@guru-ai-product/ai-product-kit 0.1.251112172507
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +107 -0
- package/bin/setup.js +89 -0
- package/package.json +24 -0
- package/skills/aipk_design/GURU_AI.md +10 -0
- package/skills/aipk_design/SKILL.md +33 -0
- package/skills/aipk_design/auto_panel_splitter/SKILL.md +360 -0
- package/skills/aipk_design/auto_panel_splitter/scripts/auto_panel_splitter.js +399 -0
- package/skills/aipk_design/auto_panel_splitter/scripts/panel_asset_mapper.js +445 -0
- package/skills/aipk_development/GURU_AI.md +8 -0
- package/skills/aipk_development/SKILL.md +20 -0
- package/skills/aipk_development/templates//345/256/236/346/226/275/350/256/241/345/210/222/346/226/207/346/241/243.md +302 -0
- package/skills/aipk_init_project/SKILL.md +188 -0
- package/skills/aipk_init_project/scripts/check_agents.sh +55 -0
- package/skills/aipk_init_project/template/AGENTS_TEMPLATE.md +138 -0
- package/skills/aipk_operations/GURU_AI.md +10 -0
- package/skills/aipk_operations/SKILL.md +37 -0
- package/skills/aipk_operations/aso_new_release/SKILL.md +84 -0
- package/skills/aipk_operations/aso_new_release/references/aso-update-notes-prompt.md +196 -0
- package/skills/aipk_operations/aso_new_release/references/aso-update-notes-template.md +162 -0
- package/skills/aipk_requirements/GURU_AI.md +39 -0
- package/skills/aipk_requirements/SKILL.md +243 -0
- package/skills/aipk_requirements/changes/SKILL.md +196 -0
- package/skills/aipk_requirements/changes/template/index.md +30 -0
- package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/346/226/207/346/241/243/346/250/241/346/235/277.md +576 -0
- package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/347/224/237/346/210/220Prompt.md +349 -0
- package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/347/224/237/346/210/220/346/214/207/345/215/227.md +292 -0
- package/skills/aipk_requirements/documentation/SKILL.md +930 -0
- package/skills/aipk_requirements/documentation/template/1_/344/272/247/345/223/201/345/256/232/344/275/215/344/270/216/345/210/206/346/236/220.md +86 -0
- package/skills/aipk_requirements/documentation/template/2_/345/212/237/350/203/275/351/234/200/346/261/202.md +67 -0
- package/skills/aipk_requirements/documentation/template/3_/345/225/206/344/270/232/345/214/226/347/255/226/347/225/245.md +131 -0
- package/skills/aipk_requirements/documentation/template/4_/347/224/250/346/210/267/347/225/214/351/235/242/344/270/216/344/275/223/351/252/214.md +665 -0
- package/skills/aipk_requirements/documentation/template/AI /345/272/224/347/224/250/347/261/273APP/351/200/232/347/224/250/345/237/213/347/202/271/346/226/207/346/241/243.xlsx +0 -0
- package/skills/aipk_requirements/documentation/template/Draft_/344/272/247/345/223/201/351/234/200/346/261/202/350/215/211/347/250/277.md +60 -0
- package/skills/aipk_requirements/documentation/template/Draft_/347/224/250/346/210/267/346/227/205/347/250/213/350/215/211/347/250/277.md +84 -0
- package/skills/aipk_requirements/documentation/template/index.md +83 -0
- package/skills/aipk_requirements/documentation/template//345/237/213/347/202/271/350/247/204/350/214/203/346/226/207/346/241/243.md +372 -0
- package/skills/aipk_requirements/documentation/template//351/234/200/346/261/202/350/277/255/344/273/243/346/250/241/346/235/277.md +821 -0
- package/skills/aipk_requirements/documentation/template//351/234/200/346/261/202/350/277/255/344/273/243/347/264/242/345/274/225.md +30 -0
- package/skills/aipk_requirements/initiative_planning/SKILL.md +407 -0
- package/skills/aipk_requirements/initiative_planning/template/SWOT/345/210/206/346/236/220/346/250/241/346/235/277.md +381 -0
- package/skills/aipk_requirements/initiative_planning/template//344/272/247/345/223/201/350/247/204/345/210/222/346/250/241/346/235/277.md +322 -0
- package/skills/aipk_requirements/initiative_planning/template//345/225/206/344/270/232/345/214/226/350/247/204/345/210/222/346/250/241/346/235/277.md +201 -0
- package/skills/aipk_requirements/initiative_planning/template//345/270/202/345/234/272/344/270/216/345/225/206/344/270/232/345/210/206/346/236/220/346/250/241/346/235/277.md +176 -0
- package/skills/aipk_requirements/initiative_planning/template//346/212/200/346/234/257/350/247/204/345/210/222/346/250/241/346/235/277.md +314 -0
- package/skills/aipk_requirements/intake/SKILL.md +260 -0
- package/skills/aipk_requirements/intake/examples/K12/346/225/260/345/255/246/345/255/246/344/271/240/345/272/224/347/224/250/346/241/210/344/276/213.md +371 -0
- package/skills/aipk_requirements/intake/examples//347/224/265/345/225/206/345/271/263/345/217/260/344/274/230/345/214/226/346/241/210/344/276/213.md +426 -0
- package/skills/aipk_requirements/intake/references/Gemini_DeepResearch_/345/267/245/345/205/267/351/223/276/346/225/264/345/220/210/346/236/266/346/236/204/350/256/276/350/256/241.md +1272 -0
- package/skills/aipk_requirements/intake/template//344/272/247/345/223/201/351/234/200/346/261/202/345/217/221/347/216/260/344/270/216/351/252/214/350/257/201/346/250/241/346/235/277.md +53 -0
- package/skills/aipk_requirements/intake/template//345/270/202/345/234/272/346/234/272/344/274/232/350/257/204/344/274/260/344/270/216/347/253/236/344/272/211/345/210/206/346/236/220/346/250/241/346/235/277.md +53 -0
- package/skills/aipk_requirements/intake/template//346/212/200/346/234/257/346/226/271/346/241/210/350/257/204/344/274/260/344/270/216/345/217/257/350/241/214/346/200/247/345/210/206/346/236/220/346/250/241/346/235/277.md +72 -0
- package/skills/aipk_requirements/intake/template//346/267/261/345/272/246/347/224/250/346/210/267/350/241/214/344/270/272/344/270/216/351/234/200/346/261/202/346/264/236/345/257/237/346/250/241/346/235/277.md +59 -0
- package/skills/aipk_requirements/review/SKILL.md +218 -0
- package/skills/aipk_skill_generate/GURU_AI.md +8 -0
- package/skills/aipk_skill_generate/SKILL.md +259 -0
- package/skills/aipk_skill_generate/agent_skills_spec.md +79 -0
- package/skills/aipk_tool_prompts/AI/344/275/223/351/252/214/350/256/276/350/256/241/346/214/207/345/215/227.md +93 -0
- package/skills/aipk_tool_prompts/GURU_AI.md +13 -0
- package/skills/aipk_tool_prompts/Prompt/347/224/237/346/210/220.md +20 -0
- package/skills/aipk_tool_prompts/SKILL.md +55 -0
- package/skills/aipk_tool_prompts/images/20250710200701.png +0 -0
- package/skills/aipk_tool_prompts/images/20250710200802.png +0 -0
- package/skills/aipk_tool_prompts//346/240/207/350/256/260/346/226/207/346/241/243/346/233/264/346/226/260.md +33 -0
- package/skills/aipk_tool_prompts//347/224/237/346/210/220DrawIO/346/226/207/346/241/243.md +45 -0
|
@@ -0,0 +1,426 @@
|
|
|
1
|
+
# 电商平台用户体验优化需求收集案例
|
|
2
|
+
|
|
3
|
+
## 案例概览
|
|
4
|
+
|
|
5
|
+
| 项目 | 内容 |
|
|
6
|
+
|------|------|
|
|
7
|
+
| 案例标题 | 电商平台用户体验优化需求收集 |
|
|
8
|
+
| 项目背景 | 移动电商平台,优化用户购物体验 |
|
|
9
|
+
| 研究目标 | 识别用户购物流程中的痛点和改进机会 |
|
|
10
|
+
| 使用模板 | 深度用户行为与需求洞察模板 |
|
|
11
|
+
| 分析时间 | 2025年1月 |
|
|
12
|
+
|
|
13
|
+
## 1. 需求明确阶段
|
|
14
|
+
|
|
15
|
+
### 1.1 研究问题定义
|
|
16
|
+
|
|
17
|
+
**核心研究问题**
|
|
18
|
+
- 用户在什么情况下会使用电商平台?触发因素是什么?
|
|
19
|
+
- 用户的典型购物流程和行为路径是怎样的?
|
|
20
|
+
- 用户在购物过程中遇到的主要痛点和障碍有哪些?
|
|
21
|
+
- 用户对现有购物体验的满意度如何?期望改进的地方是什么?
|
|
22
|
+
|
|
23
|
+
**研究范围确定**
|
|
24
|
+
- **平台类型**:综合性移动电商平台,涵盖服装、数码、家居等多个品类
|
|
25
|
+
- **用户规模**:月活跃用户2000万,注册用户8000万
|
|
26
|
+
- **业务现状**:用户增长放缓,转化率下降,用户流失率上升
|
|
27
|
+
- **竞争环境**:淘宝、京东、拼多多等头部平台竞争激烈
|
|
28
|
+
|
|
29
|
+
### 1.2 分析维度选择
|
|
30
|
+
|
|
31
|
+
**重点分析维度**
|
|
32
|
+
- **行为分析**:使用频率、时长、路径、偏好设置
|
|
33
|
+
- **痛点识别**:功能缺失、体验问题、性能瓶颈
|
|
34
|
+
- **需求挖掘**:显性需求、隐性需求、潜在需求
|
|
35
|
+
- **情感分析**:用户满意度、推荐意愿、品牌认知
|
|
36
|
+
|
|
37
|
+
**研究重点**
|
|
38
|
+
- 购物转化漏斗分析和优化机会
|
|
39
|
+
- 用户细分群体的差异化需求
|
|
40
|
+
- 移动端购物体验的关键痛点
|
|
41
|
+
|
|
42
|
+
## 2. 模板选择阶段
|
|
43
|
+
|
|
44
|
+
### 2.1 模板选择理由
|
|
45
|
+
|
|
46
|
+
选择**深度用户行为与需求洞察模板**的原因:
|
|
47
|
+
1. **行为导向**:重点分析用户在购物过程中的实际行为模式
|
|
48
|
+
2. **体验优化**:专注于识别和改善用户体验中的痛点
|
|
49
|
+
3. **需求洞察**:深入挖掘用户的显性和隐性需求
|
|
50
|
+
4. **数据驱动**:基于用户行为数据进行科学分析
|
|
51
|
+
|
|
52
|
+
### 2.2 模板适配调整
|
|
53
|
+
|
|
54
|
+
**针对电商平台的调整**:
|
|
55
|
+
- 强化购物转化漏斗的分析重点
|
|
56
|
+
- 增加不同用户类型的行为差异分析
|
|
57
|
+
- 重视移动端购物体验的特殊性
|
|
58
|
+
- 考虑商业化和用户体验的平衡
|
|
59
|
+
|
|
60
|
+
## 3. 数据收集阶段
|
|
61
|
+
|
|
62
|
+
### 3.1 SensorTower数据收集
|
|
63
|
+
|
|
64
|
+
**收集内容**:
|
|
65
|
+
- 电商应用市场整体表现和趋势
|
|
66
|
+
- 竞品下载量、用户留存、收入表现
|
|
67
|
+
- 用户会话时长和使用频率
|
|
68
|
+
- 应用内购买转化率数据
|
|
69
|
+
|
|
70
|
+
**具体数据示例**:
|
|
71
|
+
```
|
|
72
|
+
电商应用市场表现:
|
|
73
|
+
- 电商类应用总下载量:月均2.5亿次
|
|
74
|
+
- 用户留存率:次日留存65%,7日留存35%,30日留存18%
|
|
75
|
+
- 应用内购买转化率:行业平均2.5-4.2%
|
|
76
|
+
- 用户会话时长:平均12-18分钟
|
|
77
|
+
|
|
78
|
+
竞品对比分析:
|
|
79
|
+
| 平台名称 | 月活用户 | 转化率 | 用户评分 | 核心优势 |
|
|
80
|
+
|----------|----------|--------|----------|----------|
|
|
81
|
+
| 淘宝 | 8.5亿 | 4.1% | 4.3 | 商品丰富、生态完善 |
|
|
82
|
+
| 京东 | 5.2亿 | 3.8% | 4.2 | 物流快速、品质保证 |
|
|
83
|
+
| 拼多多 | 7.8亿 | 3.5% | 4.0 | 价格优势、社交电商 |
|
|
84
|
+
| 目标平台 | 2000万 | 2.8% | 3.9 | 品类精选、服务优质 |
|
|
85
|
+
|
|
86
|
+
关键发现:
|
|
87
|
+
- 目标平台转化率明显低于行业平均水平
|
|
88
|
+
- 用户评分处于中等水平,有提升空间
|
|
89
|
+
- 月活用户规模相对较小,增长潜力大
|
|
90
|
+
```
|
|
91
|
+
|
|
92
|
+
**数据洞察**:
|
|
93
|
+
- 转化率是关键短板,需要重点优化
|
|
94
|
+
- 用户体验满意度有待提升
|
|
95
|
+
- 与头部平台存在明显差距
|
|
96
|
+
|
|
97
|
+
### 3.2 七麦数据收集
|
|
98
|
+
|
|
99
|
+
**收集内容**:
|
|
100
|
+
- 电商相关关键词的搜索表现
|
|
101
|
+
- 用户评论的情感分析和内容挖掘
|
|
102
|
+
- 应用商店排名变化趋势
|
|
103
|
+
- 用户反馈的具体问题和建议
|
|
104
|
+
|
|
105
|
+
**具体数据示例**:
|
|
106
|
+
```
|
|
107
|
+
关键词表现分析:
|
|
108
|
+
- "网上购物":搜索热度9.8/10,竞争激烈度9.5/10
|
|
109
|
+
- "品质购物":搜索热度6.5/10,竞争激烈度7.2/10,机会较大
|
|
110
|
+
- "快速购物":搜索热度7.2/10,竞争激烈度8.1/10
|
|
111
|
+
- "优惠购物":搜索热度8.9/10,竞争激烈度9.0/10
|
|
112
|
+
|
|
113
|
+
用户评论情感分析:
|
|
114
|
+
正面评论(占比45%):
|
|
115
|
+
- "商品质量不错,客服响应很快"
|
|
116
|
+
- "界面设计简洁,操作比较方便"
|
|
117
|
+
- "物流速度可以,包装也很好"
|
|
118
|
+
- "优惠活动比较多,价格实惠"
|
|
119
|
+
|
|
120
|
+
负面评论(占比35%):
|
|
121
|
+
- "搜索功能不好用,找不到想要的商品"
|
|
122
|
+
- "购物车操作复杂,结算流程太繁琐"
|
|
123
|
+
- "推荐的商品不符合我的喜好"
|
|
124
|
+
- "页面加载慢,经常卡顿"
|
|
125
|
+
- "客服回复慢,售后处理不及时"
|
|
126
|
+
|
|
127
|
+
中性评论(占比20%):
|
|
128
|
+
- "功能一般,没有特别突出的地方"
|
|
129
|
+
- "体验平平,和其他平台差不多"
|
|
130
|
+
|
|
131
|
+
核心痛点识别:
|
|
132
|
+
1. 搜索功能不精准,用户需要多次筛选才能找到目标商品
|
|
133
|
+
2. 购物车和结算流程步骤过多,操作繁琐影响转化
|
|
134
|
+
3. 个性化推荐效果差,用户兴趣匹配度低
|
|
135
|
+
4. 页面性能问题,加载速度慢影响浏览体验
|
|
136
|
+
5. 客服响应和售后服务效率有待提升
|
|
137
|
+
```
|
|
138
|
+
|
|
139
|
+
**数据洞察**:
|
|
140
|
+
- 搜索和推荐功能是用户最不满意的环节
|
|
141
|
+
- 购物流程复杂是影响转化的主要因素
|
|
142
|
+
- 性能问题直接影响用户体验
|
|
143
|
+
|
|
144
|
+
### 3.3 点点数据收集
|
|
145
|
+
|
|
146
|
+
**收集内容**:
|
|
147
|
+
- 用户购物行为路径和转化数据
|
|
148
|
+
- 不同功能模块的使用情况
|
|
149
|
+
- 用户细分群体的行为特征
|
|
150
|
+
- 关键页面的停留时间和跳出率
|
|
151
|
+
|
|
152
|
+
**具体数据示例**:
|
|
153
|
+
```
|
|
154
|
+
用户行为路径分析:
|
|
155
|
+
购物转化漏斗:
|
|
156
|
+
首页浏览 → 商品搜索 → 商品详情 → 加入购物车 → 结算支付
|
|
157
|
+
100% → 78% → 45% → 28% → 12%
|
|
158
|
+
|
|
159
|
+
关键流失节点:
|
|
160
|
+
1. 搜索到详情页:流失率33%
|
|
161
|
+
- 主要原因:搜索结果不匹配用户需求
|
|
162
|
+
- 用户行为:多次修改搜索词,最终放弃
|
|
163
|
+
|
|
164
|
+
2. 详情页到购物车:流失率38%
|
|
165
|
+
- 主要原因:商品信息不够详细,价格不满意
|
|
166
|
+
- 用户行为:浏览多个商品对比,犹豫不决
|
|
167
|
+
|
|
168
|
+
3. 购物车到支付:流失率57%
|
|
169
|
+
- 主要原因:结算流程复杂,支付方式有限
|
|
170
|
+
- 用户行为:在结算页面停留时间长,最终放弃
|
|
171
|
+
|
|
172
|
+
用户细分画像:
|
|
173
|
+
价格敏感型用户(占比40%):
|
|
174
|
+
- 行为特征:关注优惠活动,比价行为明显
|
|
175
|
+
- 购物偏好:优先选择促销商品,客单价较低
|
|
176
|
+
- 痛点:希望更多优惠信息,价格对比功能
|
|
177
|
+
|
|
178
|
+
品质追求型用户(占比35%):
|
|
179
|
+
- 行为特征:注重商品质量和品牌,客单价较高
|
|
180
|
+
- 购物偏好:关注商品评价和详细信息
|
|
181
|
+
- 痛点:需要更详细的商品介绍和真实评价
|
|
182
|
+
|
|
183
|
+
便利导向型用户(占比25%):
|
|
184
|
+
- 行为特征:追求购物效率,偏好一键购买
|
|
185
|
+
- 购物偏好:快速决策,重复购买率高
|
|
186
|
+
- 痛点:希望简化购物流程,提升操作效率
|
|
187
|
+
|
|
188
|
+
功能使用热力图:
|
|
189
|
+
| 功能名称 | 使用率 | 满意度 | 平均使用时长 | 重复使用率 |
|
|
190
|
+
|----------|--------|--------|--------------|------------|
|
|
191
|
+
| 商品搜索 | 95% | 72% | 2.3分钟 | 85% |
|
|
192
|
+
| 商品推荐 | 68% | 58% | 1.8分钟 | 45% |
|
|
193
|
+
| 购物车 | 85% | 65% | 3.2分钟 | 78% |
|
|
194
|
+
| 收藏夹 | 45% | 78% | 1.5分钟 | 92% |
|
|
195
|
+
| 评价系统 | 89% | 71% | 2.1分钟 | 23% |
|
|
196
|
+
| 客服咨询 | 32% | 62% | 5.8分钟 | 35% |
|
|
197
|
+
|
|
198
|
+
页面性能数据:
|
|
199
|
+
- 首页加载时间:平均3.2秒(目标<2秒)
|
|
200
|
+
- 搜索结果页加载:平均2.8秒(目标<1.5秒)
|
|
201
|
+
- 商品详情页加载:平均4.1秒(目标<2.5秒)
|
|
202
|
+
- 购物车页面响应:平均1.9秒(目标<1秒)
|
|
203
|
+
```
|
|
204
|
+
|
|
205
|
+
**行为分析发现**:
|
|
206
|
+
- 搜索是最高频使用功能,但满意度偏低
|
|
207
|
+
- 收藏功能使用率低但用户粘性最高
|
|
208
|
+
- 页面加载速度普遍超出用户期望
|
|
209
|
+
- 不同用户群体的需求差异明显
|
|
210
|
+
|
|
211
|
+
## 4. Prompt构建阶段
|
|
212
|
+
|
|
213
|
+
### 4.1 完整Prompt结构
|
|
214
|
+
|
|
215
|
+
基于**深度用户行为与需求洞察模板**和收集的三大平台数据,构建如下Prompt:
|
|
216
|
+
|
|
217
|
+
```markdown
|
|
218
|
+
# 深度用户行为与需求洞察 - Gemini DeepResearch 研究任务
|
|
219
|
+
|
|
220
|
+
## 🎯 研究目标
|
|
221
|
+
深入理解电商平台用户的购物行为模式、痛点和未满足需求,为产品设计和功能优化提供数据驱动的洞察。
|
|
222
|
+
|
|
223
|
+
## 📋 背景信息
|
|
224
|
+
### 用户背景
|
|
225
|
+
- **目标用户群体**:移动电商平台用户,包括价格敏感型、品质追求型、便利导向型
|
|
226
|
+
- **使用场景**:日常购物、节日采购、冲动消费、比价购买
|
|
227
|
+
- **当前解决方案**:综合性移动电商平台,涵盖多品类商品
|
|
228
|
+
- **研究重点**:购物转化优化、用户体验提升、个性化服务
|
|
229
|
+
|
|
230
|
+
## 🔍 研究范围
|
|
231
|
+
### 核心研究问题
|
|
232
|
+
1. 用户在什么情况下会使用电商平台?触发因素是什么?
|
|
233
|
+
2. 用户的典型购物流程和行为路径是怎样的?
|
|
234
|
+
3. 用户在购物过程中遇到的主要痛点和障碍有哪些?
|
|
235
|
+
4. 用户对现有购物体验的满意度如何?期望改进的地方是什么?
|
|
236
|
+
|
|
237
|
+
### 分析维度
|
|
238
|
+
- **行为分析**:使用频率、时长、路径、偏好设置
|
|
239
|
+
- **痛点识别**:功能缺失、体验问题、性能瓶颈
|
|
240
|
+
- **需求挖掘**:显性需求、隐性需求、潜在需求
|
|
241
|
+
- **情感分析**:用户满意度、推荐意愿、品牌认知
|
|
242
|
+
|
|
243
|
+
## 📊 数据基础
|
|
244
|
+
|
|
245
|
+
### SensorTower市场数据
|
|
246
|
+
**电商应用市场表现**:
|
|
247
|
+
- 电商类应用总下载量:月均2.5亿次
|
|
248
|
+
- 用户留存率:次日留存65%,7日留存35%,30日留存18%
|
|
249
|
+
- 应用内购买转化率:行业平均2.5-4.2%
|
|
250
|
+
- 用户会话时长:平均12-18分钟
|
|
251
|
+
|
|
252
|
+
**竞品对比分析**:
|
|
253
|
+
- 淘宝:月活8.5亿,转化率4.1%,评分4.3,优势:商品丰富、生态完善
|
|
254
|
+
- 京东:月活5.2亿,转化率3.8%,评分4.2,优势:物流快速、品质保证
|
|
255
|
+
- 拼多多:月活7.8亿,转化率3.5%,评分4.0,优势:价格优势、社交电商
|
|
256
|
+
- 目标平台:月活2000万,转化率2.8%,评分3.9,优势:品类精选、服务优质
|
|
257
|
+
|
|
258
|
+
### 七麦用户反馈数据
|
|
259
|
+
**关键词表现**:
|
|
260
|
+
- "网上购物":搜索热度9.8/10,竞争激烈度9.5/10
|
|
261
|
+
- "品质购物":搜索热度6.5/10,竞争激烈度7.2/10,机会较大
|
|
262
|
+
- "快速购物":搜索热度7.2/10,竞争激烈度8.1/10
|
|
263
|
+
- "优惠购物":搜索热度8.9/10,竞争激烈度9.0/10
|
|
264
|
+
|
|
265
|
+
**用户评论情感分析**:
|
|
266
|
+
- 正面评论(45%):商品质量好、客服响应快、界面简洁、优惠活动多
|
|
267
|
+
- 负面评论(35%):搜索不准确、结算流程复杂、推荐不精准、页面加载慢
|
|
268
|
+
- 中性评论(20%):功能一般、体验平平
|
|
269
|
+
|
|
270
|
+
**核心痛点识别**:
|
|
271
|
+
1. 商品搜索结果不精准,用户需要多次筛选
|
|
272
|
+
2. 购物车和结算流程步骤过多,操作繁琐
|
|
273
|
+
3. 个性化推荐效果差,用户兴趣匹配度低
|
|
274
|
+
4. 页面加载速度慢,影响浏览体验
|
|
275
|
+
5. 客服响应和售后服务效率有待提升
|
|
276
|
+
|
|
277
|
+
### 点点数据用户行为
|
|
278
|
+
**用户行为路径分析**:
|
|
279
|
+
购物转化漏斗:首页浏览(100%) → 商品搜索(78%) → 商品详情(45%) → 加入购物车(28%) → 结算支付(12%)
|
|
280
|
+
|
|
281
|
+
**关键流失节点**:
|
|
282
|
+
1. 搜索到详情页:流失率33%,主要原因是搜索结果不匹配
|
|
283
|
+
2. 详情页到购物车:流失率38%,商品信息不够详细或价格不满意
|
|
284
|
+
3. 购物车到支付:流失率57%,结算流程复杂,支付方式有限
|
|
285
|
+
|
|
286
|
+
**用户细分画像**:
|
|
287
|
+
- 价格敏感型(40%):关注优惠活动,比价行为明显,客单价较低
|
|
288
|
+
- 品质追求型(35%):注重商品质量和品牌,客单价较高,关注评价
|
|
289
|
+
- 便利导向型(25%):追求购物效率,偏好一键购买,重复购买率高
|
|
290
|
+
|
|
291
|
+
**功能使用数据**:
|
|
292
|
+
- 商品搜索:使用率95%,满意度72%,平均使用2.3分钟
|
|
293
|
+
- 商品推荐:使用率68%,满意度58%,平均使用1.8分钟
|
|
294
|
+
- 购物车:使用率85%,满意度65%,平均使用3.2分钟
|
|
295
|
+
- 收藏夹:使用率45%,满意度78%,重复使用率92%
|
|
296
|
+
- 评价系统:查看率89%,满意度71%,参与率23%
|
|
297
|
+
|
|
298
|
+
**页面性能数据**:
|
|
299
|
+
- 首页加载时间:3.2秒(目标<2秒)
|
|
300
|
+
- 搜索结果页:2.8秒(目标<1.5秒)
|
|
301
|
+
- 商品详情页:4.1秒(目标<2.5秒)
|
|
302
|
+
|
|
303
|
+
## 📊 特定分析要求
|
|
304
|
+
### 用户行为数据分析
|
|
305
|
+
- 分析用户留存率和流失原因的深层次因素
|
|
306
|
+
- 研究用户活跃度和参与度指标的影响因素
|
|
307
|
+
- 识别关键用户行为和转化漏斗的优化机会
|
|
308
|
+
|
|
309
|
+
### 用户反馈深度挖掘
|
|
310
|
+
- 收集和分析用户评价、评论和反馈的情感倾向
|
|
311
|
+
- 识别高频提及的问题和建议的优先级
|
|
312
|
+
- 分析用户满意度变化趋势和影响因素
|
|
313
|
+
|
|
314
|
+
### 竞品用户体验对比
|
|
315
|
+
- 对比分析不同电商平台的用户体验优劣
|
|
316
|
+
- 识别用户在不同平台间的迁移模式和原因
|
|
317
|
+
- 分析用户选择平台的决策因素和关键触点
|
|
318
|
+
|
|
319
|
+
## 📈 输出要求
|
|
320
|
+
### 用户洞察报告
|
|
321
|
+
1. **用户画像**:详细的用户特征和行为模式分析
|
|
322
|
+
2. **用户旅程地图**:完整的购物体验流程和关键触点
|
|
323
|
+
3. **痛点分析**:优先级排序的问题清单和影响评估
|
|
324
|
+
4. **需求洞察**:未满足需求和机会点识别
|
|
325
|
+
|
|
326
|
+
### 产品建议
|
|
327
|
+
- 基于用户洞察的功能优化建议
|
|
328
|
+
- 用户体验改进的具体方案和优先级
|
|
329
|
+
- 新功能开发的建议和可行性评估
|
|
330
|
+
- 用户获取和留存策略的优化建议
|
|
331
|
+
|
|
332
|
+
## 🎯 关键成功指标
|
|
333
|
+
- 用户需求覆盖的完整性和准确性
|
|
334
|
+
- 洞察的可操作性和实用性
|
|
335
|
+
- 数据来源的多样性和可靠性
|
|
336
|
+
- 建议的可行性和预期效果
|
|
337
|
+
|
|
338
|
+
请基于以上信息进行深度分析,重点关注购物转化优化和用户体验提升的机会点。
|
|
339
|
+
```
|
|
340
|
+
|
|
341
|
+
### 4.2 Prompt优化要点
|
|
342
|
+
|
|
343
|
+
**数据整合策略**:
|
|
344
|
+
- 将市场数据、用户反馈、行为数据有机结合
|
|
345
|
+
- 突出转化漏斗中的关键问题和机会点
|
|
346
|
+
- 保持数据的完整性和分析的连贯性
|
|
347
|
+
|
|
348
|
+
**分析重点突出**:
|
|
349
|
+
- 明确购物体验优化的核心目标
|
|
350
|
+
- 强调用户行为和需求的深度洞察
|
|
351
|
+
- 提供具体可操作的改进建议
|
|
352
|
+
|
|
353
|
+
**实用性导向**:
|
|
354
|
+
- 确保分析结果直接指向产品优化
|
|
355
|
+
- 提供清晰的优先级和实施建议
|
|
356
|
+
- 包含效果评估和验证方法
|
|
357
|
+
|
|
358
|
+
## 5. Gemini DeepResearch分析结果
|
|
359
|
+
|
|
360
|
+
*此部分为Gemini DeepResearch的分析输出,具体报告内容将在后续补充*
|
|
361
|
+
|
|
362
|
+
### 5.1 预期报告结构
|
|
363
|
+
|
|
364
|
+
**用户体验痛点深度分析**:
|
|
365
|
+
- 搜索体验问题的根本原因分析
|
|
366
|
+
- 购物流程复杂性的具体表现
|
|
367
|
+
- 个性化推荐不足的影响评估
|
|
368
|
+
- 页面性能问题的用户体验影响
|
|
369
|
+
|
|
370
|
+
**优化机会识别**:
|
|
371
|
+
- 短期优化机会(1-3个月)
|
|
372
|
+
- 中期优化机会(3-6个月)
|
|
373
|
+
- 长期优化机会(6-12个月)
|
|
374
|
+
- 技术架构升级建议
|
|
375
|
+
|
|
376
|
+
**用户需求洞察**:
|
|
377
|
+
- 不同用户群体的差异化需求
|
|
378
|
+
- 隐性需求和潜在机会识别
|
|
379
|
+
- 竞品对比和差异化策略
|
|
380
|
+
- 商业价值和实现难度评估
|
|
381
|
+
|
|
382
|
+
### 5.2 主要分析维度
|
|
383
|
+
|
|
384
|
+
- **转化优化**:基于漏斗分析提出具体优化方案
|
|
385
|
+
- **体验提升**:从用户角度识别关键体验改进点
|
|
386
|
+
- **个性化**:基于用户画像提供个性化服务建议
|
|
387
|
+
- **技术优化**:针对性能问题提出技术解决方案
|
|
388
|
+
|
|
389
|
+
## 6. 结果验证与应用
|
|
390
|
+
|
|
391
|
+
### 6.1 验证方法
|
|
392
|
+
|
|
393
|
+
**用户访谈验证**:
|
|
394
|
+
- 目标用户:30名活跃用户(不同类型用户各10名)
|
|
395
|
+
- 访谈重点:购物体验痛点、功能期望、改进建议
|
|
396
|
+
- 验证指标:需求确认度、改进方案接受度
|
|
397
|
+
|
|
398
|
+
**A/B测试验证**:
|
|
399
|
+
- 搜索结果页优化测试
|
|
400
|
+
- 购物车页面简化测试
|
|
401
|
+
- 个性化推荐优化测试
|
|
402
|
+
- 页面性能优化测试
|
|
403
|
+
|
|
404
|
+
### 6.2 应用建议
|
|
405
|
+
|
|
406
|
+
**产品优化**:
|
|
407
|
+
- 基于用户行为数据优化产品功能
|
|
408
|
+
- 制定分阶段的体验改进计划
|
|
409
|
+
- 建立用户反馈收集和响应机制
|
|
410
|
+
|
|
411
|
+
**运营策略**:
|
|
412
|
+
- 针对不同用户群体制定差异化策略
|
|
413
|
+
- 优化用户获取和留存方案
|
|
414
|
+
- 建立数据驱动的运营决策机制
|
|
415
|
+
|
|
416
|
+
## 总结
|
|
417
|
+
|
|
418
|
+
本案例展示了需求收集工具在电商平台优化中的完整应用流程,通过**深度用户行为与需求洞察模板**结合**SensorTower、七麦、点点数据**的综合分析,构建了针对用户购物体验优化的深度研究Prompt。
|
|
419
|
+
|
|
420
|
+
**核心价值**:
|
|
421
|
+
1. **行为导向**:基于真实用户行为数据进行深度分析
|
|
422
|
+
2. **痛点聚焦**:精准识别影响转化和体验的关键问题
|
|
423
|
+
3. **数据驱动**:整合多维度数据提供科学决策依据
|
|
424
|
+
4. **实操指导**:提供具体的优化方案和实施路径
|
|
425
|
+
|
|
426
|
+
通过这一流程,能够系统性地识别电商平台用户体验的改进机会,为产品优化和业务增长提供有力支撑。
|