2.5:0.5b": {
1305
1410
  "description": "Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
1306
1411
  },
@@ -286,6 +286,7 @@
286
286
  "anonymousNickName": "匿名使用者",
287
287
  "billing": "帳單管理",
288
288
  "cloud": "體驗 {{name}}",
289
+ "community": "社區版",
289
290
  "data": "資料儲存",
290
291
  "defaultNickname": "社群版使用者",
291
292
  "discord": "社區支援",
@@ -295,7 +296,6 @@
295
296
  "help": "幫助中心",
296
297
  "moveGuide": "設置按鈕搬到這裡啦",
297
298
  "plans": "訂閱方案",
298
- "preview": "預覽",
299
299
  "profile": "帳戶管理",
300
300
  "setting": "應用設定",
301
301
  "usages": "用量統計"
@@ -294,26 +294,6 @@
294
294
  "tooltip": "更新服務商基礎配置",
295
295
  "updateSuccess": "更新成功"
296
296
  },
297
- "wenxin": {
298
- "accessKey": {
299
- "desc": "填入百度千帆平台的 Access Key",
300
- "placeholder": "千帆 Access Key",
301
- "title": "Access Key"
302
- },
303
- "checker": {
304
- "desc": "測試 AccessKey / SecretAccess 是否填寫正確"
305
- },
306
- "secretKey": {
307
- "desc": "填入百度千帆平台 Secret Key",
308
- "placeholder": "千帆 Secret Key",
309
- "title": "Secret Key"
310
- },
311
- "unlock": {
312
- "customRegion": "自訂服務區域",
313
- "description": "輸入你的 AccessKey / SecretKey 即可開始會話。應用不會記錄你的鑑權配置",
314
- "title": "使用自訂文心一言鑑權資訊"
315
- }
316
- },
317
297
  "zeroone": {
318
298
  "title": "01.AI 零一萬物"
319
299
  },
@@ -23,6 +23,9 @@
23
23
  "360gpt2-pro": {
24
24
  "description": "360GPT2 Pro 是 360 公司推出的高級自然語言處理模型,具備卓越的文本生成和理解能力,尤其在生成與創作領域表現出色,能夠處理複雜的語言轉換和角色演繹任務。"
25
25
  },
26
+ "360zhinao2-o1": {
27
+ "description": "360zhinao2-o1 使用樹搜索構建思維鏈,並引入了反思機制,使用強化學習訓練,模型具備自我反思與糾錯的能力。"
28
+ },
26
29
  "4.0Ultra": {
27
30
  "description": "Spark4.0 Ultra 是星火大模型系列中最為強大的版本,在升級聯網搜索鏈路同時,提升對文本內容的理解和總結能力。它是用於提升辦公生產力和準確響應需求的全方位解決方案,是引領行業的智能產品。"
28
31
  },
@@ -44,6 +47,18 @@
44
47
  "Baichuan4-Turbo": {
45
48
  "description": "模型能力國內第一,在知識百科、長文本、生成創作等中文任務上超越國外主流模型。還具備行業領先的多模態能力,多項權威評測基準表現優異。"
46
49
  },
50
+ "DeepSeek-R1-Distill-Qwen-1.5B": {
51
+ "description": "基於 Qwen2.5-Math-1.5B 的 DeepSeek-R1 蒸餾模型,通過強化學習與冷啟動數據優化推理性能,開源模型刷新多任務標杆。"
52
+ },
53
+ "DeepSeek-R1-Distill-Qwen-14B": {
54
+ "description": "基於 Qwen2.5-14B 的 DeepSeek-R1 蒸餾模型,通過強化學習與冷啟動數據優化推理性能,開源模型刷新多任務標杆。"
55
+ },
56
+ "DeepSeek-R1-Distill-Qwen-32B": {
57
+ "description": "DeepSeek-R1 系列通過強化學習與冷啟動數據優化推理性能,開源模型刷新多任務標杆,超越 OpenAI-o1-mini 水平。"
58
+ },
59
+ "DeepSeek-R1-Distill-Qwen-7B": {
60
+ "description": "基於 Qwen2.5-Math-7B 的 DeepSeek-R1 蒸餾模型,通過強化學習與冷啟動數據優化推理性能,開源模型刷新多任務標杆。"
61
+ },
47
62
  "Doubao-lite-128k": {
48
63
  "description": "Doubao-lite 擁有極致的回應速度,更好的性價比,為客戶不同場景提供更靈活的選擇。支持 128k 上下文窗口的推理和精調。"
49
64
  },
@@ -77,9 +92,6 @@
77
92
  "ERNIE-4.0-8K-Preview": {
78
93
  "description": "百度自研的旗艦級超大規模語言模型,相較ERNIE 3.5實現了模型能力全面升級,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。"
79
94
  },
80
- "ERNIE-4.0-Turbo-128K": {
81
- "description": "百度自研的旗艦級超大規模大語言模型,綜合效果表現出色,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。相較於ERNIE 4.0在性能表現上更優秀"
82
- },
83
95
  "ERNIE-4.0-Turbo-8K-Latest": {
84
96
  "description": "百度自研的旗艦級超大規模大語言模型,綜合效果表現優異,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。相較於 ERNIE 4.0 在性能表現上更為優秀。"
85
97
  },
@@ -176,6 +188,9 @@
176
188
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
189
  "description": "Meta Llama 3.1 是由 Meta 開發的多語言大型語言模型家族,包括 8B、70B 和 405B 三種參數規模的預訓練和指令微調變體。該 8B 指令微調模型針對多語言對話場景進行了優化,在多項行業基準測試中表現優異。模型訓練使用了超過 15 萬億個 tokens 的公開數據,並採用了監督微調和人類反饋強化學習等技術來提升模型的有用性和安全性。Llama 3.1 支持文本生成和代碼生成,知識截止日期為 2023 年 12 月"
178
190
  },
191
+ "QwQ-32B-Preview": {
192
+ "description": "QwQ-32B-Preview 是一款獨具創新的自然語言處理模型,能夠高效處理複雜的對話生成與上下文理解任務。"
193
+ },
179
194
  "Qwen/QVQ-72B-Preview": {
180
195
  "description": "QVQ-72B-Preview 是由 Qwen 團隊開發的專注於視覺推理能力的研究型模型,其在複雜場景理解和解決視覺相關的數學問題方面具有獨特優勢。"
181
196
  },
@@ -527,6 +542,24 @@
527
542
  "deepseek-ai/DeepSeek-R1": {
528
543
  "description": "DeepSeek-R1 是一款強化學習(RL)驅動的推理模型,解決了模型中的重複性和可讀性問題。在 RL 之前,DeepSeek-R1 引入了冷啟動數據,進一步優化了推理性能。它在數學、程式碼和推理任務中與 OpenAI-o1 表現相當,並且通過精心設計的訓練方法,提升了整體效果。"
529
544
  },
545
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
546
+ "description": "DeepSeek-R1 蒸餾模型,通過強化學習與冷啟動數據優化推理性能,開源模型刷新多任務標杆。"
547
+ },
548
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
549
+ "description": "DeepSeek-R1-Distill-Llama-8B 是基於 Llama-3.1-8B 開發的蒸餾模型。該模型使用 DeepSeek-R1 生成的樣本進行微調,展現出優秀的推理能力。在多個基準測試中表現不俗,其中在 MATH-500 上達到了 89.1% 的準確率,在 AIME 2024 上達到了 50.4% 的通過率,在 CodeForces 上獲得了 1205 的評分,作為 8B 規模的模型展示了較強的數學和編程能力。"
550
+ },
551
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
552
+ "description": "DeepSeek-R1 蒸餾模型,通過強化學習與冷啟動數據優化推理性能,開源模型刷新多任務標杆。"
553
+ },
554
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
555
+ "description": "DeepSeek-R1 蒸餾模型,通過強化學習與冷啟動數據優化推理性能,開源模型刷新多任務標杆。"
556
+ },
557
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
558
+ "description": "DeepSeek-R1-Distill-Qwen-32B 是基於 Qwen2.5-32B 通過知識蒸餾得到的模型。該模型使用 DeepSeek-R1 生成的 80 萬個精選樣本進行微調,在數學、編程和推理等多個領域展現出卓越的性能。在 AIME 2024、MATH-500、GPQA Diamond 等多個基準測試中都取得了優異成績,其中在 MATH-500 上達到了 94.3% 的準確率,展現出強大的數學推理能力。"
559
+ },
560
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
561
+ "description": "DeepSeek-R1-Distill-Qwen-7B 是基於 Qwen2.5-Math-7B 通過知識蒸餾得到的模型。該模型使用 DeepSeek-R1 生成的 80 萬個精選樣本進行微調,展現出優秀的推理能力。在多個基準測試中表現出色,其中在 MATH-500 上達到了 92.8% 的準確率,在 AIME 2024 上達到了 55.5% 的通過率,在 CodeForces 上獲得了 1189 的評分,作為 7B 規模的模型展示了較強的數學和編程能力。"
562
+ },
530
563
  "deepseek-ai/DeepSeek-V2.5": {
531
564
  "description": "DeepSeek V2.5 集合了先前版本的優秀特徵,增強了通用和編碼能力。"
532
565
  },
@@ -554,6 +587,9 @@
554
587
  "deepseek-r1": {
555
588
  "description": "DeepSeek-R1 是一款強化學習(RL)驅動的推理模型,解決了模型中的重複性和可讀性問題。在 RL 之前,DeepSeek-R1 引入了冷啟動數據,進一步優化了推理性能。它在數學、程式碼和推理任務中與 OpenAI-o1 表現相當,並且通過精心設計的訓練方法,提升了整體效果。"
556
589
  },
590
+ "deepseek-r1-distill-llama-70b": {
591
+ "description": "DeepSeek R1——DeepSeek 套件中更大更智能的模型——被蒸餾到 Llama 70B 架構中。基於基準測試和人工評估,該模型比原始 Llama 70B 更智能,尤其在需要數學和事實精確性的任務上表現出色。"
592
+ },
557
593
  "deepseek-reasoner": {
558
594
  "description": "DeepSeek 推出的推理模型。在輸出最終回答之前,模型會先輸出一段思維鏈內容,以提升最終答案的準確性。"
559
595
  },
@@ -563,12 +599,63 @@
563
599
  "deepseek-v2:236b": {
564
600
  "description": "DeepSeek V2 236B 是 DeepSeek 的設計代碼模型,提供強大的代碼生成能力。"
565
601
  },
602
+ "deepseek-v3": {
603
+ "description": "DeepSeek-V3 為杭州深度求索人工智能基礎技術研究有限公司自研的 MoE 模型,其多項評測成績突出,在主流榜單中位列開源模型榜首。V3 相較 V2.5 模型生成速度實現 3 倍提升,為用戶帶來更加迅速流暢的使用體驗。"
604
+ },
566
605
  "deepseek/deepseek-chat": {
567
606
  "description": "融合通用與代碼能力的全新開源模型,不僅保留了原有 Chat 模型的通用對話能力和 Coder 模型的強大代碼處理能力,還更好地對齊了人類偏好。此外,DeepSeek-V2.5 在寫作任務、指令跟隨等多個方面也實現了大幅提升。"
568
607
  },
569
608
  "emohaa": {
570
609
  "description": "Emohaa是一個心理模型,具備專業諮詢能力,幫助用戶理解情感問題。"
571
610
  },
611
+ "ernie-3.5-128k": {
612
+ "description": "百度自研的旗艦級大規模大語言模型,覆蓋海量中英文語料,具有強大的通用能力,可滿足絕大部分對話問答、創作生成、插件應用場景要求;支持自動對接百度搜索插件,保障問答信息時效。"
613
+ },
614
+ "ernie-3.5-8k": {
615
+ "description": "百度自研的旗艦級大規模大語言模型,覆蓋海量中英文語料,具有強大的通用能力,可滿足絕大部分對話問答、創作生成、插件應用場景要求;支持自動對接百度搜索插件,保障問答信息時效。"
616
+ },
617
+ "ernie-3.5-8k-preview": {
618
+ "description": "百度自研的旗艦級大規模大語言模型,覆蓋海量中英文語料,具有強大的通用能力,可滿足絕大部分對話問答、創作生成、插件應用場景要求;支持自動對接百度搜索插件,保障問答信息時效。"
619
+ },
620
+ "ernie-4.0-8k-latest": {
621
+ "description": "百度自研的旗艦級超大規模大語言模型,相較ERNIE 3.5實現了模型能力全面升級,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。"
622
+ },
623
+ "ernie-4.0-8k-preview": {
624
+ "description": "百度自研的旗艦級超大規模大語言模型,相較ERNIE 3.5實現了模型能力全面升級,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。"
625
+ },
626
+ "ernie-4.0-turbo-128k": {
627
+ "description": "百度自研的旗艦級超大規模大語言模型,綜合效果表現出色,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。相較於ERNIE 4.0在性能表現上更優秀"
628
+ },
629
+ "ernie-4.0-turbo-8k-latest": {
630
+ "description": "百度自研的旗艦級超大規模大語言模型,綜合效果表現出色,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。相較於ERNIE 4.0在性能表現上更優秀"
631
+ },
632
+ "ernie-4.0-turbo-8k-preview": {
633
+ "description": "百度自研的旗艦級超大規模大語言模型,綜合效果表現出色,廣泛適用於各領域複雜任務場景;支持自動對接百度搜索插件,保障問答信息時效。相較於ERNIE 4.0在性能表現上更優秀"
634
+ },
635
+ "ernie-char-8k": {
636
+ "description": "百度自研的垂直場景大語言模型,適合遊戲NPC、客服對話、對話角色扮演等應用場景,人設風格更為鮮明、一致,指令遵循能力更強,推理性能更優。"
637
+ },
638
+ "ernie-char-fiction-8k": {
639
+ "description": "百度自研的垂直場景大語言模型,適合遊戲NPC、客服對話、對話角色扮演等應用場景,人設風格更為鮮明、一致,指令遵循能力更強,推理性能更優。"
640
+ },
641
+ "ernie-lite-8k": {
642
+ "description": "ERNIE Lite是百度自研的輕量級大語言模型,兼顧優異的模型效果與推理性能,適合低算力AI加速卡推理使用。"
643
+ },
644
+ "ernie-lite-pro-128k": {
645
+ "description": "百度自研的輕量級大語言模型,兼顧優異的模型效果與推理性能,效果比ERNIE Lite更優,適合低算力AI加速卡推理使用。"
646
+ },
647
+ "ernie-novel-8k": {
648
+ "description": "百度自研通用大語言模型,在小說續寫能力上有明顯優勢,也可用在短劇、電影等場景。"
649
+ },
650
+ "ernie-speed-128k": {
651
+ "description": "百度2024年最新發布的自研高性能大語言模型,通用能力優異,適合作為基座模型進行精調,更好地處理特定場景問題,同時具備極佳的推理性能。"
652
+ },
653
+ "ernie-speed-pro-128k": {
654
+ "description": "百度2024年最新發布的自研高性能大語言模型,通用能力優異,效果比ERNIE Speed更優,適合作為基座模型進行精調,更好地處理特定場景問題,同時具備極佳的推理性能。"
655
+ },
656
+ "ernie-tiny-8k": {
657
+ "description": "ERNIE Tiny是百度自研的超高性能大語言模型,部署與精調成本在文心系列模型中最低。"
658
+ },
572
659
  "gemini-1.0-pro-001": {
573
660
  "description": "Gemini 1.0 Pro 001 (Tuning) 提供穩定並可調優的性能,是複雜任務解決方案的理想選擇。"
574
661
  },
@@ -872,6 +959,9 @@
872
959
  "internlm2.5-latest": {
873
960
  "description": "我們最新的模型系列,有著卓越的推理性能,支持 1M 的上下文長度以及更強的指令跟隨和工具調用能力。"
874
961
  },
962
+ "internlm3-latest": {
963
+ "description": "我們最新的模型系列,有著卓越的推理性能,領跑同量級開源模型。默認指向我們最新發布的 InternLM3 系列模型"
964
+ },
875
965
  "learnlm-1.5-pro-experimental": {
876
966
  "description": "LearnLM 是一個實驗性的、特定於任務的語言模型,經過訓練以符合學習科學原則,可在教學和學習場景中遵循系統指令,充當專家導師等。"
877
967
  },
@@ -986,6 +1076,9 @@
986
1076
  "meta-llama/Llama-3.3-70B-Instruct": {
987
1077
  "description": "Llama 3.3 是 Llama 系列最先進的多語言開源大型語言模型,以極低成本體驗媲美 405B 模型的性能。基於 Transformer 結構,並通過監督微調(SFT)和人類反饋強化學習(RLHF)提升有用性和安全性。其指令調優版本專為多語言對話優化,在多項行業基準上表現優於眾多開源和封閉聊天模型。知識截止日期為 2023 年 12 月"
988
1078
  },
1079
+ "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1080
+ "description": "Meta Llama 3.3 多語言大語言模型 ( LLM ) 是 70B(文本輸入/文本輸出)中的預訓練和指令調整生成模型。 Llama 3.3 指令調整的純文本模型針對多語言對話用例進行了優化,並且在常見行業基準上優於許多可用的開源和封閉式聊天模型。"
1081
+ },
989
1082
  "meta-llama/Llama-Vision-Free": {
990
1083
  "description": "LLaMA 3.2 旨在處理結合視覺和文本數據的任務。它在圖像描述和視覺問答等任務中表現出色,跨越了語言生成和視覺推理之間的鴻溝。"
991
1084
  },
@@ -1256,6 +1349,9 @@
1256
1349
  "qwen-vl-max-latest": {
1257
1350
  "description": "通義千問超大規模視覺語言模型。相比增強版,再次提升視覺推理能力和指令遵循能力,提供更高的視覺感知和認知水平。"
1258
1351
  },
1352
+ "qwen-vl-ocr-latest": {
1353
+ "description": "通義千問OCR是文字提取專有模型,專注於文檔、表格、試題、手寫體文字等類型圖像的文字提取能力。它能夠識別多種文字,目前支持的語言有:漢語、英語、法語、日語、韓語、德語、俄語、意大利語、越南語、阿拉伯語。"
1354
+ },
1259
1355
  "qwen-vl-plus-latest": {
1260
1356
  "description": "通義千問大規模視覺語言模型增強版。大幅提升細節識別能力和文字識別能力,支持超百萬像素解析度和任意長寬比規格的圖像。"
1261
1357
  },
@@ -1274,6 +1370,9 @@
1274
1370
  "qwen2.5-14b-instruct": {
1275
1371
  "description": "通義千問2.5對外開源的14B規模的模型。"
1276
1372
  },
1373
+ "qwen2.5-14b-instruct-1m": {
1374
+ "description": "通義千問2.5對外開源的72B規模的模型。"
1375
+ },
1277
1376
  "qwen2.5-32b-instruct": {
1278
1377
  "description": "通義千問2.5對外開源的32B規模的模型。"
1279
1378
  },
@@ -1301,6 +1400,12 @@
1301
1400
  "qwen2.5-math-7b-instruct": {
1302
1401
  "description": "Qwen-Math模型具有強大的數學解題能力。"
1303
1402
  },
1403
+ "qwen2.5-vl-72b-instruct": {
1404
+ "description": "指令跟隨、數學、解題、代碼整體提升,萬物識別能力提升,支持多樣格式直接精準定位視覺元素,支持對長視頻文件(最長10分鐘)進行理解和秒級別的事件時刻定位,能理解時間先後和快慢,基於解析和定位能力支持操控OS或Mobile的Agent,關鍵信息抽取能力和Json格式輸出能力強,此版本為72B版本,本系列能力最強的版本。"
1405
+ },
1406
+ "qwen2.5-vl-7b-instruct": {
1407
+ "description": "指令跟隨、數學、解題、代碼整體提升,萬物識別能力提升,支持多樣格式直接精準定位視覺元素,支持對長視頻文件(最長10分鐘)進行理解和秒級別的事件時刻定位,能理解時間先後和快慢,基於解析和定位能力支持操控OS或Mobile的Agent,關鍵信息抽取能力和Json格式輸出能力強,此版本為72B版本,本系列能力最強的版本。"
1408
+ },
1304
1409
  "qwen2.5:0.5b": {
1305
1410
  "description": "Qwen2.5 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
1306
1411
  },
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.51.8",
3
+ "version": "1.51.9",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -6,6 +6,7 @@ import isEqual from 'fast-deep-equal';
6
6
  import { parseAsBoolean, useQueryState } from 'nuqs';
7
7
  import { PropsWithChildren, memo, useEffect, useState } from 'react';
8
8
 
9
+ import { withSuspense } from '@/components/withSuspense';
9
10
  import { FOLDER_WIDTH } from '@/const/layoutTokens';
10
11
  import { useGlobalStore } from '@/store/global';
11
12
  import { systemStatusSelectors } from '@/store/global/selectors';
@@ -77,4 +78,4 @@ const SessionPanel = memo<PropsWithChildren>(({ children }) => {
77
78
  );
78
79
  });
79
80
 
80
- export default SessionPanel;
81
+ export default withSuspense(SessionPanel);
@@ -4,6 +4,7 @@ import { createStyles } from 'antd-style';
4
4
  import { Suspense, memo } from 'react';
5
5
  import { Flexbox } from 'react-layout-kit';
6
6
 
7
+ import { withSuspense } from '@/components/withSuspense';
7
8
  import InitClientDB from '@/features/InitClientDB';
8
9
  import { useShowMobileWorkspace } from '@/hooks/useShowMobileWorkspace';
9
10
 
@@ -48,4 +49,4 @@ const Layout = memo<LayoutProps>(({ children, session }) => {
48
49
 
49
50
  Layout.displayName = 'MobileChatLayout';
50
51
 
51
- export default Layout;
52
+ export default withSuspense(Layout);
@@ -9,5 +9,3 @@ const Layout = ServerLayout<LayoutProps>({ Desktop, Mobile });
9
9
  Layout.displayName = 'ChatLayout';
10
10
 
11
11
  export default Layout;
12
-
13
- export const dynamic = 'force-static';
@@ -45,3 +45,5 @@ const Page = async (props: PagePropsWithId) => {
45
45
  };
46
46
 
47
47
  export default Page;
48
+
49
+ export const dynamic = 'auto';
@@ -23,11 +23,11 @@ const PlanTag = memo<PlanTagProps>(({ type = PlanType.Preview }) => {
23
23
  switch (type) {
24
24
  case PlanType.Preview: {
25
25
  return {
26
- desc: t('userPanel.preview'),
26
+ desc: t('userPanel.community'),
27
27
  style: {
28
28
  background: theme.colorFill,
29
29
  },
30
- title: 'Preview',
30
+ title: 'Community',
31
31
  };
32
32
  }
33
33
  }
@@ -280,6 +280,7 @@ export default {
280
280
  anonymousNickName: '匿名用户',
281
281
  billing: '账单管理',
282
282
  cloud: '体验 {{name}}',
283
+ community: '社区版',
283
284
  data: '数据存储',
284
285
  defaultNickname: '社区版用户',
285
286
  discord: '社区支持',
@@ -289,7 +290,6 @@ export default {
289
290
  help: '帮助中心',
290
291
  moveGuide: '设置按钮搬到这里啦',
291
292
  plans: '订阅方案',
292
- preview: '预览版',
293
293
  profile: '账户管理',
294
294
  setting: '应用设置',
295
295
  usages: '用量统计',