@lobehub/chat 1.51.8 → 1.51.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/common.json +1 -1
- package/locales/ar/modelProvider.json +0 -20
- package/locales/ar/models.json +108 -3
- package/locales/bg-BG/common.json +1 -1
- package/locales/bg-BG/modelProvider.json +0 -20
- package/locales/bg-BG/models.json +108 -3
- package/locales/de-DE/common.json +1 -1
- package/locales/de-DE/modelProvider.json +0 -20
- package/locales/de-DE/models.json +108 -3
- package/locales/en-US/common.json +1 -1
- package/locales/en-US/modelProvider.json +0 -20
- package/locales/en-US/models.json +108 -3
- package/locales/es-ES/common.json +1 -1
- package/locales/es-ES/modelProvider.json +0 -20
- package/locales/es-ES/models.json +108 -3
- package/locales/fa-IR/common.json +1 -1
- package/locales/fa-IR/modelProvider.json +0 -20
- package/locales/fa-IR/models.json +108 -3
- package/locales/fr-FR/common.json +1 -1
- package/locales/fr-FR/modelProvider.json +0 -20
- package/locales/fr-FR/models.json +108 -3
- package/locales/it-IT/common.json +1 -1
- package/locales/it-IT/modelProvider.json +0 -20
- package/locales/it-IT/models.json +108 -3
- package/locales/ja-JP/common.json +1 -1
- package/locales/ja-JP/modelProvider.json +0 -20
- package/locales/ja-JP/models.json +108 -3
- package/locales/ko-KR/common.json +1 -1
- package/locales/ko-KR/modelProvider.json +0 -20
- package/locales/ko-KR/models.json +108 -3
- package/locales/nl-NL/common.json +1 -1
- package/locales/nl-NL/modelProvider.json +0 -20
- package/locales/nl-NL/models.json +108 -3
- package/locales/pl-PL/common.json +1 -1
- package/locales/pl-PL/modelProvider.json +0 -20
- package/locales/pl-PL/models.json +108 -3
- package/locales/pt-BR/common.json +1 -1
- package/locales/pt-BR/modelProvider.json +0 -20
- package/locales/pt-BR/models.json +108 -3
- package/locales/ru-RU/common.json +1 -1
- package/locales/ru-RU/modelProvider.json +0 -20
- package/locales/ru-RU/models.json +108 -3
- package/locales/tr-TR/common.json +1 -1
- package/locales/tr-TR/modelProvider.json +0 -20
- package/locales/tr-TR/models.json +108 -3
- package/locales/vi-VN/common.json +1 -1
- package/locales/vi-VN/modelProvider.json +0 -20
- package/locales/vi-VN/models.json +108 -3
- package/locales/zh-CN/common.json +1 -1
- package/locales/zh-CN/modelProvider.json +0 -20
- package/locales/zh-CN/models.json +113 -8
- package/locales/zh-TW/common.json +1 -1
- package/locales/zh-TW/modelProvider.json +0 -20
- package/locales/zh-TW/models.json +108 -3
- package/package.json +1 -1
- package/src/app/[variants]/(main)/chat/_layout/Desktop/SessionPanel.tsx +2 -1
- package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +2 -1
- package/src/app/[variants]/(main)/chat/layout.ts +0 -2
- package/src/app/[variants]/(main)/settings/provider/(detail)/[id]/page.tsx +2 -0
- package/src/features/User/PlanTag.tsx +2 -2
- package/src/locales/default/common.ts +1 -1
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,31 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.51.9](https://github.com/lobehub/lobe-chat/compare/v1.51.8...v1.51.9)
|
6
|
+
|
7
|
+
<sup>Released on **2025-02-06**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Update edtion tag display and improve prerender.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Update edtion tag display and improve prerender, closes [#5800](https://github.com/lobehub/lobe-chat/issues/5800) ([673109b](https://github.com/lobehub/lobe-chat/commit/673109b))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
5
30
|
### [Version 1.51.8](https://github.com/lobehub/lobe-chat/compare/v1.51.7...v1.51.8)
|
6
31
|
|
7
32
|
<sup>Released on **2025-02-06**</sup>
|
package/changelog/v1.json
CHANGED
package/locales/ar/common.json
CHANGED
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "مستخدم مجهول",
|
287
287
|
"billing": "إدارة الفواتير",
|
288
288
|
"cloud": "تجربة {{name}}",
|
289
|
+
"community": "نسخة المجتمع",
|
289
290
|
"data": "تخزين البيانات",
|
290
291
|
"defaultNickname": "مستخدم النسخة المجتمعية",
|
291
292
|
"discord": "الدعم المجتمعي",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "مركز المساعدة",
|
296
297
|
"moveGuide": "تم نقل زر الإعدادات إلى هنا",
|
297
298
|
"plans": "خطط الاشتراك",
|
298
|
-
"preview": "المعاينة",
|
299
299
|
"profile": "إدارة الحساب",
|
300
300
|
"setting": "إعدادات التطبيق",
|
301
301
|
"usages": "إحصاءات الاستخدام"
|
@@ -294,26 +294,6 @@
|
|
294
294
|
"tooltip": "تحديث التكوين الأساسي للمزود",
|
295
295
|
"updateSuccess": "تم التحديث بنجاح"
|
296
296
|
},
|
297
|
-
"wenxin": {
|
298
|
-
"accessKey": {
|
299
|
-
"desc": "أدخل مفتاح الوصول من منصة بايدو تشيانفان",
|
300
|
-
"placeholder": "مفتاح الوصول لتشيانفان",
|
301
|
-
"title": "مفتاح الوصول"
|
302
|
-
},
|
303
|
-
"checker": {
|
304
|
-
"desc": "اختبر ما إذا كان مفتاح الوصول / مفتاح السر صحيحًا"
|
305
|
-
},
|
306
|
-
"secretKey": {
|
307
|
-
"desc": "أدخل مفتاح السر من منصة بايدو تشيانفان",
|
308
|
-
"placeholder": "مفتاح السر لتشيانفان",
|
309
|
-
"title": "مفتاح السر"
|
310
|
-
},
|
311
|
-
"unlock": {
|
312
|
-
"customRegion": "منطقة الخدمة المخصصة",
|
313
|
-
"description": "أدخل مفتاح الوصول / مفتاح السر لبدء المحادثة. التطبيق لن يسجل إعدادات المصادقة الخاصة بك",
|
314
|
-
"title": "استخدام معلومات مصادقة وينشين يي يان المخصصة"
|
315
|
-
}
|
316
|
-
},
|
317
297
|
"zeroone": {
|
318
298
|
"title": "01.AI الأشياء الصغرى"
|
319
299
|
},
|
package/locales/ar/models.json
CHANGED
@@ -23,6 +23,9 @@
|
|
23
23
|
"360gpt2-pro": {
|
24
24
|
"description": "360GPT2 Pro هو نموذج متقدم لمعالجة اللغة الطبيعية تم إطلاقه من قبل شركة 360، يتمتع بقدرات استثنائية في توليد وفهم النصوص، خاصة في مجالات التوليد والإبداع، ويستطيع التعامل مع مهام تحويل اللغة المعقدة وأداء الأدوار."
|
25
25
|
},
|
26
|
+
"360zhinao2-o1": {
|
27
|
+
"description": "يستخدم 360zhinao2-o1 البحث الشجري لبناء سلسلة التفكير، ويقدم آلية للتفكير النقدي، ويستخدم التعلم المعزز للتدريب، مما يمنح النموذج القدرة على التفكير الذاتي وتصحيح الأخطاء."
|
28
|
+
},
|
26
29
|
"4.0Ultra": {
|
27
30
|
"description": "Spark4.0 Ultra هو أقوى إصدار في سلسلة نماذج Spark، حيث يعزز فهم النصوص وقدرات التلخيص مع تحسين روابط البحث عبر الإنترنت. إنه حل شامل يهدف إلى تعزيز إنتاجية المكتب والاستجابة الدقيقة للاحتياجات، ويعتبر منتجًا ذكيًا رائدًا في الصناعة."
|
28
31
|
},
|
@@ -44,6 +47,18 @@
|
|
44
47
|
"Baichuan4-Turbo": {
|
45
48
|
"description": "النموذج الأول محليًا، يتفوق على النماذج الرئيسية الأجنبية في المهام الصينية مثل المعرفة الموسوعية، النصوص الطويلة، والإبداع. كما يتمتع بقدرات متعددة الوسائط الرائدة في الصناعة، ويظهر أداءً ممتازًا في العديد من معايير التقييم الموثوقة."
|
46
49
|
},
|
50
|
+
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
|
+
"description": "نموذج التقطير DeepSeek-R1 المستند إلى Qwen2.5-Math-1.5B، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Qwen-14B": {
|
54
|
+
"description": "نموذج التقطير DeepSeek-R1 المستند إلى Qwen2.5-14B، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
55
|
+
},
|
56
|
+
"DeepSeek-R1-Distill-Qwen-32B": {
|
57
|
+
"description": "تسلسل DeepSeek-R1 يحسن أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة، متجاوزًا مستوى OpenAI-o1-mini."
|
58
|
+
},
|
59
|
+
"DeepSeek-R1-Distill-Qwen-7B": {
|
60
|
+
"description": "نموذج التقطير DeepSeek-R1 المستند إلى Qwen2.5-Math-7B، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
61
|
+
},
|
47
62
|
"Doubao-lite-128k": {
|
48
63
|
"description": "دو باو-لايت يوفر سرعة استجابة فائقة وقيمة جيدة للكلفة، ويقدم خيارات أكثر مرونة للعملاء في سيناريوهات مختلفة. يدعم الاستدلال والتنقيح بسعة سياق 128k."
|
49
64
|
},
|
@@ -77,9 +92,6 @@
|
|
77
92
|
"ERNIE-4.0-8K-Preview": {
|
78
93
|
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، والذي شهد ترقية شاملة في القدرات مقارنةً بـERNIE 3.5، ويستخدم على نطاق واسع في مجالات متعددة لمهام معقدة؛ يدعم الاتصال التلقائي بإضافات بحث بايدو لضمان تحديث معلومات الإجابة."
|
79
94
|
},
|
80
|
-
"ERNIE-4.0-Turbo-128K": {
|
81
|
-
"description": "نموذج اللغة الكبير الرائد من بايدو، يظهر أداءً ممتازًا في مجموعة واسعة من المهام المعقدة في مختلف المجالات؛ يدعم الاتصال التلقائي بمكونات بحث بايدو، مما يضمن تحديث معلومات الأسئلة والأجوبة. مقارنةً بـ ERNIE 4.0، يظهر أداءً أفضل."
|
82
|
-
},
|
83
95
|
"ERNIE-4.0-Turbo-8K-Latest": {
|
84
96
|
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، والذي يظهر أداءً ممتازًا في مجالات متعددة، مما يجعله مناسبًا لمجموعة واسعة من المهام المعقدة؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الأسئلة والأجوبة. مقارنة بـ ERNIE 4.0، يظهر أداءً أفضل."
|
85
97
|
},
|
@@ -176,6 +188,9 @@
|
|
176
188
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
189
|
"description": "Meta Llama 3.1 هو جزء من عائلة نماذج اللغة الكبيرة متعددة اللغات التي طورتها Meta، بما في ذلك متغيرات مدربة مسبقًا ومعدلة وفقًا للتعليمات بحجم 8B و70B و405B. تم تحسين هذا النموذج 8B وفقًا لمشاهدات المحادثات متعددة اللغات، وأظهر أداءً ممتازًا في العديد من اختبارات المعايير الصناعية. تم تدريب النموذج باستخدام أكثر من 15 تريليون توكن من البيانات العامة، واستخدم تقنيات مثل التعديل الخاضع للإشراف والتعلم المعزز من ردود الفعل البشرية لتحسين فائدة النموذج وأمانه. يدعم Llama 3.1 توليد النصوص وتوليد الشيفرة، مع تاريخ معرفة حتى ديسمبر 2023."
|
178
190
|
},
|
191
|
+
"QwQ-32B-Preview": {
|
192
|
+
"description": "QwQ-32B-Preview هو نموذج معالجة اللغة الطبيعية المبتكر، قادر على معالجة مهام توليد الحوار وفهم السياق بشكل فعال."
|
193
|
+
},
|
179
194
|
"Qwen/QVQ-72B-Preview": {
|
180
195
|
"description": "QVQ-72B-Preview هو نموذج بحثي طورته فريق Qwen يركز على قدرات الاستدلال البصري، حيث يتمتع بميزة فريدة في فهم المشاهد المعقدة وحل المشكلات الرياضية المتعلقة بالرؤية."
|
181
196
|
},
|
@@ -527,6 +542,24 @@
|
|
527
542
|
"deepseek-ai/DeepSeek-R1": {
|
528
543
|
"description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL) يعالج مشكلات التكرار وقابلية القراءة في النموذج. قبل استخدام RL، قدم DeepSeek-R1 بيانات بدء باردة، مما أدى إلى تحسين أداء الاستدلال. إنه يقدم أداءً مماثلاً لـ OpenAI-o1 في المهام الرياضية والبرمجية والاستدلال، وقد حسّن النتائج العامة من خلال طرق تدريب مصممة بعناية."
|
529
544
|
},
|
545
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
546
|
+
"description": "نموذج التقطير DeepSeek-R1، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
547
|
+
},
|
548
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
549
|
+
"description": "DeepSeek-R1-Distill-Llama-8B هو نموذج تم تطويره بناءً على Llama-3.1-8B. تم ضبط هذا النموذج باستخدام عينات تم إنشاؤها بواسطة DeepSeek-R1، ويظهر قدرة استدلال ممتازة. حقق أداءً جيدًا في اختبارات المعايير، حيث حقق دقة 89.1% في MATH-500، وحقق معدل نجاح 50.4% في AIME 2024، وحصل على تقييم 1205 في CodeForces، مما يظهر قدرة قوية في الرياضيات والبرمجة كنموذج بحجم 8B."
|
550
|
+
},
|
551
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
552
|
+
"description": "نموذج التقطير DeepSeek-R1، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
553
|
+
},
|
554
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
|
555
|
+
"description": "نموذج التقطير DeepSeek-R1، تم تحسين أداء الاستدلال من خلال التعلم المعزز وبيانات البداية الباردة، ويعيد نموذج المصدر فتح معايير المهام المتعددة."
|
556
|
+
},
|
557
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
558
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B هو نموذج تم الحصول عليه من Qwen2.5-32B من خلال التقطير المعرفي. تم ضبط هذا النموذج باستخدام 800,000 عينة مختارة تم إنشاؤها بواسطة DeepSeek-R1، ويظهر أداءً ممتازًا في مجالات متعددة مثل الرياضيات، البرمجة، والاستدلال. حقق نتائج ممتازة في اختبارات المعايير مثل AIME 2024، MATH-500، وGPQA Diamond، حيث حقق دقة 94.3% في MATH-500، مما يظهر قدرة قوية في الاستدلال الرياضي."
|
559
|
+
},
|
560
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
561
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B هو نموذج تم الحصول عليه من Qwen2.5-Math-7B من خلال التقطير المعرفي. تم ضبط هذا النموذج باستخدام 800,000 عينة مختارة تم إنشاؤها بواسطة DeepSeek-R1، ويظهر أداءً ممتازًا في الاستدلال. حقق نتائج ممتازة في اختبارات المعايير، حيث حقق دقة 92.8% في MATH-500، وحقق معدل نجاح 55.5% في AIME 2024، وحصل على تقييم 1189 في CodeForces، مما يظهر قدرة قوية في الرياضيات والبرمجة كنموذج بحجم 7B."
|
562
|
+
},
|
530
563
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
564
|
"description": "DeepSeek V2.5 يجمع بين الميزات الممتازة للإصدارات السابقة، ويعزز القدرات العامة والترميز."
|
532
565
|
},
|
@@ -554,6 +587,9 @@
|
|
554
587
|
"deepseek-r1": {
|
555
588
|
"description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL) يعالج مشكلات التكرار وقابلية القراءة في النموذج. قبل استخدام RL، قدم DeepSeek-R1 بيانات بدء باردة، مما أدى إلى تحسين أداء الاستدلال. إنه يقدم أداءً مماثلاً لـ OpenAI-o1 في المهام الرياضية والبرمجية والاستدلال، وقد حسّن النتائج العامة من خلال طرق تدريب مصممة بعناية."
|
556
589
|
},
|
590
|
+
"deepseek-r1-distill-llama-70b": {
|
591
|
+
"description": "DeepSeek R1 - النموذج الأكبر والأذكى في مجموعة DeepSeek - تم تقطيره إلى بنية Llama 70B. بناءً على اختبارات المعايير والتقييمات البشرية، يظهر هذا النموذج ذكاءً أكبر من Llama 70B الأصلي، خاصة في المهام التي تتطلب دقة رياضية وحقائق."
|
592
|
+
},
|
557
593
|
"deepseek-reasoner": {
|
558
594
|
"description": "نموذج الاستدلال الذي أطلقته DeepSeek. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من المحتوى الفكري لتحسين دقة الإجابة النهائية."
|
559
595
|
},
|
@@ -563,12 +599,63 @@
|
|
563
599
|
"deepseek-v2:236b": {
|
564
600
|
"description": "DeepSeek V2 236B هو نموذج تصميم الشيفرة لـ DeepSeek، يوفر قدرة توليد شيفرة قوية."
|
565
601
|
},
|
602
|
+
"deepseek-v3": {
|
603
|
+
"description": "DeepSeek-V3 هو نموذج MoE تم تطويره بواسطة شركة Hangzhou DeepSeek AI Technology Research Co.، Ltd، وقد حقق نتائج بارزة في العديد من التقييمات، ويحتل المرتبة الأولى بين نماذج المصدر المفتوح في القوائم الرئيسية. مقارنةً بنموذج V2.5، حقق V3 زيادة في سرعة التوليد بمقدار 3 مرات، مما يوفر تجربة استخدام أسرع وأكثر سلاسة للمستخدمين."
|
604
|
+
},
|
566
605
|
"deepseek/deepseek-chat": {
|
567
606
|
"description": "نموذج مفتوح المصدر جديد يجمع بين القدرات العامة وقدرات البرمجة، لا يحتفظ فقط بقدرات الحوار العامة لنموذج الدردشة الأصلي وقدرات معالجة الأكواد القوية لنموذج Coder، بل يتماشى أيضًا بشكل أفضل مع تفضيلات البشر. بالإضافة إلى ذلك، حقق DeepSeek-V2.5 تحسينات كبيرة في مهام الكتابة، واتباع التعليمات، وغيرها من المجالات."
|
568
607
|
},
|
569
608
|
"emohaa": {
|
570
609
|
"description": "Emohaa هو نموذج نفسي، يتمتع بقدرات استشارية متخصصة، يساعد المستخدمين في فهم القضايا العاطفية."
|
571
610
|
},
|
611
|
+
"ernie-3.5-128k": {
|
612
|
+
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، يغطي كمية هائلة من البيانات باللغة الصينية والإنجليزية، ويتميز بقدرات عامة قوية، تلبي متطلبات معظم حالات الحوار، والإجابة، والتوليد، وتطبيقات المكونات الإضافية؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة."
|
613
|
+
},
|
614
|
+
"ernie-3.5-8k": {
|
615
|
+
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، يغطي كمية هائلة من البيانات باللغة الصينية والإنجليزية، ويتميز بقدرات عامة قوية، تلبي متطلبات معظم حالات الحوار، والإجابة، والتوليد، وتطبيقات المكونات الإضافية؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة."
|
616
|
+
},
|
617
|
+
"ernie-3.5-8k-preview": {
|
618
|
+
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، يغطي كمية هائلة من البيانات باللغة الصينية والإنجليزية، ويتميز بقدرات عامة قوية، تلبي متطلبات معظم حالات الحوار، والإجابة، والتوليد، وتطبيقات المكونات الإضافية؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة."
|
619
|
+
},
|
620
|
+
"ernie-4.0-8k-latest": {
|
621
|
+
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، والذي حقق ترقية شاملة في القدرات مقارنةً بـ ERNIE 3.5، ويستخدم على نطاق واسع في مشاهد المهام المعقدة في مختلف المجالات؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة."
|
622
|
+
},
|
623
|
+
"ernie-4.0-8k-preview": {
|
624
|
+
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، والذي حقق ترقية شاملة في القدرات مقارنةً بـ ERNIE 3.5، ويستخدم على نطاق واسع في مشاهد المهام المعقدة في مختلف المجالات؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة."
|
625
|
+
},
|
626
|
+
"ernie-4.0-turbo-128k": {
|
627
|
+
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، والذي يظهر أداءً ممتازًا بشكل شامل، ويستخدم على نطاق واسع في مشاهد المهام المعقدة في مختلف المجالات؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة. مقارنةً بـ ERNIE 4.0، يظهر أداءً أفضل."
|
628
|
+
},
|
629
|
+
"ernie-4.0-turbo-8k-latest": {
|
630
|
+
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، والذي يظهر أداءً ممتازًا بشكل شامل، ويستخدم على نطاق واسع في مشاهد المهام المعقدة في مختلف المجالات؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة. مقارنةً بـ ERNIE 4.0، يظهر أداءً أفضل."
|
631
|
+
},
|
632
|
+
"ernie-4.0-turbo-8k-preview": {
|
633
|
+
"description": "نموذج اللغة الكبير الرائد الذي طورته بايدو، والذي يظهر أداءً ممتازًا بشكل شامل، ويستخدم على نطاق واسع في مشاهد المهام المعقدة في مختلف المجالات؛ يدعم الاتصال التلقائي بمكونات البحث من بايدو، مما يضمن تحديث معلومات الإجابة. مقارنةً بـ ERNIE 4.0، يظهر أداءً أفضل."
|
634
|
+
},
|
635
|
+
"ernie-char-8k": {
|
636
|
+
"description": "نموذج اللغة الكبير المخصص الذي طورته بايدو، مناسب لتطبيقات مثل NPC في الألعاب، محادثات خدمة العملاء، وأدوار الحوار، حيث يتميز بأسلوب شخصيات واضح ومتسق، وقدرة قوية على اتباع التعليمات، وأداء استدلال ممتاز."
|
637
|
+
},
|
638
|
+
"ernie-char-fiction-8k": {
|
639
|
+
"description": "نموذج اللغة الكبير المخصص الذي طورته بايدو، مناسب لتطبيقات مثل NPC في الألعاب، محادثات خدمة العملاء، وأدوار الحوار، حيث يتميز بأسلوب شخصيات واضح ومتسق، وقدرة قوية على اتباع التعليمات، وأداء استدلال ممتاز."
|
640
|
+
},
|
641
|
+
"ernie-lite-8k": {
|
642
|
+
"description": "ERNIE Lite هو نموذج اللغة الكبير الخفيف الذي طورته بايدو، يجمع بين أداء النموذج الممتاز وأداء الاستدلال، مناسب للاستخدام مع بطاقات تسريع الذكاء الاصطناعي ذات القدرة الحاسوبية المنخفضة."
|
643
|
+
},
|
644
|
+
"ernie-lite-pro-128k": {
|
645
|
+
"description": "نموذج اللغة الكبير الخفيف الذي طورته بايدو، يجمع بين أداء النموذج الممتاز وأداء الاستدلال، ويظهر أداءً أفضل من ERNIE Lite، مناسب للاستخدام مع بطاقات تسريع الذكاء الاصطناعي ذات القدرة الحاسوبية المنخفضة."
|
646
|
+
},
|
647
|
+
"ernie-novel-8k": {
|
648
|
+
"description": "نموذج اللغة الكبير العام الذي طورته بايدو، يظهر مزايا واضحة في القدرة على كتابة روايات، ويمكن استخدامه أيضًا في مشاهد مثل المسرحيات القصيرة والأفلام."
|
649
|
+
},
|
650
|
+
"ernie-speed-128k": {
|
651
|
+
"description": "نموذج اللغة الكبير عالي الأداء الذي طورته بايدو، والذي تم إصداره في عام 2024، يتمتع بقدرات عامة ممتازة، مناسب كنموذج أساسي للتعديل، مما يساعد على معالجة مشكلات المشاهد المحددة بشكل أفضل، ويظهر أداءً ممتازًا في الاستدلال."
|
652
|
+
},
|
653
|
+
"ernie-speed-pro-128k": {
|
654
|
+
"description": "نموذج اللغة الكبير عالي الأداء الذي طورته بايدو، والذي تم إصداره في عام 2024، يتمتع بقدرات عامة ممتازة، ويظهر أداءً أفضل من ERNIE Speed، مناسب كنموذج أساسي للتعديل، مما يساعد على معالجة مشكلات المشاهد المحددة بشكل أفضل، ويظهر أداءً ممتازًا في الاستدلال."
|
655
|
+
},
|
656
|
+
"ernie-tiny-8k": {
|
657
|
+
"description": "ERNIE Tiny هو نموذج اللغة الكبير عالي الأداء الذي طورته بايدو، وتكاليف النشر والتعديل هي الأدنى بين نماذج سلسلة Wenxin."
|
658
|
+
},
|
572
659
|
"gemini-1.0-pro-001": {
|
573
660
|
"description": "Gemini 1.0 Pro 001 (تعديل) يوفر أداءً مستقرًا وقابلًا للتعديل، وهو الخيار المثالي لحلول المهام المعقدة."
|
574
661
|
},
|
@@ -872,6 +959,9 @@
|
|
872
959
|
"internlm2.5-latest": {
|
873
960
|
"description": "سلسلة نماذجنا الأحدث، تتمتع بأداء استدلال ممتاز، تدعم طول سياق يصل إلى 1 مليون، بالإضافة إلى قدرة أقوى على اتباع التعليمات واستدعاء الأدوات."
|
874
961
|
},
|
962
|
+
"internlm3-latest": {
|
963
|
+
"description": "سلسلة نماذجنا الأحدث، تتمتع بأداء استدلال ممتاز، تتصدر نماذج المصدر المفتوح من نفس الفئة. تشير بشكل افتراضي إلى أحدث نماذج سلسلة InternLM3 التي تم إصدارها."
|
964
|
+
},
|
875
965
|
"learnlm-1.5-pro-experimental": {
|
876
966
|
"description": "LearnLM هو نموذج لغوي تجريبي محدد المهام، تم تدريبه ليتماشى مع مبادئ علوم التعلم، يمكنه اتباع التعليمات النظامية في سيناريوهات التعليم والتعلم، ويعمل كمدرب خبير."
|
877
967
|
},
|
@@ -986,6 +1076,9 @@
|
|
986
1076
|
"meta-llama/Llama-3.3-70B-Instruct": {
|
987
1077
|
"description": "Llama 3.3 هو أحدث نموذج لغوي مفتوح المصدر متعدد اللغات من سلسلة Llama، يقدم تجربة مشابهة لأداء نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسينه من خلال التعديل الإشرافي (SFT) والتعلم المعزز من خلال ردود الفعل البشرية (RLHF) لتعزيز الفائدة والأمان. تم تحسين نسخة التعديل الخاصة به للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة المفتوحة والمغلقة. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
988
1078
|
},
|
1079
|
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1080
|
+
"description": "نموذج Meta Llama 3.3 متعدد اللغات (LLM) هو نموذج توليد تم تدريبه مسبقًا وضبطه على التعليمات في 70B (إدخال نص/إخراج نص). تم تحسين نموذج Llama 3.3 المعدل على التعليمات لحالات استخدام الحوار متعدد اللغات، ويتفوق على العديد من نماذج الدردشة المفتوحة والمغلقة المتاحة في المعايير الصناعية الشائعة."
|
1081
|
+
},
|
989
1082
|
"meta-llama/Llama-Vision-Free": {
|
990
1083
|
"description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يبرز في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة واستدلال الرؤية."
|
991
1084
|
},
|
@@ -1256,6 +1349,9 @@
|
|
1256
1349
|
"qwen-vl-max-latest": {
|
1257
1350
|
"description": "نموذج اللغة البصرية الكبير Qwen. مقارنةً بالنسخة المحسّنة، تعزز مرة أخرى من قدرة الاستدلال البصري وقدرة اتباع التعليمات، مما يوفر مستوى أعلى من الإدراك البصري والمعرفة."
|
1258
1351
|
},
|
1352
|
+
"qwen-vl-ocr-latest": {
|
1353
|
+
"description": "نموذج OCR الخاص بـ Tongyi Qianwen هو نموذج استخراج النصوص، يركز على قدرة استخراج النصوص من أنواع الصور مثل الوثائق، الجداول، الأسئلة، والنصوص المكتوبة بخط اليد. يمكنه التعرف على عدة لغات، بما في ذلك: الصينية، الإنجليزية، الفرنسية، اليابانية، الكورية، الألمانية، الروسية، الإيطالية، الفيتنامية، والعربية."
|
1354
|
+
},
|
1259
1355
|
"qwen-vl-plus-latest": {
|
1260
1356
|
"description": "نسخة محسّنة من نموذج اللغة البصرية الكبير Qwen. تعزز بشكل كبير من قدرة التعرف على التفاصيل وقدرة التعرف على النصوص، وتدعم دقة تصل إلى أكثر من مليون بكسل وأبعاد صور بأي نسبة عرض إلى ارتفاع."
|
1261
1357
|
},
|
@@ -1274,6 +1370,9 @@
|
|
1274
1370
|
"qwen2.5-14b-instruct": {
|
1275
1371
|
"description": "نموذج Qwen 2.5 مفتوح المصدر بحجم 14B."
|
1276
1372
|
},
|
1373
|
+
"qwen2.5-14b-instruct-1m": {
|
1374
|
+
"description": "نموذج بحجم 72B مفتوح المصدر من Tongyi Qianwen 2.5."
|
1375
|
+
},
|
1277
1376
|
"qwen2.5-32b-instruct": {
|
1278
1377
|
"description": "نموذج Qwen 2.5 مفتوح المصدر بحجم 32B."
|
1279
1378
|
},
|
@@ -1301,6 +1400,12 @@
|
|
1301
1400
|
"qwen2.5-math-7b-instruct": {
|
1302
1401
|
"description": "نموذج Qwen-Math يتمتع بقدرات قوية في حل المسائل الرياضية."
|
1303
1402
|
},
|
1403
|
+
"qwen2.5-vl-72b-instruct": {
|
1404
|
+
"description": "تحسين شامل في اتباع التعليمات، الرياضيات، حل المشكلات، والبرمجة، وزيادة قدرة التعرف على العناصر البصرية، يدعم تنسيقات متعددة لتحديد العناصر البصرية بدقة، ويدعم فهم ملفات الفيديو الطويلة (حتى 10 دقائق) وتحديد اللحظات الزمنية بدقة، قادر على فهم التسلسل الزمني والسرعة، يدعم التحكم في أنظمة التشغيل أو الوكلاء المحمولة بناءً على قدرات التحليل والتحديد، قوي في استخراج المعلومات الرئيسية وإخراج البيانات بتنسيق Json، هذه النسخة هي النسخة 72B، وهي الأقوى في هذه السلسلة."
|
1405
|
+
},
|
1406
|
+
"qwen2.5-vl-7b-instruct": {
|
1407
|
+
"description": "تحسين شامل في اتباع التعليمات، الرياضيات، حل المشكلات، والبرمجة، وزيادة قدرة التعرف على العناصر البصرية، يدعم تنسيقات متعددة لتحديد العناصر البصرية بدقة، ويدعم فهم ملفات الفيديو الطويلة (حتى 10 دقائق) وتحديد اللحظات الزمنية بدقة، قادر على فهم التسلسل الزمني والسرعة، يدعم التحكم في أنظمة التشغيل أو الوكلاء المحمولة بناءً على قدرات التحليل والتحديد، قوي في استخراج المعلومات الرئيسية وإخراج البيانات بتنسيق Json، هذه النسخة هي النسخة 72B، وهي الأقوى في هذه السلسلة."
|
1408
|
+
},
|
1304
1409
|
"qwen2.5:0.5b": {
|
1305
1410
|
"description": "Qwen2.5 هو الجيل الجديد من نماذج اللغة الكبيرة من Alibaba، يدعم احتياجات التطبيقات المتنوعة بأداء ممتاز."
|
1306
1411
|
},
|
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "Анонимен потребител",
|
287
287
|
"billing": "Управление на сметките",
|
288
288
|
"cloud": "Изпробвайте {{name}}",
|
289
|
+
"community": "Общностна версия",
|
289
290
|
"data": "Съхранение на данни",
|
290
291
|
"defaultNickname": "Потребител на общността",
|
291
292
|
"discord": "Поддръжка на общността",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "Център за помощ",
|
296
297
|
"moveGuide": "Бутонът за настройки е преместен тук",
|
297
298
|
"plans": "Планове за абонамент",
|
298
|
-
"preview": "Преглед",
|
299
299
|
"profile": "Управление на профила",
|
300
300
|
"setting": "Настройки на приложението",
|
301
301
|
"usages": "Статистика за използване"
|
@@ -294,26 +294,6 @@
|
|
294
294
|
"tooltip": "Актуализиране на основната конфигурация на доставчика",
|
295
295
|
"updateSuccess": "Актуализацията е успешна"
|
296
296
|
},
|
297
|
-
"wenxin": {
|
298
|
-
"accessKey": {
|
299
|
-
"desc": "Въведете Access Key от платформата Baidu Qianfan",
|
300
|
-
"placeholder": "Qianfan Access Key",
|
301
|
-
"title": "Access Key"
|
302
|
-
},
|
303
|
-
"checker": {
|
304
|
-
"desc": "Тествайте дали AccessKey / SecretAccess е попълнен правилно"
|
305
|
-
},
|
306
|
-
"secretKey": {
|
307
|
-
"desc": "Въведете Secret Key от платформата Baidu Qianfan",
|
308
|
-
"placeholder": "Qianfan Secret Key",
|
309
|
-
"title": "Secret Key"
|
310
|
-
},
|
311
|
-
"unlock": {
|
312
|
-
"customRegion": "Персонализиран регион на услугата",
|
313
|
-
"description": "Въведете вашия AccessKey / SecretKey, за да започнете сесия. Приложението няма да запомня вашите конфигурации за удостоверяване",
|
314
|
-
"title": "Използвайте персонализирана информация за удостоверяване на Wenxin Yiyan"
|
315
|
-
}
|
316
|
-
},
|
317
297
|
"zeroone": {
|
318
298
|
"title": "01.AI Зероуан Всичко"
|
319
299
|
},
|
@@ -23,6 +23,9 @@
|
|
23
23
|
"360gpt2-pro": {
|
24
24
|
"description": "360GPT2 Pro е усъвършенстван модел за обработка на естествен език, пуснат от компания 360, с изключителни способности за генериране и разбиране на текст, особено в областта на генерирането и творчеството, способен да обработва сложни езикови трансформации и ролеви игри."
|
25
25
|
},
|
26
|
+
"360zhinao2-o1": {
|
27
|
+
"description": "360zhinao2-o1 използва дървесно търсене за изграждане на мисловни вериги и въвежда механизъм за саморазмисъл, обучавайки се чрез подсилено учене, моделът притежава способността за саморазмисъл и корекция на грешки."
|
28
|
+
},
|
26
29
|
"4.0Ultra": {
|
27
30
|
"description": "Spark4.0 Ultra е най-мощната версия в серията Starfire, която подобрява разбирането и обобщаването на текстовото съдържание, докато надгражда свързаните търсения. Това е всестранно решение за повишаване на производителността в офиса и точно отговаряне на нуждите, водещо в индустрията интелигентно решение."
|
28
31
|
},
|
@@ -44,6 +47,18 @@
|
|
44
47
|
"Baichuan4-Turbo": {
|
45
48
|
"description": "Моделът е лидер в страната по способности, надминавайки чуждестранните основни модели в задачи на китайски език, като знания, дълги текстове и генериране на творби. Също така притежава водещи в индустрията мултимодални способности и отлични резултати в множество авторитетни оценки."
|
46
49
|
},
|
50
|
+
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
|
+
"description": "DeepSeek-R1 дестилиран модел, базиран на Qwen2.5-Math-1.5B, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Qwen-14B": {
|
54
|
+
"description": "DeepSeek-R1 дестилиран модел, базиран на Qwen2.5-14B, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
|
55
|
+
},
|
56
|
+
"DeepSeek-R1-Distill-Qwen-32B": {
|
57
|
+
"description": "Серията DeepSeek-R1 оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт, надминавайки нивото на OpenAI-o1-mini."
|
58
|
+
},
|
59
|
+
"DeepSeek-R1-Distill-Qwen-7B": {
|
60
|
+
"description": "DeepSeek-R1 дестилиран модел, базиран на Qwen2.5-Math-7B, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
|
61
|
+
},
|
47
62
|
"Doubao-lite-128k": {
|
48
63
|
"description": "Doubao-lite предлага изключителна скорост на отговор и по-добра цена, предоставяйки на клиентите гъвкави опции за различни сценарии. Поддържа извеждане и фин настройка на контекстов прозорец от 128k."
|
49
64
|
},
|
@@ -77,9 +92,6 @@
|
|
77
92
|
"ERNIE-4.0-8K-Preview": {
|
78
93
|
"description": "Флагманският модел на Baidu за изключително големи езикови модели, разработен самостоятелно, е напълно обновен в сравнение с ERNIE 3.5 и е широко приложим в сложни задачи в различни области; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията за отговори."
|
79
94
|
},
|
80
|
-
"ERNIE-4.0-Turbo-128K": {
|
81
|
-
"description": "Флагманският модел на Baidu, изграден на собствена технология, с изключителни резултати и широко приложение в сложни задачи в различни области; поддържа автоматично свързване с плъгини за търсене на Baidu, осигурявайки актуалност на информацията за отговори. В сравнение с ERNIE 4.0, показва по-добра производителност."
|
82
|
-
},
|
83
95
|
"ERNIE-4.0-Turbo-8K-Latest": {
|
84
96
|
"description": "Патентованият флагмански модул на Baidu, изключително мащабен езиков модел, показващ отлични резултати и широко приложение в сложни сценарии. Поддържа автоматично свързване с плъгини на Baidu Search, гарантирайки актуалността на информацията. В сравнение с ERNIE 4.0, той представя по-добри резултати."
|
85
97
|
},
|
@@ -176,6 +188,9 @@
|
|
176
188
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
189
|
"description": "Meta Llama 3.1 е семейство от многоезични големи езикови модели, разработени от Meta, включващо предварително обучени и модели с фино настройване с параметри 8B, 70B и 405B. Този 8B модел с фино настройване на инструкции е оптимизиран за многоезични разговорни сценарии и показва отлични резултати в множество индустриални бенчмаркове. Моделът е обучен с над 15 трилиона токена от публични данни и използва технологии като наблюдавано фино настройване и обучение с човешка обратна връзка, за да подобри полезността и безопасността на модела. Llama 3.1 поддържа генериране на текст и генериране на код, с дата на прекратяване на знанията до декември 2023 г."
|
178
190
|
},
|
191
|
+
"QwQ-32B-Preview": {
|
192
|
+
"description": "QwQ-32B-Preview е иновативен модел за обработка на естествен език, способен да обработва ефективно сложни задачи за генериране на диалог и разбиране на контекста."
|
193
|
+
},
|
179
194
|
"Qwen/QVQ-72B-Preview": {
|
180
195
|
"description": "QVQ-72B-Preview е изследователски модел, разработен от екипа на Qwen, който се фокусира върху визуалните способности за извеждане и притежава уникални предимства в разбирането на сложни сцени и решаването на визуално свързани математически проблеми."
|
181
196
|
},
|
@@ -527,6 +542,24 @@
|
|
527
542
|
"deepseek-ai/DeepSeek-R1": {
|
528
543
|
"description": "DeepSeek-R1 е модел за извеждане, управляван от подсилено обучение (RL), който решава проблемите с повторяемостта и четимостта в модела. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на извеждане. Той показва сравнима производителност с OpenAI-o1 в математически, кодови и извеждащи задачи и подобрява общите резултати чрез внимателно проектирани методи на обучение."
|
529
544
|
},
|
545
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
546
|
+
"description": "DeepSeek-R1 дестилиран модел, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
|
547
|
+
},
|
548
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
549
|
+
"description": "DeepSeek-R1-Distill-Llama-8B е дестилиран модел, базиран на Llama-3.1-8B. Този модел е финализиран с примери, генерирани от DeepSeek-R1, и показва отлична производителност на разсъжденията. Той постига добри резултати в множество бенчмаркове, включително 89.1% точност в MATH-500, 50.4% успеваемост в AIME 2024 и 1205 точки в CodeForces, демонстрирайки силни способности за математика и програмиране."
|
550
|
+
},
|
551
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
552
|
+
"description": "DeepSeek-R1 дестилиран модел, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
|
553
|
+
},
|
554
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
|
555
|
+
"description": "DeepSeek-R1 дестилиран модел, оптимизира производителността на разсъжденията чрез подсилено учене и данни за студен старт, отворен модел, който обновява многозадачния стандарт."
|
556
|
+
},
|
557
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
558
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B е модел, получен чрез знание дестилация на Qwen2.5-32B. Този модел е финализиран с 800 000 избрани примера, генерирани от DeepSeek-R1, и показва изключителна производителност в множество области, включително математика, програмиране и разсъждения. Той постига отлични резултати в множество бенчмаркове, включително 94.3% точност в MATH-500, демонстрирайки силни способности за математическо разсъждение."
|
559
|
+
},
|
560
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
561
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B е модел, получен чрез знание дестилация на Qwen2.5-Math-7B. Този модел е финализиран с 800 000 избрани примера, генерирани от DeepSeek-R1, и показва отлична производителност на разсъжденията. Той постига отлични резултати в множество бенчмаркове, включително 92.8% точност в MATH-500, 55.5% успеваемост в AIME 2024 и 1189 точки в CodeForces, демонстрирайки силни способности за математика и програмиране."
|
562
|
+
},
|
530
563
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
564
|
"description": "DeepSeek V2.5 обединява отличителните характеристики на предишните версии, подобрявайки общите и кодиращите способности."
|
532
565
|
},
|
@@ -554,6 +587,9 @@
|
|
554
587
|
"deepseek-r1": {
|
555
588
|
"description": "DeepSeek-R1 е модел за извеждане, управляван от подсилено обучение (RL), който решава проблемите с повторяемостта и четимостта в модела. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на извеждане. Той показва сравнима производителност с OpenAI-o1 в математически, кодови и извеждащи задачи и подобрява общите резултати чрез внимателно проектирани методи на обучение."
|
556
589
|
},
|
590
|
+
"deepseek-r1-distill-llama-70b": {
|
591
|
+
"description": "DeepSeek R1 - по-голям и по-интелигентен модел в комплекта DeepSeek - е дестилиран в архитектурата Llama 70B. На базата на бенчмаркове и човешка оценка, този модел е по-интелигентен от оригиналния Llama 70B, особено в задачи, изискващи математическа и фактическа точност."
|
592
|
+
},
|
557
593
|
"deepseek-reasoner": {
|
558
594
|
"description": "Модел за извеждане, разработен от DeepSeek. Преди да предостави окончателния отговор, моделът първо извежда част от веригата на мислене, за да повиши точността на крайния отговор."
|
559
595
|
},
|
@@ -563,12 +599,63 @@
|
|
563
599
|
"deepseek-v2:236b": {
|
564
600
|
"description": "DeepSeek V2 236B е кодовият модел на DeepSeek, предоставящ мощни способности за генериране на код."
|
565
601
|
},
|
602
|
+
"deepseek-v3": {
|
603
|
+
"description": "DeepSeek-V3 е MoE модел, разработен от Hangzhou DeepSeek AI Technology Research Co., Ltd., с отлични резултати в множество тестове, заемащ първото място в основните класации на отворените модели. V3 постига 3-кратно увеличение на скоростта на генериране в сравнение с V2.5, предоставяйки на потребителите по-бързо и гладко изживяване."
|
604
|
+
},
|
566
605
|
"deepseek/deepseek-chat": {
|
567
606
|
"description": "Новооткритият отворен модел, който съчетава общи и кодови способности, не само запазва общата диалогова способност на оригиналния Chat модел и мощната способност за обработка на код на Coder модела, но също така по-добре се съобразява с човешките предпочитания. Освен това, DeepSeek-V2.5 постигна значителни подобрения в задачи по писане, следване на инструкции и много други."
|
568
607
|
},
|
569
608
|
"emohaa": {
|
570
609
|
"description": "Emohaa е психологически модел с професионални консултантски способности, помагащ на потребителите да разберат емоционалните проблеми."
|
571
610
|
},
|
611
|
+
"ernie-3.5-128k": {
|
612
|
+
"description": "Флагманският голям езиков модел, разработен от Baidu, обхваща огромно количество китайски и английски текстове, притежаващ силни общи способности, способен да отговори на повечето изисквания за диалогови въпроси и отговори, генериране на съдържание и приложения на плъгини; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията."
|
613
|
+
},
|
614
|
+
"ernie-3.5-8k": {
|
615
|
+
"description": "Флагманският голям езиков модел, разработен от Baidu, обхваща огромно количество китайски и английски текстове, притежаващ силни общи способности, способен да отговори на повечето изисквания за диалогови въпроси и отговори, генериране на съдържание и приложения на плъгини; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията."
|
616
|
+
},
|
617
|
+
"ernie-3.5-8k-preview": {
|
618
|
+
"description": "Флагманският голям езиков модел, разработен от Baidu, обхваща огромно количество китайски и английски текстове, притежаващ силни общи способности, способен да отговори на повечето изисквания за диалогови въпроси и отговори, генериране на съдържание и приложения на плъгини; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията."
|
619
|
+
},
|
620
|
+
"ernie-4.0-8k-latest": {
|
621
|
+
"description": "Флагманският голям езиков модел, разработен от Baidu, с изключителни подобрения в сравнение с ERNIE 3.5, широко приложим в сложни задачи в различни области; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията."
|
622
|
+
},
|
623
|
+
"ernie-4.0-8k-preview": {
|
624
|
+
"description": "Флагманският голям езиков модел, разработен от Baidu, с изключителни подобрения в сравнение с ERNIE 3.5, широко приложим в сложни задачи в различни области; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията."
|
625
|
+
},
|
626
|
+
"ernie-4.0-turbo-128k": {
|
627
|
+
"description": "Флагманският голям езиков модел, разработен от Baidu, с отлични общи резултати, широко приложим в сложни задачи в различни области; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията. В сравнение с ERNIE 4.0, показва по-добри резултати."
|
628
|
+
},
|
629
|
+
"ernie-4.0-turbo-8k-latest": {
|
630
|
+
"description": "Флагманският голям езиков модел, разработен от Baidu, с отлични общи резултати, широко приложим в сложни задачи в различни области; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията. В сравнение с ERNIE 4.0, показва по-добри резултати."
|
631
|
+
},
|
632
|
+
"ernie-4.0-turbo-8k-preview": {
|
633
|
+
"description": "Флагманският голям езиков модел, разработен от Baidu, с отлични общи резултати, широко приложим в сложни задачи в различни области; поддържа автоматично свързване с плъгина за търсене на Baidu, осигурявайки актуалност на информацията. В сравнение с ERNIE 4.0, показва по-добри резултати."
|
634
|
+
},
|
635
|
+
"ernie-char-8k": {
|
636
|
+
"description": "Специализиран голям езиков модел, разработен от Baidu, подходящ за приложения като NPC в игри, диалози на клиентска поддръжка и ролеви игри, с по-изразителен и последователен стил на персонажите, по-силна способност за следване на инструкции и по-добра производителност на разсъжденията."
|
637
|
+
},
|
638
|
+
"ernie-char-fiction-8k": {
|
639
|
+
"description": "Специализиран голям езиков модел, разработен от Baidu, подходящ за приложения като NPC в игри, диалози на клиентска поддръжка и ролеви игри, с по-изразителен и последователен стил на персонажите, по-силна способност за следване на инструкции и по-добра производителност на разсъжденията."
|
640
|
+
},
|
641
|
+
"ernie-lite-8k": {
|
642
|
+
"description": "ERNIE Lite е лек голям езиков модел, разработен от Baidu, който съчетава отлични резултати с производителност на разсъжденията, подходящ за използване с AI ускорителни карти с ниска изчислителна мощ."
|
643
|
+
},
|
644
|
+
"ernie-lite-pro-128k": {
|
645
|
+
"description": "Лек голям езиков модел, разработен от Baidu, който съчетава отлични резултати с производителност на разсъжденията, с по-добри резултати в сравнение с ERNIE Lite, подходящ за използване с AI ускорителни карти с ниска изчислителна мощ."
|
646
|
+
},
|
647
|
+
"ernie-novel-8k": {
|
648
|
+
"description": "Общ голям езиков модел, разработен от Baidu, с очевидни предимства в продължаването на разкази, подходящ и за кратки пиеси и филми."
|
649
|
+
},
|
650
|
+
"ernie-speed-128k": {
|
651
|
+
"description": "Най-новият високопроизводителен голям езиков модел, разработен от Baidu през 2024 г., с отлични общи способности, подходящ за финализиране на специфични проблеми, с отлична производителност на разсъжденията."
|
652
|
+
},
|
653
|
+
"ernie-speed-pro-128k": {
|
654
|
+
"description": "Най-новият високопроизводителен голям езиков модел, разработен от Baidu през 2024 г., с отлични общи способности, с по-добри резултати в сравнение с ERNIE Speed, подходящ за финализиране на специфични проблеми, с отлична производителност на разсъжденията."
|
655
|
+
},
|
656
|
+
"ernie-tiny-8k": {
|
657
|
+
"description": "ERNIE Tiny е модел с изключителна производителност, разработен от Baidu, с най-ниски разходи за внедряване и фина настройка сред моделите от серията Wenxin."
|
658
|
+
},
|
572
659
|
"gemini-1.0-pro-001": {
|
573
660
|
"description": "Gemini 1.0 Pro 001 (Тунинг) предлага стабилна и настройваема производителност, идеален избор за решения на сложни задачи."
|
574
661
|
},
|
@@ -872,6 +959,9 @@
|
|
872
959
|
"internlm2.5-latest": {
|
873
960
|
"description": "Нашата най-нова серия модели с изключителни способности за извеждане, поддържаща контекстна дължина от 1M и по-силни способности за следване на инструкции и извикване на инструменти."
|
874
961
|
},
|
962
|
+
"internlm3-latest": {
|
963
|
+
"description": "Нашата най-нова серия модели с изключителна производителност на разсъжденията, водеща в категорията на отворените модели. По подразбиране сочи към най-ново публикуваната серия модели InternLM3."
|
964
|
+
},
|
875
965
|
"learnlm-1.5-pro-experimental": {
|
876
966
|
"description": "LearnLM е експериментален езиков модел, специфичен за задачи, обучен да отговаря на принципите на научното обучение, способен да следва системни инструкции в учебни и обучителни сценарии, да действа като експертен ментор и др."
|
877
967
|
},
|
@@ -986,6 +1076,9 @@
|
|
986
1076
|
"meta-llama/Llama-3.3-70B-Instruct": {
|
987
1077
|
"description": "Llama 3.3 е най-напредналият многоезичен отворен голям езиков модел от серията Llama, предлагащ производителност, сравнима с 405B моделите на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия за оптимизация на инструкции е специално проектирана за многоезични диалози и показва по-добри резултати от много от отворените и затворените чат модели в множество индустриални бенчмаркове. Краен срок за знания: декември 2023 г."
|
988
1078
|
},
|
1079
|
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1080
|
+
"description": "Meta Llama 3.3 многоезичен голям езиков модел (LLM) е предварително обучен и коригиран за инструкции в 70B (текстов вход/текстов изход). Моделът Llama 3.3, коригиран за инструкции, е оптимизиран за многоезични диалогови случаи и превъзхожда много налични отворени и затворени чат модели на общи индустриални бенчмаркове."
|
1081
|
+
},
|
989
1082
|
"meta-llama/Llama-Vision-Free": {
|
990
1083
|
"description": "LLaMA 3.2 е проектирана да обработва задачи, комбиниращи визуални и текстови данни. Тя демонстрира отлични резултати в задачи като описание на изображения и визуални въпроси и отговори, преодолявайки пропастта между генерирането на езици и визуалното разсъждение."
|
991
1084
|
},
|
@@ -1256,6 +1349,9 @@
|
|
1256
1349
|
"qwen-vl-max-latest": {
|
1257
1350
|
"description": "Qwen-VL Max е модел за визуален език с изключително голям мащаб. В сравнение с подобрената версия, той отново подобрява способността за визуално разсъждение и следване на инструкции, предоставяйки по-високо ниво на визуално възприятие и познание."
|
1258
1351
|
},
|
1352
|
+
"qwen-vl-ocr-latest": {
|
1353
|
+
"description": "Qwen OCR е специализиран модел за извличане на текст, фокусиран върху способността за извличане на текст от изображения на документи, таблици, тестови въпроси, ръкописен текст и др. Той може да разпознава множество езици, включително: китайски, английски, френски, японски, корейски, немски, руски, италиански, виетнамски и арабски."
|
1354
|
+
},
|
1259
1355
|
"qwen-vl-plus-latest": {
|
1260
1356
|
"description": "Моделят за визуален език Qwen-VL Plus е подобрена версия с голям мащаб. Значително подобрява способността за разпознаване на детайли и текст, поддържа резолюция над милион пиксела и изображения с произволно съотношение на страните."
|
1261
1357
|
},
|
@@ -1274,6 +1370,9 @@
|
|
1274
1370
|
"qwen2.5-14b-instruct": {
|
1275
1371
|
"description": "Модел с мащаб 14B, отворен за обществеността от Qwen 2.5."
|
1276
1372
|
},
|
1373
|
+
"qwen2.5-14b-instruct-1m": {
|
1374
|
+
"description": "Qwen2.5 е отворен модел с мащаб 72B."
|
1375
|
+
},
|
1277
1376
|
"qwen2.5-32b-instruct": {
|
1278
1377
|
"description": "Модел с мащаб 32B, отворен за обществеността от Qwen 2.5."
|
1279
1378
|
},
|
@@ -1301,6 +1400,12 @@
|
|
1301
1400
|
"qwen2.5-math-7b-instruct": {
|
1302
1401
|
"description": "Моделът Qwen-Math притежава силни способности за решаване на математически задачи."
|
1303
1402
|
},
|
1403
|
+
"qwen2.5-vl-72b-instruct": {
|
1404
|
+
"description": "Подобрение на следването на инструкции, математика, решаване на проблеми и код, повишаване на способността за разпознаване на обекти, поддържа директно точно локализиране на визуални елементи в различни формати, поддържа разбиране на дълги видео файлове (до 10 минути) и локализиране на събития в секунда, може да разбира времеви последователности и скорости, базирано на способности за анализ и локализация, поддържа управление на OS или Mobile агенти, силна способност за извличане на ключова информация и изход в JSON формат, тази версия е 72B, най-силната версия в серията."
|
1405
|
+
},
|
1406
|
+
"qwen2.5-vl-7b-instruct": {
|
1407
|
+
"description": "Подобрение на следването на инструкции, математика, решаване на проблеми и код, повишаване на способността за разпознаване на обекти, поддържа директно точно локализиране на визуални елементи в различни формати, поддържа разбиране на дълги видео файлове (до 10 минути) и локализиране на събития в секунда, може да разбира времеви последователности и скорости, базирано на способности за анализ и локализация, поддържа управление на OS или Mobile агенти, силна способност за извличане на ключова информация и изход в JSON формат, тази версия е 72B, най-силната версия в серията."
|
1408
|
+
},
|
1304
1409
|
"qwen2.5:0.5b": {
|
1305
1410
|
"description": "Qwen2.5 е новото поколение мащабен езиков модел на Alibaba, който предлага отлична производителност, за да отговори на разнообразни приложни нужди."
|
1306
1411
|
},
|
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "Anonymer Benutzer",
|
287
287
|
"billing": "Abrechnung verwalten",
|
288
288
|
"cloud": "Erleben Sie {{name}}",
|
289
|
+
"community": "Gemeinschaftsversion",
|
289
290
|
"data": "Daten speichern",
|
290
291
|
"defaultNickname": "Community User",
|
291
292
|
"discord": "Community-Support",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "Hilfezentrum",
|
296
297
|
"moveGuide": "Die Einstellungen wurden hierher verschoben.",
|
297
298
|
"plans": "Abonnementpläne",
|
298
|
-
"preview": "Vorschau",
|
299
299
|
"profile": "Kontoverwaltung",
|
300
300
|
"setting": "App-Einstellungen",
|
301
301
|
"usages": "Nutzungsstatistiken"
|