@guru-ai-product/ai-product-kit 0.1.251112172507
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +107 -0
- package/bin/setup.js +89 -0
- package/package.json +24 -0
- package/skills/aipk_design/GURU_AI.md +10 -0
- package/skills/aipk_design/SKILL.md +33 -0
- package/skills/aipk_design/auto_panel_splitter/SKILL.md +360 -0
- package/skills/aipk_design/auto_panel_splitter/scripts/auto_panel_splitter.js +399 -0
- package/skills/aipk_design/auto_panel_splitter/scripts/panel_asset_mapper.js +445 -0
- package/skills/aipk_development/GURU_AI.md +8 -0
- package/skills/aipk_development/SKILL.md +20 -0
- package/skills/aipk_development/templates//345/256/236/346/226/275/350/256/241/345/210/222/346/226/207/346/241/243.md +302 -0
- package/skills/aipk_init_project/SKILL.md +188 -0
- package/skills/aipk_init_project/scripts/check_agents.sh +55 -0
- package/skills/aipk_init_project/template/AGENTS_TEMPLATE.md +138 -0
- package/skills/aipk_operations/GURU_AI.md +10 -0
- package/skills/aipk_operations/SKILL.md +37 -0
- package/skills/aipk_operations/aso_new_release/SKILL.md +84 -0
- package/skills/aipk_operations/aso_new_release/references/aso-update-notes-prompt.md +196 -0
- package/skills/aipk_operations/aso_new_release/references/aso-update-notes-template.md +162 -0
- package/skills/aipk_requirements/GURU_AI.md +39 -0
- package/skills/aipk_requirements/SKILL.md +243 -0
- package/skills/aipk_requirements/changes/SKILL.md +196 -0
- package/skills/aipk_requirements/changes/template/index.md +30 -0
- package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/346/226/207/346/241/243/346/250/241/346/235/277.md +576 -0
- package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/347/224/237/346/210/220Prompt.md +349 -0
- package/skills/aipk_requirements/changes/template//351/234/200/346/261/202/345/217/230/345/212/250/350/257/264/346/230/216/347/224/237/346/210/220/346/214/207/345/215/227.md +292 -0
- package/skills/aipk_requirements/documentation/SKILL.md +930 -0
- package/skills/aipk_requirements/documentation/template/1_/344/272/247/345/223/201/345/256/232/344/275/215/344/270/216/345/210/206/346/236/220.md +86 -0
- package/skills/aipk_requirements/documentation/template/2_/345/212/237/350/203/275/351/234/200/346/261/202.md +67 -0
- package/skills/aipk_requirements/documentation/template/3_/345/225/206/344/270/232/345/214/226/347/255/226/347/225/245.md +131 -0
- package/skills/aipk_requirements/documentation/template/4_/347/224/250/346/210/267/347/225/214/351/235/242/344/270/216/344/275/223/351/252/214.md +665 -0
- package/skills/aipk_requirements/documentation/template/AI /345/272/224/347/224/250/347/261/273APP/351/200/232/347/224/250/345/237/213/347/202/271/346/226/207/346/241/243.xlsx +0 -0
- package/skills/aipk_requirements/documentation/template/Draft_/344/272/247/345/223/201/351/234/200/346/261/202/350/215/211/347/250/277.md +60 -0
- package/skills/aipk_requirements/documentation/template/Draft_/347/224/250/346/210/267/346/227/205/347/250/213/350/215/211/347/250/277.md +84 -0
- package/skills/aipk_requirements/documentation/template/index.md +83 -0
- package/skills/aipk_requirements/documentation/template//345/237/213/347/202/271/350/247/204/350/214/203/346/226/207/346/241/243.md +372 -0
- package/skills/aipk_requirements/documentation/template//351/234/200/346/261/202/350/277/255/344/273/243/346/250/241/346/235/277.md +821 -0
- package/skills/aipk_requirements/documentation/template//351/234/200/346/261/202/350/277/255/344/273/243/347/264/242/345/274/225.md +30 -0
- package/skills/aipk_requirements/initiative_planning/SKILL.md +407 -0
- package/skills/aipk_requirements/initiative_planning/template/SWOT/345/210/206/346/236/220/346/250/241/346/235/277.md +381 -0
- package/skills/aipk_requirements/initiative_planning/template//344/272/247/345/223/201/350/247/204/345/210/222/346/250/241/346/235/277.md +322 -0
- package/skills/aipk_requirements/initiative_planning/template//345/225/206/344/270/232/345/214/226/350/247/204/345/210/222/346/250/241/346/235/277.md +201 -0
- package/skills/aipk_requirements/initiative_planning/template//345/270/202/345/234/272/344/270/216/345/225/206/344/270/232/345/210/206/346/236/220/346/250/241/346/235/277.md +176 -0
- package/skills/aipk_requirements/initiative_planning/template//346/212/200/346/234/257/350/247/204/345/210/222/346/250/241/346/235/277.md +314 -0
- package/skills/aipk_requirements/intake/SKILL.md +260 -0
- package/skills/aipk_requirements/intake/examples/K12/346/225/260/345/255/246/345/255/246/344/271/240/345/272/224/347/224/250/346/241/210/344/276/213.md +371 -0
- package/skills/aipk_requirements/intake/examples//347/224/265/345/225/206/345/271/263/345/217/260/344/274/230/345/214/226/346/241/210/344/276/213.md +426 -0
- package/skills/aipk_requirements/intake/references/Gemini_DeepResearch_/345/267/245/345/205/267/351/223/276/346/225/264/345/220/210/346/236/266/346/236/204/350/256/276/350/256/241.md +1272 -0
- package/skills/aipk_requirements/intake/template//344/272/247/345/223/201/351/234/200/346/261/202/345/217/221/347/216/260/344/270/216/351/252/214/350/257/201/346/250/241/346/235/277.md +53 -0
- package/skills/aipk_requirements/intake/template//345/270/202/345/234/272/346/234/272/344/274/232/350/257/204/344/274/260/344/270/216/347/253/236/344/272/211/345/210/206/346/236/220/346/250/241/346/235/277.md +53 -0
- package/skills/aipk_requirements/intake/template//346/212/200/346/234/257/346/226/271/346/241/210/350/257/204/344/274/260/344/270/216/345/217/257/350/241/214/346/200/247/345/210/206/346/236/220/346/250/241/346/235/277.md +72 -0
- package/skills/aipk_requirements/intake/template//346/267/261/345/272/246/347/224/250/346/210/267/350/241/214/344/270/272/344/270/216/351/234/200/346/261/202/346/264/236/345/257/237/346/250/241/346/235/277.md +59 -0
- package/skills/aipk_requirements/review/SKILL.md +218 -0
- package/skills/aipk_skill_generate/GURU_AI.md +8 -0
- package/skills/aipk_skill_generate/SKILL.md +259 -0
- package/skills/aipk_skill_generate/agent_skills_spec.md +79 -0
- package/skills/aipk_tool_prompts/AI/344/275/223/351/252/214/350/256/276/350/256/241/346/214/207/345/215/227.md +93 -0
- package/skills/aipk_tool_prompts/GURU_AI.md +13 -0
- package/skills/aipk_tool_prompts/Prompt/347/224/237/346/210/220.md +20 -0
- package/skills/aipk_tool_prompts/SKILL.md +55 -0
- package/skills/aipk_tool_prompts/images/20250710200701.png +0 -0
- package/skills/aipk_tool_prompts/images/20250710200802.png +0 -0
- package/skills/aipk_tool_prompts//346/240/207/350/256/260/346/226/207/346/241/243/346/233/264/346/226/260.md +33 -0
- package/skills/aipk_tool_prompts//347/224/237/346/210/220DrawIO/346/226/207/346/241/243.md +45 -0
|
@@ -0,0 +1,260 @@
|
|
|
1
|
+
---
|
|
2
|
+
name: requirements-intake
|
|
3
|
+
description: Intelligent intake pipeline for gathering and consolidating product requirements from multiple sources.
|
|
4
|
+
---
|
|
5
|
+
|
|
6
|
+
# 需求收集
|
|
7
|
+
|
|
8
|
+
> 🚀 **智能需求收集工具链** - 整合Gemini DeepResearch与多平台数据,实现高效、准确的产品需求收集
|
|
9
|
+
|
|
10
|
+
## 📋 文档信息
|
|
11
|
+
|
|
12
|
+
| 项目 | 内容 |
|
|
13
|
+
|------|------|
|
|
14
|
+
| 版本号 | v1.2 |
|
|
15
|
+
| 适用范围 | 产品团队、需求分析师、产品经理、市场研究员、UX研究员 |
|
|
16
|
+
|
|
17
|
+
## 🎯 工具价值
|
|
18
|
+
|
|
19
|
+
本需求收集工具链通过整合 **Gemini DeepResearch** 和多个移动应用数据平台,构建了智能化的需求收集解决方案:
|
|
20
|
+
|
|
21
|
+
- **效率提升**:将传统需求收集时间从数周缩短至数天
|
|
22
|
+
- **质量保证**:通过 AI 分析和多源数据验证,提高需求准确性
|
|
23
|
+
- **成本优化**:减少人工调研投入,优化资源配置
|
|
24
|
+
- **标准化流程**:建立可重复、可扩展的需求收集方法论
|
|
25
|
+
|
|
26
|
+
## 🛠️ 核心工具
|
|
27
|
+
|
|
28
|
+
### Gemini DeepResearch
|
|
29
|
+
|
|
30
|
+
- AI 驱动的深度研究分析
|
|
31
|
+
- 多源信息整合和洞察提取
|
|
32
|
+
- 结构化报告生成
|
|
33
|
+
- 自然语言交互界面
|
|
34
|
+
|
|
35
|
+
### 移动应用数据平台
|
|
36
|
+
|
|
37
|
+
**SensorTower**
|
|
38
|
+
|
|
39
|
+
- 全球应用商店数据覆盖
|
|
40
|
+
- 下载量、收入、排名、用户评论分析
|
|
41
|
+
- 市场趋势分析和竞品监控
|
|
42
|
+
|
|
43
|
+
**七麦数据**
|
|
44
|
+
|
|
45
|
+
- 中国区应用商店数据专业分析
|
|
46
|
+
- ASO 关键词和排名变化追踪
|
|
47
|
+
- 本土化分析和优化建议
|
|
48
|
+
|
|
49
|
+
**点点数据**
|
|
50
|
+
|
|
51
|
+
- 用户行为和功能使用数据
|
|
52
|
+
- 用户画像、行为路径、功能矩阵分析
|
|
53
|
+
- 用户细分和行为预测
|
|
54
|
+
|
|
55
|
+
## 🔄 使用流程
|
|
56
|
+
|
|
57
|
+
### 步骤 1:需求明确
|
|
58
|
+
|
|
59
|
+
1. **定义研究问题**:明确要解决的核心问题,设定可衡量的成功指标
|
|
60
|
+
2. **确定研究范围**:选择目标用户群体,确定产品类别和市场范围
|
|
61
|
+
3. **选择分析维度**:用户需求分析、市场机会评估、竞争格局分析、技术可行性评估
|
|
62
|
+
|
|
63
|
+
### 步骤 2:模板选择
|
|
64
|
+
|
|
65
|
+
根据研究目标选择合适的分析模板:
|
|
66
|
+
|
|
67
|
+
- 产品需求发现与验证 → 新产品需求挖掘
|
|
68
|
+
- 市场机会评估与竞争分析 → 市场进入决策
|
|
69
|
+
- 深度用户行为与需求洞察 → 用户体验优化
|
|
70
|
+
- 技术方案评估与可行性分析 → 技术选型决策
|
|
71
|
+
|
|
72
|
+
### 步骤 3:数据收集
|
|
73
|
+
|
|
74
|
+
并行收集多平台数据:
|
|
75
|
+
|
|
76
|
+
- **SensorTower**:应用基础信息、排名趋势、竞品对比
|
|
77
|
+
- **七麦数据**:关键词排名、用户评论、本地化数据
|
|
78
|
+
- **点点数据**:用户画像、行为路径、功能使用情况
|
|
79
|
+
|
|
80
|
+
### 步骤 4:Prompt 构建
|
|
81
|
+
|
|
82
|
+
构建结构化的分析提示:
|
|
83
|
+
|
|
84
|
+
```markdown
|
|
85
|
+
[选定的模板内容]
|
|
86
|
+
## 数据上下文
|
|
87
|
+
[整理的多平台关键数据]
|
|
88
|
+
## 具体分析要求
|
|
89
|
+
[根据研究目标定制的分析要求]
|
|
90
|
+
```
|
|
91
|
+
|
|
92
|
+
### 步骤 5:AI 分析
|
|
93
|
+
|
|
94
|
+
- 实时监控分析进度
|
|
95
|
+
- 检查中间结果质量
|
|
96
|
+
- 必要时调整分析参数
|
|
97
|
+
|
|
98
|
+
### 步骤 6:结果验证
|
|
99
|
+
|
|
100
|
+
- 数据一致性检查
|
|
101
|
+
- 逻辑合理性验证
|
|
102
|
+
- 建议可执行性评估
|
|
103
|
+
|
|
104
|
+
### 步骤 7:报告生成
|
|
105
|
+
|
|
106
|
+
生成包含执行摘要、详细分析、数据支撑和行动建议的完整报告。
|
|
107
|
+
|
|
108
|
+
## 📚 模板库
|
|
109
|
+
|
|
110
|
+
### 产品需求发现与验证模板
|
|
111
|
+
|
|
112
|
+
**适用场景**:新产品需求挖掘、功能验证
|
|
113
|
+
**主要输出**:需求地图、痛点分析、验证建议
|
|
114
|
+
详见:[template/产品需求发现与验证模板.md](./template/产品需求发现与验证模板.md)
|
|
115
|
+
|
|
116
|
+
### 市场机会评估与竞争分析模板
|
|
117
|
+
|
|
118
|
+
**适用场景**:市场进入决策、竞争策略制定
|
|
119
|
+
**主要输出**:市场分析、竞争矩阵、机会识别
|
|
120
|
+
详见:[template/市场机会评估与竞争分析模板.md](./template/市场机会评估与竞争分析模板.md)
|
|
121
|
+
|
|
122
|
+
### 深度用户行为与需求洞察模板
|
|
123
|
+
|
|
124
|
+
**适用场景**:用户体验优化、行为分析
|
|
125
|
+
**主要输出**:用户画像、体验地图、行为洞察
|
|
126
|
+
详见:[template/深度用户行为与需求洞察模板.md](./template/深度用户行为与需求洞察模板.md)
|
|
127
|
+
|
|
128
|
+
### 技术方案评估与可行性分析模板
|
|
129
|
+
|
|
130
|
+
**适用场景**:技术选型、架构设计
|
|
131
|
+
**主要输出**:技术评估、实施建议、风险分析
|
|
132
|
+
详见:[template/技术方案评估与可行性分析模板.md](./template/技术方案评估与可行性分析模板.md)
|
|
133
|
+
|
|
134
|
+
## 💡 最佳实践
|
|
135
|
+
|
|
136
|
+
### 数据收集最佳实践
|
|
137
|
+
|
|
138
|
+
- 选择合适的时间范围
|
|
139
|
+
- 并行收集多平台数据提高效率
|
|
140
|
+
- 关注季节性变化和特殊事件影响
|
|
141
|
+
- 重点分析本土化功能需求(七麦数据)
|
|
142
|
+
- 追踪完整的用户转化路径(点点数据)
|
|
143
|
+
|
|
144
|
+
### Prompt 优化最佳实践
|
|
145
|
+
|
|
146
|
+
- 使用具体而非抽象的描述
|
|
147
|
+
- 提供充分的背景信息和上下文
|
|
148
|
+
- 明确分析的重点和预期输出
|
|
149
|
+
- 根据研究目标定制分析要求
|
|
150
|
+
|
|
151
|
+
### 效率优化技巧
|
|
152
|
+
|
|
153
|
+
- 使用数据缓存减少重复请求
|
|
154
|
+
- 聚焦核心指标,避免收集无关数据
|
|
155
|
+
- 设置合理的数据时间范围
|
|
156
|
+
- 建立标准化的数据收集流程
|
|
157
|
+
|
|
158
|
+
### 质量优化技巧
|
|
159
|
+
|
|
160
|
+
- 实施多源数据交叉验证
|
|
161
|
+
- 建立数据质量评估标准
|
|
162
|
+
- 设置异常数据自动检测机制
|
|
163
|
+
- 维护数据来源的可追溯性
|
|
164
|
+
|
|
165
|
+
## ❓ 常见问题
|
|
166
|
+
|
|
167
|
+
### 工具使用问题
|
|
168
|
+
|
|
169
|
+
**Q1:如何选择合适的分析模板?**
|
|
170
|
+
A:根据研究目标选择:
|
|
171
|
+
|
|
172
|
+
- 需求发现 → 产品需求发现与验证模板
|
|
173
|
+
- 市场分析 → 市场机会评估与竞争分析模板
|
|
174
|
+
- 用户研究 → 深度用户行为与需求洞察模板
|
|
175
|
+
- 技术评估 → 技术方案评估与可行性分析模板
|
|
176
|
+
|
|
177
|
+
**Q2:数据收集时间过长怎么办?**
|
|
178
|
+
A:优化策略:
|
|
179
|
+
|
|
180
|
+
- 并行收集多平台数据
|
|
181
|
+
- 使用数据缓存减少重复请求
|
|
182
|
+
- 聚焦核心指标,避免收集无关数据
|
|
183
|
+
- 设置合理的数据时间范围
|
|
184
|
+
|
|
185
|
+
**Q3:AI 分析结果质量不佳如何处理?**
|
|
186
|
+
A:改进方法:
|
|
187
|
+
|
|
188
|
+
- 检查 Prompt 是否包含足够的上下文信息
|
|
189
|
+
- 验证输入数据的质量和完整性
|
|
190
|
+
- 调整分析要求的具体性和明确性
|
|
191
|
+
- 必要时重新构建 Prompt 并再次分析
|
|
192
|
+
|
|
193
|
+
### 数据质量问题
|
|
194
|
+
|
|
195
|
+
**Q4:不同平台数据不一致怎么办?**
|
|
196
|
+
A:处理方法:
|
|
197
|
+
|
|
198
|
+
- 分析数据差异的原因(统计方法、时间范围等)
|
|
199
|
+
- 选择最可靠的数据源作为主要参考
|
|
200
|
+
- 在分析中明确说明数据来源和限制
|
|
201
|
+
- 使用趋势数据而非绝对数值进行分析
|
|
202
|
+
|
|
203
|
+
**Q5:如何确保数据的时效性?**
|
|
204
|
+
A:管理策略:
|
|
205
|
+
|
|
206
|
+
- 设置数据更新提醒机制
|
|
207
|
+
- 定期检查数据源的更新频率
|
|
208
|
+
- 在报告中明确标注数据的时间范围
|
|
209
|
+
- 对于快速变化的市场,增加数据收集频率
|
|
210
|
+
|
|
211
|
+
### 成本控制问题
|
|
212
|
+
|
|
213
|
+
**Q6:API 调用成本过高如何控制?**
|
|
214
|
+
A:优化方案:
|
|
215
|
+
|
|
216
|
+
- 实施智能缓存策略,避免重复调用
|
|
217
|
+
- 设置调用量监控和预警机制
|
|
218
|
+
- 优化数据收集的频率和范围
|
|
219
|
+
- 选择性使用高成本的深度分析功能
|
|
220
|
+
|
|
221
|
+
## 📊 工具对比表
|
|
222
|
+
|
|
223
|
+
| 工具 | 数据覆盖 | 核心优势 | 适用场景 | 成本水平 |
|
|
224
|
+
|------|----------|----------|----------|----------|
|
|
225
|
+
| SensorTower | 全球应用商店 | 市场数据权威 | 全球市场分析 | 高 |
|
|
226
|
+
| 七麦数据 | 中国区应用商店 | 本土化深度 | 中国市场分析 | 中 |
|
|
227
|
+
| 点点数据 | 用户行为数据 | 行为洞察深入 | 用户体验优化 | 中 |
|
|
228
|
+
| Gemini DeepResearch | AI 分析能力 | 智能洞察生成 | 复杂分析任务 | 低 |
|
|
229
|
+
|
|
230
|
+
## 🔗 相关资源
|
|
231
|
+
|
|
232
|
+
### 参考文档
|
|
233
|
+
|
|
234
|
+
- [需求文档](../documentation/SKILL.md)
|
|
235
|
+
- [需求文档模板](../documentation/template/)
|
|
236
|
+
- [指南文档规范](../../../docs/guide_writing_standard/SKILL.md)
|
|
237
|
+
|
|
238
|
+
### 案例学习
|
|
239
|
+
|
|
240
|
+
- [K12数学学习应用案例](./examples/K12数学学习应用案例.md)
|
|
241
|
+
- [电商平台优化案例](./examples/电商平台优化案例.md)
|
|
242
|
+
|
|
243
|
+
### 官方文档
|
|
244
|
+
|
|
245
|
+
- [SensorTower API 文档](https://sensortower.com/api)
|
|
246
|
+
- [七麦数据 API 文档](https://www.qimai.cn/api)
|
|
247
|
+
- [Gemini API 文档](https://ai.google.dev/docs)
|
|
248
|
+
|
|
249
|
+
## 📞 获取帮助
|
|
250
|
+
|
|
251
|
+
如遇到问题,请参考:
|
|
252
|
+
|
|
253
|
+
1. 本文档中的常见问题部分
|
|
254
|
+
2. 查看相关案例文档
|
|
255
|
+
3. 联系技术支持团队
|
|
256
|
+
|
|
257
|
+
---
|
|
258
|
+
|
|
259
|
+
**最后更新**:2025-08-01
|
|
260
|
+
**版本**:v1.2
|
|
@@ -0,0 +1,371 @@
|
|
|
1
|
+
# K12数学学习应用需求收集案例
|
|
2
|
+
|
|
3
|
+
## 案例概览
|
|
4
|
+
|
|
5
|
+
| 项目 | 内容 |
|
|
6
|
+
|------|------|
|
|
7
|
+
| 案例标题 | K12数学学习应用需求收集 |
|
|
8
|
+
| 项目背景 | 在线教育移动应用,目标中国K12教育市场 |
|
|
9
|
+
| 研究目标 | 发现数学学习辅助功能的需求机会 |
|
|
10
|
+
| 使用模板 | 产品需求发现与验证模板 |
|
|
11
|
+
| 分析时间 | 2025年1月 |
|
|
12
|
+
|
|
13
|
+
## 1. 需求明确阶段
|
|
14
|
+
|
|
15
|
+
### 1.1 研究问题定义
|
|
16
|
+
|
|
17
|
+
**核心研究问题**
|
|
18
|
+
|
|
19
|
+
- 目标用户群体在数学学习中的核心痛点和未被满足的需求是什么?
|
|
20
|
+
- 现有数学学习应用的不足之处在哪里?
|
|
21
|
+
- 用户对新功能或改进的接受度和期望如何?
|
|
22
|
+
- 不同年龄段学生的数学学习需求差异是什么?
|
|
23
|
+
|
|
24
|
+
**研究范围确定**
|
|
25
|
+
|
|
26
|
+
- **目标用户**:小学3年级至高中3年级学生及其家长
|
|
27
|
+
- **产品类型**:移动端数学学习辅助应用
|
|
28
|
+
- **竞争环境**:作业帮、猿辅导、学而思网校等头部产品
|
|
29
|
+
- **研究重点**:个性化学习、学习效果提升、家校协同
|
|
30
|
+
|
|
31
|
+
### 1.2 分析维度选择
|
|
32
|
+
|
|
33
|
+
**重点分析维度**
|
|
34
|
+
|
|
35
|
+
- **用户行为模式**:使用场景、频率、学习习惯
|
|
36
|
+
- **痛点层次分析**:表面痛点 vs 深层需求
|
|
37
|
+
- **解决方案评估**:现有产品的优缺点分析
|
|
38
|
+
- **需求优先级**:基于用户价值和实现难度的排序
|
|
39
|
+
|
|
40
|
+
## 2. 模板选择阶段
|
|
41
|
+
|
|
42
|
+
### 2.1 模板选择理由
|
|
43
|
+
|
|
44
|
+
选择**产品需求发现与验证模板**的原因:
|
|
45
|
+
|
|
46
|
+
1. **需求导向**:项目重点在于发现未被满足的用户需求
|
|
47
|
+
2. **验证机制**:需要验证产品假设和功能需求的可行性
|
|
48
|
+
3. **用户价值**:强调从用户角度挖掘真实需求和痛点
|
|
49
|
+
4. **市场机会**:识别竞品空白和创新机会点
|
|
50
|
+
|
|
51
|
+
### 2.2 模板适配调整
|
|
52
|
+
|
|
53
|
+
**针对K12教育领域的调整**:
|
|
54
|
+
|
|
55
|
+
- 增加家长用户群体的需求分析
|
|
56
|
+
- 强化学习效果和进度跟踪的重要性
|
|
57
|
+
- 考虑教育政策和监管要求
|
|
58
|
+
- 重视安全性和隐私保护
|
|
59
|
+
|
|
60
|
+
## 3. 数据收集阶段
|
|
61
|
+
|
|
62
|
+
### 3.1 SensorTower数据收集
|
|
63
|
+
|
|
64
|
+
**收集内容**:
|
|
65
|
+
|
|
66
|
+
- 教育类应用市场规模和增长趋势
|
|
67
|
+
- 竞品下载量、收入排名、用户评分
|
|
68
|
+
- 用户留存率和生命周期数据
|
|
69
|
+
- 付费转化率和ARPU值
|
|
70
|
+
|
|
71
|
+
**具体数据示例**:
|
|
72
|
+
|
|
73
|
+
```
|
|
74
|
+
市场规模数据:
|
|
75
|
+
- 教育类应用月活跃用户:1.2亿+
|
|
76
|
+
- 数学学习类应用下载量:月均500万次
|
|
77
|
+
- 用户付费转化率:8-12%
|
|
78
|
+
- 平均用户生命周期:6-8个月
|
|
79
|
+
|
|
80
|
+
竞品表现分析:
|
|
81
|
+
| 应用名称 | 月下载量 | 收入排名 | 用户评分 | 主要功能 |
|
|
82
|
+
|----------|----------|----------|----------|----------|
|
|
83
|
+
| 作业帮 | 800万 | Top 5 | 4.2 | 拍照搜题、直播课 |
|
|
84
|
+
| 猿辅导 | 600万 | Top 3 | 4.3 | 在线辅导、练习 |
|
|
85
|
+
| 学而思网校 | 400万 | Top 8 | 4.1 | 系统课程、测评 |
|
|
86
|
+
```
|
|
87
|
+
|
|
88
|
+
**关键指标分析**:
|
|
89
|
+
|
|
90
|
+
- 头部产品占据主要市场份额
|
|
91
|
+
- 用户对拍照搜题功能依赖度高
|
|
92
|
+
- 付费转化主要集中在课程和个性化服务
|
|
93
|
+
|
|
94
|
+
### 3.2 七麦数据收集
|
|
95
|
+
|
|
96
|
+
**收集内容**:
|
|
97
|
+
|
|
98
|
+
- 关键词搜索热度和竞争激烈度
|
|
99
|
+
- 用户评论情感分析和高频词汇
|
|
100
|
+
- 应用商店排名变化趋势
|
|
101
|
+
- 用户反馈的功能需求和痛点
|
|
102
|
+
|
|
103
|
+
**具体数据示例**:
|
|
104
|
+
|
|
105
|
+
```
|
|
106
|
+
关键词排名表现:
|
|
107
|
+
- "数学学习":竞争激烈度9.2/10,搜索热度8.8/10
|
|
108
|
+
- "小学数学":竞争激烈度8.5/10,搜索热度8.5/10
|
|
109
|
+
- "数学作业":竞争激烈度7.8/10,转化率较高
|
|
110
|
+
- "数学游戏":竞争激烈度5.2/10,蓝海关键词
|
|
111
|
+
|
|
112
|
+
用户评论洞察:
|
|
113
|
+
正面反馈(占比45%):
|
|
114
|
+
- "拍照搜题很方便,解题步骤详细"
|
|
115
|
+
- "界面简洁,孩子容易上手"
|
|
116
|
+
- "老师讲解清晰,知识点覆盖全面"
|
|
117
|
+
|
|
118
|
+
负面反馈(占比35%):
|
|
119
|
+
- "广告太多,影响学习体验"
|
|
120
|
+
- "付费内容比例过高,免费功能有限"
|
|
121
|
+
- "缺乏个性化推荐,题目重复度高"
|
|
122
|
+
- "错题本功能不够智能"
|
|
123
|
+
|
|
124
|
+
功能需求(占比20%):
|
|
125
|
+
- "希望增加学习进度跟踪"
|
|
126
|
+
- "需要家长监督功能"
|
|
127
|
+
- "想要更多互动式学习内容"
|
|
128
|
+
```
|
|
129
|
+
|
|
130
|
+
**数据洞察**:
|
|
131
|
+
|
|
132
|
+
- 用户对基础功能满意度较高,但对个性化需求强烈
|
|
133
|
+
- 广告和付费模式是主要不满点
|
|
134
|
+
- 家长参与度和学习效果跟踪是重要需求
|
|
135
|
+
|
|
136
|
+
### 3.3 点点数据收集
|
|
137
|
+
|
|
138
|
+
**收集内容**:
|
|
139
|
+
|
|
140
|
+
- 用户行为路径和转化漏斗
|
|
141
|
+
- 功能使用频率和满意度
|
|
142
|
+
- 用户画像和细分群体特征
|
|
143
|
+
- 使用时间分布和场景分析
|
|
144
|
+
|
|
145
|
+
**具体数据示例**:
|
|
146
|
+
|
|
147
|
+
```
|
|
148
|
+
用户画像特征:
|
|
149
|
+
学生用户(主要使用者):
|
|
150
|
+
- 年龄分布:12-16岁占70%,8-11岁占30%
|
|
151
|
+
- 使用时间:晚上7-10点为高峰期
|
|
152
|
+
- 使用场景:作业辅导(45%)、课前预习(25%)、考试复习(30%)
|
|
153
|
+
|
|
154
|
+
家长用户(决策者):
|
|
155
|
+
- 年龄分布:30-45岁占85%
|
|
156
|
+
- 关注重点:学习效果反馈、进度跟踪、安全性
|
|
157
|
+
- 付费意愿:对提升成绩的功能付费意愿强
|
|
158
|
+
|
|
159
|
+
核心功能使用数据:
|
|
160
|
+
| 功能名称 | 日均使用次数 | 用户满意度 | 完成率 | 重复使用率 |
|
|
161
|
+
|----------|--------------|------------|--------|------------|
|
|
162
|
+
| 拍照搜题 | 3.2次 | 85% | 92% | 78% |
|
|
163
|
+
| 视频讲解 | 1.8次 | 78% | 62% | 35% |
|
|
164
|
+
| 练习题库 | 2.1次 | 72% | 78% | 45% |
|
|
165
|
+
| 错题收集 | 0.8次 | 65% | 23% | 68% |
|
|
166
|
+
| 学习报告 | 0.3次 | 58% | 15% | 25% |
|
|
167
|
+
```
|
|
168
|
+
|
|
169
|
+
**行为分析发现**:
|
|
170
|
+
|
|
171
|
+
- 拍照搜题是核心入口功能,使用频率最高
|
|
172
|
+
- 错题收集使用率低但用户粘性高,存在优化空间
|
|
173
|
+
- 学习报告功能被忽视,需要重新设计展示方式
|
|
174
|
+
|
|
175
|
+
## 4. Prompt构建阶段
|
|
176
|
+
|
|
177
|
+
### 4.1 完整Prompt结构
|
|
178
|
+
|
|
179
|
+
基于**产品需求发现与验证模板**和收集的三大平台数据,构建如下Prompt:
|
|
180
|
+
|
|
181
|
+
```markdown
|
|
182
|
+
# 产品需求发现与验证 - Gemini DeepResearch 研究任务
|
|
183
|
+
|
|
184
|
+
## 🎯 研究目标
|
|
185
|
+
深度挖掘K12数学学习应用领域的用户需求,验证产品假设,识别未被满足的需求机会。
|
|
186
|
+
|
|
187
|
+
## 📋 背景信息
|
|
188
|
+
### 产品背景
|
|
189
|
+
- **产品类型**:移动端K12数学学习辅助应用
|
|
190
|
+
- **目标用户**:小学3年级至高中3年级学生及其家长
|
|
191
|
+
- **当前阶段**:需求发现和产品定义阶段
|
|
192
|
+
- **核心假设**:个性化学习和家校协同是提升数学学习效果的关键
|
|
193
|
+
|
|
194
|
+
## 🔍 研究范围
|
|
195
|
+
### 核心研究问题
|
|
196
|
+
1. 目标用户群体在数学学习中的核心痛点和未被满足的需求是什么?
|
|
197
|
+
2. 现有数学学习应用的不足之处在哪里?
|
|
198
|
+
3. 用户对新功能或改进的接受度和期望如何?
|
|
199
|
+
4. 不同年龄段学生的数学学习需求差异是什么?
|
|
200
|
+
|
|
201
|
+
### 重点分析维度
|
|
202
|
+
- **用户行为模式**:使用场景、频率、学习习惯
|
|
203
|
+
- **痛点层次分析**:表面痛点 vs 深层需求
|
|
204
|
+
- **解决方案评估**:现有产品的优缺点分析
|
|
205
|
+
- **需求优先级**:基于用户价值和实现难度的排序
|
|
206
|
+
|
|
207
|
+
## 📊 数据基础
|
|
208
|
+
|
|
209
|
+
### SensorTower市场数据
|
|
210
|
+
**市场规模**:
|
|
211
|
+
- 教育类应用月活跃用户:1.2亿+
|
|
212
|
+
- 数学学习类应用下载量:月均500万次
|
|
213
|
+
- 用户付费转化率:8-12%
|
|
214
|
+
- 平均用户生命周期:6-8个月
|
|
215
|
+
|
|
216
|
+
**竞品表现**:
|
|
217
|
+
- 作业帮:月下载量800万,收入排名Top 5,评分4.2,主打拍照搜题+直播课
|
|
218
|
+
- 猿辅导:月下载量600万,收入排名Top 3,评分4.3,主打在线辅导+练习
|
|
219
|
+
- 学而思网校:月下载量400万,收入排名Top 8,评分4.1,主打系统课程+测评
|
|
220
|
+
|
|
221
|
+
### 七麦用户反馈数据
|
|
222
|
+
**关键词表现**:
|
|
223
|
+
- "数学学习":竞争激烈度9.2/10,搜索热度8.8/10
|
|
224
|
+
- "小学数学":竞争激烈度8.5/10,搜索热度8.5/10
|
|
225
|
+
- "数学游戏":竞争激烈度5.2/10,蓝海机会
|
|
226
|
+
|
|
227
|
+
**用户评论洞察**:
|
|
228
|
+
- 正面反馈(45%):拍照搜题便捷、解题步骤详细、界面友好
|
|
229
|
+
- 负面反馈(35%):广告过多、付费内容比例高、缺乏个性化推荐
|
|
230
|
+
- 功能需求(20%):错题本、学习进度跟踪、家长监督功能
|
|
231
|
+
|
|
232
|
+
### 点点数据用户行为
|
|
233
|
+
**用户画像**:
|
|
234
|
+
- 学生用户:12-16岁占70%,使用时间集中在晚上7-10点
|
|
235
|
+
- 家长用户:30-45岁占85%,关注学习效果和进度反馈
|
|
236
|
+
- 使用场景:作业辅导(45%)、课前预习(25%)、考试复习(30%)
|
|
237
|
+
|
|
238
|
+
**功能使用数据**:
|
|
239
|
+
- 拍照搜题:日均3.2次,满意度85%,完成率92%
|
|
240
|
+
- 视频讲解:日均1.8次,满意度78%,完播率62%
|
|
241
|
+
- 练习题库:日均2.1次,满意度72%,完成率78%
|
|
242
|
+
- 错题收集:日均0.8次,满意度65%,使用率23%但粘性高
|
|
243
|
+
|
|
244
|
+
## 📈 分析要求
|
|
245
|
+
### 用户反馈分析
|
|
246
|
+
- 分析应用商店评论中的高频关键词和情感倾向
|
|
247
|
+
- 识别用户投诉和建议的主要类别
|
|
248
|
+
- 提取用户对竞品功能的评价和期望
|
|
249
|
+
|
|
250
|
+
### 行为数据洞察
|
|
251
|
+
- 分析用户留存率和活跃度数据的影响因素
|
|
252
|
+
- 识别用户流失的关键节点和原因
|
|
253
|
+
- 研究成功产品的用户增长模式
|
|
254
|
+
|
|
255
|
+
### 市场机会识别
|
|
256
|
+
- 对比分析不同产品的功能覆盖度
|
|
257
|
+
- 识别功能空白和创新机会
|
|
258
|
+
- 评估新需求的市场规模和可行性
|
|
259
|
+
|
|
260
|
+
## 📋 输出要求
|
|
261
|
+
### 需求分析报告
|
|
262
|
+
1. **用户需求地图**:按优先级和实现难度的需求矩阵
|
|
263
|
+
2. **痛点分析**:详细的用户痛点分类和影响评估
|
|
264
|
+
3. **机会识别**:具体的产品改进和创新机会
|
|
265
|
+
4. **验证建议**:需求验证的具体方法和指标
|
|
266
|
+
|
|
267
|
+
### 可执行建议
|
|
268
|
+
- 优先开发的功能列表及理由
|
|
269
|
+
- 用户研究的具体执行计划
|
|
270
|
+
- 产品迭代的时间线和里程碑
|
|
271
|
+
- 风险评估和应对策略
|
|
272
|
+
|
|
273
|
+
请基于以上信息进行深度分析,重点关注个性化学习和家校协同的需求机会。
|
|
274
|
+
```
|
|
275
|
+
|
|
276
|
+
### 4.2 Prompt优化要点
|
|
277
|
+
|
|
278
|
+
**数据整合**:
|
|
279
|
+
|
|
280
|
+
- 将三个平台的数据有机整合,避免重复
|
|
281
|
+
- 突出关键数据指标,支撑分析结论
|
|
282
|
+
- 保持数据的时效性和准确性
|
|
283
|
+
|
|
284
|
+
**分析导向**:
|
|
285
|
+
|
|
286
|
+
- 明确分析目标和重点方向
|
|
287
|
+
- 提供具体的分析维度和方法
|
|
288
|
+
- 设定清晰的输出要求和格式
|
|
289
|
+
|
|
290
|
+
**实用性**:
|
|
291
|
+
|
|
292
|
+
- 确保分析结果可操作、可验证
|
|
293
|
+
- 提供具体的功能建议和优先级
|
|
294
|
+
- 包含风险评估和应对策略
|
|
295
|
+
|
|
296
|
+
## 5. Gemini DeepResearch分析结果
|
|
297
|
+
|
|
298
|
+
*此部分为Gemini DeepResearch的分析输出,具体报告内容将在后续补充*
|
|
299
|
+
|
|
300
|
+
### 5.1 预期报告结构
|
|
301
|
+
|
|
302
|
+
**用户需求洞察**:
|
|
303
|
+
|
|
304
|
+
- 个性化学习路径需求分析
|
|
305
|
+
- 家校协同功能需求识别
|
|
306
|
+
- 游戏化学习体验需求评估
|
|
307
|
+
- 学习效果跟踪需求验证
|
|
308
|
+
|
|
309
|
+
**市场机会分析**:
|
|
310
|
+
|
|
311
|
+
- 竞品功能空白点识别
|
|
312
|
+
- 技术创新机会评估
|
|
313
|
+
- 商业模式优化建议
|
|
314
|
+
- 差异化竞争策略
|
|
315
|
+
|
|
316
|
+
**产品建议**:
|
|
317
|
+
|
|
318
|
+
- 核心功能优先级排序
|
|
319
|
+
- 用户体验优化方案
|
|
320
|
+
- 技术实现可行性分析
|
|
321
|
+
- 商业化路径规划
|
|
322
|
+
|
|
323
|
+
### 5.2 主要分析维度
|
|
324
|
+
|
|
325
|
+
- **需求验证**:通过多维度数据交叉验证需求真实性
|
|
326
|
+
- **机会评估**:基于市场数据评估需求的商业价值
|
|
327
|
+
- **竞争分析**:识别竞品薄弱环节和差异化机会
|
|
328
|
+
- **技术可行性**:评估需求实现的技术难度和成本
|
|
329
|
+
|
|
330
|
+
## 6. 结果验证与应用
|
|
331
|
+
|
|
332
|
+
### 6.1 验证方法
|
|
333
|
+
|
|
334
|
+
**用户访谈验证**:
|
|
335
|
+
|
|
336
|
+
- 目标用户:20名学生 + 20名家长
|
|
337
|
+
- 访谈重点:需求确认、功能期望、付费意愿
|
|
338
|
+
- 验证指标:需求确认度、功能接受度、使用意愿
|
|
339
|
+
|
|
340
|
+
**原型测试验证**:
|
|
341
|
+
|
|
342
|
+
- 核心功能原型设计和测试
|
|
343
|
+
- 用户体验评估和反馈收集
|
|
344
|
+
- 功能完成率和满意度测试
|
|
345
|
+
|
|
346
|
+
### 6.2 应用建议
|
|
347
|
+
|
|
348
|
+
**产品规划**:
|
|
349
|
+
|
|
350
|
+
- 基于需求优先级制定产品路线图
|
|
351
|
+
- 确定MVP功能范围和开发计划
|
|
352
|
+
- 建立需求跟踪和验证机制
|
|
353
|
+
|
|
354
|
+
**市场策略**:
|
|
355
|
+
|
|
356
|
+
- 制定差异化定位和竞争策略
|
|
357
|
+
- 确定目标用户获取和留存方案
|
|
358
|
+
- 设计合适的商业模式和定价策略
|
|
359
|
+
|
|
360
|
+
## 总结
|
|
361
|
+
|
|
362
|
+
本案例展示了需求收集工具的完整使用流程,通过**产品需求发现与验证模板**结合**SensorTower、七麦、点点数据**的数据收集,构建了针对K12数学学习应用的深度分析Prompt。
|
|
363
|
+
|
|
364
|
+
**核心价值**:
|
|
365
|
+
|
|
366
|
+
1. **系统性**:覆盖了从需求明确到结果应用的完整流程
|
|
367
|
+
2. **数据驱动**:基于真实的市场和用户数据进行分析
|
|
368
|
+
3. **实操性**:提供了具体的操作步骤和工具使用方法
|
|
369
|
+
4. **可验证**:建立了需求验证和效果评估机制
|
|
370
|
+
|
|
371
|
+
通过这一流程,能够有效识别K12数学学习领域的真实需求和市场机会,为产品开发提供科学的决策依据。
|