@guru-ai-product/ai-product-kit 0.1.251112172507

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. package/README.md +107 -0
  2. package/bin/setup.js +89 -0
  3. package/package.json +24 -0
  4. package/skills/aipk_design/GURU_AI.md +10 -0
  5. package/skills/aipk_design/SKILL.md +33 -0
  6. package/skills/aipk_design/auto_panel_splitter/SKILL.md +360 -0
  7. package/skills/aipk_design/auto_panel_splitter/scripts/auto_panel_splitter.js +399 -0
  8. package/skills/aipk_design/auto_panel_splitter/scripts/panel_asset_mapper.js +445 -0
  9. package/skills/aipk_development/GURU_AI.md +8 -0
  10. package/skills/aipk_development/SKILL.md +20 -0
  11. package/skills/aipk_development/templates//345/256/236/346/226/275/350/256/241/345/210/222/346/226/207/346/241/243.md +302 -0
  12. package/skills/aipk_init_project/SKILL.md +188 -0
  13. package/skills/aipk_init_project/scripts/check_agents.sh +55 -0
  14. package/skills/aipk_init_project/template/AGENTS_TEMPLATE.md +138 -0
  15. package/skills/aipk_operations/GURU_AI.md +10 -0
  16. package/skills/aipk_operations/SKILL.md +37 -0
  17. package/skills/aipk_operations/aso_new_release/SKILL.md +84 -0
  18. package/skills/aipk_operations/aso_new_release/references/aso-update-notes-prompt.md +196 -0
  19. package/skills/aipk_operations/aso_new_release/references/aso-update-notes-template.md +162 -0
  20. package/skills/aipk_requirements/GURU_AI.md +39 -0
  21. package/skills/aipk_requirements/SKILL.md +243 -0
  22. package/skills/aipk_requirements/changes/SKILL.md +196 -0
  23. package/skills/aipk_requirements/changes/template/index.md +30 -0
  24. package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/346/226/207/346/241/243/346/250/241/346/235/277.md +576 -0
  25. package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/347/224/237/346/210/220Prompt.md +349 -0
  26. package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/347/224/237/346/210/220/346/214/207/345/215/227.md +292 -0
  27. package/skills/aipk_requirements/documentation/SKILL.md +930 -0
  28. package/skills/aipk_requirements/documentation/template/1_/344/272/247/345/223/201/345/256/232/344/275/215/344/270/216/345/210/206/346/236/220.md +86 -0
  29. package/skills/aipk_requirements/documentation/template/2_/345/212/237/350/203/275/351/234/200/346/261/202.md +67 -0
  30. package/skills/aipk_requirements/documentation/template/3_/345/225/206/344/270/232/345/214/226/347/255/226/347/225/245.md +131 -0
  31. package/skills/aipk_requirements/documentation/template/4_/347/224/250/346/210/267/347/225/214/351/235/242/344/270/216/344/275/223/351/252/214.md +665 -0
  32. package/skills/aipk_requirements/documentation/template/AI /345/272/224/347/224/250/347/261/273APP/351/200/232/347/224/250/345/237/213/347/202/271/346/226/207/346/241/243.xlsx +0 -0
  33. package/skills/aipk_requirements/documentation/template/Draft_/344/272/247/345/223/201/351/234/200/346/261/202/350/215/211/347/250/277.md +60 -0
  34. package/skills/aipk_requirements/documentation/template/Draft_/347/224/250/346/210/267/346/227/205/347/250/213/350/215/211/347/250/277.md +84 -0
  35. package/skills/aipk_requirements/documentation/template/index.md +83 -0
  36. package/skills/aipk_requirements/documentation/template//345/237/213/347/202/271/350/247/204/350/214/203/346/226/207/346/241/243.md +372 -0
  37. package/skills/aipk_requirements/documentation/template//351/234/200/346/261/202/350/277/255/344/273/243/346/250/241/346/235/277.md +821 -0
  38. package/skills/aipk_requirements/documentation/template//351/234/200/346/261/202/350/277/255/344/273/243/347/264/242/345/274/225.md +30 -0
  39. package/skills/aipk_requirements/initiative_planning/SKILL.md +407 -0
  40. package/skills/aipk_requirements/initiative_planning/template/SWOT/345/210/206/346/236/220/346/250/241/346/235/277.md +381 -0
  41. package/skills/aipk_requirements/initiative_planning/template//344/272/247/345/223/201/350/247/204/345/210/222/346/250/241/346/235/277.md +322 -0
  42. package/skills/aipk_requirements/initiative_planning/template//345/225/206/344/270/232/345/214/226/350/247/204/345/210/222/346/250/241/346/235/277.md +201 -0
  43. package/skills/aipk_requirements/initiative_planning/template//345/270/202/345/234/272/344/270/216/345/225/206/344/270/232/345/210/206/346/236/220/346/250/241/346/235/277.md +176 -0
  44. package/skills/aipk_requirements/initiative_planning/template//346/212/200/346/234/257/350/247/204/345/210/222/346/250/241/346/235/277.md +314 -0
  45. package/skills/aipk_requirements/intake/SKILL.md +260 -0
  46. package/skills/aipk_requirements/intake/examples/K12/346/225/260/345/255/246/345/255/246/344/271/240/345/272/224/347/224/250/346/241/210/344/276/213.md +371 -0
  47. package/skills/aipk_requirements/intake/examples//347/224/265/345/225/206/345/271/263/345/217/260/344/274/230/345/214/226/346/241/210/344/276/213.md +426 -0
  48. package/skills/aipk_requirements/intake/references/Gemini_DeepResearch_/345/267/245/345/205/267/351/223/276/346/225/264/345/220/210/346/236/266/346/236/204/350/256/276/350/256/241.md +1272 -0
  49. package/skills/aipk_requirements/intake/template//344/272/247/345/223/201/351/234/200/346/261/202/345/217/221/347/216/260/344/270/216/351/252/214/350/257/201/346/250/241/346/235/277.md +53 -0
  50. package/skills/aipk_requirements/intake/template//345/270/202/345/234/272/346/234/272/344/274/232/350/257/204/344/274/260/344/270/216/347/253/236/344/272/211/345/210/206/346/236/220/346/250/241/346/235/277.md +53 -0
  51. package/skills/aipk_requirements/intake/template//346/212/200/346/234/257/346/226/271/346/241/210/350/257/204/344/274/260/344/270/216/345/217/257/350/241/214/346/200/247/345/210/206/346/236/220/346/250/241/346/235/277.md +72 -0
  52. package/skills/aipk_requirements/intake/template//346/267/261/345/272/246/347/224/250/346/210/267/350/241/214/344/270/272/344/270/216/351/234/200/346/261/202/346/264/236/345/257/237/346/250/241/346/235/277.md +59 -0
  53. package/skills/aipk_requirements/review/SKILL.md +218 -0
  54. package/skills/aipk_skill_generate/GURU_AI.md +8 -0
  55. package/skills/aipk_skill_generate/SKILL.md +259 -0
  56. package/skills/aipk_skill_generate/agent_skills_spec.md +79 -0
  57. package/skills/aipk_tool_prompts/AI/344/275/223/351/252/214/350/256/276/350/256/241/346/214/207/345/215/227.md +93 -0
  58. package/skills/aipk_tool_prompts/GURU_AI.md +13 -0
  59. package/skills/aipk_tool_prompts/Prompt/347/224/237/346/210/220.md +20 -0
  60. package/skills/aipk_tool_prompts/SKILL.md +55 -0
  61. package/skills/aipk_tool_prompts/images/20250710200701.png +0 -0
  62. package/skills/aipk_tool_prompts/images/20250710200802.png +0 -0
  63. package/skills/aipk_tool_prompts//346/240/207/350/256/260/346/226/207/346/241/243/346/233/264/346/226/260.md +33 -0
  64. package/skills/aipk_tool_prompts//347/224/237/346/210/220DrawIO/346/226/207/346/241/243.md +45 -0
@@ -0,0 +1,1272 @@
1
+ # Gemini DeepResearch 工具链整合架构设计
2
+
3
+ ## 文档信息
4
+
5
+ | 项目 | 内容 |
6
+ |------|------|
7
+ | 版本号 | v1.0 |
8
+
9
+ ## 1. 项目概述
10
+
11
+ ### 1.1 设计目标
12
+
13
+ 基于已完成的工具调研报告,设计一套完整的 Gemini DeepResearch 通用 Prompt 模板体系和工具链整合方案,实现:
14
+
15
+ - **智能化需求收集**:通过 AI 驱动的深度研究,自动化收集和分析产品需求
16
+ - **多源数据整合**:整合 Gemini DeepResearch、SensorTower、七麦数据、点点数据等工具的数据
17
+ - **标准化工作流程**:建立可复用的需求收集工作流程和质量控制机制
18
+ - **高效协同作业**:提供统一的工具接口和数据流转机制
19
+
20
+ ### 1.2 核心价值
21
+
22
+ - **提升效率**:将传统需求收集时间从数周缩短至数天
23
+ - **增强质量**:通过 AI 分析和多源数据验证,提高需求准确性
24
+ - **降低成本**:减少人工调研投入,优化资源配置
25
+ - **标准化流程**:建立可重复、可扩展的需求收集方法论
26
+
27
+ ## 2. Gemini DeepResearch 通用 Prompt 模板库
28
+
29
+ ### 2.1 模板架构设计
30
+
31
+ #### 2.1.1 核心模板结构
32
+
33
+ ```markdown
34
+ # [模板类型] - Gemini DeepResearch 研究任务
35
+
36
+ ## 🎯 研究目标
37
+ [明确、具体的研究目标,支持 SMART 原则]
38
+
39
+ ## 📋 背景信息
40
+ ### 产品背景
41
+ - **产品类型**:[具体产品类别]
42
+ - **目标市场**:[地理区域、用户群体]
43
+ - **发展阶段**:[概念验证/MVP/成熟产品/迭代优化]
44
+ - **竞争环境**:[市场竞争激烈程度和主要玩家]
45
+
46
+ ### 已有洞察
47
+ - **市场假设**:[当前的市场理解和假设]
48
+ - **用户画像**:[已知的用户特征和行为模式]
49
+ - **技术约束**:[技术实现的限制和要求]
50
+
51
+ ## 🔍 研究范围
52
+ ### 核心研究问题
53
+ 1. [主要研究问题1]
54
+ 2. [主要研究问题2]
55
+ 3. [主要研究问题3]
56
+
57
+ ### 数据源指引
58
+ - **公开信息**:行业报告、新闻资讯、学术论文
59
+ - **用户反馈**:应用商店评论、社交媒体讨论、论坛反馈
60
+ - **竞品分析**:功能对比、策略分析、市场表现
61
+ - **专业数据**:[整合的移动应用数据平台信息]
62
+
63
+ ## 📊 特定分析要求
64
+ [根据模板类型的专门分析指引]
65
+
66
+ ## 📈 输出要求
67
+ ### 报告结构
68
+ 1. **执行摘要**:关键发现和建议概述
69
+ 2. **详细分析**:深度研究结果
70
+ 3. **数据支撑**:关键数据和图表
71
+ 4. **行动建议**:具体的下一步建议
72
+
73
+ ### 格式要求
74
+ - 使用结构化标题和清晰的逻辑层次
75
+ - 提供数据来源和可信度评估
76
+ - 包含关键洞察的优先级排序
77
+ - 给出具体、可执行的建议
78
+ ```
79
+
80
+ #### 2.1.2 模板变量系统
81
+
82
+ **基础变量**
83
+
84
+ - `{PRODUCT_TYPE}` - 产品类型
85
+ - `{TARGET_MARKET}` - 目标市场
86
+ - `{RESEARCH_FOCUS}` - 研究重点
87
+ - `{TIME_FRAME}` - 时间范围
88
+ - `{COMPETITORS}` - 竞品列表
89
+
90
+ **数据整合变量**
91
+
92
+ - `{SENSORTOWER_DATA}` - SensorTower 数据摘要
93
+ - `{QIMAI_DATA}` - 七麦数据摘要
94
+ - `{DIANDIAN_DATA}` - 点点数据摘要
95
+
96
+ ### 2.2 场景化模板库
97
+
98
+ #### 2.2.1 需求收集场景模板
99
+
100
+ **模板名称**:产品需求发现与验证
101
+
102
+ ```markdown
103
+ # 产品需求发现与验证 - Gemini DeepResearch 研究任务
104
+
105
+ ## 🎯 研究目标
106
+ 深度挖掘 {PRODUCT_TYPE} 领域的用户需求,验证产品假设,识别未被满足的需求机会。
107
+
108
+ ## 📋 背景信息
109
+ ### 产品背景
110
+ - **产品类型**:{PRODUCT_TYPE}
111
+ - **目标用户**:{TARGET_USERS}
112
+ - **当前阶段**:{DEVELOPMENT_STAGE}
113
+ - **核心假设**:{CORE_ASSUMPTIONS}
114
+
115
+ ## 🔍 研究范围
116
+ ### 核心研究问题
117
+ 1. 目标用户群体的核心痛点和未被满足的需求是什么?
118
+ 2. 现有解决方案的不足之处在哪里?
119
+ 3. 用户对新功能或改进的接受度和期望如何?
120
+ 4. 不同用户细分群体的需求差异是什么?
121
+
122
+ ### 重点分析维度
123
+ - **用户行为模式**:使用场景、频率、习惯
124
+ - **痛点层次分析**:表面痛点 vs 深层需求
125
+ - **解决方案评估**:现有产品的优缺点分析
126
+ - **需求优先级**:基于用户价值和实现难度的排序
127
+
128
+ ## 📊 特定分析要求
129
+ ### 用户反馈分析
130
+ - 分析应用商店评论中的高频关键词和情感倾向
131
+ - 识别用户投诉和建议的主要类别
132
+ - 提取用户对竞品功能的评价和期望
133
+
134
+ ### 行为数据洞察
135
+ - 分析用户留存率和活跃度数据的影响因素
136
+ - 识别用户流失的关键节点和原因
137
+ - 研究成功产品的用户增长模式
138
+
139
+ ### 市场机会识别
140
+ - 对比分析不同产品的功能覆盖度
141
+ - 识别功能空白和创新机会
142
+ - 评估新需求的市场规模和可行性
143
+
144
+ ## 📈 输出要求
145
+ ### 需求分析报告
146
+ 1. **用户需求地图**:按优先级和实现难度的需求矩阵
147
+ 2. **痛点分析**:详细的用户痛点分类和影响评估
148
+ 3. **机会识别**:具体的产品改进和创新机会
149
+ 4. **验证建议**:需求验证的具体方法和指标
150
+
151
+ ### 可执行建议
152
+ - 优先开发的功能列表及理由
153
+ - 用户研究的具体执行计划
154
+ - 产品迭代的时间线和里程碑
155
+ - 风险评估和应对策略
156
+ ```
157
+
158
+ #### 2.2.2 市场分析模板
159
+
160
+ **模板名称**:市场机会评估与竞争分析
161
+
162
+ ```markdown
163
+ # 市场机会评估与竞争分析 - Gemini DeepResearch 研究任务
164
+
165
+ ## 🎯 研究目标
166
+ 全面评估 {PRODUCT_TYPE} 市场的规模、增长潜力和竞争格局,识别市场进入机会和差异化策略。
167
+
168
+ ## 📋 背景信息
169
+ ### 市场背景
170
+ - **目标市场**:{TARGET_MARKET}
171
+ - **产品定位**:{PRODUCT_POSITIONING}
172
+ - **投资预算**:{BUDGET_RANGE}
173
+ - **时间窗口**:{LAUNCH_TIMELINE}
174
+
175
+ ## 🔍 研究范围
176
+ ### 核心研究问题
177
+ 1. 目标市场的规模、增长率和发展趋势如何?
178
+ 2. 主要竞争对手的市场策略和表现如何?
179
+ 3. 市场中存在哪些未被充分满足的细分需求?
180
+ 4. 进入市场的最佳时机和策略是什么?
181
+
182
+ ### 分析维度
183
+ - **市场规模分析**:TAM、SAM、SOM 评估
184
+ - **竞争格局分析**:主要玩家、市场份额、策略对比
185
+ - **趋势预测**:技术趋势、用户行为变化、监管环境
186
+ - **机会识别**:市场空白、差异化机会、增长驱动因素
187
+
188
+ ## 📊 特定分析要求
189
+ ### 市场数据分析
190
+ - 整合 {SENSORTOWER_DATA} 的下载量和收入数据
191
+ - 分析 {QIMAI_DATA} 的排名趋势和关键词表现
192
+ - 利用 {DIANDIAN_DATA} 的用户画像和行为数据
193
+
194
+ ### 竞品深度分析
195
+ - 分析前 5-10 名竞品的功能矩阵和差异化策略
196
+ - 评估竞品的用户获取和留存策略
197
+ - 研究竞品的商业模式和变现能力
198
+
199
+ ### 市场机会量化
200
+ - 估算不同细分市场的规模和增长潜力
201
+ - 分析用户付费意愿和价格敏感度
202
+ - 评估技术门槛和进入壁垒
203
+
204
+ ## 📈 输出要求
205
+ ### 市场分析报告
206
+ 1. **市场概况**:规模、增长、主要特征
207
+ 2. **竞争分析**:竞品对比矩阵和策略分析
208
+ 3. **机会评估**:具体的市场机会和优先级
209
+ 4. **进入策略**:推荐的市场进入方案
210
+
211
+ ### 战略建议
212
+ - 产品定位和差异化策略
213
+ - 目标用户群体的优先级排序
214
+ - 营销和推广策略建议
215
+ - 风险评估和应对措施
216
+ ```
217
+
218
+ #### 2.2.3 用户洞察模板
219
+
220
+ **模板名称**:深度用户行为与需求洞察
221
+
222
+ ```markdown
223
+ # 深度用户行为与需求洞察 - Gemini DeepResearch 研究任务
224
+
225
+ ## 🎯 研究目标
226
+ 深入理解 {TARGET_USERS} 的行为模式、需求动机和决策过程,为产品设计和用户体验优化提供数据支撑。
227
+
228
+ ## 📋 背景信息
229
+ ### 用户背景
230
+ - **目标用户群**:{TARGET_USERS}
231
+ - **使用场景**:{USE_SCENARIOS}
232
+ - **当前产品**:{CURRENT_PRODUCT}
233
+ - **研究重点**:{RESEARCH_FOCUS}
234
+
235
+ ## 🔍 研究范围
236
+ ### 核心研究问题
237
+ 1. 目标用户的典型行为路径和决策过程是什么?
238
+ 2. 用户在不同场景下的需求变化和优先级如何?
239
+ 3. 影响用户满意度和忠诚度的关键因素有哪些?
240
+ 4. 用户对新功能的接受度和学习成本如何?
241
+
242
+ ### 分析维度
243
+ - **行为分析**:使用频率、时长、路径、偏好
244
+ - **需求层次**:基础需求、期望需求、兴奋需求
245
+ - **情感体验**:满意度、挫折点、愉悦时刻
246
+ - **社交影响**:口碑传播、社群效应、推荐行为
247
+
248
+ ## 📊 特定分析要求
249
+ ### 用户行为数据分析
250
+ - 分析用户留存曲线和流失节点
251
+ - 识别高价值用户的行为特征
252
+ - 研究用户生命周期的不同阶段需求
253
+
254
+ ### 用户反馈深度挖掘
255
+ - 分析用户评论的情感倾向和主题分布
256
+ - 提取用户建议中的潜在需求信号
257
+ - 识别用户投诉背后的根本原因
258
+
259
+ ### 用户画像构建
260
+ - 基于行为数据构建详细的用户画像
261
+ - 分析不同用户群体的需求差异
262
+ - 识别潜在的新用户群体
263
+
264
+ ## 📈 输出要求
265
+ ### 用户洞察报告
266
+ 1. **用户画像**:详细的用户特征和行为模式
267
+ 2. **需求地图**:用户需求的层次和优先级
268
+ 3. **体验分析**:用户旅程中的关键触点和痛点
269
+ 4. **机会识别**:用户体验优化的具体机会
270
+
271
+ ### 设计指导
272
+ - 用户界面设计的具体建议
273
+ - 功能优先级的排序依据
274
+ - 用户引导和教育策略
275
+ - 个性化推荐的实现方向
276
+ ```
277
+
278
+ #### 2.2.4 技术可行性模板
279
+
280
+ **模板名称**:技术方案评估与可行性分析
281
+
282
+ ```markdown
283
+ # 技术方案评估与可行性分析 - Gemini DeepResearch 研究任务
284
+
285
+ ## 🎯 研究目标
286
+ 评估 {TECHNOLOGY_SOLUTION} 的技术可行性、实现成本和风险,为技术选型和架构设计提供决策支持。
287
+
288
+ ## 📋 背景信息
289
+ ### 技术背景
290
+ - **技术领域**:{TECHNOLOGY_DOMAIN}
291
+ - **应用场景**:{APPLICATION_SCENARIO}
292
+ - **性能要求**:{PERFORMANCE_REQUIREMENTS}
293
+ - **预算约束**:{BUDGET_CONSTRAINTS}
294
+
295
+ ## 🔍 研究范围
296
+ ### 核心研究问题
297
+ 1. 目标技术方案的成熟度和稳定性如何?
298
+ 2. 实现该方案需要的技术栈和开发资源是什么?
299
+ 3. 存在哪些技术风险和替代方案?
300
+ 4. 技术方案的可扩展性和维护成本如何?
301
+
302
+ ### 评估维度
303
+ - **技术成熟度**:技术发展阶段、社区支持、案例研究
304
+ - **实现复杂度**:开发难度、时间成本、人力需求
305
+ - **性能表现**:响应时间、并发能力、资源消耗
306
+ - **风险评估**:技术风险、商业风险、合规风险
307
+
308
+ ## 📊 特定分析要求
309
+ ### 技术调研分析
310
+ - 分析主流技术方案的优缺点对比
311
+ - 研究成功案例的技术架构和实现细节
312
+ - 评估开源方案 vs 商业方案的选择
313
+
314
+ ### 成本效益分析
315
+ - 估算开发成本、运维成本、升级成本
316
+ - 分析技术投入的预期回报和风险
317
+ - 评估不同方案的总体拥有成本(TCO)
318
+
319
+ ### 风险评估
320
+ - 识别技术实现的主要风险点
321
+ - 分析技术依赖和供应商风险
322
+ - 评估技术过时和迁移的风险
323
+
324
+ ## 📈 输出要求
325
+ ### 技术评估报告
326
+ 1. **方案对比**:不同技术方案的详细对比分析
327
+ 2. **可行性评估**:推荐方案的可行性和实现路径
328
+ 3. **风险分析**:主要风险和应对策略
329
+ 4. **实施建议**:具体的技术实施计划和里程碑
330
+
331
+ ### 技术决策支持
332
+ - 技术选型的推荐方案和理由
333
+ - 技术架构的设计原则和约束
334
+ - 开发团队的技能要求和培训计划
335
+ - 技术债务的管理和优化策略
336
+ ```
337
+
338
+ ### 2.3 模板使用指南
339
+
340
+ #### 2.3.1 模板选择决策树
341
+
342
+ ```
343
+ 开始
344
+ ├── 需求收集阶段?
345
+ │ ├── 是 → 使用"产品需求发现与验证"模板
346
+ │ └── 否 → 继续判断
347
+ ├── 市场分析需求?
348
+ │ ├── 是 → 使用"市场机会评估与竞争分析"模板
349
+ │ └── 否 → 继续判断
350
+ ├── 用户研究需求?
351
+ │ ├── 是 → 使用"深度用户行为与需求洞察"模板
352
+ │ └── 否 → 继续判断
353
+ └── 技术评估需求?
354
+ ├── 是 → 使用"技术方案评估与可行性分析"模板
355
+ └── 否 → 使用基础通用模板
356
+ ```
357
+
358
+ #### 2.3.2 模板定制化指南
359
+
360
+ **步骤1:确定研究目标**
361
+
362
+ - 明确具体的研究问题和期望产出
363
+ - 设定可衡量的成功指标
364
+ - 确定研究的时间范围和资源投入
365
+
366
+ **步骤2:填充背景信息**
367
+
368
+ - 收集产品、市场、用户的基础信息
369
+ - 整理已有的数据和洞察
370
+ - 明确研究的约束条件
371
+
372
+ **步骤3:整合数据源**
373
+
374
+ - 准备移动应用数据平台的关键数据
375
+ - 识别需要重点关注的竞品和市场
376
+ - 确定数据的时间范围和更新频率
377
+
378
+ **步骤4:定制分析要求**
379
+
380
+ - 根据具体需求调整分析维度
381
+ - 添加特定的行业或产品相关要求
382
+ - 设定输出格式和详细程度
383
+
384
+ ## 3. 工具链整合架构设计
385
+
386
+ ### 3.1 整体架构概览
387
+
388
+ ```
389
+ ┌─────────────────────────────────────────────────────────────┐
390
+ │ 需求收集工具链架构 │
391
+ ├─────────────────────────────────────────────────────────────┤
392
+ │ 用户界面层 │
393
+ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
394
+ │ │ Web Dashboard│ │ CLI Tools │ │ API Gateway │ │
395
+ │ └─────────────┘ └─────────────┘ └─────────────┘ │
396
+ ├─────────────────────────────────────────────────────────────┤
397
+ │ 工作流程编排层 │
398
+ │ ┌─────────────────────────────────────────────────────────┐ │
399
+ │ │ Workflow Orchestrator │ │
400
+ │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
401
+ │ │ │ Task Queue │ │ Job Scheduler│ │ Result Cache│ │ │
402
+ │ │ └─────────────┘ └─────────────┘ └─────────────┘ │ │
403
+ │ └─────────────────────────────────────────────────────────┘ │
404
+ ├─────────────────────────────────────────────────────────────┤
405
+ │ AI 分析引擎层 │
406
+ │ ┌─────────────────────────────────────────────────────────┐ │
407
+ │ │ Gemini DeepResearch │ │
408
+ │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
409
+ │ │ │ Prompt Mgmt │ │ Research AI │ │ Result Parse│ │ │
410
+ │ │ └─────────────┘ └─────────────┘ └─────────────┘ │ │
411
+ │ └─────────────────────────────────────────────────────────┘ │
412
+ ├─────────────────────────────────────────────────────────────┤
413
+ │ 数据集成层 │
414
+ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
415
+ │ │ SensorTower │ │ 七麦数据 │ │ 点点数据 │ │
416
+ │ │ Adapter │ │ Adapter │ │ Adapter │ │
417
+ │ └─────────────┘ └─────────────┘ └─────────────┘ │
418
+ ├─────────────────────────────────────────────────────────────┤
419
+ │ 数据存储层 │
420
+ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
421
+ │ │ Raw Data DB │ │ Processed │ │ Knowledge │ │
422
+ │ │ │ │ Data Cache │ │ Graph DB │ │
423
+ │ └─────────────┘ └─────────────┘ └─────────────┘ │
424
+ └─────────────────────────────────────────────────────────────┘
425
+ ```
426
+
427
+ ### 3.2 核心组件设计
428
+
429
+ #### 3.2.1 工作流程编排器(Workflow Orchestrator)
430
+
431
+ **功能职责**
432
+
433
+ - 管理需求收集任务的生命周期
434
+ - 协调不同数据源的数据获取
435
+ - 控制 AI 分析任务的执行顺序
436
+ - 处理异常情况和重试机制
437
+
438
+ **核心流程**
439
+
440
+ ```
441
+ 1. 任务接收与解析
442
+ ├── 解析用户输入的研究需求
443
+ ├── 选择合适的 Prompt 模板
444
+ └── 生成执行计划
445
+
446
+ 2. 数据收集阶段
447
+ ├── 并行调用数据平台 API
448
+ ├── 数据质量检查和清洗
449
+ └── 数据格式标准化
450
+
451
+ 3. AI 分析阶段
452
+ ├── 构建完整的 Prompt
453
+ ├── 调用 Gemini DeepResearch
454
+ └── 结果解析和验证
455
+
456
+ 4. 结果整合阶段
457
+ ├── 多源数据融合
458
+ ├── 洞察提取和排序
459
+ └── 报告生成和输出
460
+ ```
461
+
462
+ #### 3.2.2 数据集成适配器(Data Integration Adapters)
463
+
464
+ **SensorTower 适配器**
465
+
466
+ ```python
467
+ class SensorTowerAdapter:
468
+ def __init__(self, api_key: str):
469
+ self.api_key = api_key
470
+ self.base_url = "https://api.sensortower.com"
471
+
472
+ def get_app_metrics(self, app_id: str, metrics: List[str],
473
+ start_date: str, end_date: str) -> Dict:
474
+ """获取应用关键指标数据"""
475
+ pass
476
+
477
+ def get_market_analysis(self, category: str,
478
+ country: str = "US") -> Dict:
479
+ """获取市场分析数据"""
480
+ pass
481
+
482
+ def get_competitor_analysis(self, app_ids: List[str]) -> Dict:
483
+ """获取竞品分析数据"""
484
+ pass
485
+ ```
486
+
487
+ **七麦数据适配器**
488
+
489
+ ```python
490
+ class QimaiAdapter:
491
+ def __init__(self, api_key: str):
492
+ self.api_key = api_key
493
+ self.base_url = "https://api.qimai.cn"
494
+
495
+ def get_app_ranking(self, app_id: str, country: str = "CN") -> Dict:
496
+ """获取应用排名数据"""
497
+ pass
498
+
499
+ def get_keyword_analysis(self, keywords: List[str]) -> Dict:
500
+ """获取关键词分析数据"""
501
+ pass
502
+
503
+ def get_user_reviews(self, app_id: str, limit: int = 100) -> Dict:
504
+ """获取用户评论数据"""
505
+ pass
506
+ ```
507
+
508
+ **点点数据适配器**
509
+
510
+ ```python
511
+ class DiandianAdapter:
512
+ def __init__(self, api_key: str):
513
+ self.api_key = api_key
514
+ self.base_url = "https://api.diandian.com"
515
+
516
+ def get_user_portrait(self, app_id: str) -> Dict:
517
+ """获取用户画像数据"""
518
+ pass
519
+
520
+ def get_feature_matrix(self, app_ids: List[str]) -> Dict:
521
+ """获取功能矩阵对比数据"""
522
+ pass
523
+
524
+ def get_monetization_analysis(self, app_id: str) -> Dict:
525
+ """获取变现分析数据"""
526
+ pass
527
+ ```
528
+
529
+ #### 3.2.3 Prompt 管理系统
530
+
531
+ **模板管理**
532
+
533
+ ```python
534
+ class PromptTemplateManager:
535
+ def __init__(self):
536
+ self.templates = {}
537
+ self.load_templates()
538
+
539
+ def get_template(self, template_type: str,
540
+ variables: Dict[str, str]) -> str:
541
+ """获取并填充模板"""
542
+ template = self.templates.get(template_type)
543
+ if not template:
544
+ raise ValueError(f"Template {template_type} not found")
545
+
546
+ return self.fill_template(template, variables)
547
+
548
+ def fill_template(self, template: str,
549
+ variables: Dict[str, str]) -> str:
550
+ """填充模板变量"""
551
+ for key, value in variables.items():
552
+ template = template.replace(f"{{{key}}}", value)
553
+ return template
554
+ ```
555
+
556
+ **数据整合器**
557
+
558
+ ```python
559
+ class DataIntegrator:
560
+ def __init__(self):
561
+ self.adapters = {
562
+ 'sensortower': SensorTowerAdapter(),
563
+ 'qimai': QimaiAdapter(),
564
+ 'diandian': DiandianAdapter()
565
+ }
566
+
567
+ def collect_data(self, data_requirements: Dict) -> Dict:
568
+ """收集多源数据"""
569
+ results = {}
570
+ for source, requirements in data_requirements.items():
571
+ if source in self.adapters:
572
+ adapter = self.adapters[source]
573
+ results[source] = adapter.fetch_data(requirements)
574
+ return results
575
+
576
+ def format_for_prompt(self, raw_data: Dict) -> str:
577
+ """将原始数据格式化为 Prompt 可用格式"""
578
+ formatted_sections = []
579
+
580
+ for source, data in raw_data.items():
581
+ section = f"## {source.upper()} 数据摘要\n"
582
+ section += self.summarize_data(data)
583
+ formatted_sections.append(section)
584
+
585
+ return "\n\n".join(formatted_sections)
586
+ ```
587
+
588
+ ### 3.3 工作流程设计
589
+
590
+ #### 3.3.1 标准需求收集流程
591
+
592
+ ```mermaid
593
+ graph TD
594
+ A[用户提交研究需求] --> B[需求解析与验证]
595
+ B --> C[选择 Prompt 模板]
596
+ C --> D[确定数据需求]
597
+ D --> E[并行数据收集]
598
+ E --> F[数据质量检查]
599
+ F --> G[数据整合与格式化]
600
+ G --> H[构建完整 Prompt]
601
+ H --> I[调用 Gemini DeepResearch]
602
+ I --> J[结果解析与验证]
603
+ J --> K[生成结构化报告]
604
+ K --> L[质量检查与优化]
605
+ L --> M[输出最终报告]
606
+
607
+ E --> E1[SensorTower 数据]
608
+ E --> E2[七麦数据]
609
+ E --> E3[点点数据]
610
+
611
+ F --> F1{数据完整性检查}
612
+ F1 -->|不完整| N[数据补充收集]
613
+ F1 -->|完整| G
614
+ N --> G
615
+
616
+ J --> J1{结果质量检查}
617
+ J1 -->|质量不足| O[调整 Prompt 重新分析]
618
+ J1 -->|质量合格| K
619
+ O --> H
620
+ ```
621
+
622
+ #### 3.3.2 数据流转机制
623
+
624
+ **数据收集阶段**
625
+
626
+ 1. **并行数据获取**:同时从多个平台获取数据,提高效率
627
+ 2. **数据缓存机制**:避免重复请求,降低 API 调用成本
628
+ 3. **增量更新策略**:只获取变化的数据,保持数据时效性
629
+
630
+ **数据处理阶段**
631
+
632
+ 1. **数据清洗**:去除无效数据,统一数据格式
633
+ 2. **数据验证**:检查数据完整性和一致性
634
+ 3. **数据摘要**:提取关键信息,减少 Prompt 长度
635
+
636
+ **AI 分析阶段**
637
+
638
+ 1. **Prompt 优化**:根据数据特点调整 Prompt 结构
639
+ 2. **分析监控**:实时监控分析进度和质量
640
+ 3. **结果验证**:通过多种方式验证分析结果的准确性
641
+
642
+ #### 3.3.3 质量控制机制
643
+
644
+ **数据质量控制**
645
+
646
+ - **数据完整性检查**:确保从各平台获取的数据完整且格式正确
647
+ - **数据一致性验证**:检查不同数据源之间的数据一致性
648
+ - **时效性监控**:确保数据的时效性,避免使用过期数据
649
+ - **异常数据处理**:识别和处理异常数据,提供数据质量报告
650
+
651
+ **AI 分析质量控制**
652
+
653
+ - **Prompt 质量评估**:评估 Prompt 的完整性和准确性
654
+ - **分析结果验证**:通过多种方式验证 AI 分析结果的合理性
655
+ - **一致性检查**:确保多次分析结果的一致性
656
+ - **专家审核机制**:关键分析结果需要专家审核确认
657
+
658
+ **输出质量控制**
659
+
660
+ - **报告结构检查**:确保输出报告结构完整、逻辑清晰
661
+ - **内容准确性验证**:验证报告内容的准确性和可信度
662
+ - **可执行性评估**:评估建议的可执行性和实用性
663
+ - **用户反馈收集**:收集用户反馈,持续改进质量
664
+
665
+ ## 4. API 和 MCP 集成可行性分析
666
+
667
+ ### 4.1 移动应用数据平台 API 分析
668
+
669
+ #### 4.1.1 SensorTower API
670
+
671
+ **API 能力评估**
672
+
673
+ - **数据覆盖**:全球应用商店数据,包括下载量、收入、排名等
674
+ - **更新频率**:日级数据更新,部分指标支持实时更新
675
+ - **数据质量**:行业标准的数据准确性,广泛被业界认可
676
+ - **API 限制**:有调用频率限制,需要付费订阅
677
+
678
+ **集成可行性**
679
+
680
+ ```python
681
+ # SensorTower API 集成示例
682
+ class SensorTowerAPI:
683
+ def __init__(self, api_key: str):
684
+ self.api_key = api_key
685
+ self.base_url = "https://api.sensortower.com/v1"
686
+ self.rate_limit = RateLimiter(calls=100, period=3600) # 每小时100次调用
687
+
688
+ @rate_limit
689
+ def get_app_overview(self, app_id: str, country: str = "US") -> Dict:
690
+ """获取应用概览数据"""
691
+ endpoint = f"/ios/overview"
692
+ params = {
693
+ "auth_token": self.api_key,
694
+ "app_ids": app_id,
695
+ "country": country
696
+ }
697
+ return self._make_request(endpoint, params)
698
+
699
+ def get_category_rankings(self, category: str, country: str = "US") -> Dict:
700
+ """获取分类排名数据"""
701
+ # 实现细节...
702
+ pass
703
+ ```
704
+
705
+ **成本分析**
706
+
707
+ - **API 费用**:根据调用量和数据类型收费,月费用约 $500-2000
708
+ - **数据存储**:需要本地缓存减少重复调用
709
+ - **维护成本**:API 版本更新和错误处理
710
+
711
+ #### 4.1.2 七麦数据 API
712
+
713
+ **API 能力评估**
714
+
715
+ - **数据覆盖**:主要覆盖中国区应用商店数据
716
+ - **特色功能**:ASO 关键词分析、竞品监控
717
+ - **数据质量**:在中国市场具有较高准确性
718
+ - **API 限制**:有调用频率和数据量限制
719
+
720
+ **集成方案**
721
+
722
+ ```python
723
+ class QimaiAPI:
724
+ def __init__(self, token: str):
725
+ self.token = token
726
+ self.base_url = "https://api.qimai.cn"
727
+
728
+ def get_app_info(self, app_id: str) -> Dict:
729
+ """获取应用基础信息"""
730
+ url = f"{self.base_url}/app/info"
731
+ params = {"token": self.token, "appid": app_id}
732
+ return self._request(url, params)
733
+
734
+ def get_keyword_ranking(self, app_id: str, keyword: str) -> Dict:
735
+ """获取关键词排名"""
736
+ # 实现细节...
737
+ pass
738
+ ```
739
+
740
+ #### 4.1.3 点点数据 API
741
+
742
+ **API 能力评估**
743
+
744
+ - **数据覆盖**:用户行为数据、功能使用分析
745
+ - **特色功能**:用户画像、行为路径分析
746
+ - **数据质量**:在用户行为分析方面有独特优势
747
+ - **API 限制**:数据访问需要特殊权限
748
+
749
+ ### 4.2 MCP (Model Context Protocol) 集成方案
750
+
751
+ #### 4.2.1 MCP 服务器设计
752
+
753
+ **核心架构**
754
+
755
+ ```python
756
+ from mcp import Server, Tool, Resource
757
+ from typing import Dict, List, Any
758
+
759
+ class DeepResearchMCPServer(Server):
760
+ def __init__(self):
761
+ super().__init__("deepresearch-server")
762
+ self.data_adapters = self._init_adapters()
763
+ self.prompt_manager = PromptTemplateManager()
764
+
765
+ def _init_adapters(self) -> Dict[str, Any]:
766
+ """初始化数据适配器"""
767
+ return {
768
+ 'sensortower': SensorTowerAdapter(),
769
+ 'qimai': QimaiAdapter(),
770
+ 'diandian': DiandianAdapter()
771
+ }
772
+
773
+ @Tool("collect_market_data")
774
+ async def collect_market_data(self,
775
+ app_id: str,
776
+ platforms: List[str],
777
+ metrics: List[str]) -> Dict:
778
+ """收集市场数据工具"""
779
+ results = {}
780
+ for platform in platforms:
781
+ if platform in self.data_adapters:
782
+ adapter = self.data_adapters[platform]
783
+ results[platform] = await adapter.get_metrics(app_id, metrics)
784
+ return results
785
+
786
+ @Tool("generate_research_prompt")
787
+ async def generate_research_prompt(self,
788
+ template_type: str,
789
+ variables: Dict[str, str],
790
+ data_context: Dict) -> str:
791
+ """生成研究 Prompt 工具"""
792
+ template = self.prompt_manager.get_template(template_type)
793
+ filled_template = template.fill(variables)
794
+
795
+ # 整合数据上下文
796
+ data_summary = self._format_data_context(data_context)
797
+ return f"{filled_template}\n\n{data_summary}"
798
+
799
+ @Resource("market_insights")
800
+ async def get_market_insights(self, app_category: str) -> str:
801
+ """市场洞察资源"""
802
+ # 返回预处理的市场洞察数据
803
+ pass
804
+ ```
805
+
806
+ #### 4.2.2 工具集成策略
807
+
808
+ **工具注册**
809
+
810
+ ```python
811
+ # MCP 工具注册配置
812
+ MCP_TOOLS = [
813
+ {
814
+ "name": "collect_app_metrics",
815
+ "description": "收集应用关键指标数据",
816
+ "parameters": {
817
+ "app_id": {"type": "string", "required": True},
818
+ "metrics": {"type": "array", "items": {"type": "string"}},
819
+ "date_range": {"type": "object"}
820
+ }
821
+ },
822
+ {
823
+ "name": "analyze_competitors",
824
+ "description": "分析竞品数据",
825
+ "parameters": {
826
+ "category": {"type": "string", "required": True},
827
+ "country": {"type": "string", "default": "US"},
828
+ "limit": {"type": "integer", "default": 10}
829
+ }
830
+ },
831
+ {
832
+ "name": "generate_user_insights",
833
+ "description": "生成用户洞察报告",
834
+ "parameters": {
835
+ "app_id": {"type": "string", "required": True},
836
+ "analysis_type": {"type": "string", "enum": ["behavior", "demographics", "preferences"]}
837
+ }
838
+ }
839
+ ]
840
+ ```
841
+
842
+ ### 4.3 技术实现方案
843
+
844
+ #### 4.3.1 统一数据接口
845
+
846
+ ```python
847
+ from abc import ABC, abstractmethod
848
+ from typing import Dict, List, Optional
849
+ from dataclasses import dataclass
850
+ from datetime import datetime
851
+
852
+ @dataclass
853
+ class AppMetrics:
854
+ app_id: str
855
+ downloads: Optional[int]
856
+ revenue: Optional[float]
857
+ rating: Optional[float]
858
+ ranking: Optional[int]
859
+ timestamp: datetime
860
+
861
+ class DataAdapter(ABC):
862
+ @abstractmethod
863
+ async def get_app_metrics(self, app_id: str,
864
+ metrics: List[str]) -> AppMetrics:
865
+ pass
866
+
867
+ @abstractmethod
868
+ async def get_market_data(self, category: str,
869
+ country: str) -> Dict:
870
+ pass
871
+
872
+ class UnifiedDataInterface:
873
+ def __init__(self):
874
+ self.adapters: Dict[str, DataAdapter] = {}
875
+ self.cache = CacheManager()
876
+
877
+ def register_adapter(self, name: str, adapter: DataAdapter):
878
+ """注册数据适配器"""
879
+ self.adapters[name] = adapter
880
+
881
+ async def collect_data(self, sources: List[str],
882
+ request: DataRequest) -> Dict:
883
+ """统一数据收集接口"""
884
+ results = {}
885
+ tasks = []
886
+
887
+ for source in sources:
888
+ if source in self.adapters:
889
+ task = self._collect_from_source(source, request)
890
+ tasks.append(task)
891
+
892
+ # 并行收集数据
893
+ collected_data = await asyncio.gather(*tasks, return_exceptions=True)
894
+
895
+ # 处理结果
896
+ for i, source in enumerate(sources):
897
+ if not isinstance(collected_data[i], Exception):
898
+ results[source] = collected_data[i]
899
+ else:
900
+ logger.error(f"Failed to collect data from {source}: {collected_data[i]}")
901
+
902
+ return results
903
+ ```
904
+
905
+ #### 4.3.2 缓存和优化策略
906
+
907
+ ```python
908
+ import redis
909
+ from typing import Optional
910
+ import json
911
+ import hashlib
912
+
913
+ class CacheManager:
914
+ def __init__(self, redis_url: str = "redis://localhost:6379"):
915
+ self.redis_client = redis.from_url(redis_url)
916
+ self.default_ttl = 3600 # 1小时
917
+
918
+ def _generate_key(self, prefix: str, params: Dict) -> str:
919
+ """生成缓存键"""
920
+ params_str = json.dumps(params, sort_keys=True)
921
+ params_hash = hashlib.md5(params_str.encode()).hexdigest()
922
+ return f"{prefix}:{params_hash}"
923
+
924
+ async def get_cached_data(self, key: str) -> Optional[Dict]:
925
+ """获取缓存数据"""
926
+ try:
927
+ cached = self.redis_client.get(key)
928
+ if cached:
929
+ return json.loads(cached)
930
+ except Exception as e:
931
+ logger.error(f"Cache get error: {e}")
932
+ return None
933
+
934
+ async def cache_data(self, key: str, data: Dict, ttl: int = None):
935
+ """缓存数据"""
936
+ try:
937
+ ttl = ttl or self.default_ttl
938
+ self.redis_client.setex(key, ttl, json.dumps(data))
939
+ except Exception as e:
940
+ logger.error(f"Cache set error: {e}")
941
+
942
+ class SmartCacheDecorator:
943
+ def __init__(self, cache_manager: CacheManager, ttl: int = 3600):
944
+ self.cache_manager = cache_manager
945
+ self.ttl = ttl
946
+
947
+ def __call__(self, func):
948
+ async def wrapper(*args, **kwargs):
949
+ # 生成缓存键
950
+ cache_key = self.cache_manager._generate_key(
951
+ func.__name__,
952
+ {"args": args, "kwargs": kwargs}
953
+ )
954
+
955
+ # 尝试从缓存获取
956
+ cached_result = await self.cache_manager.get_cached_data(cache_key)
957
+ if cached_result:
958
+ return cached_result
959
+
960
+ # 执行函数并缓存结果
961
+ result = await func(*args, **kwargs)
962
+ await self.cache_manager.cache_data(cache_key, result, self.ttl)
963
+
964
+ return result
965
+ return wrapper
966
+ ```
967
+
968
+ ### 4.4 风险评估和应对策略
969
+
970
+ #### 4.4.1 技术风险
971
+
972
+ **API 依赖风险**
973
+
974
+ - **风险描述**:第三方 API 服务中断或变更
975
+ - **影响程度**:高 - 可能导致数据收集中断
976
+ - **应对策略**:
977
+ - 实现多数据源备份机制
978
+ - 建立 API 健康监控系统
979
+ - 设计降级方案,使用缓存数据
980
+
981
+ **数据质量风险**
982
+
983
+ - **风险描述**:数据源提供的数据质量不稳定
984
+ - **影响程度**:中 - 影响分析结果准确性
985
+ - **应对策略**:
986
+ - 实施多源数据交叉验证
987
+ - 建立数据质量评估机制
988
+ - 设置数据异常告警
989
+
990
+ #### 4.4.2 成本风险
991
+
992
+ **API 调用成本**
993
+
994
+ - **风险描述**:API 调用费用超出预算
995
+ - **影响程度**:中 - 影响项目可持续性
996
+ - **应对策略**:
997
+ - 实施智能缓存策略减少调用
998
+ - 设置调用量监控和预警
999
+ - 优化数据收集频率
1000
+
1001
+ **存储成本**
1002
+
1003
+ - **风险描述**:数据存储成本持续增长
1004
+ - **影响程度**:低 - 可通过优化控制
1005
+ - **应对策略**:
1006
+ - 实施数据生命周期管理
1007
+ - 使用数据压缩和归档
1008
+ - 定期清理过期数据
1009
+
1010
+ #### 4.4.3 合规风险
1011
+
1012
+ **数据隐私合规**
1013
+
1014
+ - **风险描述**:数据使用不符合隐私法规
1015
+ - **影响程度**:高 - 可能面临法律风险
1016
+ - **应对策略**:
1017
+ - 严格遵循数据使用协议
1018
+ - 实施数据脱敏处理
1019
+ - 建立合规审查流程
1020
+
1021
+ ## 5. 实施建议和路线图
1022
+
1023
+ ### 5.1 分阶段实施计划
1024
+
1025
+ #### 5.1.1 第一阶段:基础设施搭建(4-6周)
1026
+
1027
+ **核心目标**
1028
+
1029
+ - 建立基础的工具链架构
1030
+ - 完成核心数据适配器开发
1031
+ - 实现基础的 Prompt 模板系统
1032
+
1033
+ **具体任务**
1034
+
1035
+ 1. **架构设计确认**(1周)
1036
+ - 详细技术方案评审
1037
+ - 技术选型最终确认
1038
+ - 开发环境搭建
1039
+
1040
+ 2. **数据适配器开发**(2-3周)
1041
+ - SensorTower API 适配器
1042
+ - 七麦数据 API 适配器
1043
+ - 点点数据 API 适配器
1044
+ - 统一数据接口实现
1045
+
1046
+ 3. **Prompt 模板系统**(1-2周)
1047
+ - 模板管理器开发
1048
+ - 4个核心场景模板实现
1049
+ - 模板变量系统
1050
+
1051
+ #### 5.1.2 第二阶段:核心功能实现(6-8周)
1052
+
1053
+ **核心目标**
1054
+
1055
+ - 实现完整的工作流程编排
1056
+ - 集成 Gemini DeepResearch
1057
+ - 建立质量控制机制
1058
+
1059
+ **具体任务**
1060
+
1061
+ 1. **工作流程编排器**(2-3周)
1062
+ - 任务调度系统
1063
+ - 数据收集流程
1064
+ - 异常处理机制
1065
+
1066
+ 2. **AI 分析引擎集成**(2-3周)
1067
+ - Gemini DeepResearch API 集成
1068
+ - 结果解析和验证
1069
+ - 分析质量控制
1070
+
1071
+ 3. **MCP 服务器开发**(2周)
1072
+ - MCP 协议实现
1073
+ - 工具和资源注册
1074
+ - 客户端集成测试
1075
+
1076
+ #### 5.1.3 第三阶段:优化和扩展(4-6周)
1077
+
1078
+ **核心目标**
1079
+
1080
+ - 性能优化和稳定性提升
1081
+ - 用户界面和体验优化
1082
+ - 扩展功能开发
1083
+
1084
+ **具体任务**
1085
+
1086
+ 1. **性能优化**(2-3周)
1087
+ - 缓存策略优化
1088
+ - 并发处理优化
1089
+ - 资源使用优化
1090
+
1091
+ 2. **用户界面开发**(2-3周)
1092
+ - Web Dashboard 开发
1093
+ - CLI 工具完善
1094
+ - API Gateway 实现
1095
+
1096
+ ### 5.2 技术选型建议
1097
+
1098
+ #### 5.2.1 后端技术栈
1099
+
1100
+ **编程语言**:Python 3.9+
1101
+
1102
+ - 丰富的 AI/ML 生态系统
1103
+ - 优秀的异步编程支持
1104
+ - 成熟的 API 集成库
1105
+
1106
+ **Web 框架**:FastAPI
1107
+
1108
+ - 高性能异步框架
1109
+ - 自动 API 文档生成
1110
+ - 优秀的类型支持
1111
+
1112
+ **数据库**:
1113
+
1114
+ - **关系型**:PostgreSQL(结构化数据存储)
1115
+ - **缓存**:Redis(数据缓存和会话管理)
1116
+ - **文档型**:MongoDB(非结构化数据存储)
1117
+
1118
+ **消息队列**:Celery + Redis
1119
+
1120
+ - 异步任务处理
1121
+ - 分布式任务调度
1122
+ - 可靠的任务重试机制
1123
+
1124
+ #### 5.2.2 前端技术栈
1125
+
1126
+ **框架**:React + TypeScript
1127
+
1128
+ - 组件化开发
1129
+ - 强类型支持
1130
+ - 丰富的生态系统
1131
+
1132
+ **UI 库**:Ant Design
1133
+
1134
+ - 企业级 UI 组件
1135
+ - 完善的设计规范
1136
+ - 良好的可访问性
1137
+
1138
+ **状态管理**:Redux Toolkit
1139
+
1140
+ - 可预测的状态管理
1141
+ - 优秀的开发工具
1142
+ - 中间件支持
1143
+
1144
+ #### 5.2.3 部署和运维
1145
+
1146
+ **容器化**:Docker + Docker Compose
1147
+
1148
+ - 环境一致性
1149
+ - 简化部署流程
1150
+ - 便于扩展
1151
+
1152
+ **编排**:Kubernetes(生产环境)
1153
+
1154
+ - 自动扩缩容
1155
+ - 服务发现
1156
+ - 健康检查
1157
+
1158
+ **监控**:Prometheus + Grafana
1159
+
1160
+ - 指标收集和监控
1161
+ - 可视化仪表板
1162
+ - 告警机制
1163
+
1164
+ ### 5.3 团队配置建议
1165
+
1166
+ #### 5.3.1 核心团队结构
1167
+
1168
+ **技术负责人**(1人)
1169
+
1170
+ - 整体架构设计
1171
+ - 技术选型决策
1172
+ - 团队技术指导
1173
+
1174
+ **后端开发工程师**(2-3人)
1175
+
1176
+ - API 开发和集成
1177
+ - 数据处理逻辑
1178
+ - 系统性能优化
1179
+
1180
+ **前端开发工程师**(1-2人)
1181
+
1182
+ - 用户界面开发
1183
+ - 交互体验设计
1184
+ - 前后端联调
1185
+
1186
+ **数据工程师**(1人)
1187
+
1188
+ - 数据管道设计
1189
+ - 数据质量保证
1190
+ - 数据分析支持
1191
+
1192
+ **测试工程师**(1人)
1193
+
1194
+ - 测试用例设计
1195
+ - 自动化测试
1196
+ - 质量保证
1197
+
1198
+ #### 5.3.2 技能要求
1199
+
1200
+ **必备技能**
1201
+
1202
+ - Python 开发经验(3年+)
1203
+ - API 集成和开发经验
1204
+ - 数据处理和分析能力
1205
+ - 云服务使用经验
1206
+
1207
+ **优先技能**
1208
+
1209
+ - AI/ML 项目经验
1210
+ - 大数据处理经验
1211
+ - 微服务架构经验
1212
+ - DevOps 实践经验
1213
+
1214
+ ### 5.4 预算估算
1215
+
1216
+ #### 5.4.1 开发成本
1217
+
1218
+ **人力成本**(按6个月计算)
1219
+
1220
+ - 技术负责人:¥50,000/月 × 6 = ¥300,000
1221
+ - 后端工程师:¥35,000/月 × 3 × 6 = ¥630,000
1222
+ - 前端工程师:¥30,000/月 × 2 × 6 = ¥360,000
1223
+ - 数据工程师:¥40,000/月 × 6 = ¥240,000
1224
+ - 测试工程师:¥25,000/月 × 6 = ¥150,000
1225
+ - **小计**:¥1,680,000
1226
+
1227
+ #### 5.4.2 运营成本(年度)
1228
+
1229
+ **第三方服务费用**
1230
+
1231
+ - SensorTower API:$12,000/年
1232
+ - 七麦数据 API:¥60,000/年
1233
+ - 点点数据 API:¥40,000/年
1234
+ - Gemini API:$6,000/年
1235
+ - **小计**:约¥200,000/年
1236
+
1237
+ **基础设施费用**
1238
+
1239
+ - 云服务器:¥60,000/年
1240
+ - 数据库服务:¥30,000/年
1241
+ - CDN 和存储:¥20,000/年
1242
+ - 监控和日志:¥10,000/年
1243
+ - **小计**:¥120,000/年
1244
+
1245
+ **总运营成本**:约¥320,000/年
1246
+
1247
+ ## 6. 总结
1248
+
1249
+ ### 6.1 核心价值总结
1250
+
1251
+ 本架构设计通过整合 Gemini DeepResearch 和多个移动应用数据平台,构建了一个完整的智能化需求收集工具链,具有以下核心价值:
1252
+
1253
+ 1. **效率提升**:将传统需求收集时间从数周缩短至数天
1254
+ 2. **质量保证**:通过 AI 分析和多源数据验证,提高需求准确性
1255
+ 3. **成本优化**:减少人工调研投入,优化资源配置
1256
+ 4. **标准化流程**:建立可重复、可扩展的需求收集方法论
1257
+
1258
+ ### 6.2 技术创新点
1259
+
1260
+ 1. **统一数据接口**:解决多平台数据格式差异问题
1261
+ 2. **智能 Prompt 模板**:场景化的 AI 提示词模板系统
1262
+ 3. **质量控制机制**:多层次的数据和分析质量保证
1263
+ 4. **MCP 协议集成**:标准化的模型上下文协议支持
1264
+
1265
+ ### 6.3 实施建议
1266
+
1267
+ 1. **分阶段实施**:按照基础设施、核心功能、优化扩展的顺序推进
1268
+ 2. **技术选型**:采用成熟稳定的技术栈,确保项目可维护性
1269
+ 3. **团队配置**:组建跨领域团队,确保技术和业务需求平衡
1270
+ 4. **风险控制**:建立完善的风险识别和应对机制
1271
+
1272
+ 通过本架构设计的实施,将显著提升产品需求收集的效率和质量,为产品决策提供更加准确和及时的数据支撑。