@lobehub/chat 1.51.8 → 1.51.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/common.json +1 -1
- package/locales/ar/modelProvider.json +0 -20
- package/locales/ar/models.json +108 -3
- package/locales/bg-BG/common.json +1 -1
- package/locales/bg-BG/modelProvider.json +0 -20
- package/locales/bg-BG/models.json +108 -3
- package/locales/de-DE/common.json +1 -1
- package/locales/de-DE/modelProvider.json +0 -20
- package/locales/de-DE/models.json +108 -3
- package/locales/en-US/common.json +1 -1
- package/locales/en-US/modelProvider.json +0 -20
- package/locales/en-US/models.json +108 -3
- package/locales/es-ES/common.json +1 -1
- package/locales/es-ES/modelProvider.json +0 -20
- package/locales/es-ES/models.json +108 -3
- package/locales/fa-IR/common.json +1 -1
- package/locales/fa-IR/modelProvider.json +0 -20
- package/locales/fa-IR/models.json +108 -3
- package/locales/fr-FR/common.json +1 -1
- package/locales/fr-FR/modelProvider.json +0 -20
- package/locales/fr-FR/models.json +108 -3
- package/locales/it-IT/common.json +1 -1
- package/locales/it-IT/modelProvider.json +0 -20
- package/locales/it-IT/models.json +108 -3
- package/locales/ja-JP/common.json +1 -1
- package/locales/ja-JP/modelProvider.json +0 -20
- package/locales/ja-JP/models.json +108 -3
- package/locales/ko-KR/common.json +1 -1
- package/locales/ko-KR/modelProvider.json +0 -20
- package/locales/ko-KR/models.json +108 -3
- package/locales/nl-NL/common.json +1 -1
- package/locales/nl-NL/modelProvider.json +0 -20
- package/locales/nl-NL/models.json +108 -3
- package/locales/pl-PL/common.json +1 -1
- package/locales/pl-PL/modelProvider.json +0 -20
- package/locales/pl-PL/models.json +108 -3
- package/locales/pt-BR/common.json +1 -1
- package/locales/pt-BR/modelProvider.json +0 -20
- package/locales/pt-BR/models.json +108 -3
- package/locales/ru-RU/common.json +1 -1
- package/locales/ru-RU/modelProvider.json +0 -20
- package/locales/ru-RU/models.json +108 -3
- package/locales/tr-TR/common.json +1 -1
- package/locales/tr-TR/modelProvider.json +0 -20
- package/locales/tr-TR/models.json +108 -3
- package/locales/vi-VN/common.json +1 -1
- package/locales/vi-VN/modelProvider.json +0 -20
- package/locales/vi-VN/models.json +108 -3
- package/locales/zh-CN/common.json +1 -1
- package/locales/zh-CN/modelProvider.json +0 -20
- package/locales/zh-CN/models.json +113 -8
- package/locales/zh-TW/common.json +1 -1
- package/locales/zh-TW/modelProvider.json +0 -20
- package/locales/zh-TW/models.json +108 -3
- package/package.json +1 -1
- package/src/app/[variants]/(main)/chat/_layout/Desktop/SessionPanel.tsx +2 -1
- package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +2 -1
- package/src/app/[variants]/(main)/chat/layout.ts +0 -2
- package/src/app/[variants]/(main)/settings/provider/(detail)/[id]/page.tsx +2 -0
- package/src/features/User/PlanTag.tsx +2 -2
- package/src/locales/default/common.ts +1 -1
@@ -23,6 +23,9 @@
|
|
23
23
|
"360gpt2-pro": {
|
24
24
|
"description": "360GPT2 Pro is een geavanceerd natuurlijk taalverwerkingsmodel dat is ontwikkeld door 360, met uitstekende tekstgeneratie- en begripcapaciteiten, vooral in de generatieve en creatieve domeinen, en kan complexe taaltransformaties en rolinterpretatietaken aan."
|
25
25
|
},
|
26
|
+
"360zhinao2-o1": {
|
27
|
+
"description": "360zhinao2-o1 bouwt een denkketen op met behulp van boomzoekmethoden en introduceert een reflectiemechanisme, waarbij het gebruik maakt van versterkend leren om het model in staat te stellen tot zelfreflectie en foutcorrectie."
|
28
|
+
},
|
26
29
|
"4.0Ultra": {
|
27
30
|
"description": "Spark4.0 Ultra is de krachtigste versie in de Spark-grootmodelserie, die de netwerkintegratie heeft geüpgraded en de tekstbegrip- en samenvattingscapaciteiten heeft verbeterd. Het is een allesomvattende oplossing voor het verbeteren van de kantoorproductiviteit en het nauwkeurig reageren op behoeften, en is een toonaangevend intelligent product in de industrie."
|
28
31
|
},
|
@@ -44,6 +47,18 @@
|
|
44
47
|
"Baichuan4-Turbo": {
|
45
48
|
"description": "Modelcapaciteiten zijn nationaal de beste, overtreft buitenlandse mainstream modellen in kennisencyclopedie, lange teksten en creatieve generatie in Chinese taken. Beschikt ook over toonaangevende multimodale capaciteiten en presteert uitstekend op verschillende autoritatieve evaluatiebenchmarks."
|
46
49
|
},
|
50
|
+
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
|
+
"description": "DeepSeek-R1 distillatiemodel gebaseerd op Qwen2.5-Math-1.5B, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Qwen-14B": {
|
54
|
+
"description": "DeepSeek-R1 distillatiemodel gebaseerd op Qwen2.5-14B, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
|
55
|
+
},
|
56
|
+
"DeepSeek-R1-Distill-Qwen-32B": {
|
57
|
+
"description": "De DeepSeek-R1 serie optimaliseert inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt en de OpenAI-o1-mini niveaus overtreft."
|
58
|
+
},
|
59
|
+
"DeepSeek-R1-Distill-Qwen-7B": {
|
60
|
+
"description": "DeepSeek-R1 distillatiemodel gebaseerd op Qwen2.5-Math-7B, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
|
61
|
+
},
|
47
62
|
"Doubao-lite-128k": {
|
48
63
|
"description": "Doubao-lite beschikt over een uitstekende responssnelheid en een goede prijs-kwaliteitverhouding, en biedt klanten flexibele keuzes voor verschillende scenario's. Ondersteunt inferentie en fine-tuning met een contextvenster van 128k."
|
49
64
|
},
|
@@ -77,9 +92,6 @@
|
|
77
92
|
"ERNIE-4.0-8K-Preview": {
|
78
93
|
"description": "Het door Baidu ontwikkelde vlaggenschip van een ultra-groot taalmodel, dat in vergelijking met ERNIE 3.5 een algehele upgrade van de modelcapaciteiten heeft gerealiseerd, en breed toepasbaar is in complexe taken in verschillende domeinen; ondersteunt automatische integratie met de Baidu-zoekplug-in om de actualiteit van vraag- en antwoordinformatie te waarborgen."
|
79
94
|
},
|
80
|
-
"ERNIE-4.0-Turbo-128K": {
|
81
|
-
"description": "Het vlaggenschip supergrote taalmodel van Baidu, met uitstekende algehele prestaties, breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins, wat de actualiteit van vraag- en antwoordinformatie waarborgt. In vergelijking met ERNIE 4.0 presteert het beter."
|
82
|
-
},
|
83
95
|
"ERNIE-4.0-Turbo-8K-Latest": {
|
84
96
|
"description": "De zelfontwikkelde vlaggenschip super-grote taalmodel van Baidu, dat uitmuntend presteert in diverse complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met de Baidu-zoekplug-in, waarborgt de actualiteit van vraag-antwoordinformatie. Overtreft in performance ten opzichte van ERNIE 4.0."
|
85
97
|
},
|
@@ -176,6 +188,9 @@
|
|
176
188
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
189
|
"description": "Meta Llama 3.1 is een familie van meertalige grote taalmodellen ontwikkeld door Meta, inclusief voorgetrainde en instructie-fijn afgestelde varianten met parameter groottes van 8B, 70B en 405B. Dit 8B instructie-fijn afgestelde model is geoptimaliseerd voor meertalige gespreksscenario's en presteert uitstekend in verschillende industriële benchmarktests. Het model is getraind met meer dan 150 biljoen tokens van openbare gegevens en maakt gebruik van technieken zoals supervisie-fijn afstemming en versterkend leren met menselijke feedback om de bruikbaarheid en veiligheid van het model te verbeteren. Llama 3.1 ondersteunt tekstgeneratie en codegeneratie, met een kennisafkapdatum van december 2023."
|
178
190
|
},
|
191
|
+
"QwQ-32B-Preview": {
|
192
|
+
"description": "QwQ-32B-Preview is een innovatief natuurlijk taalverwerkingsmodel dat efficiënt complexe dialooggeneratie en contextbegripstaken kan verwerken."
|
193
|
+
},
|
179
194
|
"Qwen/QVQ-72B-Preview": {
|
180
195
|
"description": "QVQ-72B-Preview is een onderzoeksmodel ontwikkeld door het Qwen-team, dat zich richt op visuele redeneervaardigheden en unieke voordelen heeft in het begrijpen van complexe scènes en het oplossen van visueel gerelateerde wiskundige problemen."
|
181
196
|
},
|
@@ -527,6 +542,24 @@
|
|
527
542
|
"deepseek-ai/DeepSeek-R1": {
|
528
543
|
"description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
529
544
|
},
|
545
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
546
|
+
"description": "DeepSeek-R1 distillatiemodel, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
|
547
|
+
},
|
548
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
549
|
+
"description": "DeepSeek-R1-Distill-Llama-8B is een distillatiemodel ontwikkeld op basis van Llama-3.1-8B. Dit model is fijn afgestemd met voorbeelden gegenereerd door DeepSeek-R1 en toont uitstekende inferentiecapaciteiten. Het heeft goed gepresteerd in verschillende benchmarktests, met een nauwkeurigheid van 89,1% op MATH-500, een slaagpercentage van 50,4% op AIME 2024, en een score van 1205 op CodeForces, wat sterke wiskundige en programmeercapaciteiten aantoont voor een model van 8B schaal."
|
550
|
+
},
|
551
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
552
|
+
"description": "DeepSeek-R1 distillatiemodel, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
|
553
|
+
},
|
554
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
|
555
|
+
"description": "DeepSeek-R1 distillatiemodel, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
|
556
|
+
},
|
557
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
558
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B is een model dat is verkregen door kennisdistillatie van Qwen2.5-32B. Dit model is fijn afgestemd met 800.000 zorgvuldig geselecteerde voorbeelden gegenereerd door DeepSeek-R1 en toont uitstekende prestaties in verschillende domeinen zoals wiskunde, programmeren en redeneren. Het heeft uitstekende resultaten behaald in meerdere benchmarktests, waaronder een nauwkeurigheid van 94,3% op MATH-500, wat sterke wiskundige redeneringscapaciteiten aantoont."
|
559
|
+
},
|
560
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
561
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B is een model dat is verkregen door kennisdistillatie van Qwen2.5-Math-7B. Dit model is fijn afgestemd met 800.000 zorgvuldig geselecteerde voorbeelden gegenereerd door DeepSeek-R1 en toont uitstekende inferentiecapaciteiten. Het heeft uitstekende resultaten behaald in verschillende benchmarktests, met een nauwkeurigheid van 92,8% op MATH-500, een slaagpercentage van 55,5% op AIME 2024, en een score van 1189 op CodeForces, wat sterke wiskundige en programmeercapaciteiten aantoont voor een model van 7B schaal."
|
562
|
+
},
|
530
563
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
564
|
"description": "DeepSeek V2.5 combineert de uitstekende kenmerken van eerdere versies en versterkt de algemene en coderingscapaciteiten."
|
532
565
|
},
|
@@ -554,6 +587,9 @@
|
|
554
587
|
"deepseek-r1": {
|
555
588
|
"description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
556
589
|
},
|
590
|
+
"deepseek-r1-distill-llama-70b": {
|
591
|
+
"description": "DeepSeek R1 - een groter en slimmer model binnen de DeepSeek suite - is gedistilleerd naar de Llama 70B architectuur. Op basis van benchmarktests en menselijke evaluaties is dit model slimmer dan de originele Llama 70B, vooral in taken die wiskundige en feitelijke nauwkeurigheid vereisen."
|
592
|
+
},
|
557
593
|
"deepseek-reasoner": {
|
558
594
|
"description": "Het redeneer model van DeepSeek. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een stuk denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
|
559
595
|
},
|
@@ -563,12 +599,63 @@
|
|
563
599
|
"deepseek-v2:236b": {
|
564
600
|
"description": "DeepSeek V2 236B is het ontwerpcode-model van DeepSeek, biedt krachtige codegeneratiecapaciteiten."
|
565
601
|
},
|
602
|
+
"deepseek-v3": {
|
603
|
+
"description": "DeepSeek-V3 is een MoE-model dat is ontwikkeld door Hangzhou DeepSeek Artificial Intelligence Technology Research Co., Ltd. Het heeft uitstekende scores in verschillende evaluaties en staat bovenaan de open-source modellen in de mainstream ranglijsten. V3 heeft de generatiesnelheid met 3 keer verbeterd in vergelijking met het V2.5 model, wat zorgt voor een snellere en soepelere gebruikerservaring."
|
604
|
+
},
|
566
605
|
"deepseek/deepseek-chat": {
|
567
606
|
"description": "Een nieuw open-source model dat algemene en codeercapaciteiten combineert, niet alleen de algemene gespreksvaardigheden van het oorspronkelijke Chat-model en de krachtige codeverwerkingscapaciteiten van het Coder-model behoudt, maar ook beter is afgestemd op menselijke voorkeuren. Bovendien heeft DeepSeek-V2.5 aanzienlijke verbeteringen gerealiseerd in schrijfopdrachten, instructievolging en meer."
|
568
607
|
},
|
569
608
|
"emohaa": {
|
570
609
|
"description": "Emohaa is een psychologisch model met professionele adviescapaciteiten, dat gebruikers helpt emotionele problemen te begrijpen."
|
571
610
|
},
|
611
|
+
"ernie-3.5-128k": {
|
612
|
+
"description": "Het vlaggenschip grote taalmodel van Baidu, zelf ontwikkeld, dekt een enorme hoeveelheid Chinese en Engelse corpora, met sterke algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
|
613
|
+
},
|
614
|
+
"ernie-3.5-8k": {
|
615
|
+
"description": "Het vlaggenschip grote taalmodel van Baidu, zelf ontwikkeld, dekt een enorme hoeveelheid Chinese en Engelse corpora, met sterke algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
|
616
|
+
},
|
617
|
+
"ernie-3.5-8k-preview": {
|
618
|
+
"description": "Het vlaggenschip grote taalmodel van Baidu, zelf ontwikkeld, dekt een enorme hoeveelheid Chinese en Engelse corpora, met sterke algemene capaciteiten die voldoen aan de meeste eisen voor dialoogvragen, creatieve generatie en plug-in toepassingsscenario's; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
|
619
|
+
},
|
620
|
+
"ernie-4.0-8k-latest": {
|
621
|
+
"description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, heeft een algehele upgrade van modelcapaciteiten in vergelijking met ERNIE 3.5, en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
|
622
|
+
},
|
623
|
+
"ernie-4.0-8k-preview": {
|
624
|
+
"description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, heeft een algehele upgrade van modelcapaciteiten in vergelijking met ERNIE 3.5, en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen."
|
625
|
+
},
|
626
|
+
"ernie-4.0-turbo-128k": {
|
627
|
+
"description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, presteert uitstekend in algehele effectiviteit en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen. Het presteert beter dan ERNIE 4.0."
|
628
|
+
},
|
629
|
+
"ernie-4.0-turbo-8k-latest": {
|
630
|
+
"description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, presteert uitstekend in algehele effectiviteit en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen. Het presteert beter dan ERNIE 4.0."
|
631
|
+
},
|
632
|
+
"ernie-4.0-turbo-8k-preview": {
|
633
|
+
"description": "Het vlaggenschip ultra-grote taalmodel van Baidu, zelf ontwikkeld, presteert uitstekend in algehele effectiviteit en is breed toepasbaar in complexe taakscenario's in verschillende domeinen; ondersteunt automatische integratie met Baidu zoekplug-ins om de actualiteit van vraag- en antwoordinformatie te waarborgen. Het presteert beter dan ERNIE 4.0."
|
634
|
+
},
|
635
|
+
"ernie-char-8k": {
|
636
|
+
"description": "Een door Baidu ontwikkeld groot taalmodel voor verticale scenario's, geschikt voor toepassingen zoals game NPC's, klantenservice dialoog, en rollenspellen, met een duidelijkere en consistentere karakterstijl, sterkere instructievolgcapaciteiten en betere inferentieprestaties."
|
637
|
+
},
|
638
|
+
"ernie-char-fiction-8k": {
|
639
|
+
"description": "Een door Baidu ontwikkeld groot taalmodel voor verticale scenario's, geschikt voor toepassingen zoals game NPC's, klantenservice dialoog, en rollenspellen, met een duidelijkere en consistentere karakterstijl, sterkere instructievolgcapaciteiten en betere inferentieprestaties."
|
640
|
+
},
|
641
|
+
"ernie-lite-8k": {
|
642
|
+
"description": "ERNIE Lite is een lichtgewicht groot taalmodel dat door Baidu is ontwikkeld, dat uitstekende modelprestaties en inferentiecapaciteiten combineert, geschikt voor gebruik met AI-versnelling kaarten met lage rekencapaciteit."
|
643
|
+
},
|
644
|
+
"ernie-lite-pro-128k": {
|
645
|
+
"description": "Een lichtgewicht groot taalmodel dat door Baidu is ontwikkeld, dat uitstekende modelprestaties en inferentiecapaciteiten combineert, met betere prestaties dan ERNIE Lite, geschikt voor gebruik met AI-versnelling kaarten met lage rekencapaciteit."
|
646
|
+
},
|
647
|
+
"ernie-novel-8k": {
|
648
|
+
"description": "Een algemeen groot taalmodel dat door Baidu is ontwikkeld, met duidelijke voordelen in het vervolgschrijven van romans, en ook toepasbaar in korte toneelstukken, films en andere scenario's."
|
649
|
+
},
|
650
|
+
"ernie-speed-128k": {
|
651
|
+
"description": "Het nieuwste zelfontwikkelde hoge-prestatie grote taalmodel van Baidu, dat uitstekende algemene capaciteiten heeft en geschikt is als basis model voor afstemming, om beter specifieke scenario's aan te pakken, met uitstekende inferentieprestaties."
|
652
|
+
},
|
653
|
+
"ernie-speed-pro-128k": {
|
654
|
+
"description": "Het nieuwste zelfontwikkelde hoge-prestatie grote taalmodel van Baidu, dat uitstekende algemene capaciteiten heeft en betere prestaties levert dan ERNIE Speed, geschikt als basis model voor afstemming, om beter specifieke scenario's aan te pakken, met uitstekende inferentieprestaties."
|
655
|
+
},
|
656
|
+
"ernie-tiny-8k": {
|
657
|
+
"description": "ERNIE Tiny is een ultra-presterend groot taalmodel dat de laagste implementatie- en afstemmingskosten heeft binnen de Wenxin modelreeks."
|
658
|
+
},
|
572
659
|
"gemini-1.0-pro-001": {
|
573
660
|
"description": "Gemini 1.0 Pro 001 (Tuning) biedt stabiele en afstelbare prestaties, ideaal voor oplossingen voor complexe taken."
|
574
661
|
},
|
@@ -872,6 +959,9 @@
|
|
872
959
|
"internlm2.5-latest": {
|
873
960
|
"description": "Onze nieuwste modelreeks met uitstekende redeneervaardigheden, ondersteunt een contextlengte van 1M en heeft verbeterde instructievolging en toolaanroepmogelijkheden."
|
874
961
|
},
|
962
|
+
"internlm3-latest": {
|
963
|
+
"description": "Onze nieuwste modelreeks heeft uitstekende inferentieprestaties en leidt de open-source modellen in dezelfde klasse. Standaard gericht op ons recentste InternLM3 model."
|
964
|
+
},
|
875
965
|
"learnlm-1.5-pro-experimental": {
|
876
966
|
"description": "LearnLM is een experimenteel, taak-specifiek taalmodel dat is getraind volgens de principes van de leerwetenschap, en kan systeeminstructies volgen in onderwijs- en leeromgevingen, en fungeert als een expertmentor."
|
877
967
|
},
|
@@ -986,6 +1076,9 @@
|
|
986
1076
|
"meta-llama/Llama-3.3-70B-Instruct": {
|
987
1077
|
"description": "Llama 3.3 is het meest geavanceerde meertalige open-source grote taalmodel uit de Llama-serie, dat een vergelijkbare prestatie biedt als het 405B model tegen zeer lage kosten. Gebaseerd op de Transformer-structuur en verbeterd in bruikbaarheid en veiligheid door middel van supervisie-fijnstelling (SFT) en versterkend leren met menselijke feedback (RLHF). De instructie-geoptimaliseerde versie is speciaal ontworpen voor meertalige gesprekken en presteert beter dan veel open-source en gesloten chatmodellen op verschillende industriële benchmarks. Kennisafkapdatum is december 2023."
|
988
1078
|
},
|
1079
|
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1080
|
+
"description": "Meta Llama 3.3 meertalige grote taalmodel (LLM) is een voorgetraind en instructie-aangepast generatief model van 70B (tekstinvoer/tekstuitvoer). Het Llama 3.3 instructie-aangepaste pure tekstmodel is geoptimaliseerd voor meertalige dialoogtoepassingen en presteert beter dan veel beschikbare open-source en gesloten chatmodellen op gangbare industriële benchmarks."
|
1081
|
+
},
|
989
1082
|
"meta-llama/Llama-Vision-Free": {
|
990
1083
|
"description": "LLaMA 3.2 is ontworpen voor taken die zowel visuele als tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraagstukken, en overbrugt de kloof tussen taalgeneratie en visuele redenering."
|
991
1084
|
},
|
@@ -1256,6 +1349,9 @@
|
|
1256
1349
|
"qwen-vl-max-latest": {
|
1257
1350
|
"description": "Het Tongyi Qianwen ultra-grootschalige visuele taalmodel. In vergelijking met de verbeterde versie, verhoogt het opnieuw de visuele redeneervaardigheden en de naleving van instructies, en biedt het een hoger niveau van visuele waarneming en cognitie."
|
1258
1351
|
},
|
1352
|
+
"qwen-vl-ocr-latest": {
|
1353
|
+
"description": "Qwen OCR is een speciaal model voor tekstextractie, gericht op het extraheren van tekst uit documenten, tabellen, examenvragen, handgeschreven teksten en andere soorten afbeeldingen. Het kan verschillende talen herkennen, waaronder: Chinees, Engels, Frans, Japans, Koreaans, Duits, Russisch, Italiaans, Vietnamees en Arabisch."
|
1354
|
+
},
|
1259
1355
|
"qwen-vl-plus-latest": {
|
1260
1356
|
"description": "De verbeterde versie van het Tongyi Qianwen grootschalige visuele taalmodel. Het verbetert aanzienlijk de detailherkenning en tekstherkenning, ondersteunt resoluties van meer dan een miljoen pixels en afbeeldingen met elke verhouding."
|
1261
1357
|
},
|
@@ -1274,6 +1370,9 @@
|
|
1274
1370
|
"qwen2.5-14b-instruct": {
|
1275
1371
|
"description": "Het 14B model van Tongyi Qianwen 2.5 is open source beschikbaar."
|
1276
1372
|
},
|
1373
|
+
"qwen2.5-14b-instruct-1m": {
|
1374
|
+
"description": "Qwen2.5 is een open-source model van 72B schaal."
|
1375
|
+
},
|
1277
1376
|
"qwen2.5-32b-instruct": {
|
1278
1377
|
"description": "Het 32B model van Tongyi Qianwen 2.5 is open source beschikbaar."
|
1279
1378
|
},
|
@@ -1301,6 +1400,12 @@
|
|
1301
1400
|
"qwen2.5-math-7b-instruct": {
|
1302
1401
|
"description": "Het Qwen-Math model heeft krachtige capaciteiten voor het oplossen van wiskundige problemen."
|
1303
1402
|
},
|
1403
|
+
"qwen2.5-vl-72b-instruct": {
|
1404
|
+
"description": "Verbeterde instructievolging, wiskunde, probleemoplossing en code, met verbeterde herkenningscapaciteiten voor verschillende formaten, directe en nauwkeurige lokalisatie van visuele elementen, ondersteuning voor lange videobestanden (maximaal 10 minuten) en seconde-niveau gebeurtenislocatie, kan tijdsvolgorde en snelheid begrijpen, en ondersteunt het bedienen van OS of mobiele agenten op basis van analyse- en lokalisatiecapaciteiten, sterke capaciteiten voor het extraheren van belangrijke informatie en JSON-formaat uitvoer, deze versie is de 72B versie, de krachtigste versie in deze serie."
|
1405
|
+
},
|
1406
|
+
"qwen2.5-vl-7b-instruct": {
|
1407
|
+
"description": "Verbeterde instructievolging, wiskunde, probleemoplossing en code, met verbeterde herkenningscapaciteiten voor verschillende formaten, directe en nauwkeurige lokalisatie van visuele elementen, ondersteuning voor lange videobestanden (maximaal 10 minuten) en seconde-niveau gebeurtenislocatie, kan tijdsvolgorde en snelheid begrijpen, en ondersteunt het bedienen van OS of mobiele agenten op basis van analyse- en lokalisatiecapaciteiten, sterke capaciteiten voor het extraheren van belangrijke informatie en JSON-formaat uitvoer, deze versie is de 72B versie, de krachtigste versie in deze serie."
|
1408
|
+
},
|
1304
1409
|
"qwen2.5:0.5b": {
|
1305
1410
|
"description": "Qwen2.5 is de nieuwe generatie grootschalig taalmodel van Alibaba, dat uitstekende prestaties levert ter ondersteuning van diverse toepassingsbehoeften."
|
1306
1411
|
},
|
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "Użytkownik Anonimowy",
|
287
287
|
"billing": "Zarządzanie rachunkami",
|
288
288
|
"cloud": "Wypróbuj {{name}}",
|
289
|
+
"community": "Wersja społeczności",
|
289
290
|
"data": "Przechowywanie danych",
|
290
291
|
"defaultNickname": "Użytkownik Wersji Społecznościowej",
|
291
292
|
"discord": "Wsparcie społeczności",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "Centrum pomocy",
|
296
297
|
"moveGuide": "Przenieś przycisk ustawień tutaj",
|
297
298
|
"plans": "Plan abonamentu",
|
298
|
-
"preview": "Podgląd",
|
299
299
|
"profile": "Zarządzanie kontem",
|
300
300
|
"setting": "Ustawienia aplikacji",
|
301
301
|
"usages": "Statystyki użycia"
|
@@ -294,26 +294,6 @@
|
|
294
294
|
"tooltip": "Aktualizuj podstawowe ustawienia dostawcy",
|
295
295
|
"updateSuccess": "Aktualizacja zakończona sukcesem"
|
296
296
|
},
|
297
|
-
"wenxin": {
|
298
|
-
"accessKey": {
|
299
|
-
"desc": "Wprowadź Access Key z platformy Baidu Qianfan",
|
300
|
-
"placeholder": "Access Key Qianfan",
|
301
|
-
"title": "Access Key"
|
302
|
-
},
|
303
|
-
"checker": {
|
304
|
-
"desc": "Sprawdź, czy AccessKey / SecretAccess zostały poprawnie wprowadzone"
|
305
|
-
},
|
306
|
-
"secretKey": {
|
307
|
-
"desc": "Wprowadź Secret Key z platformy Baidu Qianfan",
|
308
|
-
"placeholder": "Secret Key Qianfan",
|
309
|
-
"title": "Secret Key"
|
310
|
-
},
|
311
|
-
"unlock": {
|
312
|
-
"customRegion": "Niestandardowy obszar usług",
|
313
|
-
"description": "Wprowadź swój AccessKey / SecretKey, aby rozpocząć sesję. Aplikacja nie zapisuje twojej konfiguracji uwierzytelniania",
|
314
|
-
"title": "Użyj niestandardowych informacji uwierzytelniających Wenxin Yiyan"
|
315
|
-
}
|
316
|
-
},
|
317
297
|
"zeroone": {
|
318
298
|
"title": "01.AI Zero Jeden Wszystko"
|
319
299
|
},
|
@@ -23,6 +23,9 @@
|
|
23
23
|
"360gpt2-pro": {
|
24
24
|
"description": "360GPT2 Pro to zaawansowany model przetwarzania języka naturalnego wydany przez firmę 360, charakteryzujący się doskonałymi zdolnościami generowania i rozumienia tekstu, szczególnie w obszarze generowania i tworzenia treści, zdolny do obsługi skomplikowanych zadań związanych z konwersją językową i odgrywaniem ról."
|
25
25
|
},
|
26
|
+
"360zhinao2-o1": {
|
27
|
+
"description": "Model 360zhinao2-o1 wykorzystuje wyszukiwanie drzewne do budowy łańcucha myślowego i wprowadza mechanizm refleksji, wykorzystując uczenie przez wzmocnienie do treningu, co pozwala modelowi na samorefleksję i korekcję błędów."
|
28
|
+
},
|
26
29
|
"4.0Ultra": {
|
27
30
|
"description": "Spark4.0 Ultra to najsilniejsza wersja w serii modeli Spark, która, oprócz ulepszonego łącza wyszukiwania w sieci, zwiększa zdolność rozumienia i podsumowywania treści tekstowych. Jest to kompleksowe rozwiązanie mające na celu zwiększenie wydajności biurowej i dokładne odpowiadanie na potrzeby, stanowiące inteligentny produkt wiodący w branży."
|
28
31
|
},
|
@@ -44,6 +47,18 @@
|
|
44
47
|
"Baichuan4-Turbo": {
|
45
48
|
"description": "Model o najlepszych możliwościach w kraju, przewyższający zagraniczne modele w zadaniach związanych z wiedzą encyklopedyczną, długimi tekstami i twórczością w języku chińskim. Posiada również wiodące w branży możliwości multimodalne, osiągając doskonałe wyniki w wielu autorytatywnych testach."
|
46
49
|
},
|
50
|
+
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
|
+
"description": "Model destylacyjny DeepSeek-R1 oparty na Qwen2.5-Math-1.5B, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Qwen-14B": {
|
54
|
+
"description": "Model destylacyjny DeepSeek-R1 oparty na Qwen2.5-14B, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
55
|
+
},
|
56
|
+
"DeepSeek-R1-Distill-Qwen-32B": {
|
57
|
+
"description": "Seria DeepSeek-R1 optymalizuje wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach, przewyższający poziom OpenAI-o1-mini."
|
58
|
+
},
|
59
|
+
"DeepSeek-R1-Distill-Qwen-7B": {
|
60
|
+
"description": "Model destylacyjny DeepSeek-R1 oparty na Qwen2.5-Math-7B, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
61
|
+
},
|
47
62
|
"Doubao-lite-128k": {
|
48
63
|
"description": "Doubao-lite cechuje się ekstremalną szybkością reakcji i lepszym stosunkiem jakości do ceny, oferując klientom elastyczność w różnych scenariuszach. Obsługuje wnioskowanie i dostosowywanie z kontekstem 128k."
|
49
64
|
},
|
@@ -77,9 +92,6 @@
|
|
77
92
|
"ERNIE-4.0-8K-Preview": {
|
78
93
|
"description": "Flagowy model ultra dużego języka opracowany przez Baidu, w porównaniu do ERNIE 3.5, oferujący kompleksową aktualizację możliwości modelu, szeroko stosowany w złożonych scenariuszach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
79
94
|
},
|
80
|
-
"ERNIE-4.0-Turbo-128K": {
|
81
|
-
"description": "Flagowy model językowy opracowany przez Baidu, o dużej skali, wykazujący doskonałe wyniki w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji w odpowiedziach. W porównaniu do ERNIE 4.0, wykazuje lepsze osiągi."
|
82
|
-
},
|
83
95
|
"ERNIE-4.0-Turbo-8K-Latest": {
|
84
96
|
"description": "Opracowany przez Baidu flagowy, ultra-duży model językowy, który wykazuje doskonałe ogólne rezultaty i jest szeroko stosowany w złożonych zadaniach w różnych dziedzinach; obsługuje automatyczne łączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji odpowiadających na pytania. W porównaniu do ERNIE 4.0 wykazuje lepszą wydajność."
|
85
97
|
},
|
@@ -176,6 +188,9 @@
|
|
176
188
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
189
|
"description": "Meta Llama 3.1 to rodzina dużych modeli językowych opracowanych przez Meta, obejmująca pretrenowane i dostosowane do instrukcji warianty o rozmiarach parametrów 8B, 70B i 405B. Model 8B dostosowany do instrukcji został zoptymalizowany do scenariuszy rozmów wielojęzycznych, osiągając doskonałe wyniki w wielu branżowych testach benchmarkowych. Trening modelu wykorzystał ponad 150 bilionów tokenów danych publicznych oraz zastosował techniki takie jak nadzorowane dostrajanie i uczenie przez wzmacnianie z ludzkim feedbackiem, aby zwiększyć użyteczność i bezpieczeństwo modelu. Llama 3.1 wspiera generowanie tekstu i kodu, a data graniczna wiedzy to grudzień 2023 roku."
|
178
190
|
},
|
191
|
+
"QwQ-32B-Preview": {
|
192
|
+
"description": "QwQ-32B-Preview to innowacyjny model przetwarzania języka naturalnego, który efektywnie radzi sobie z złożonymi zadaniami generowania dialogów i rozumienia kontekstu."
|
193
|
+
},
|
179
194
|
"Qwen/QVQ-72B-Preview": {
|
180
195
|
"description": "QVQ-72B-Preview to model badawczy opracowany przez zespół Qwen, skoncentrowany na zdolnościach wnioskowania wizualnego, który ma unikalne zalety w zrozumieniu złożonych scenariuszy i rozwiązywaniu wizualnie związanych problemów matematycznych."
|
181
196
|
},
|
@@ -527,6 +542,24 @@
|
|
527
542
|
"deepseek-ai/DeepSeek-R1": {
|
528
543
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmacnianie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne efekty."
|
529
544
|
},
|
545
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
546
|
+
"description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
547
|
+
},
|
548
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
549
|
+
"description": "DeepSeek-R1-Distill-Llama-8B to model destylacyjny oparty na Llama-3.1-8B. Model ten został dostosowany przy użyciu próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe zdolności wnioskowania. Osiągnął dobre wyniki w wielu testach referencyjnych, w tym 89,1% dokładności w MATH-500, 50,4% wskaźnika zdawalności w AIME 2024 oraz 1205 punktów w CodeForces, demonstrując silne zdolności matematyczne i programistyczne jako model o skali 8B."
|
550
|
+
},
|
551
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
552
|
+
"description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
553
|
+
},
|
554
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
|
555
|
+
"description": "Model destylacyjny DeepSeek-R1, optymalizujący wydajność wnioskowania dzięki uczeniu przez wzmocnienie i danym z zimnego startu, otwarty model ustanawiający nowe standardy w wielu zadaniach."
|
556
|
+
},
|
557
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
558
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B to model uzyskany przez destylację Qwen2.5-32B. Model ten został dostosowany przy użyciu 800 000 starannie wybranych próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe osiągi w wielu dziedzinach, takich jak matematyka, programowanie i wnioskowanie. Osiągnął znakomite wyniki w wielu testach referencyjnych, w tym 94,3% dokładności w MATH-500, co pokazuje jego silne zdolności wnioskowania matematycznego."
|
559
|
+
},
|
560
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
561
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B to model uzyskany przez destylację Qwen2.5-Math-7B. Model ten został dostosowany przy użyciu 800 000 starannie wybranych próbek wygenerowanych przez DeepSeek-R1, wykazując doskonałe zdolności wnioskowania. Osiągnął znakomite wyniki w wielu testach referencyjnych, w tym 92,8% dokładności w MATH-500, 55,5% wskaźnika zdawalności w AIME 2024 oraz 1189 punktów w CodeForces, demonstrując silne zdolności matematyczne i programistyczne jako model o skali 7B."
|
562
|
+
},
|
530
563
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
564
|
"description": "DeepSeek V2.5 łączy doskonałe cechy wcześniejszych wersji, wzmacniając zdolności ogólne i kodowania."
|
532
565
|
},
|
@@ -554,6 +587,9 @@
|
|
554
587
|
"deepseek-r1": {
|
555
588
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmacnianie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne efekty."
|
556
589
|
},
|
590
|
+
"deepseek-r1-distill-llama-70b": {
|
591
|
+
"description": "DeepSeek R1 — większy i inteligentniejszy model w zestawie DeepSeek — został destylowany do architektury Llama 70B. Na podstawie testów referencyjnych i ocen ręcznych, model ten jest bardziej inteligentny niż oryginalna Llama 70B, szczególnie w zadaniach wymagających precyzji matematycznej i faktograficznej."
|
592
|
+
},
|
557
593
|
"deepseek-reasoner": {
|
558
594
|
"description": "Model inferency wprowadzony przez DeepSeek. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw przedstawia fragment łańcucha myślowego, aby zwiększyć dokładność końcowej odpowiedzi."
|
559
595
|
},
|
@@ -563,12 +599,63 @@
|
|
563
599
|
"deepseek-v2:236b": {
|
564
600
|
"description": "DeepSeek V2 236B to model kodowy zaprojektowany przez DeepSeek, oferujący potężne możliwości generowania kodu."
|
565
601
|
},
|
602
|
+
"deepseek-v3": {
|
603
|
+
"description": "DeepSeek-V3 to model MoE opracowany przez Hangzhou DeepSeek AI Technology Research Co., Ltd., który osiągnął znakomite wyniki w wielu testach, zajmując pierwsze miejsce wśród modeli open-source na głównych listach. W porównaniu do modelu V2.5, prędkość generowania wzrosła trzykrotnie, co zapewnia użytkownikom szybsze i płynniejsze doświadczenia."
|
604
|
+
},
|
566
605
|
"deepseek/deepseek-chat": {
|
567
606
|
"description": "Nowy, otwarty model łączący zdolności ogólne i kodowe, który nie tylko zachowuje ogólne zdolności dialogowe oryginalnego modelu Chat, ale także potężne zdolności przetwarzania kodu modelu Coder, lepiej dostosowując się do ludzkich preferencji. Ponadto, DeepSeek-V2.5 osiągnął znaczne poprawy w zadaniach pisarskich, przestrzeganiu instrukcji i wielu innych obszarach."
|
568
607
|
},
|
569
608
|
"emohaa": {
|
570
609
|
"description": "Emohaa to model psychologiczny, posiadający profesjonalne umiejętności doradcze, pomagający użytkownikom zrozumieć problemy emocjonalne."
|
571
610
|
},
|
611
|
+
"ernie-3.5-128k": {
|
612
|
+
"description": "Flagowy model językowy opracowany przez Baidu, obejmujący ogromne zbiory danych w języku chińskim i angielskim, charakteryzujący się silnymi zdolnościami ogólnymi, spełniającym wymagania większości zastosowań w dialogach, generowaniu treści i aplikacjach wtyczek; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
613
|
+
},
|
614
|
+
"ernie-3.5-8k": {
|
615
|
+
"description": "Flagowy model językowy opracowany przez Baidu, obejmujący ogromne zbiory danych w języku chińskim i angielskim, charakteryzujący się silnymi zdolnościami ogólnymi, spełniającym wymagania większości zastosowań w dialogach, generowaniu treści i aplikacjach wtyczek; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
616
|
+
},
|
617
|
+
"ernie-3.5-8k-preview": {
|
618
|
+
"description": "Flagowy model językowy opracowany przez Baidu, obejmujący ogromne zbiory danych w języku chińskim i angielskim, charakteryzujący się silnymi zdolnościami ogólnymi, spełniającym wymagania większości zastosowań w dialogach, generowaniu treści i aplikacjach wtyczek; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
619
|
+
},
|
620
|
+
"ernie-4.0-8k-latest": {
|
621
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, w porównaniu do ERNIE 3.5, oferujący kompleksową aktualizację zdolności modelu, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
622
|
+
},
|
623
|
+
"ernie-4.0-8k-preview": {
|
624
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, w porównaniu do ERNIE 3.5, oferujący kompleksową aktualizację zdolności modelu, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji."
|
625
|
+
},
|
626
|
+
"ernie-4.0-turbo-128k": {
|
627
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, charakteryzujący się doskonałymi wynikami ogólnymi, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji. W porównaniu do ERNIE 4.0, oferuje lepsze wyniki wydajności."
|
628
|
+
},
|
629
|
+
"ernie-4.0-turbo-8k-latest": {
|
630
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, charakteryzujący się doskonałymi wynikami ogólnymi, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji. W porównaniu do ERNIE 4.0, oferuje lepsze wyniki wydajności."
|
631
|
+
},
|
632
|
+
"ernie-4.0-turbo-8k-preview": {
|
633
|
+
"description": "Flagowy model językowy Baidu o ultra dużej skali, charakteryzujący się doskonałymi wynikami ogólnymi, szeroko stosowany w złożonych zadaniach w różnych dziedzinach; wspiera automatyczne połączenie z wtyczką wyszukiwania Baidu, zapewniając aktualność informacji. W porównaniu do ERNIE 4.0, oferuje lepsze wyniki wydajności."
|
634
|
+
},
|
635
|
+
"ernie-char-8k": {
|
636
|
+
"description": "Model językowy opracowany przez Baidu, skoncentrowany na specyficznych scenariuszach, odpowiedni do zastosowań w grach NPC, dialogach obsługi klienta, odgrywaniu ról w dialogach, charakteryzujący się wyraźnym i spójnym stylem postaci, silniejszą zdolnością do podążania za instrukcjami oraz lepszą wydajnością wnioskowania."
|
637
|
+
},
|
638
|
+
"ernie-char-fiction-8k": {
|
639
|
+
"description": "Model językowy opracowany przez Baidu, skoncentrowany na specyficznych scenariuszach, odpowiedni do zastosowań w grach NPC, dialogach obsługi klienta, odgrywaniu ról w dialogach, charakteryzujący się wyraźnym i spójnym stylem postaci, silniejszą zdolnością do podążania za instrukcjami oraz lepszą wydajnością wnioskowania."
|
640
|
+
},
|
641
|
+
"ernie-lite-8k": {
|
642
|
+
"description": "ERNIE Lite to lekki model językowy opracowany przez Baidu, łączący doskonałe wyniki modelu z wydajnością wnioskowania, odpowiedni do użycia na kartach przyspieszających AI o niskiej mocy obliczeniowej."
|
643
|
+
},
|
644
|
+
"ernie-lite-pro-128k": {
|
645
|
+
"description": "Lekki model językowy opracowany przez Baidu, łączący doskonałe wyniki modelu z wydajnością wnioskowania, oferujący lepsze wyniki niż ERNIE Lite, odpowiedni do użycia na kartach przyspieszających AI o niskiej mocy obliczeniowej."
|
646
|
+
},
|
647
|
+
"ernie-novel-8k": {
|
648
|
+
"description": "Ogólny model językowy opracowany przez Baidu, który wykazuje wyraźne przewagi w zakresie kontynuacji powieści, może być również stosowany w scenariuszach krótkich dramatów i filmów."
|
649
|
+
},
|
650
|
+
"ernie-speed-128k": {
|
651
|
+
"description": "Najnowszy model językowy o wysokiej wydajności opracowany przez Baidu w 2024 roku, charakteryzujący się doskonałymi zdolnościami ogólnymi, odpowiedni jako model bazowy do dalszego dostosowania, lepiej radzący sobie z problemami w specyficznych scenariuszach, a także oferujący doskonałą wydajność wnioskowania."
|
652
|
+
},
|
653
|
+
"ernie-speed-pro-128k": {
|
654
|
+
"description": "Najnowszy model językowy o wysokiej wydajności opracowany przez Baidu w 2024 roku, charakteryzujący się doskonałymi zdolnościami ogólnymi, oferujący lepsze wyniki niż ERNIE Speed, odpowiedni jako model bazowy do dalszego dostosowania, lepiej radzący sobie z problemami w specyficznych scenariuszach, a także oferujący doskonałą wydajność wnioskowania."
|
655
|
+
},
|
656
|
+
"ernie-tiny-8k": {
|
657
|
+
"description": "ERNIE Tiny to model językowy o ultra wysokiej wydajności opracowany przez Baidu, charakteryzujący się najniższymi kosztami wdrożenia i dostosowania w serii modeli Wenxin."
|
658
|
+
},
|
572
659
|
"gemini-1.0-pro-001": {
|
573
660
|
"description": "Gemini 1.0 Pro 001 (Tuning) oferuje stabilną i dostosowywalną wydajność, co czyni go idealnym wyborem dla rozwiązań złożonych zadań."
|
574
661
|
},
|
@@ -872,6 +959,9 @@
|
|
872
959
|
"internlm2.5-latest": {
|
873
960
|
"description": "Nasza najnowsza seria modeli, charakteryzująca się doskonałymi osiągami wnioskowania, obsługująca długość kontekstu do 1M oraz lepsze możliwości śledzenia instrukcji i wywoływania narzędzi."
|
874
961
|
},
|
962
|
+
"internlm3-latest": {
|
963
|
+
"description": "Nasza najnowsza seria modeli, charakteryzująca się doskonałą wydajnością wnioskowania, prowadzi wśród modeli open-source o podobnej skali. Domyślnie wskazuje na naszą najnowszą wersję modelu InternLM3."
|
964
|
+
},
|
875
965
|
"learnlm-1.5-pro-experimental": {
|
876
966
|
"description": "LearnLM to eksperymentalny model językowy, specyficzny dla zadań, przeszkolony zgodnie z zasadami nauki o uczeniu się, który może przestrzegać systemowych instrukcji w scenariuszach nauczania i uczenia się, pełniąc rolę eksperta mentora."
|
877
967
|
},
|
@@ -986,6 +1076,9 @@
|
|
986
1076
|
"meta-llama/Llama-3.3-70B-Instruct": {
|
987
1077
|
"description": "Llama 3.3 to najnowocześniejszy wielojęzyczny model językowy open-source z serii Llama, oferujący wydajność porównywalną z modelem 405B przy bardzo niskich kosztach. Oparty na strukturze Transformer, poprawiony dzięki nadzorowanemu dostrajaniu (SFT) oraz uczeniu się z ludzkiego feedbacku (RLHF), co zwiększa użyteczność i bezpieczeństwo. Jego wersja dostosowana do instrukcji jest zoptymalizowana do wielojęzycznych rozmów, osiągając lepsze wyniki w wielu branżowych benchmarkach niż wiele modeli czatu open-source i zamkniętych. Data graniczna wiedzy to grudzień 2023 roku."
|
988
1078
|
},
|
1079
|
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1080
|
+
"description": "Meta Llama 3.3 to wielojęzyczny model językowy (LLM) o skali 70B (wejście/wyjście tekstowe), będący modelem generacyjnym wstępnie wytrenowanym i dostosowanym do instrukcji. Model Llama 3.3 dostosowany do instrukcji jest zoptymalizowany pod kątem zastosowań w dialogach wielojęzycznych i przewyższa wiele dostępnych modeli open-source i zamkniętych w popularnych testach branżowych."
|
1081
|
+
},
|
989
1082
|
"meta-llama/Llama-Vision-Free": {
|
990
1083
|
"description": "LLaMA 3.2 zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Doskonała w zadaniach takich jak opisywanie obrazów i wizualne pytania odpowiedzi, przekracza granice między generowaniem języka a wnioskowaniem wizualnym."
|
991
1084
|
},
|
@@ -1256,6 +1349,9 @@
|
|
1256
1349
|
"qwen-vl-max-latest": {
|
1257
1350
|
"description": "Model wizualno-językowy Qwen o ultra dużej skali. W porównaniu do wersji rozszerzonej, ponownie zwiększa zdolności wnioskowania wizualnego i przestrzegania instrukcji, oferując wyższy poziom percepcji wizualnej i poznawczej."
|
1258
1351
|
},
|
1352
|
+
"qwen-vl-ocr-latest": {
|
1353
|
+
"description": "Model OCR Tongyi Qianwen to specjalistyczny model do ekstrakcji tekstu, skoncentrowany na zdolności do wydobywania tekstu z obrazów dokumentów, tabel, zadań testowych i pisma ręcznego. Potrafi rozpoznawać wiele języków, w tym: chiński, angielski, francuski, japoński, koreański, niemiecki, rosyjski, włoski, wietnamski i arabski."
|
1354
|
+
},
|
1259
1355
|
"qwen-vl-plus-latest": {
|
1260
1356
|
"description": "Wersja rozszerzona modelu wizualno-językowego Qwen. Znacząco poprawia zdolność rozpoznawania szczegółów i tekstu, obsługuje obrazy o rozdzielczości przekraczającej milion pikseli oraz dowolnych proporcjach."
|
1261
1357
|
},
|
@@ -1274,6 +1370,9 @@
|
|
1274
1370
|
"qwen2.5-14b-instruct": {
|
1275
1371
|
"description": "Model Qwen 2.5 o skali 14B, udostępniony na zasadzie open source."
|
1276
1372
|
},
|
1373
|
+
"qwen2.5-14b-instruct-1m": {
|
1374
|
+
"description": "Model o skali 72B, udostępniony przez Tongyi Qianwen 2.5."
|
1375
|
+
},
|
1277
1376
|
"qwen2.5-32b-instruct": {
|
1278
1377
|
"description": "Model Qwen 2.5 o skali 32B, udostępniony na zasadzie open source."
|
1279
1378
|
},
|
@@ -1301,6 +1400,12 @@
|
|
1301
1400
|
"qwen2.5-math-7b-instruct": {
|
1302
1401
|
"description": "Model Qwen-Math, który ma silne zdolności rozwiązywania problemów matematycznych."
|
1303
1402
|
},
|
1403
|
+
"qwen2.5-vl-72b-instruct": {
|
1404
|
+
"description": "Zwiększona zdolność do podążania za instrukcjami, matematyki, rozwiązywania problemów i kodowania, poprawiona zdolność do rozpoznawania obiektów, wsparcie dla różnych formatów do precyzyjnego lokalizowania elementów wizualnych, zdolność do rozumienia długich plików wideo (do 10 minut) oraz lokalizowania momentów zdarzeń w czasie rzeczywistym, zdolność do rozumienia kolejności czasowej i szybkości, wsparcie dla operacji na systemach OS lub Mobile, silna zdolność do ekstrakcji kluczowych informacji i generowania wyjścia w formacie JSON. Ta wersja to wersja 72B, najsilniejsza w tej serii."
|
1405
|
+
},
|
1406
|
+
"qwen2.5-vl-7b-instruct": {
|
1407
|
+
"description": "Zwiększona zdolność do podążania za instrukcjami, matematyki, rozwiązywania problemów i kodowania, poprawiona zdolność do rozpoznawania obiektów, wsparcie dla różnych formatów do precyzyjnego lokalizowania elementów wizualnych, zdolność do rozumienia długich plików wideo (do 10 minut) oraz lokalizowania momentów zdarzeń w czasie rzeczywistym, zdolność do rozumienia kolejności czasowej i szybkości, wsparcie dla operacji na systemach OS lub Mobile, silna zdolność do ekstrakcji kluczowych informacji i generowania wyjścia w formacie JSON. Ta wersja to wersja 72B, najsilniejsza w tej serii."
|
1408
|
+
},
|
1304
1409
|
"qwen2.5:0.5b": {
|
1305
1410
|
"description": "Qwen2.5 to nowa generacja dużego modelu językowego Alibaba, który wspiera różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1306
1411
|
},
|
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "Usuário Anônimo",
|
287
287
|
"billing": "Gerenciamento de faturas",
|
288
288
|
"cloud": "Experimente {{name}}",
|
289
|
+
"community": "Versão Comunitária",
|
289
290
|
"data": "Armazenamento de dados",
|
290
291
|
"defaultNickname": "Usuário da Comunidade",
|
291
292
|
"discord": "Suporte da Comunidade",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "Central de Ajuda",
|
296
297
|
"moveGuide": "O botão de configurações foi movido para cá",
|
297
298
|
"plans": "Planos de Assinatura",
|
298
|
-
"preview": "Versão de visualização",
|
299
299
|
"profile": "Gerenciamento de Conta",
|
300
300
|
"setting": "Configurações do Aplicativo",
|
301
301
|
"usages": "Estatísticas de Uso"
|
@@ -294,26 +294,6 @@
|
|
294
294
|
"tooltip": "Atualizar configurações básicas do provedor",
|
295
295
|
"updateSuccess": "Atualização bem-sucedida"
|
296
296
|
},
|
297
|
-
"wenxin": {
|
298
|
-
"accessKey": {
|
299
|
-
"desc": "Insira a Access Key da plataforma Qianfan do Baidu",
|
300
|
-
"placeholder": "Access Key Qianfan",
|
301
|
-
"title": "Access Key"
|
302
|
-
},
|
303
|
-
"checker": {
|
304
|
-
"desc": "Teste se a AccessKey / SecretAccess está preenchida corretamente"
|
305
|
-
},
|
306
|
-
"secretKey": {
|
307
|
-
"desc": "Insira a Secret Key da plataforma Qianfan do Baidu",
|
308
|
-
"placeholder": "Secret Key Qianfan",
|
309
|
-
"title": "Secret Key"
|
310
|
-
},
|
311
|
-
"unlock": {
|
312
|
-
"customRegion": "Região de serviço personalizada",
|
313
|
-
"description": "Insira sua AccessKey / SecretKey para iniciar a sessão. O aplicativo não registrará suas configurações de autenticação",
|
314
|
-
"title": "Usar informações de autenticação personalizadas do Wenxin Yiyan"
|
315
|
-
}
|
316
|
-
},
|
317
297
|
"zeroone": {
|
318
298
|
"title": "01.AI Zero e Um"
|
319
299
|
},
|