@lobehub/chat 1.51.8 → 1.51.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. package/CHANGELOG.md +25 -0
  2. package/changelog/v1.json +9 -0
  3. package/locales/ar/common.json +1 -1
  4. package/locales/ar/modelProvider.json +0 -20
  5. package/locales/ar/models.json +108 -3
  6. package/locales/bg-BG/common.json +1 -1
  7. package/locales/bg-BG/modelProvider.json +0 -20
  8. package/locales/bg-BG/models.json +108 -3
  9. package/locales/de-DE/common.json +1 -1
  10. package/locales/de-DE/modelProvider.json +0 -20
  11. package/locales/de-DE/models.json +108 -3
  12. package/locales/en-US/common.json +1 -1
  13. package/locales/en-US/modelProvider.json +0 -20
  14. package/locales/en-US/models.json +108 -3
  15. package/locales/es-ES/common.json +1 -1
  16. package/locales/es-ES/modelProvider.json +0 -20
  17. package/locales/es-ES/models.json +108 -3
  18. package/locales/fa-IR/common.json +1 -1
  19. package/locales/fa-IR/modelProvider.json +0 -20
  20. package/locales/fa-IR/models.json +108 -3
  21. package/locales/fr-FR/common.json +1 -1
  22. package/locales/fr-FR/modelProvider.json +0 -20
  23. package/locales/fr-FR/models.json +108 -3
  24. package/locales/it-IT/common.json +1 -1
  25. package/locales/it-IT/modelProvider.json +0 -20
  26. package/locales/it-IT/models.json +108 -3
  27. package/locales/ja-JP/common.json +1 -1
  28. package/locales/ja-JP/modelProvider.json +0 -20
  29. package/locales/ja-JP/models.json +108 -3
  30. package/locales/ko-KR/common.json +1 -1
  31. package/locales/ko-KR/modelProvider.json +0 -20
  32. package/locales/ko-KR/models.json +108 -3
  33. package/locales/nl-NL/common.json +1 -1
  34. package/locales/nl-NL/modelProvider.json +0 -20
  35. package/locales/nl-NL/models.json +108 -3
  36. package/locales/pl-PL/common.json +1 -1
  37. package/locales/pl-PL/modelProvider.json +0 -20
  38. package/locales/pl-PL/models.json +108 -3
  39. package/locales/pt-BR/common.json +1 -1
  40. package/locales/pt-BR/modelProvider.json +0 -20
  41. package/locales/pt-BR/models.json +108 -3
  42. package/locales/ru-RU/common.json +1 -1
  43. package/locales/ru-RU/modelProvider.json +0 -20
  44. package/locales/ru-RU/models.json +108 -3
  45. package/locales/tr-TR/common.json +1 -1
  46. package/locales/tr-TR/modelProvider.json +0 -20
  47. package/locales/tr-TR/models.json +108 -3
  48. package/locales/vi-VN/common.json +1 -1
  49. package/locales/vi-VN/modelProvider.json +0 -20
  50. package/locales/vi-VN/models.json +108 -3
  51. package/locales/zh-CN/common.json +1 -1
  52. package/locales/zh-CN/modelProvider.json +0 -20
  53. package/locales/zh-CN/models.json +113 -8
  54. package/locales/zh-TW/common.json +1 -1
  55. package/locales/zh-TW/modelProvider.json +0 -20
  56. package/locales/zh-TW/models.json +108 -3
  57. package/package.json +1 -1
  58. package/src/app/[variants]/(main)/chat/_layout/Desktop/SessionPanel.tsx +2 -1
  59. package/src/app/[variants]/(main)/chat/_layout/Mobile.tsx +2 -1
  60. package/src/app/[variants]/(main)/chat/layout.ts +0 -2
  61. package/src/app/[variants]/(main)/settings/provider/(detail)/[id]/page.tsx +2 -0
  62. package/src/features/User/PlanTag.tsx +2 -2
  63. package/src/locales/default/common.ts +1 -1
@@ -23,6 +23,9 @@
23
23
  "360gpt2-pro": {
24
24
  "description": "360GPT2 Proは360社が発表した高級自然言語処理モデルで、卓越したテキスト生成と理解能力を備え、特に生成と創作の分野で優れたパフォーマンスを発揮し、複雑な言語変換や役割演技タスクを処理できます。"
25
25
  },
26
+ "360zhinao2-o1": {
27
+ "description": "360zhinao2-o1は、木探索を使用して思考の連鎖を構築し、反省メカニズムを導入し、強化学習で訓練され、自己反省と誤り訂正の能力を備えています。"
28
+ },
26
29
  "4.0Ultra": {
27
30
  "description": "Spark4.0 Ultraは星火大モデルシリーズの中で最も強力なバージョンで、ネットワーク検索のリンクをアップグレードし、テキストコンテンツの理解と要約能力を向上させています。これは、オフィスの生産性を向上させ、要求に正確に応えるための全方位のソリューションであり、業界をリードするインテリジェントな製品です。"
28
31
  },
@@ -44,6 +47,18 @@
44
47
  "Baichuan4-Turbo": {
45
48
  "description": "モデル能力は国内で第一であり、知識百科、長文、生成創作などの中国語タスクで海外の主流モデルを超えています。また、業界をリードするマルチモーダル能力を持ち、多くの権威ある評価基準で優れたパフォーマンスを示しています。"
46
49
  },
50
+ "DeepSeek-R1-Distill-Qwen-1.5B": {
51
+ "description": "Qwen2.5-Math-1.5Bに基づくDeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
52
+ },
53
+ "DeepSeek-R1-Distill-Qwen-14B": {
54
+ "description": "Qwen2.5-14Bに基づくDeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
55
+ },
56
+ "DeepSeek-R1-Distill-Qwen-32B": {
57
+ "description": "DeepSeek-R1シリーズは、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新し、OpenAI-o1-miniのレベルを超えました。"
58
+ },
59
+ "DeepSeek-R1-Distill-Qwen-7B": {
60
+ "description": "Qwen2.5-Math-7Bに基づくDeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
61
+ },
47
62
  "Doubao-lite-128k": {
48
63
  "description": "Doubao-liteは、極めて高速な応答速度と優れたコストパフォーマンスを備え、顧客のさまざまなシーンに柔軟な選択肢を提供します。128kコンテキストウィンドウの推論と微調整をサポートしています。"
49
64
  },
@@ -77,9 +92,6 @@
77
92
  "ERNIE-4.0-8K-Preview": {
78
93
  "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、ERNIE 3.5に比べてモデル能力が全面的にアップグレードされ、さまざまな分野の複雑なタスクシナリオに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
79
94
  },
80
- "ERNIE-4.0-Turbo-128K": {
81
- "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的な効果が優れており、さまざまな分野の複雑なタスクシーンに広く適用可能です。百度検索プラグインとの自動接続をサポートし、問答情報のタイムリーさを保証します。ERNIE 4.0に比べて性能がさらに優れています。"
82
- },
83
95
  "ERNIE-4.0-Turbo-8K-Latest": {
84
96
  "description": "百度が自主開発したフラッグシップの超大規模な言語モデルで、総合的なパフォーマンスが優れており、各分野の複雑なタスクシナリオに広く適応します;百度検索プラグインとの自動連携をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスが向上しています。"
85
97
  },
@@ -176,6 +188,9 @@
176
188
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
189
  "description": "Meta Llama 3.1はMetaが開発した多言語大規模言語モデルファミリーで、8B、70B、405Bの3つのパラメータ規模の事前訓練および指示微調整バリアントを含みます。この8B指示微調整モデルは多言語対話シーンに最適化されており、複数の業界ベンチマークテストで優れたパフォーマンスを示しています。モデルの訓練には150兆トークン以上の公開データが使用され、監視微調整や人間のフィードバック強化学習などの技術が採用され、モデルの有用性と安全性が向上しています。Llama 3.1はテキスト生成とコード生成をサポートし、知識のカットオフ日は2023年12月です。"
178
190
  },
191
+ "QwQ-32B-Preview": {
192
+ "description": "QwQ-32B-Previewは、複雑な対話生成と文脈理解タスクを効率的に処理できる革新的な自然言語処理モデルです。"
193
+ },
179
194
  "Qwen/QVQ-72B-Preview": {
180
195
  "description": "QVQ-72B-Previewは、Qwenチームによって開発された視覚推論能力に特化した研究モデルであり、複雑なシーン理解と視覚関連の数学問題を解決する上で独自の利点を持っています。"
181
196
  },
@@ -527,6 +542,24 @@
527
542
  "deepseek-ai/DeepSeek-R1": {
528
543
  "description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルであり、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させました。"
529
544
  },
545
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
546
+ "description": "DeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
547
+ },
548
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
549
+ "description": "DeepSeek-R1-Distill-Llama-8Bは、Llama-3.1-8Bに基づいて開発された蒸留モデルです。このモデルは、DeepSeek-R1が生成したサンプルを使用して微調整され、優れた推論能力を示しています。複数のベンチマークテストで良好なパフォーマンスを示し、特にMATH-500では89.1%の正確性を達成し、AIME 2024では50.4%の合格率を達成し、CodeForcesでは1205のスコアを獲得し、8B規模のモデルとして強力な数学とプログラミング能力を示しています。"
550
+ },
551
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
552
+ "description": "DeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
553
+ },
554
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
555
+ "description": "DeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
556
+ },
557
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
558
+ "description": "DeepSeek-R1-Distill-Qwen-32Bは、Qwen2.5-32Bに基づいて知識蒸留によって得られたモデルです。このモデルは、DeepSeek-R1が生成した80万の選りすぐりのサンプルを使用して微調整され、数学、プログラミング、推論などの複数の分野で卓越した性能を示しています。AIME 2024、MATH-500、GPQA Diamondなどの複数のベンチマークテストで優れた成績を収めており、特にMATH-500では94.3%の正確性を達成し、強力な数学的推論能力を示しています。"
559
+ },
560
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
561
+ "description": "DeepSeek-R1-Distill-Qwen-7Bは、Qwen2.5-Math-7Bに基づいて知識蒸留によって得られたモデルです。このモデルは、DeepSeek-R1が生成した80万の選りすぐりのサンプルを使用して微調整され、優れた推論能力を示しています。複数のベンチマークテストで優れた成績を収めており、特にMATH-500では92.8%の正確性を達成し、AIME 2024では55.5%の合格率を達成し、CodeForcesでは1189のスコアを獲得し、7B規模のモデルとして強力な数学とプログラミング能力を示しています。"
562
+ },
530
563
  "deepseek-ai/DeepSeek-V2.5": {
531
564
  "description": "DeepSeek V2.5は以前のバージョンの優れた特徴を集約し、汎用性とコーディング能力を強化しました。"
532
565
  },
@@ -554,6 +587,9 @@
554
587
  "deepseek-r1": {
555
588
  "description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルであり、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させました。"
556
589
  },
590
+ "deepseek-r1-distill-llama-70b": {
591
+ "description": "DeepSeek R1——DeepSeekスイートの中でより大きく、より賢いモデル——がLlama 70Bアーキテクチャに蒸留されました。ベンチマークテストと人間評価に基づき、このモデルは元のLlama 70Bよりも賢く、特に数学と事実の正確性が求められるタスクで優れたパフォーマンスを示します。"
592
+ },
557
593
  "deepseek-reasoner": {
558
594
  "description": "DeepSeekが提供する推論モデルです。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を高めます。"
559
595
  },
@@ -563,12 +599,63 @@
563
599
  "deepseek-v2:236b": {
564
600
  "description": "DeepSeek V2 236Bは、DeepSeekの設計コードモデルであり、強力なコード生成能力を提供します。"
565
601
  },
602
+ "deepseek-v3": {
603
+ "description": "DeepSeek-V3は、杭州深度求索人工知能基礎技術研究有限公司が独自に開発したMoEモデルで、複数の評価で優れた成績を収め、主流のランキングでオープンソースモデルの首位に立っています。V3はV2.5モデルに比べて生成速度が3倍向上し、ユーザーにより迅速でスムーズな使用体験を提供します。"
604
+ },
566
605
  "deepseek/deepseek-chat": {
567
606
  "description": "汎用性とコード能力を融合させた新しいオープンソースモデルで、元のChatモデルの汎用対話能力とCoderモデルの強力なコード処理能力を保持しつつ、人間の好みにより良く整合しています。さらに、DeepSeek-V2.5は執筆タスク、指示の遵守などの多くの面で大幅な向上を実現しました。"
568
607
  },
569
608
  "emohaa": {
570
609
  "description": "Emohaaは心理モデルで、専門的な相談能力を持ち、ユーザーが感情問題を理解するのを助けます。"
571
610
  },
611
+ "ernie-3.5-128k": {
612
+ "description": "百度が独自に開発したフラッグシップの大規模言語モデルで、膨大な中英文コーパスをカバーし、強力な汎用能力を持ち、ほとんどの対話質問応答、創作生成、プラグインアプリケーションシーンの要求を満たすことができます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
613
+ },
614
+ "ernie-3.5-8k": {
615
+ "description": "百度が独自に開発したフラッグシップの大規模言語モデルで、膨大な中英文コーパスをカバーし、強力な汎用能力を持ち、ほとんどの対話質問応答、創作生成、プラグインアプリケーションシーンの要求を満たすことができます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
616
+ },
617
+ "ernie-3.5-8k-preview": {
618
+ "description": "百度が独自に開発したフラッグシップの大規模言語モデルで、膨大な中英文コーパスをカバーし、強力な汎用能力を持ち、ほとんどの対話質問応答、創作生成、プラグインアプリケーションシーンの要求を満たすことができます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
619
+ },
620
+ "ernie-4.0-8k-latest": {
621
+ "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、ERNIE 3.5に比べてモデル能力が全面的にアップグレードされ、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
622
+ },
623
+ "ernie-4.0-8k-preview": {
624
+ "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、ERNIE 3.5に比べてモデル能力が全面的にアップグレードされ、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。"
625
+ },
626
+ "ernie-4.0-turbo-128k": {
627
+ "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的なパフォーマンスが優れており、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスがさらに優れています。"
628
+ },
629
+ "ernie-4.0-turbo-8k-latest": {
630
+ "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的なパフォーマンスが優れており、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスがさらに優れています。"
631
+ },
632
+ "ernie-4.0-turbo-8k-preview": {
633
+ "description": "百度が独自に開発したフラッグシップの超大規模言語モデルで、総合的なパフォーマンスが優れており、さまざまな分野の複雑なタスクシーンに広く適用されます。百度検索プラグインとの自動接続をサポートし、質問応答情報のタイムリーさを保証します。ERNIE 4.0に比べてパフォーマンスがさらに優れています。"
634
+ },
635
+ "ernie-char-8k": {
636
+ "description": "百度が独自に開発した垂直シーン向けの大規模言語モデルで、ゲームのNPC、カスタマーサービスの対話、対話キャラクターの役割演技などのアプリケーションシーンに適しており、キャラクターのスタイルがより鮮明で一貫しており、指示に従う能力が強く、推論性能が優れています。"
637
+ },
638
+ "ernie-char-fiction-8k": {
639
+ "description": "百度が独自に開発した垂直シーン向けの大規模言語モデルで、ゲームのNPC、カスタマーサービスの対話、対話キャラクターの役割演技などのアプリケーションシーンに適しており、キャラクターのスタイルがより鮮明で一貫しており、指示に従う能力が強く、推論性能が優れています。"
640
+ },
641
+ "ernie-lite-8k": {
642
+ "description": "ERNIE Liteは、百度が独自に開発した軽量級の大規模言語モデルで、優れたモデル効果と推論性能を兼ね備え、低計算能力のAIアクセラレータカードでの推論使用に適しています。"
643
+ },
644
+ "ernie-lite-pro-128k": {
645
+ "description": "百度が独自に開発した軽量級の大規模言語モデルで、優れたモデル効果と推論性能を兼ね備え、ERNIE Liteよりも優れた効果を持ち、低計算能力のAIアクセラレータカードでの推論使用に適しています。"
646
+ },
647
+ "ernie-novel-8k": {
648
+ "description": "百度が独自に開発した汎用大規模言語モデルで、小説の続編作成能力に明らかな優位性があり、短編劇や映画などのシーンにも使用できます。"
649
+ },
650
+ "ernie-speed-128k": {
651
+ "description": "百度が2024年に最新リリースした自社開発の高性能大規模言語モデルで、汎用能力が優れており、基盤モデルとして微調整に適しており、特定のシーンの問題をより良く処理し、優れた推論性能を持っています。"
652
+ },
653
+ "ernie-speed-pro-128k": {
654
+ "description": "百度が2024年に最新リリースした自社開発の高性能大規模言語モデルで、汎用能力が優れており、ERNIE Speedよりも優れた効果を持ち、基盤モデルとして微調整に適しており、特定のシーンの問題をより良く処理し、優れた推論性能を持っています。"
655
+ },
656
+ "ernie-tiny-8k": {
657
+ "description": "ERNIE Tinyは、百度が独自に開発した超高性能の大規模言語モデルで、文心シリーズモデルの中でデプロイと微調整コストが最も低いです。"
658
+ },
572
659
  "gemini-1.0-pro-001": {
573
660
  "description": "Gemini 1.0 Pro 001(チューニング)は、安定した調整可能な性能を提供し、複雑なタスクのソリューションに理想的な選択肢です。"
574
661
  },
@@ -872,6 +959,9 @@
872
959
  "internlm2.5-latest": {
873
960
  "description": "私たちの最新のモデルシリーズで、卓越した推論性能を持ち、1Mのコンテキスト長をサポートし、より強力な指示追従とツール呼び出し能力を備えています。"
874
961
  },
962
+ "internlm3-latest": {
963
+ "description": "私たちの最新のモデルシリーズは、卓越した推論性能を持ち、同等のオープンソースモデルの中でリーダーシップを発揮しています。デフォルトで最新のInternLM3シリーズモデルを指します。"
964
+ },
875
965
  "learnlm-1.5-pro-experimental": {
876
966
  "description": "LearnLMは、学習科学の原則に従って訓練された実験的なタスク特化型言語モデルで、教育や学習のシーンでシステムの指示に従い、専門的なメンターとして機能します。"
877
967
  },
@@ -986,6 +1076,9 @@
986
1076
  "meta-llama/Llama-3.3-70B-Instruct": {
987
1077
  "description": "Llama 3.3はLlamaシリーズの最先端の多言語オープンソース大規模言語モデルで、非常に低コストで405Bモデルに匹敵する性能を体験できます。Transformer構造に基づき、監視付き微調整(SFT)と人間のフィードバック強化学習(RLHF)を通じて有用性と安全性を向上させています。その指示調整バージョンは多言語対話に最適化されており、複数の業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回る性能を発揮します。知識のカットオフ日は2023年12月です"
988
1078
  },
1079
+ "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1080
+ "description": "Meta Llama 3.3の多言語大規模言語モデル(LLM)は、70B(テキスト入力/テキスト出力)の事前訓練と指示調整生成モデルです。Llama 3.3の指示調整された純粋なテキストモデルは、多言語対話のユースケースに最適化されており、一般的な業界ベンチマークで多くの利用可能なオープンソースおよびクローズドチャットモデルを上回っています。"
1081
+ },
989
1082
  "meta-llama/Llama-Vision-Free": {
990
1083
  "description": "LLaMA 3.2は視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れた性能を発揮し、言語生成と視覚推論の間のギャップを埋めます。"
991
1084
  },
@@ -1256,6 +1349,9 @@
1256
1349
  "qwen-vl-max-latest": {
1257
1350
  "description": "通義千問の超大規模視覚言語モデル。強化版に比べて、視覚推論能力と指示遵守能力をさらに向上させ、より高い視覚認識と認知レベルを提供します。"
1258
1351
  },
1352
+ "qwen-vl-ocr-latest": {
1353
+ "description": "通義千問OCRは、文書、表、試験問題、手書き文字などの画像から文字を抽出する専用モデルです。多様な文字を認識でき、現在サポートされている言語は中国語、英語、フランス語、日本語、韓国語、ドイツ語、ロシア語、イタリア語、ベトナム語、アラビア語です。"
1354
+ },
1259
1355
  "qwen-vl-plus-latest": {
1260
1356
  "description": "通義千問の大規模視覚言語モデルの強化版。詳細認識能力と文字認識能力を大幅に向上させ、100万ピクセル以上の解像度と任意のアスペクト比の画像をサポートします。"
1261
1357
  },
@@ -1274,6 +1370,9 @@
1274
1370
  "qwen2.5-14b-instruct": {
1275
1371
  "description": "通義千問2.5の対外オープンソースの14B規模のモデルです。"
1276
1372
  },
1373
+ "qwen2.5-14b-instruct-1m": {
1374
+ "description": "通義千問2.5が公開した72B規模のモデルです。"
1375
+ },
1277
1376
  "qwen2.5-32b-instruct": {
1278
1377
  "description": "通義千問2.5の対外オープンソースの32B規模のモデルです。"
1279
1378
  },
@@ -1301,6 +1400,12 @@
1301
1400
  "qwen2.5-math-7b-instruct": {
1302
1401
  "description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
1303
1402
  },
1403
+ "qwen2.5-vl-72b-instruct": {
1404
+ "description": "指示に従い、数学、問題解決、コード全体の向上、万物認識能力の向上を実現し、多様な形式で視覚要素を直接的に正確に特定し、長い動画ファイル(最大10分)を理解し、秒単位のイベント時刻を特定でき、時間の前後や速さを理解し、解析と特定能力に基づいてOSやモバイルのエージェントを操作し、重要な情報抽出能力とJson形式出力能力が強化されています。このバージョンは72Bバージョンで、本シリーズの中で最も強力なバージョンです。"
1405
+ },
1406
+ "qwen2.5-vl-7b-instruct": {
1407
+ "description": "指示に従い、数学、問題解決、コード全体の向上、万物認識能力の向上を実現し、多様な形式で視覚要素を直接的に正確に特定し、長い動画ファイル(最大10分)を理解し、秒単位のイベント時刻を特定でき、時間の前後や速さを理解し、解析と特定能力に基づいてOSやモバイルのエージェントを操作し、重要な情報抽出能力とJson形式出力能力が強化されています。このバージョンは72Bバージョンで、本シリーズの中で最も強力なバージョンです。"
1408
+ },
1304
1409
  "qwen2.5:0.5b": {
1305
1410
  "description": "Qwen2.5はAlibabaの次世代大規模言語モデルで、優れた性能を持ち、多様なアプリケーションのニーズをサポートします。"
1306
1411
  },
@@ -286,6 +286,7 @@
286
286
  "anonymousNickName": "익명 사용자",
287
287
  "billing": "결제 관리",
288
288
  "cloud": "체험 {{name}}",
289
+ "community": "커뮤니티 버전",
289
290
  "data": "데이터 저장",
290
291
  "defaultNickname": "커뮤니티 사용자",
291
292
  "discord": "커뮤니티 지원",
@@ -295,7 +296,6 @@
295
296
  "help": "도움말 센터",
296
297
  "moveGuide": "설정 버튼을 여기로 이동했습니다",
297
298
  "plans": "요금제",
298
- "preview": "미리보기",
299
299
  "profile": "계정 관리",
300
300
  "setting": "앱 설정",
301
301
  "usages": "사용량 통계"
@@ -294,26 +294,6 @@
294
294
  "tooltip": "서비스 제공자 기본 설정 업데이트",
295
295
  "updateSuccess": "업데이트 성공"
296
296
  },
297
- "wenxin": {
298
- "accessKey": {
299
- "desc": "바이두 천범 플랫폼의 Access Key를 입력하세요",
300
- "placeholder": "Qianfan Access Key",
301
- "title": "Access Key"
302
- },
303
- "checker": {
304
- "desc": "AccessKey / SecretAccess가 올바르게 입력되었는지 테스트합니다"
305
- },
306
- "secretKey": {
307
- "desc": "바이두 천범 플랫폼의 Secret Key를 입력하세요",
308
- "placeholder": "Qianfan Secret Key",
309
- "title": "Secret Key"
310
- },
311
- "unlock": {
312
- "customRegion": "사용자 정의 서비스 지역",
313
- "description": "당신의 AccessKey / SecretKey를 입력하면 대화를 시작할 수 있습니다. 애플리케이션은 당신의 인증 구성을 기록하지 않습니다",
314
- "title": "사용자 정의 문신 일언 인증 정보 사용"
315
- }
316
- },
317
297
  "zeroone": {
318
298
  "title": "01.AI Zero One All Things"
319
299
  },
@@ -23,6 +23,9 @@
23
23
  "360gpt2-pro": {
24
24
  "description": "360GPT2 Pro는 360 회사에서 출시한 고급 자연어 처리 모델로, 뛰어난 텍스트 생성 및 이해 능력을 갖추고 있으며, 특히 생성 및 창작 분야에서 뛰어난 성능을 발휘하여 복잡한 언어 변환 및 역할 연기 작업을 처리할 수 있습니다."
25
25
  },
26
+ "360zhinao2-o1": {
27
+ "description": "360zhinao2-o1은 트리 탐색을 사용하여 사고 체인을 구축하고 반성 메커니즘을 도입하여 강화 학습으로 훈련되며, 모델은 자기 반성과 오류 수정 능력을 갖추고 있습니다."
28
+ },
26
29
  "4.0Ultra": {
27
30
  "description": "Spark4.0 Ultra는 스타크 대형 모델 시리즈 중 가장 강력한 버전으로, 업그레이드된 네트워크 검색 링크와 함께 텍스트 내용의 이해 및 요약 능력을 향상시킵니다. 사무 생산성을 높이고 정확한 요구에 응답하기 위한 종합 솔루션으로, 업계를 선도하는 스마트 제품입니다."
28
31
  },
@@ -44,6 +47,18 @@
44
47
  "Baichuan4-Turbo": {
45
48
  "description": "모델 능력이 국내 1위이며, 지식 백과, 긴 텍스트, 생성 창작 등 중국어 작업에서 해외 주류 모델을 초월합니다. 또한 업계 선도적인 다중 모달 능력을 갖추고 있으며, 여러 권위 있는 평가 기준에서 우수한 성과를 보입니다."
46
49
  },
50
+ "DeepSeek-R1-Distill-Qwen-1.5B": {
51
+ "description": "Qwen2.5-Math-1.5B를 기반으로 한 DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
52
+ },
53
+ "DeepSeek-R1-Distill-Qwen-14B": {
54
+ "description": "Qwen2.5-14B를 기반으로 한 DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
55
+ },
56
+ "DeepSeek-R1-Distill-Qwen-32B": {
57
+ "description": "DeepSeek-R1 시리즈는 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신하고 OpenAI-o1-mini 수준을 초월합니다."
58
+ },
59
+ "DeepSeek-R1-Distill-Qwen-7B": {
60
+ "description": "Qwen2.5-Math-7B를 기반으로 한 DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
61
+ },
47
62
  "Doubao-lite-128k": {
48
63
  "description": "Doubao-lite는 극한의 응답 속도와 더 나은 가격 대비 성능을 자랑하며, 고객의 다양한 상황에 유연한 선택을 제공합니다. 128k 컨텍스트 윈도우의 추론 및 세부 조정을 지원합니다."
49
64
  },
@@ -77,9 +92,6 @@
77
92
  "ERNIE-4.0-8K-Preview": {
78
93
  "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, ERNIE 3.5에 비해 모델 능력이 전면적으로 업그레이드되었으며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 자동으로 바이두 검색 플러그인과 연결되어 질문 응답 정보의 시의성을 보장합니다."
79
94
  },
80
- "ERNIE-4.0-Turbo-128K": {
81
- "description": "바이두가 자체 개발한 플래그십 초대규모 대언어 모델로, 종합적인 효과가 뛰어나며, 다양한 분야의 복잡한 작업 장면에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문과 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더욱 우수합니다."
82
- },
83
95
  "ERNIE-4.0-Turbo-8K-Latest": {
84
96
  "description": "바이두가 개발한 플래그십 대규모 언어 모델로, 다양한 분야의 복잡한 작업 환경에서 뛰어난 종합 효과를 보여줍니다. 바이두 검색 플러그인 자동 연결을 지원하여 질문과 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더욱 우수합니다."
85
97
  },
@@ -176,6 +188,9 @@
176
188
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
189
  "description": "Meta Llama 3.1은 Meta가 개발한 다국어 대규모 언어 모델 가족으로, 8B, 70B 및 405B의 세 가지 파라미터 규모의 사전 훈련 및 지침 미세 조정 변형을 포함합니다. 이 8B 지침 미세 조정 모델은 다국어 대화 시나리오에 최적화되어 있으며, 여러 산업 벤치마크 테스트에서 우수한 성능을 보입니다. 모델 훈련에는 15조 개 이상의 공개 데이터 토큰이 사용되었으며, 감독 미세 조정 및 인간 피드백 강화 학습과 같은 기술을 통해 모델의 유용성과 안전성을 향상시켰습니다. Llama 3.1은 텍스트 생성 및 코드 생성을 지원하며, 지식 마감일은 2023년 12월입니다."
178
190
  },
191
+ "QwQ-32B-Preview": {
192
+ "description": "QwQ-32B-Preview는 복잡한 대화 생성 및 맥락 이해 작업을 효율적으로 처리할 수 있는 혁신적인 자연어 처리 모델입니다."
193
+ },
179
194
  "Qwen/QVQ-72B-Preview": {
180
195
  "description": "QVQ-72B-Preview는 Qwen 팀이 개발한 시각적 추론 능력에 중점을 둔 연구 모델로, 복잡한 장면 이해 및 시각 관련 수학 문제 해결에서 독특한 장점을 가지고 있습니다."
181
196
  },
@@ -527,6 +542,24 @@
527
542
  "deepseek-ai/DeepSeek-R1": {
528
543
  "description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
529
544
  },
545
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
546
+ "description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
547
+ },
548
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-8B": {
549
+ "description": "DeepSeek-R1-Distill-Llama-8B는 Llama-3.1-8B를 기반으로 개발된 증류 모델입니다. 이 모델은 DeepSeek-R1이 생성한 샘플을 사용하여 미세 조정되었으며, 뛰어난 추론 능력을 보여줍니다. 여러 기준 테스트에서 좋은 성적을 거두었으며, MATH-500에서 89.1%의 정확도를 달성하고, AIME 2024에서 50.4%의 통과율을 기록했으며, CodeForces에서 1205의 점수를 얻어 8B 규모의 모델로서 강력한 수학 및 프로그래밍 능력을 보여줍니다."
550
+ },
551
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
552
+ "description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
553
+ },
554
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B": {
555
+ "description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
556
+ },
557
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
558
+ "description": "DeepSeek-R1-Distill-Qwen-32B는 Qwen2.5-32B를 기반으로 지식 증류를 통해 얻은 모델입니다. 이 모델은 DeepSeek-R1이 생성한 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 수학, 프로그래밍 및 추론 등 여러 분야에서 뛰어난 성능을 보여줍니다. AIME 2024, MATH-500, GPQA Diamond 등 여러 기준 테스트에서 우수한 성적을 거두었으며, MATH-500에서 94.3%의 정확도를 달성하여 강력한 수학 추론 능력을 보여줍니다."
559
+ },
560
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
561
+ "description": "DeepSeek-R1-Distill-Qwen-7B는 Qwen2.5-Math-7B를 기반으로 지식 증류를 통해 얻은 모델입니다. 이 모델은 DeepSeek-R1이 생성한 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 뛰어난 추론 능력을 보여줍니다. 여러 기준 테스트에서 우수한 성적을 거두었으며, MATH-500에서 92.8%의 정확도를 달성하고, AIME 2024에서 55.5%의 통과율을 기록했으며, CodeForces에서 1189의 점수를 얻어 7B 규모의 모델로서 강력한 수학 및 프로그래밍 능력을 보여줍니다."
562
+ },
530
563
  "deepseek-ai/DeepSeek-V2.5": {
531
564
  "description": "DeepSeek V2.5는 이전 버전의 우수한 기능을 집약하여 일반 및 인코딩 능력을 강화했습니다."
532
565
  },
@@ -554,6 +587,9 @@
554
587
  "deepseek-r1": {
555
588
  "description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
556
589
  },
590
+ "deepseek-r1-distill-llama-70b": {
591
+ "description": "DeepSeek R1 - DeepSeek 패키지에서 더 크고 더 스마트한 모델이 Llama 70B 아키텍처로 증류되었습니다. 기준 테스트와 인공지능 평가에 따르면, 이 모델은 원래 Llama 70B보다 더 스마트하며, 특히 수학 및 사실 정확성이 필요한 작업에서 뛰어난 성능을 보입니다."
592
+ },
557
593
  "deepseek-reasoner": {
558
594
  "description": "DeepSeek에서 제공하는 추론 모델입니다. 최종 답변을 출력하기 전에 모델은 먼저 사고 과정을 출력하여 최종 답변의 정확성을 높입니다."
559
595
  },
@@ -563,12 +599,63 @@
563
599
  "deepseek-v2:236b": {
564
600
  "description": "DeepSeek V2 236B는 DeepSeek의 설계 코드 모델로, 강력한 코드 생성 능력을 제공합니다."
565
601
  },
602
+ "deepseek-v3": {
603
+ "description": "DeepSeek-V3는 항저우 심도 탐색 인공지능 기초 기술 연구 회사에서 자체 개발한 MoE 모델로, 여러 평가에서 뛰어난 성적을 거두며, 주류 순위에서 오픈 소스 모델 1위를 차지하고 있습니다. V3는 V2.5 모델에 비해 생성 속도가 3배 향상되어 사용자에게 더 빠르고 원활한 사용 경험을 제공합니다."
604
+ },
566
605
  "deepseek/deepseek-chat": {
567
606
  "description": "일반 및 코드 능력을 통합한 새로운 오픈 소스 모델로, 기존 Chat 모델의 일반 대화 능력과 Coder 모델의 강력한 코드 처리 능력을 유지하면서 인간의 선호에 더 잘 맞춰졌습니다. 또한, DeepSeek-V2.5는 작문 작업, 지시 따르기 등 여러 분야에서 큰 향상을 이루었습니다."
568
607
  },
569
608
  "emohaa": {
570
609
  "description": "Emohaa는 심리 모델로, 전문 상담 능력을 갖추고 있어 사용자가 감정 문제를 이해하는 데 도움을 줍니다."
571
610
  },
611
+ "ernie-3.5-128k": {
612
+ "description": "바이두가 자체 개발한 플래그십 대규모 언어 모델로, 방대한 중영문 자료를 포함하고 있으며, 강력한 일반 능력을 가지고 있어 대부분의 대화 질문 답변, 창작 생성, 플러그인 응용 시나리오 요구를 충족할 수 있습니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
613
+ },
614
+ "ernie-3.5-8k": {
615
+ "description": "바이두가 자체 개발한 플래그십 대규모 언어 모델로, 방대한 중영문 자료를 포함하고 있으며, 강력한 일반 능력을 가지고 있어 대부분의 대화 질문 답변, 창작 생성, 플러그인 응용 시나리오 요구를 충족할 수 있습니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
616
+ },
617
+ "ernie-3.5-8k-preview": {
618
+ "description": "바이두가 자체 개발한 플래그십 대규모 언어 모델로, 방대한 중영문 자료를 포함하고 있으며, 강력한 일반 능력을 가지고 있어 대부분의 대화 질문 답변, 창작 생성, 플러그인 응용 시나리오 요구를 충족할 수 있습니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
619
+ },
620
+ "ernie-4.0-8k-latest": {
621
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, ERNIE 3.5에 비해 모델 능력이 전면 업그레이드되었으며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
622
+ },
623
+ "ernie-4.0-8k-preview": {
624
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, ERNIE 3.5에 비해 모델 능력이 전면 업그레이드되었으며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다."
625
+ },
626
+ "ernie-4.0-turbo-128k": {
627
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, 종합적인 성능이 뛰어나며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더 우수합니다."
628
+ },
629
+ "ernie-4.0-turbo-8k-latest": {
630
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, 종합적인 성능이 뛰어나며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더 우수합니다."
631
+ },
632
+ "ernie-4.0-turbo-8k-preview": {
633
+ "description": "바이두가 자체 개발한 플래그십 초대규모 언어 모델로, 종합적인 성능이 뛰어나며, 다양한 분야의 복잡한 작업 시나리오에 널리 적용됩니다. 바이두 검색 플러그인과 자동으로 연결되어 질문 답변 정보의 시의성을 보장합니다. ERNIE 4.0에 비해 성능이 더 우수합니다."
634
+ },
635
+ "ernie-char-8k": {
636
+ "description": "바이두가 자체 개발한 수직 장면 대형 언어 모델로, 게임 NPC, 고객 서비스 대화, 대화 역할극 등 응용 시나리오에 적합하며, 캐릭터 스타일이 더 뚜렷하고 일관되며, 지시 따르기 능력이 더 강하고 추론 성능이 우수합니다."
637
+ },
638
+ "ernie-char-fiction-8k": {
639
+ "description": "바이두가 자체 개발한 수직 장면 대형 언어 모델로, 게임 NPC, 고객 서비스 대화, 대화 역할극 등 응용 시나리오에 적합하며, 캐릭터 스타일이 더 뚜렷하고 일관되며, 지시 따르기 능력이 더 강하고 추론 성능이 우수합니다."
640
+ },
641
+ "ernie-lite-8k": {
642
+ "description": "ERNIE Lite는 바이두가 자체 개발한 경량 대형 언어 모델로, 우수한 모델 효과와 추론 성능을 겸비하여 저전력 AI 가속 카드 추론에 적합합니다."
643
+ },
644
+ "ernie-lite-pro-128k": {
645
+ "description": "바이두가 자체 개발한 경량 대형 언어 모델로, 우수한 모델 효과와 추론 성능을 겸비하여 ERNIE Lite보다 더 우수하며, 저전력 AI 가속 카드 추론에 적합합니다."
646
+ },
647
+ "ernie-novel-8k": {
648
+ "description": "바이두가 자체 개발한 일반 대형 언어 모델로, 소설 연속 작성 능력에서 뚜렷한 장점을 가지고 있으며, 단편극, 영화 등 시나리오에서도 사용할 수 있습니다."
649
+ },
650
+ "ernie-speed-128k": {
651
+ "description": "바이두가 2024년에 최신 출시한 고성능 대형 언어 모델로, 일반 능력이 우수하여 특정 시나리오 문제를 더 잘 처리하기 위해 기초 모델로 미세 조정하는 데 적합하며, 뛰어난 추론 성능을 가지고 있습니다."
652
+ },
653
+ "ernie-speed-pro-128k": {
654
+ "description": "바이두가 2024년에 최신 출시한 고성능 대형 언어 모델로, 일반 능력이 우수하여 ERNIE Speed보다 더 우수하며, 특정 시나리오 문제를 더 잘 처리하기 위해 기초 모델로 미세 조정하는 데 적합하며, 뛰어난 추론 성능을 가지고 있습니다."
655
+ },
656
+ "ernie-tiny-8k": {
657
+ "description": "ERNIE Tiny는 바이두가 자체 개발한 초고성능 대형 언어 모델로, 문신 시리즈 모델 중 배포 및 미세 조정 비용이 가장 낮습니다."
658
+ },
572
659
  "gemini-1.0-pro-001": {
573
660
  "description": "Gemini 1.0 Pro 001 (Tuning)은 안정적이고 조정 가능한 성능을 제공하며, 복잡한 작업 솔루션의 이상적인 선택입니다."
574
661
  },
@@ -872,6 +959,9 @@
872
959
  "internlm2.5-latest": {
873
960
  "description": "우리가 최신으로 선보이는 모델 시리즈로, 뛰어난 추론 성능을 자랑하며 1M의 컨텍스트 길이와 더 강력한 지시 따르기 및 도구 호출 기능을 지원합니다."
874
961
  },
962
+ "internlm3-latest": {
963
+ "description": "우리의 최신 모델 시리즈는 뛰어난 추론 성능을 가지고 있으며, 동급 오픈 소스 모델 중에서 선두를 달리고 있습니다. 기본적으로 최신 출시된 InternLM3 시리즈 모델을 가리킵니다."
964
+ },
875
965
  "learnlm-1.5-pro-experimental": {
876
966
  "description": "LearnLM은 학습 과학 원칙에 맞춰 훈련된 실험적이고 특정 작업에 특화된 언어 모델로, 교육 및 학습 환경에서 시스템 지침을 따르며 전문가 멘토 역할을 수행합니다."
877
967
  },
@@ -986,6 +1076,9 @@
986
1076
  "meta-llama/Llama-3.3-70B-Instruct": {
987
1077
  "description": "Llama 3.3은 Llama 시리즈에서 가장 진보된 다국어 오픈 소스 대형 언어 모델로, 매우 낮은 비용으로 405B 모델의 성능을 경험할 수 있습니다. Transformer 구조를 기반으로 하며, 감독 미세 조정(SFT) 및 인간 피드백 강화 학습(RLHF)을 통해 유용성과 안전성을 향상시켰습니다. 그 지시 조정 버전은 다국어 대화를 최적화하여 여러 산업 벤치마크에서 많은 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다. 지식 마감일은 2023년 12월입니다."
988
1078
  },
1079
+ "meta-llama/Llama-3.3-70B-Instruct-Turbo": {
1080
+ "description": "Meta Llama 3.3 다국어 대형 언어 모델(LLM)은 70B(텍스트 입력/텍스트 출력)에서 사전 훈련 및 지시 조정 생성 모델입니다. Llama 3.3 지시 조정의 순수 텍스트 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 일반 산업 기준에서 많은 사용 가능한 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다."
1081
+ },
989
1082
  "meta-llama/Llama-Vision-Free": {
990
1083
  "description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하도록 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 발휘하며, 언어 생성과 시각 추론 간의 간극을 메웁니다."
991
1084
  },
@@ -1256,6 +1349,9 @@
1256
1349
  "qwen-vl-max-latest": {
1257
1350
  "description": "통의천문 초대규모 비주얼 언어 모델. 강화판에 비해 시각적 추론 능력과 지시 준수 능력을 다시 한 번 향상시켜, 더 높은 시각적 인식과 인지 수준을 제공합니다."
1258
1351
  },
1352
+ "qwen-vl-ocr-latest": {
1353
+ "description": "통의천문OCR은 문서, 표, 시험지, 손글씨 등 다양한 유형의 이미지에서 텍스트 추출 능력에 중점을 둔 전용 모델입니다. 여러 언어를 인식할 수 있으며, 현재 지원되는 언어는 중국어, 영어, 프랑스어, 일본어, 한국어, 독일어, 러시아어, 이탈리아어, 베트남어, 아랍어입니다."
1354
+ },
1259
1355
  "qwen-vl-plus-latest": {
1260
1356
  "description": "통의천문 대규모 비주얼 언어 모델 강화판. 세부 사항 인식 능력과 문자 인식 능력을 크게 향상시켰으며, 백만 화소 이상의 해상도와 임의의 가로 세로 비율의 이미지를 지원합니다."
1261
1357
  },
@@ -1274,6 +1370,9 @@
1274
1370
  "qwen2.5-14b-instruct": {
1275
1371
  "description": "통의 천문 2.5 외부 오픈 소스 14B 규모 모델입니다."
1276
1372
  },
1373
+ "qwen2.5-14b-instruct-1m": {
1374
+ "description": "통의천문2.5의 외부 오픈 소스 72B 규모 모델입니다."
1375
+ },
1277
1376
  "qwen2.5-32b-instruct": {
1278
1377
  "description": "통의 천문 2.5 외부 오픈 소스 32B 규모 모델입니다."
1279
1378
  },
@@ -1301,6 +1400,12 @@
1301
1400
  "qwen2.5-math-7b-instruct": {
1302
1401
  "description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 가지고 있습니다."
1303
1402
  },
1403
+ "qwen2.5-vl-72b-instruct": {
1404
+ "description": "지시 따르기, 수학, 문제 해결, 코드 전반적인 향상, 모든 사물 인식 능력 향상, 다양한 형식의 시각적 요소를 직접 정확하게 위치 지정할 수 있으며, 최대 10분 길이의 긴 비디오 파일을 이해하고 초 단위의 사건 시점을 위치 지정할 수 있습니다. 시간의 선후와 속도를 이해할 수 있으며, 분석 및 위치 지정 능력을 기반으로 OS 또는 모바일 에이전트를 조작할 수 있습니다. 주요 정보 추출 능력과 Json 형식 출력 능력이 뛰어나며, 이 버전은 72B 버전으로, 이 시리즈에서 가장 강력한 버전입니다."
1405
+ },
1406
+ "qwen2.5-vl-7b-instruct": {
1407
+ "description": "지시 따르기, 수학, 문제 해결, 코드 전반적인 향상, 모든 사물 인식 능력 향상, 다양한 형식의 시각적 요소를 직접 정확하게 위치 지정할 수 있으며, 최대 10분 길이의 긴 비디오 파일을 이해하고 초 단위의 사건 시점을 위치 지정할 수 있습니다. 시간의 선후와 속도를 이해할 수 있으며, 분석 및 위치 지정 능력을 기반으로 OS 또는 모바일 에이전트를 조작할 수 있습니다. 주요 정보 추출 능력과 Json 형식 출력 능력이 뛰어나며, 이 버전은 72B 버전으로, 이 시리즈에서 가장 강력한 버전입니다."
1408
+ },
1304
1409
  "qwen2.5:0.5b": {
1305
1410
  "description": "Qwen2.5는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
1306
1411
  },
@@ -286,6 +286,7 @@
286
286
  "anonymousNickName": "anonieme gebruiker",
287
287
  "billing": "facturatie",
288
288
  "cloud": "Ervaar {{name}}",
289
+ "community": "Gemeenschapsversie",
289
290
  "data": "gegevensopslag",
290
291
  "defaultNickname": "communitygebruiker",
291
292
  "discord": "communityondersteuning",
@@ -295,7 +296,6 @@
295
296
  "help": "helpcentrum",
296
297
  "moveGuide": "instellingen verplaatst naar hier",
297
298
  "plans": "abonnementen",
298
- "preview": "voorbeeldversie",
299
299
  "profile": "accountbeheer",
300
300
  "setting": "app-instellingen",
301
301
  "usages": "gebruiksstatistieken"
@@ -294,26 +294,6 @@
294
294
  "tooltip": "Werk basisconfiguratie van provider bij",
295
295
  "updateSuccess": "Bijwerking geslaagd"
296
296
  },
297
- "wenxin": {
298
- "accessKey": {
299
- "desc": "Vul de Access Key van het Baidu Qianfan-platform in",
300
- "placeholder": "Qianfan Access Key",
301
- "title": "Access Key"
302
- },
303
- "checker": {
304
- "desc": "Test of de AccessKey / SecretAccess correct is ingevuld"
305
- },
306
- "secretKey": {
307
- "desc": "Vul de Secret Key van het Baidu Qianfan-platform in",
308
- "placeholder": "Qianfan Secret Key",
309
- "title": "Secret Key"
310
- },
311
- "unlock": {
312
- "customRegion": "Aangepaste servicegebied",
313
- "description": "Voer je AccessKey / SecretKey in om de sessie te starten. De applicatie zal je authenticatie-instellingen niet opslaan",
314
- "title": "Gebruik aangepaste Wenxin Yiyan-authenticatie-informatie"
315
- }
316
- },
317
297
  "zeroone": {
318
298
  "title": "01.AI Nul Een Alles"
319
299
  },