@lobehub/chat 1.51.8 → 1.51.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/common.json +1 -1
- package/locales/ar/modelProvider.json +0 -20
- package/locales/ar/models.json +108 -3
- package/locales/bg-BG/common.json +1 -1
- package/locales/bg-BG/modelProvider.json +0 -20
- package/locales/bg-BG/models.json +108 -3
- package/locales/de-DE/common.json +1 -1
- package/locales/de-DE/modelProvider.json +0 -20
- package/locales/de-DE/models.json +108 -3
- package/locales/en-US/common.json +1 -1
- package/locales/en-US/modelProvider.json +0 -20
- package/locales/en-US/models.json +108 -3
- package/locales/es-ES/common.json +1 -1
- package/locales/es-ES/modelProvider.json +0 -20
- package/locales/es-ES/models.json +108 -3
- package/locales/fa-IR/common.json +1 -1
- package/locales/fa-IR/modelProvider.json +0 -20
- package/locales/fa-IR/models.json +108 -3
- package/locales/fr-FR/common.json +1 -1
- package/locales/fr-FR/modelProvider.json +0 -20
- package/locales/fr-FR/models.json +108 -3
- package/locales/it-IT/common.json +1 -1
- package/locales/it-IT/modelProvider.json +0 -20
- package/locales/it-IT/models.json +108 -3
- package/locales/ja-JP/common.json +1 -1
- package/locales/ja-JP/modelProvider.json +0 -20
- package/locales/ja-JP/models.json +108 -3
- package/locales/ko-KR/common.json +1 -1
- package/locales/ko-KR/modelProvider.json +0 -20
- package/locales/ko-KR/models.json +108 -3
- package/locales/nl-NL/common.json +1 -1
- package/locales/nl-NL/modelProvider.json +0 -20
- package/locales/nl-NL/models.json +108 -3
- package/locales/pl-PL/common.json +1 -1
- package/locales/pl-PL/modelProvider.json +0 -20
- package/locales/pl-PL/models.json +108 -3
- package/locales/pt-BR/common.json +1 -1
- package/locales/pt-BR/modelProvider.json +0 -20
- package/locales/pt-BR/models.json +108 -3
- package/locales/ru-RU/common.json +1 -1
- package/locales/ru-RU/modelProvider.json +0 -20
- package/locales/ru-RU/models.json +108 -3
- package/locales/tr-TR/common.json +1 -1
- package/locales/tr-TR/modelProvider.json +0 -20
- package/locales/tr-TR/models.json +108 -3
- package/locales/vi-VN/common.json +1 -1
- package/locales/vi-VN/modelProvider.json +0 -20
- package/locales/vi-VN/models.json +108 -3
- package/locales/zh-CN/common.json +1 -1
- package/locales/zh-CN/modelProvider.json +0 -20
- package/locales/zh-CN/models.json +113 -8
- package/locales/zh-TW/common.json +1 -1
- package/locales/zh-TW/modelProvider.json +0 -20
- package/locales/zh-TW/models.json +108 -3
- package/package.json +1 -1
- package/src/app/[variants]/(main)/chat/_layout/Desktop/SessionPanel.tsx +2 -1
- package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +2 -1
- package/src/app/[variants]/(main)/chat/layout.ts +0 -2
- package/src/app/[variants]/(main)/settings/provider/(detail)/[id]/page.tsx +2 -0
- package/src/features/User/PlanTag.tsx +2 -2
- package/src/locales/default/common.ts +1 -1
@@ -23,6 +23,9 @@
|
|
23
23
|
"360gpt2-pro": {
|
24
24
|
"description": "360GPT2 Pro est un modèle avancé de traitement du langage naturel lancé par la société 360, offrant d'excellentes capacités de génération et de compréhension de texte, en particulier dans le domaine de la création et de la génération."
|
25
25
|
},
|
26
|
+
"360zhinao2-o1": {
|
27
|
+
"description": "Le modèle 360zhinao2-o1 utilise une recherche arborescente pour construire une chaîne de pensée et introduit un mécanisme de réflexion, formé par apprentissage par renforcement, permettant au modèle d'avoir la capacité de réflexion et de correction autonome."
|
28
|
+
},
|
26
29
|
"4.0Ultra": {
|
27
30
|
"description": "Spark4.0 Ultra est la version la plus puissante de la série de grands modèles Xinghuo, améliorant la compréhension et la capacité de résumé du contenu textuel tout en mettant à jour le lien de recherche en ligne. C'est une solution complète pour améliorer la productivité au bureau et répondre avec précision aux besoins, représentant un produit intelligent de premier plan dans l'industrie."
|
28
31
|
},
|
@@ -44,6 +47,18 @@
|
|
44
47
|
"Baichuan4-Turbo": {
|
45
48
|
"description": "Le modèle le plus performant en Chine, surpassant les modèles dominants étrangers dans les tâches en chinois telles que les encyclopédies, les longs textes et la création. Il possède également des capacités multimodales de pointe, avec d'excellentes performances dans plusieurs évaluations de référence."
|
46
49
|
},
|
50
|
+
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
|
+
"description": "Le modèle distillé DeepSeek-R1 basé sur Qwen2.5-Math-1.5B optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Qwen-14B": {
|
54
|
+
"description": "Le modèle distillé DeepSeek-R1 basé sur Qwen2.5-14B optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
55
|
+
},
|
56
|
+
"DeepSeek-R1-Distill-Qwen-32B": {
|
57
|
+
"description": "La série DeepSeek-R1 optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source, dépassant le niveau d'OpenAI-o1-mini."
|
58
|
+
},
|
59
|
+
"DeepSeek-R1-Distill-Qwen-7B": {
|
60
|
+
"description": "Le modèle distillé DeepSeek-R1 basé sur Qwen2.5-Math-7B optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
61
|
+
},
|
47
62
|
"Doubao-lite-128k": {
|
48
63
|
"description": "Doubao-lite présente une rapidité de réponse exceptionnelle et un excellent rapport qualité-prix, offrant des choix plus flexibles pour différents scénarios clients. Prend en charge le raisonnement et le réglage fin avec une fenêtre de contexte de 128k."
|
49
64
|
},
|
@@ -77,9 +92,6 @@
|
|
77
92
|
"ERNIE-4.0-8K-Preview": {
|
78
93
|
"description": "Modèle de langage ultra-large de premier plan développé par Baidu, ayant réalisé une mise à niveau complète des capacités par rapport à ERNIE 3.5, largement applicable à des scénarios de tâches complexes dans divers domaines ; prend en charge l'intégration automatique avec le plugin de recherche Baidu, garantissant l'actualité des informations de réponse."
|
79
94
|
},
|
80
|
-
"ERNIE-4.0-Turbo-128K": {
|
81
|
-
"description": "Modèle de langage ultra-large de premier plan développé par Baidu, offrant d'excellentes performances globales, largement applicable à des scénarios de tâches complexes dans divers domaines ; prend en charge l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse. Par rapport à ERNIE 4.0, il offre de meilleures performances."
|
82
|
-
},
|
83
95
|
"ERNIE-4.0-Turbo-8K-Latest": {
|
84
96
|
"description": "Modèle linguistique ultramoderne et de grande taille auto-développé par Baidu, avec d'excellentes performances générales, largement applicable à divers scénarios de tâches complexes ; prend en charge la connexion automatique aux plugins de recherche Baidu pour assurer la pertinence des informations de réponse. Par rapport à ERNIE 4.0, il affiche de meilleures performances."
|
85
97
|
},
|
@@ -176,6 +188,9 @@
|
|
176
188
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
189
|
"description": "Meta Llama 3.1 est une famille de modèles de langage à grande échelle multilingues développée par Meta, comprenant des variantes pré-entraînées et d'ajustement d'instructions de tailles de paramètres de 8B, 70B et 405B. Ce modèle d'ajustement d'instructions 8B est optimisé pour des scénarios de dialogue multilingue, montrant d'excellentes performances dans plusieurs tests de référence de l'industrie. L'entraînement du modèle a utilisé plus de 150 trillions de tokens de données publiques, et des techniques telles que l'ajustement supervisé et l'apprentissage par renforcement basé sur les retours humains ont été appliquées pour améliorer l'utilité et la sécurité du modèle. Llama 3.1 prend en charge la génération de texte et de code, avec une date limite de connaissances fixée à décembre 2023."
|
178
190
|
},
|
191
|
+
"QwQ-32B-Preview": {
|
192
|
+
"description": "QwQ-32B-Preview est un modèle de traitement du langage naturel innovant, capable de gérer efficacement des tâches complexes de génération de dialogues et de compréhension contextuelle."
|
193
|
+
},
|
179
194
|
"Qwen/QVQ-72B-Preview": {
|
180
195
|
"description": "QVQ-72B-Preview est un modèle de recherche développé par l'équipe Qwen, axé sur les capacités de raisonnement visuel, qui possède des avantages uniques dans la compréhension de scènes complexes et la résolution de problèmes mathématiques liés à la vision."
|
181
196
|
},
|
@@ -527,6 +542,24 @@
|
|
527
542
|
"deepseek-ai/DeepSeek-R1": {
|
528
543
|
"description": "DeepSeek-R1 est un modèle d'inférence alimenté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétitivité et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant ainsi les performances d'inférence. Il se compare à OpenAI-o1 en matière de tâches mathématiques, de code et d'inférence, et améliore l'efficacité globale grâce à des méthodes d'entraînement soigneusement conçues."
|
529
544
|
},
|
545
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
546
|
+
"description": "Le modèle distillé DeepSeek-R1 optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
547
|
+
},
|
548
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
549
|
+
"description": "DeepSeek-R1-Distill-Llama-8B est un modèle distillé basé sur Llama-3.1-8B. Ce modèle a été affiné avec des échantillons générés par DeepSeek-R1, montrant d'excellentes capacités d'inférence. Il a bien performé dans plusieurs tests de référence, atteignant 89,1 % de précision dans MATH-500, 50,4 % de taux de réussite dans AIME 2024, et un score de 1205 sur CodeForces, démontrant de fortes capacités en mathématiques et en programmation pour un modèle de 8B."
|
550
|
+
},
|
551
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
552
|
+
"description": "Le modèle distillé DeepSeek-R1 optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
553
|
+
},
|
554
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
|
555
|
+
"description": "Le modèle distillé DeepSeek-R1 optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
556
|
+
},
|
557
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
558
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B est un modèle obtenu par distillation de Qwen2.5-32B. Ce modèle a été affiné avec 800 000 échantillons sélectionnés générés par DeepSeek-R1, montrant des performances exceptionnelles dans plusieurs domaines tels que les mathématiques, la programmation et le raisonnement. Il a obtenu d'excellents résultats dans plusieurs tests de référence, atteignant 94,3 % de précision dans MATH-500, démontrant une forte capacité de raisonnement mathématique."
|
559
|
+
},
|
560
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
561
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B est un modèle obtenu par distillation de Qwen2.5-Math-7B. Ce modèle a été affiné avec 800 000 échantillons sélectionnés générés par DeepSeek-R1, montrant d'excellentes capacités d'inférence. Il a obtenu d'excellents résultats dans plusieurs tests de référence, atteignant 92,8 % de précision dans MATH-500, 55,5 % de taux de réussite dans AIME 2024, et un score de 1189 sur CodeForces, démontrant de fortes capacités en mathématiques et en programmation pour un modèle de 7B."
|
562
|
+
},
|
530
563
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
564
|
"description": "DeepSeek V2.5 intègre les excellentes caractéristiques des versions précédentes, renforçant les capacités générales et de codage."
|
532
565
|
},
|
@@ -554,6 +587,9 @@
|
|
554
587
|
"deepseek-r1": {
|
555
588
|
"description": "DeepSeek-R1 est un modèle d'inférence alimenté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétitivité et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant ainsi les performances d'inférence. Il se compare à OpenAI-o1 en matière de tâches mathématiques, de code et d'inférence, et améliore l'efficacité globale grâce à des méthodes d'entraînement soigneusement conçues."
|
556
589
|
},
|
590
|
+
"deepseek-r1-distill-llama-70b": {
|
591
|
+
"description": "DeepSeek R1 — le modèle plus grand et plus intelligent de la suite DeepSeek — a été distillé dans l'architecture Llama 70B. Basé sur des tests de référence et des évaluations humaines, ce modèle est plus intelligent que le Llama 70B d'origine, en particulier dans les tâches nécessitant précision mathématique et factuelle."
|
592
|
+
},
|
557
593
|
"deepseek-reasoner": {
|
558
594
|
"description": "Modèle d'inférence proposé par DeepSeek. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
|
559
595
|
},
|
@@ -563,12 +599,63 @@
|
|
563
599
|
"deepseek-v2:236b": {
|
564
600
|
"description": "DeepSeek V2 236B est le modèle de code de conception de DeepSeek, offrant de puissantes capacités de génération de code."
|
565
601
|
},
|
602
|
+
"deepseek-v3": {
|
603
|
+
"description": "DeepSeek-V3 est un modèle MoE développé par la société Hangzhou DeepSeek AI Technology Research Co., Ltd., avec des performances exceptionnelles dans plusieurs évaluations, se classant au premier rang des modèles open source dans les classements principaux. Par rapport au modèle V2.5, la vitesse de génération a été multipliée par 3, offrant aux utilisateurs une expérience d'utilisation plus rapide et fluide."
|
604
|
+
},
|
566
605
|
"deepseek/deepseek-chat": {
|
567
606
|
"description": "Un nouveau modèle open source fusionnant des capacités générales et de codage, qui non seulement conserve les capacités de dialogue général du modèle Chat d'origine et la puissante capacité de traitement de code du modèle Coder, mais s'aligne également mieux sur les préférences humaines. De plus, DeepSeek-V2.5 a également réalisé des améliorations significatives dans plusieurs domaines tels que les tâches d'écriture et le suivi d'instructions."
|
568
607
|
},
|
569
608
|
"emohaa": {
|
570
609
|
"description": "Emohaa est un modèle psychologique, doté de compétences de conseil professionnel, aidant les utilisateurs à comprendre les problèmes émotionnels."
|
571
610
|
},
|
611
|
+
"ernie-3.5-128k": {
|
612
|
+
"description": "Le modèle de langage de grande taille phare développé par Baidu, couvrant une vaste quantité de corpus en chinois et en anglais, avec de puissantes capacités générales, capable de répondre à la plupart des exigences en matière de questions-réponses, de génération créative et d'applications de plugins ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse."
|
613
|
+
},
|
614
|
+
"ernie-3.5-8k": {
|
615
|
+
"description": "Le modèle de langage de grande taille phare développé par Baidu, couvrant une vaste quantité de corpus en chinois et en anglais, avec de puissantes capacités générales, capable de répondre à la plupart des exigences en matière de questions-réponses, de génération créative et d'applications de plugins ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse."
|
616
|
+
},
|
617
|
+
"ernie-3.5-8k-preview": {
|
618
|
+
"description": "Le modèle de langage de grande taille phare développé par Baidu, couvrant une vaste quantité de corpus en chinois et en anglais, avec de puissantes capacités générales, capable de répondre à la plupart des exigences en matière de questions-réponses, de génération créative et d'applications de plugins ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse."
|
619
|
+
},
|
620
|
+
"ernie-4.0-8k-latest": {
|
621
|
+
"description": "Le modèle de langage de très grande taille phare développé par Baidu, par rapport à ERNIE 3.5, a réalisé une mise à niveau complète des capacités du modèle, largement applicable à des scénarios de tâches complexes dans divers domaines ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse."
|
622
|
+
},
|
623
|
+
"ernie-4.0-8k-preview": {
|
624
|
+
"description": "Le modèle de langage de très grande taille phare développé par Baidu, par rapport à ERNIE 3.5, a réalisé une mise à niveau complète des capacités du modèle, largement applicable à des scénarios de tâches complexes dans divers domaines ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse."
|
625
|
+
},
|
626
|
+
"ernie-4.0-turbo-128k": {
|
627
|
+
"description": "Le modèle de langage de très grande taille phare développé par Baidu, avec d'excellentes performances globales, largement applicable à des scénarios de tâches complexes dans divers domaines ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse. Par rapport à ERNIE 4.0, il offre de meilleures performances."
|
628
|
+
},
|
629
|
+
"ernie-4.0-turbo-8k-latest": {
|
630
|
+
"description": "Le modèle de langage de très grande taille phare développé par Baidu, avec d'excellentes performances globales, largement applicable à des scénarios de tâches complexes dans divers domaines ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse. Par rapport à ERNIE 4.0, il offre de meilleures performances."
|
631
|
+
},
|
632
|
+
"ernie-4.0-turbo-8k-preview": {
|
633
|
+
"description": "Le modèle de langage de très grande taille phare développé par Baidu, avec d'excellentes performances globales, largement applicable à des scénarios de tâches complexes dans divers domaines ; supporte l'intégration automatique avec le plugin de recherche Baidu, garantissant la pertinence des informations de réponse. Par rapport à ERNIE 4.0, il offre de meilleures performances."
|
634
|
+
},
|
635
|
+
"ernie-char-8k": {
|
636
|
+
"description": "Le modèle de langage pour des scénarios verticaux développé par Baidu, adapté aux dialogues de NPC de jeux, aux dialogues de service client, aux jeux de rôle, avec un style de personnage plus distinct et cohérent, une meilleure capacité de suivi des instructions et des performances d'inférence supérieures."
|
637
|
+
},
|
638
|
+
"ernie-char-fiction-8k": {
|
639
|
+
"description": "Le modèle de langage pour des scénarios verticaux développé par Baidu, adapté aux dialogues de NPC de jeux, aux dialogues de service client, aux jeux de rôle, avec un style de personnage plus distinct et cohérent, une meilleure capacité de suivi des instructions et des performances d'inférence supérieures."
|
640
|
+
},
|
641
|
+
"ernie-lite-8k": {
|
642
|
+
"description": "ERNIE Lite est un modèle de langage léger développé par Baidu, alliant d'excellentes performances du modèle et performances d'inférence, adapté à une utilisation sur des cartes d'accélération AI à faible puissance."
|
643
|
+
},
|
644
|
+
"ernie-lite-pro-128k": {
|
645
|
+
"description": "Un modèle de langage léger développé par Baidu, alliant d'excellentes performances du modèle et performances d'inférence, avec des résultats supérieurs à ceux d'ERNIE Lite, adapté à une utilisation sur des cartes d'accélération AI à faible puissance."
|
646
|
+
},
|
647
|
+
"ernie-novel-8k": {
|
648
|
+
"description": "Le modèle de langage général développé par Baidu, avec un avantage évident dans la capacité de continuation de romans, également applicable à des scénarios de courtes pièces, de films, etc."
|
649
|
+
},
|
650
|
+
"ernie-speed-128k": {
|
651
|
+
"description": "Le modèle de langage haute performance développé par Baidu, publié en 2024, avec d'excellentes capacités générales, adapté comme modèle de base pour un affinage, permettant de mieux traiter des problèmes spécifiques, tout en offrant d'excellentes performances d'inférence."
|
652
|
+
},
|
653
|
+
"ernie-speed-pro-128k": {
|
654
|
+
"description": "Le modèle de langage haute performance développé par Baidu, publié en 2024, avec d'excellentes capacités générales, offrant de meilleures performances que l'ERNIE Speed, adapté comme modèle de base pour un affinage, permettant de mieux traiter des problèmes spécifiques, tout en offrant d'excellentes performances d'inférence."
|
655
|
+
},
|
656
|
+
"ernie-tiny-8k": {
|
657
|
+
"description": "ERNIE Tiny est un modèle de langage à très haute performance développé par Baidu, avec les coûts de déploiement et d'affinage les plus bas parmi les modèles de la série Wenxin."
|
658
|
+
},
|
572
659
|
"gemini-1.0-pro-001": {
|
573
660
|
"description": "Gemini 1.0 Pro 001 (Ajustement) offre des performances stables et ajustables, ce qui en fait un choix idéal pour des solutions de tâches complexes."
|
574
661
|
},
|
@@ -872,6 +959,9 @@
|
|
872
959
|
"internlm2.5-latest": {
|
873
960
|
"description": "Notre dernière série de modèles, offrant des performances d'inférence exceptionnelles, prenant en charge une longueur de contexte de 1M et des capacités améliorées de suivi des instructions et d'appel d'outils."
|
874
961
|
},
|
962
|
+
"internlm3-latest": {
|
963
|
+
"description": "Notre dernière série de modèles, avec des performances d'inférence exceptionnelles, en tête des modèles open source de même niveau. Par défaut, elle pointe vers notre dernière version du modèle InternLM3."
|
964
|
+
},
|
875
965
|
"learnlm-1.5-pro-experimental": {
|
876
966
|
"description": "LearnLM est un modèle de langage expérimental, spécifique à des tâches, formé pour respecter les principes des sciences de l'apprentissage, capable de suivre des instructions systématiques dans des contextes d'enseignement et d'apprentissage, agissant comme un mentor expert, entre autres."
|
877
967
|
},
|
@@ -986,6 +1076,9 @@
|
|
986
1076
|
"meta-llama/Llama-3.3-70B-Instruct": {
|
987
1077
|
"description": "Llama 3.3 est le modèle de langage open source multilingue le plus avancé de la série Llama, offrant une expérience comparable aux performances du modèle 405B à un coût très bas. Basé sur une architecture Transformer, il améliore l'utilité et la sécurité grâce à un ajustement supervisé (SFT) et un apprentissage par renforcement avec retour humain (RLHF). Sa version optimisée pour les instructions est spécialement conçue pour les dialogues multilingues, surpassant de nombreux modèles de chat open source et fermés sur plusieurs benchmarks industriels. Date limite de connaissance : décembre 2023."
|
988
1078
|
},
|
1079
|
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1080
|
+
"description": "Le modèle de langage multilingue Meta Llama 3.3 (LLM) est un modèle génératif pré-entraîné et ajusté par instruction de 70B (entrée/sortie de texte). Le modèle de texte pur ajusté par instruction Llama 3.3 est optimisé pour les cas d'utilisation de dialogue multilingue et surpasse de nombreux modèles de chat open source et fermés sur des benchmarks industriels courants."
|
1081
|
+
},
|
989
1082
|
"meta-llama/Llama-Vision-Free": {
|
990
1083
|
"description": "LLaMA 3.2 est conçu pour traiter des tâches qui combinent des données visuelles et textuelles. Il excelle dans des tâches comme la description d'image et le questionnement visuel, comblant le fossé entre génération de langage et raisonnement visuel."
|
991
1084
|
},
|
@@ -1256,6 +1349,9 @@
|
|
1256
1349
|
"qwen-vl-max-latest": {
|
1257
1350
|
"description": "Modèle de langage visuel à très grande échelle Tongyi Qianwen. Par rapport à la version améliorée, il améliore encore les capacités de raisonnement visuel et de suivi des instructions, offrant un niveau de perception visuelle et de cognition plus élevé."
|
1258
1351
|
},
|
1352
|
+
"qwen-vl-ocr-latest": {
|
1353
|
+
"description": "Le modèle OCR Qwen est un modèle spécialisé dans l'extraction de texte, se concentrant sur la capacité d'extraction de texte à partir d'images de documents, tableaux, questions d'examen, écriture manuscrite, etc. Il peut reconnaître plusieurs langues, actuellement supportées : chinois, anglais, français, japonais, coréen, allemand, russe, italien, vietnamien, arabe."
|
1354
|
+
},
|
1259
1355
|
"qwen-vl-plus-latest": {
|
1260
1356
|
"description": "Version améliorée du modèle de langage visuel à grande échelle Tongyi Qianwen. Amélioration significative des capacités de reconnaissance des détails et de reconnaissance de texte, prenant en charge des résolutions d'image de plus d'un million de pixels et des rapports d'aspect de n'importe quelle taille."
|
1261
1357
|
},
|
@@ -1274,6 +1370,9 @@
|
|
1274
1370
|
"qwen2.5-14b-instruct": {
|
1275
1371
|
"description": "Le modèle de 14B de Tongyi Qwen 2.5, open source."
|
1276
1372
|
},
|
1373
|
+
"qwen2.5-14b-instruct-1m": {
|
1374
|
+
"description": "Le modèle de 72B de Qwen2.5 est ouvert au public."
|
1375
|
+
},
|
1277
1376
|
"qwen2.5-32b-instruct": {
|
1278
1377
|
"description": "Le modèle de 32B de Tongyi Qwen 2.5, open source."
|
1279
1378
|
},
|
@@ -1301,6 +1400,12 @@
|
|
1301
1400
|
"qwen2.5-math-7b-instruct": {
|
1302
1401
|
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
1303
1402
|
},
|
1403
|
+
"qwen2.5-vl-72b-instruct": {
|
1404
|
+
"description": "Amélioration globale des capacités de suivi des instructions, mathématiques, résolution de problèmes et code, amélioration des capacités de reconnaissance, support de divers formats pour un positionnement précis des éléments visuels, compréhension de fichiers vidéo longs (jusqu'à 10 minutes) et localisation d'événements en temps réel, capable de comprendre l'ordre temporel et la vitesse, supportant le contrôle d'agents OS ou Mobile basé sur des capacités d'analyse et de localisation, avec une forte capacité d'extraction d'informations clés et de sortie au format Json. Cette version est la version 72B, la plus puissante de cette série."
|
1405
|
+
},
|
1406
|
+
"qwen2.5-vl-7b-instruct": {
|
1407
|
+
"description": "Amélioration globale des capacités de suivi des instructions, mathématiques, résolution de problèmes et code, amélioration des capacités de reconnaissance, support de divers formats pour un positionnement précis des éléments visuels, compréhension de fichiers vidéo longs (jusqu'à 10 minutes) et localisation d'événements en temps réel, capable de comprendre l'ordre temporel et la vitesse, supportant le contrôle d'agents OS ou Mobile basé sur des capacités d'analyse et de localisation, avec une forte capacité d'extraction d'informations clés et de sortie au format Json. Cette version est la version 72B, la plus puissante de cette série."
|
1408
|
+
},
|
1304
1409
|
"qwen2.5:0.5b": {
|
1305
1410
|
"description": "Qwen2.5 est le nouveau modèle de langage à grande échelle de Alibaba, offrant d'excellentes performances pour répondre à des besoins d'application diversifiés."
|
1306
1411
|
},
|
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "Utente Anonimo",
|
287
287
|
"billing": "Gestione fatturazione",
|
288
288
|
"cloud": "Prova {{name}}",
|
289
|
+
"community": "Versione comunitaria",
|
289
290
|
"data": "Archiviazione dati",
|
290
291
|
"defaultNickname": "Utente Community",
|
291
292
|
"discord": "Supporto della community",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "Centro assistenza",
|
296
297
|
"moveGuide": "Il pulsante delle impostazioni è stato spostato qui",
|
297
298
|
"plans": "Piani di abbonamento",
|
298
|
-
"preview": "Anteprima",
|
299
299
|
"profile": "Gestione account",
|
300
300
|
"setting": "Impostazioni app",
|
301
301
|
"usages": "Statistiche di utilizzo"
|
@@ -294,26 +294,6 @@
|
|
294
294
|
"tooltip": "Aggiorna la configurazione di base del fornitore",
|
295
295
|
"updateSuccess": "Aggiornamento avvenuto con successo"
|
296
296
|
},
|
297
|
-
"wenxin": {
|
298
|
-
"accessKey": {
|
299
|
-
"desc": "Inserisci l'Access Key della piattaforma Qianfan di Baidu",
|
300
|
-
"placeholder": "Access Key Qianfan",
|
301
|
-
"title": "Access Key"
|
302
|
-
},
|
303
|
-
"checker": {
|
304
|
-
"desc": "Verifica se l'AccessKey / SecretAccess è stato inserito correttamente"
|
305
|
-
},
|
306
|
-
"secretKey": {
|
307
|
-
"desc": "Inserisci il Secret Key della piattaforma Qianfan di Baidu",
|
308
|
-
"placeholder": "Secret Key Qianfan",
|
309
|
-
"title": "Secret Key"
|
310
|
-
},
|
311
|
-
"unlock": {
|
312
|
-
"customRegion": "Regione di servizio personalizzata",
|
313
|
-
"description": "Inserisci il tuo AccessKey / SecretKey per iniziare la sessione. L'app non registrerà la tua configurazione di autenticazione",
|
314
|
-
"title": "Utilizza le informazioni di autenticazione personalizzate di Wenxin Yiyan"
|
315
|
-
}
|
316
|
-
},
|
317
297
|
"zeroone": {
|
318
298
|
"title": "01.AI ZeroOne"
|
319
299
|
},
|
@@ -23,6 +23,9 @@
|
|
23
23
|
"360gpt2-pro": {
|
24
24
|
"description": "360GPT2 Pro è un modello avanzato di elaborazione del linguaggio naturale lanciato da 360, con eccellenti capacità di generazione e comprensione del testo, in particolare nel campo della generazione e creazione, capace di gestire compiti complessi di conversione linguistica e interpretazione di ruoli."
|
25
25
|
},
|
26
|
+
"360zhinao2-o1": {
|
27
|
+
"description": "360zhinao2-o1 utilizza la ricerca ad albero per costruire catene di pensiero e introduce un meccanismo di riflessione, addestrato tramite apprendimento rinforzato, dotando il modello della capacità di auto-riflessione e correzione degli errori."
|
28
|
+
},
|
26
29
|
"4.0Ultra": {
|
27
30
|
"description": "Spark4.0 Ultra è la versione più potente della serie di modelli Spark, migliorando la comprensione e la sintesi del contenuto testuale mentre aggiorna il collegamento alla ricerca online. È una soluzione completa per migliorare la produttività lavorativa e rispondere con precisione alle esigenze, rappresentando un prodotto intelligente all'avanguardia nel settore."
|
28
31
|
},
|
@@ -44,6 +47,18 @@
|
|
44
47
|
"Baichuan4-Turbo": {
|
45
48
|
"description": "Il modello con le migliori capacità in patria, supera i modelli principali esteri in compiti cinesi come enciclopedie, testi lunghi e creazione di contenuti. Possiede anche capacità multimodali leader del settore, con prestazioni eccellenti in vari benchmark di valutazione."
|
46
49
|
},
|
50
|
+
"DeepSeek-R1-Distill-Qwen-1.5B": {
|
51
|
+
"description": "Il modello di distillazione DeepSeek-R1 basato su Qwen2.5-Math-1.5B ottimizza le prestazioni di inferenza attraverso l'apprendimento rinforzato e dati di avvio a freddo, aggiornando il benchmark multi-task del modello open source."
|
52
|
+
},
|
53
|
+
"DeepSeek-R1-Distill-Qwen-14B": {
|
54
|
+
"description": "Il modello di distillazione DeepSeek-R1 basato su Qwen2.5-14B ottimizza le prestazioni di inferenza attraverso l'apprendimento rinforzato e dati di avvio a freddo, aggiornando il benchmark multi-task del modello open source."
|
55
|
+
},
|
56
|
+
"DeepSeek-R1-Distill-Qwen-32B": {
|
57
|
+
"description": "La serie DeepSeek-R1 ottimizza le prestazioni di inferenza attraverso l'apprendimento rinforzato e dati di avvio a freddo, aggiornando il benchmark multi-task del modello open source, superando il livello di OpenAI-o1-mini."
|
58
|
+
},
|
59
|
+
"DeepSeek-R1-Distill-Qwen-7B": {
|
60
|
+
"description": "Il modello di distillazione DeepSeek-R1 basato su Qwen2.5-Math-7B ottimizza le prestazioni di inferenza attraverso l'apprendimento rinforzato e dati di avvio a freddo, aggiornando il benchmark multi-task del modello open source."
|
61
|
+
},
|
47
62
|
"Doubao-lite-128k": {
|
48
63
|
"description": "Doubao-lite offre un'estrema velocità di risposta, un miglior rapporto qualità-prezzo e opzioni più flessibili per diversi scenari dei clienti. Supporta inferenze e fine-tuning con una finestra di contesto di 128k."
|
49
64
|
},
|
@@ -77,9 +92,6 @@
|
|
77
92
|
"ERNIE-4.0-8K-Preview": {
|
78
93
|
"description": "Modello di linguaggio di grande scala ultra avanzato sviluppato da Baidu, che rispetto a ERNIE 3.5 ha subito un aggiornamento completo delle capacità del modello, ampiamente applicabile a scenari di compiti complessi in vari settori; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
|
79
94
|
},
|
80
|
-
"ERNIE-4.0-Turbo-128K": {
|
81
|
-
"description": "Modello di linguaggio di grande scala di punta sviluppato da Baidu, con prestazioni eccellenti in vari scenari di compiti complessi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni superiori."
|
82
|
-
},
|
83
95
|
"ERNIE-4.0-Turbo-8K-Latest": {
|
84
96
|
"description": "Il modello linguistico ultra grande di Baidu, auto-sviluppato, offre eccellenti prestazioni generali, ampiamente utilizzabile in scenari complessi di vari settori; supporta l'integrazione automatica dei plugin di ricerca di Baidu, garantendo l'attualità delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni superiori."
|
85
97
|
},
|
@@ -176,6 +188,9 @@
|
|
176
188
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
189
|
"description": "Meta Llama 3.1 è una famiglia di modelli linguistici di grandi dimensioni multilingue sviluppata da Meta, che include varianti pre-addestrate e con fine-tuning per istruzioni con dimensioni di 8B, 70B e 405B. Questo modello di fine-tuning per istruzioni da 8B è ottimizzato per scenari di dialogo multilingue e ha dimostrato prestazioni eccellenti in vari benchmark di settore. L'addestramento del modello ha utilizzato oltre 150 trilioni di token di dati pubblici e ha impiegato tecniche come il fine-tuning supervisionato e l'apprendimento per rinforzo basato su feedback umano per migliorare l'utilità e la sicurezza del modello. Llama 3.1 supporta la generazione di testi e di codice, con una data di scadenza delle conoscenze fissata a dicembre 2023."
|
178
190
|
},
|
191
|
+
"QwQ-32B-Preview": {
|
192
|
+
"description": "QwQ-32B-Preview è un modello di elaborazione del linguaggio naturale innovativo, in grado di gestire in modo efficiente compiti complessi di generazione di dialoghi e comprensione del contesto."
|
193
|
+
},
|
179
194
|
"Qwen/QVQ-72B-Preview": {
|
180
195
|
"description": "QVQ-72B-Preview è un modello di ricerca sviluppato dal team Qwen, focalizzato sulle capacità di inferenza visiva, con vantaggi unici nella comprensione di scenari complessi e nella risoluzione di problemi matematici legati alla visione."
|
181
196
|
},
|
@@ -527,6 +542,24 @@
|
|
527
542
|
"deepseek-ai/DeepSeek-R1": {
|
528
543
|
"description": "DeepSeek-R1 è un modello di inferenza guidato da apprendimento rinforzato (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva attraverso metodi di addestramento accuratamente progettati."
|
529
544
|
},
|
545
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
546
|
+
"description": "Il modello di distillazione DeepSeek-R1 ottimizza le prestazioni di inferenza attraverso l'apprendimento rinforzato e dati di avvio a freddo, aggiornando il benchmark multi-task del modello open source."
|
547
|
+
},
|
548
|
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
|
549
|
+
"description": "DeepSeek-R1-Distill-Llama-8B è un modello di distillazione sviluppato sulla base di Llama-3.1-8B. Questo modello è stato messo a punto utilizzando campioni generati da DeepSeek-R1, mostrando eccellenti capacità di inferenza. Ha ottenuto buoni risultati in vari test di benchmark, raggiungendo un'accuratezza dell'89,1% in MATH-500, una percentuale di passaggio del 50,4% in AIME 2024 e un punteggio di 1205 su CodeForces, dimostrando forti capacità matematiche e di programmazione come modello di dimensioni 8B."
|
550
|
+
},
|
551
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
552
|
+
"description": "Il modello di distillazione DeepSeek-R1 ottimizza le prestazioni di inferenza attraverso l'apprendimento rinforzato e dati di avvio a freddo, aggiornando il benchmark multi-task del modello open source."
|
553
|
+
},
|
554
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
|
555
|
+
"description": "Il modello di distillazione DeepSeek-R1 ottimizza le prestazioni di inferenza attraverso l'apprendimento rinforzato e dati di avvio a freddo, aggiornando il benchmark multi-task del modello open source."
|
556
|
+
},
|
557
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
558
|
+
"description": "DeepSeek-R1-Distill-Qwen-32B è un modello ottenuto tramite distillazione della conoscenza basato su Qwen2.5-32B. Questo modello è stato messo a punto utilizzando 800.000 campioni selezionati generati da DeepSeek-R1, mostrando prestazioni eccezionali in vari campi come matematica, programmazione e ragionamento. Ha ottenuto risultati eccellenti in vari test di benchmark, raggiungendo un'accuratezza del 94,3% in MATH-500, dimostrando una forte capacità di ragionamento matematico."
|
559
|
+
},
|
560
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
561
|
+
"description": "DeepSeek-R1-Distill-Qwen-7B è un modello ottenuto tramite distillazione della conoscenza basato su Qwen2.5-Math-7B. Questo modello è stato messo a punto utilizzando 800.000 campioni selezionati generati da DeepSeek-R1, mostrando eccellenti capacità di inferenza. Ha ottenuto risultati eccezionali in vari test di benchmark, raggiungendo un'accuratezza del 92,8% in MATH-500, una percentuale di passaggio del 55,5% in AIME 2024 e un punteggio di 1189 su CodeForces, dimostrando forti capacità matematiche e di programmazione come modello di dimensioni 7B."
|
562
|
+
},
|
530
563
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
564
|
"description": "DeepSeek V2.5 combina le eccellenti caratteristiche delle versioni precedenti, migliorando le capacità generali e di codifica."
|
532
565
|
},
|
@@ -554,6 +587,9 @@
|
|
554
587
|
"deepseek-r1": {
|
555
588
|
"description": "DeepSeek-R1 è un modello di inferenza guidato da apprendimento rinforzato (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva attraverso metodi di addestramento accuratamente progettati."
|
556
589
|
},
|
590
|
+
"deepseek-r1-distill-llama-70b": {
|
591
|
+
"description": "DeepSeek R1 - il modello più grande e intelligente del pacchetto DeepSeek - è stato distillato nell'architettura Llama 70B. Basato su test di benchmark e valutazioni umane, questo modello è più intelligente del Llama 70B originale, mostrando prestazioni eccezionali in compiti che richiedono precisione matematica e fattuale."
|
592
|
+
},
|
557
593
|
"deepseek-reasoner": {
|
558
594
|
"description": "Modello di ragionamento lanciato da DeepSeek. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
|
559
595
|
},
|
@@ -563,12 +599,63 @@
|
|
563
599
|
"deepseek-v2:236b": {
|
564
600
|
"description": "DeepSeek V2 236B è il modello di codice progettato di DeepSeek, offre potenti capacità di generazione di codice."
|
565
601
|
},
|
602
|
+
"deepseek-v3": {
|
603
|
+
"description": "DeepSeek-V3 è un modello MoE sviluppato internamente da Hangzhou DeepSeek Artificial Intelligence Technology Research Co., Ltd., con risultati eccezionali in molteplici valutazioni, posizionandosi al primo posto tra i modelli open source nelle classifiche principali. Rispetto al modello V2.5, la velocità di generazione è aumentata di 3 volte, offrendo un'esperienza utente più rapida e fluida."
|
604
|
+
},
|
566
605
|
"deepseek/deepseek-chat": {
|
567
606
|
"description": "Un nuovo modello open source che integra capacità generali e di codice, mantenendo non solo le capacità di dialogo generali del modello Chat originale e la potente capacità di elaborazione del codice del modello Coder, ma allineandosi anche meglio alle preferenze umane. Inoltre, DeepSeek-V2.5 ha ottenuto notevoli miglioramenti in vari aspetti, come compiti di scrittura e seguire istruzioni."
|
568
607
|
},
|
569
608
|
"emohaa": {
|
570
609
|
"description": "Emohaa è un modello psicologico, con capacità di consulenza professionale, aiuta gli utenti a comprendere i problemi emotivi."
|
571
610
|
},
|
611
|
+
"ernie-3.5-128k": {
|
612
|
+
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, coprendo un'enorme quantità di dati in cinese e inglese, con forti capacità generali, in grado di soddisfare la maggior parte delle esigenze di domande e risposte, generazione creativa e scenari di applicazione di plugin; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
|
613
|
+
},
|
614
|
+
"ernie-3.5-8k": {
|
615
|
+
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, coprendo un'enorme quantità di dati in cinese e inglese, con forti capacità generali, in grado di soddisfare la maggior parte delle esigenze di domande e risposte, generazione creativa e scenari di applicazione di plugin; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
|
616
|
+
},
|
617
|
+
"ernie-3.5-8k-preview": {
|
618
|
+
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, coprendo un'enorme quantità di dati in cinese e inglese, con forti capacità generali, in grado di soddisfare la maggior parte delle esigenze di domande e risposte, generazione creativa e scenari di applicazione di plugin; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
|
619
|
+
},
|
620
|
+
"ernie-4.0-8k-latest": {
|
621
|
+
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con un aggiornamento completo delle capacità rispetto a ERNIE 3.5, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
|
622
|
+
},
|
623
|
+
"ernie-4.0-8k-preview": {
|
624
|
+
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con un aggiornamento completo delle capacità rispetto a ERNIE 3.5, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
|
625
|
+
},
|
626
|
+
"ernie-4.0-turbo-128k": {
|
627
|
+
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con prestazioni complessive eccezionali, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni migliori."
|
628
|
+
},
|
629
|
+
"ernie-4.0-turbo-8k-latest": {
|
630
|
+
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con prestazioni complessive eccezionali, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni migliori."
|
631
|
+
},
|
632
|
+
"ernie-4.0-turbo-8k-preview": {
|
633
|
+
"description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con prestazioni complessive eccezionali, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni migliori."
|
634
|
+
},
|
635
|
+
"ernie-char-8k": {
|
636
|
+
"description": "Un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, adatto per scenari di applicazione come NPC nei giochi, dialoghi di assistenza clienti e interpretazione di ruoli nei dialoghi, con uno stile di personaggio più distintivo e coerente, capacità di seguire istruzioni più forti e prestazioni di inferenza migliori."
|
637
|
+
},
|
638
|
+
"ernie-char-fiction-8k": {
|
639
|
+
"description": "Un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, adatto per scenari di applicazione come NPC nei giochi, dialoghi di assistenza clienti e interpretazione di ruoli nei dialoghi, con uno stile di personaggio più distintivo e coerente, capacità di seguire istruzioni più forti e prestazioni di inferenza migliori."
|
640
|
+
},
|
641
|
+
"ernie-lite-8k": {
|
642
|
+
"description": "ERNIE Lite è un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, che bilancia prestazioni eccellenti del modello e prestazioni di inferenza, adatto per l'uso con schede di accelerazione AI a bassa potenza."
|
643
|
+
},
|
644
|
+
"ernie-lite-pro-128k": {
|
645
|
+
"description": "Un modello di linguaggio di grandi dimensioni leggero sviluppato internamente da Baidu, che bilancia prestazioni eccellenti del modello e prestazioni di inferenza, con risultati migliori rispetto a ERNIE Lite, adatto per l'uso con schede di accelerazione AI a bassa potenza."
|
646
|
+
},
|
647
|
+
"ernie-novel-8k": {
|
648
|
+
"description": "Un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, con un evidente vantaggio nella capacità di continuare romanzi, utilizzabile anche in scenari come cortometraggi e film."
|
649
|
+
},
|
650
|
+
"ernie-speed-128k": {
|
651
|
+
"description": "Il modello di linguaggio di grandi dimensioni ad alte prestazioni sviluppato internamente da Baidu, rilasciato nel 2024, con capacità generali eccellenti, adatto come modello di base per la messa a punto, per affrontare meglio i problemi specifici, mantenendo eccellenti prestazioni di inferenza."
|
652
|
+
},
|
653
|
+
"ernie-speed-pro-128k": {
|
654
|
+
"description": "Il modello di linguaggio di grandi dimensioni ad alte prestazioni sviluppato internamente da Baidu, rilasciato nel 2024, con capacità generali eccellenti, con risultati migliori rispetto a ERNIE Speed, adatto come modello di base per la messa a punto, per affrontare meglio i problemi specifici, mantenendo eccellenti prestazioni di inferenza."
|
655
|
+
},
|
656
|
+
"ernie-tiny-8k": {
|
657
|
+
"description": "ERNIE Tiny è un modello di linguaggio di grandi dimensioni ad alte prestazioni sviluppato internamente da Baidu, con i costi di distribuzione e messa a punto più bassi della serie Wencin."
|
658
|
+
},
|
572
659
|
"gemini-1.0-pro-001": {
|
573
660
|
"description": "Gemini 1.0 Pro 001 (Tuning) offre prestazioni stabili e ottimizzabili, è la scelta ideale per soluzioni a compiti complessi."
|
574
661
|
},
|
@@ -872,6 +959,9 @@
|
|
872
959
|
"internlm2.5-latest": {
|
873
960
|
"description": "La nostra ultima serie di modelli, con prestazioni di ragionamento eccezionali, supporta una lunghezza di contesto di 1M e offre una migliore capacità di seguire istruzioni e chiamare strumenti."
|
874
961
|
},
|
962
|
+
"internlm3-latest": {
|
963
|
+
"description": "La nostra ultima serie di modelli, con prestazioni di inferenza eccezionali, è leader tra i modelli open source della stessa classe. Punta di default ai modelli della serie InternLM3 appena rilasciati."
|
964
|
+
},
|
875
965
|
"learnlm-1.5-pro-experimental": {
|
876
966
|
"description": "LearnLM è un modello linguistico sperimentale, specifico per compiti, addestrato per rispettare i principi della scienza dell'apprendimento, in grado di seguire istruzioni sistematiche in contesti di insegnamento e apprendimento, fungendo da tutor esperto."
|
877
967
|
},
|
@@ -986,6 +1076,9 @@
|
|
986
1076
|
"meta-llama/Llama-3.3-70B-Instruct": {
|
987
1077
|
"description": "Llama 3.3 è il modello di linguaggio open source multilingue più avanzato della serie Llama, che offre prestazioni paragonabili a un modello da 405B a costi molto bassi. Basato su architettura Transformer, migliorato tramite fine-tuning supervisionato (SFT) e apprendimento rinforzato con feedback umano (RLHF) per aumentarne l'utilità e la sicurezza. La sua versione ottimizzata per le istruzioni è progettata per dialoghi multilingue, superando molti modelli di chat open source e chiusi in vari benchmark di settore. Data di scadenza delle conoscenze: dicembre 2023."
|
988
1078
|
},
|
1079
|
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo": {
|
1080
|
+
"description": "Il modello di linguaggio di grandi dimensioni multilingue Meta Llama 3.3 (LLM) è un modello generativo pre-addestrato e regolato per istruzioni da 70B (input/output di testo). Il modello di testo puro di Llama 3.3 regolato per istruzioni è ottimizzato per casi d'uso di dialogo multilingue e supera molti modelli di chat open source e chiusi disponibili su benchmark di settore comuni."
|
1081
|
+
},
|
989
1082
|
"meta-llama/Llama-Vision-Free": {
|
990
1083
|
"description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione di immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
991
1084
|
},
|
@@ -1256,6 +1349,9 @@
|
|
1256
1349
|
"qwen-vl-max-latest": {
|
1257
1350
|
"description": "Modello di linguaggio visivo Qwen di grande scala. Rispetto alla versione potenziata, migliora ulteriormente la capacità di ragionamento visivo e di aderenza alle istruzioni, offrendo un livello superiore di percezione visiva e cognizione."
|
1258
1351
|
},
|
1352
|
+
"qwen-vl-ocr-latest": {
|
1353
|
+
"description": "Qwen OCR è un modello specializzato nell'estrazione di testo, focalizzato sulla capacità di estrazione di testo da immagini di documenti, tabelle, domande d'esame, scrittura a mano, ecc. È in grado di riconoscere vari testi, supportando attualmente le seguenti lingue: cinese, inglese, francese, giapponese, coreano, tedesco, russo, italiano, vietnamita, arabo."
|
1354
|
+
},
|
1259
1355
|
"qwen-vl-plus-latest": {
|
1260
1356
|
"description": "Versione potenziata del modello di linguaggio visivo Qwen. Migliora notevolmente la capacità di riconoscimento dei dettagli e di riconoscimento del testo, supportando risoluzioni superiori a un milione di pixel e immagini di qualsiasi rapporto di aspetto."
|
1261
1357
|
},
|
@@ -1274,6 +1370,9 @@
|
|
1274
1370
|
"qwen2.5-14b-instruct": {
|
1275
1371
|
"description": "Modello da 14B di Tongyi Qwen 2.5, open source."
|
1276
1372
|
},
|
1373
|
+
"qwen2.5-14b-instruct-1m": {
|
1374
|
+
"description": "Il modello da 72B di Qwen2.5 è open source."
|
1375
|
+
},
|
1277
1376
|
"qwen2.5-32b-instruct": {
|
1278
1377
|
"description": "Modello da 32B di Tongyi Qwen 2.5, open source."
|
1279
1378
|
},
|
@@ -1301,6 +1400,12 @@
|
|
1301
1400
|
"qwen2.5-math-7b-instruct": {
|
1302
1401
|
"description": "Il modello Qwen-Math ha potenti capacità di risoluzione di problemi matematici."
|
1303
1402
|
},
|
1403
|
+
"qwen2.5-vl-72b-instruct": {
|
1404
|
+
"description": "Miglioramento complessivo nella seguire istruzioni, matematica, risoluzione di problemi e codice, con capacità di riconoscimento universale migliorate, supporto per formati diversi per il posizionamento preciso degli elementi visivi, comprensione di file video lunghi (fino a 10 minuti) e localizzazione di eventi in tempo reale, capacità di comprendere sequenze temporali e velocità, supporto per il controllo di agenti OS o Mobile basato su capacità di analisi e localizzazione, forte capacità di estrazione di informazioni chiave e output in formato Json, questa versione è la 72B, la versione più potente della serie."
|
1405
|
+
},
|
1406
|
+
"qwen2.5-vl-7b-instruct": {
|
1407
|
+
"description": "Miglioramento complessivo nella seguire istruzioni, matematica, risoluzione di problemi e codice, con capacità di riconoscimento universale migliorate, supporto per formati diversi per il posizionamento preciso degli elementi visivi, comprensione di file video lunghi (fino a 10 minuti) e localizzazione di eventi in tempo reale, capacità di comprendere sequenze temporali e velocità, supporto per il controllo di agenti OS o Mobile basato su capacità di analisi e localizzazione, forte capacità di estrazione di informazioni chiave e output in formato Json, questa versione è la 72B, la versione più potente della serie."
|
1408
|
+
},
|
1304
1409
|
"qwen2.5:0.5b": {
|
1305
1410
|
"description": "Qwen2.5 è la nuova generazione di modelli linguistici su larga scala di Alibaba, che supporta esigenze applicative diversificate con prestazioni eccellenti."
|
1306
1411
|
},
|
@@ -286,6 +286,7 @@
|
|
286
286
|
"anonymousNickName": "匿名ユーザー",
|
287
287
|
"billing": "請求管理",
|
288
288
|
"cloud": "{{name}} を体験",
|
289
|
+
"community": "コミュニティ版",
|
289
290
|
"data": "データストレージ",
|
290
291
|
"defaultNickname": "コミュニティユーザー",
|
291
292
|
"discord": "コミュニティサポート",
|
@@ -295,7 +296,6 @@
|
|
295
296
|
"help": "ヘルプセンター",
|
296
297
|
"moveGuide": "設定ボタンがこちらに移動しました",
|
297
298
|
"plans": "サブスクリプションプラン",
|
298
|
-
"preview": "プレビュー",
|
299
299
|
"profile": "アカウント管理",
|
300
300
|
"setting": "アプリ設定",
|
301
301
|
"usages": "利用量統計"
|
@@ -294,26 +294,6 @@
|
|
294
294
|
"tooltip": "サービスプロバイダーの基本設定を更新",
|
295
295
|
"updateSuccess": "更新に成功しました"
|
296
296
|
},
|
297
|
-
"wenxin": {
|
298
|
-
"accessKey": {
|
299
|
-
"desc": "百度千帆プラットフォームのAccess Keyを入力してください",
|
300
|
-
"placeholder": "Qianfan Access Key",
|
301
|
-
"title": "Access Key"
|
302
|
-
},
|
303
|
-
"checker": {
|
304
|
-
"desc": "AccessKey / SecretAccessが正しく入力されているかテストします"
|
305
|
-
},
|
306
|
-
"secretKey": {
|
307
|
-
"desc": "百度千帆プラットフォームのSecret Keyを入力してください",
|
308
|
-
"placeholder": "Qianfan Secret Key",
|
309
|
-
"title": "Secret Key"
|
310
|
-
},
|
311
|
-
"unlock": {
|
312
|
-
"customRegion": "カスタムサービス地域",
|
313
|
-
"description": "AccessKey / SecretKeyを入力することでセッションを開始できます。アプリはあなたの認証設定を記録しません",
|
314
|
-
"title": "カスタム文心一言認証情報を使用"
|
315
|
-
}
|
316
|
-
},
|
317
297
|
"zeroone": {
|
318
298
|
"title": "01.AI 零一万物"
|
319
299
|
},
|