whispercpp 1.2.0.2 → 1.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +46 -86
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -7
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/ggml/include/ggml.h +2285 -0
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/include/whisper.h +672 -0
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1608 -159
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/src/whisper.cpp +7393 -0
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -8616
- data/ext/ggml.h +0 -748
- data/ext/whisper.cpp +0 -4829
- data/ext/whisper.h +0 -402
@@ -0,0 +1,2285 @@
|
|
1
|
+
#pragma once
|
2
|
+
|
3
|
+
//
|
4
|
+
// GGML Tensor Library
|
5
|
+
//
|
6
|
+
// This documentation is still a work in progress.
|
7
|
+
// If you wish some specific topics to be covered, feel free to drop a comment:
|
8
|
+
//
|
9
|
+
// https://github.com/ggerganov/whisper.cpp/issues/40
|
10
|
+
//
|
11
|
+
// ## Overview
|
12
|
+
//
|
13
|
+
// This library implements:
|
14
|
+
//
|
15
|
+
// - a set of tensor operations
|
16
|
+
// - automatic differentiation
|
17
|
+
// - basic optimization algorithms
|
18
|
+
//
|
19
|
+
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
20
|
+
// but is not limited to, the following:
|
21
|
+
//
|
22
|
+
// - linear regression
|
23
|
+
// - support vector machines
|
24
|
+
// - neural networks
|
25
|
+
//
|
26
|
+
// The library allows the user to define a certain function using the available tensor operations. This function
|
27
|
+
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
28
|
+
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
29
|
+
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
30
|
+
// using one of the available optimization algorithms.
|
31
|
+
//
|
32
|
+
// For example, here we define the function: f(x) = a*x^2 + b
|
33
|
+
//
|
34
|
+
// {
|
35
|
+
// struct ggml_init_params params = {
|
36
|
+
// .mem_size = 16*1024*1024,
|
37
|
+
// .mem_buffer = NULL,
|
38
|
+
// };
|
39
|
+
//
|
40
|
+
// // memory allocation happens here
|
41
|
+
// struct ggml_context * ctx = ggml_init(params);
|
42
|
+
//
|
43
|
+
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
44
|
+
//
|
45
|
+
// ggml_set_param(ctx, x); // x is an input variable
|
46
|
+
//
|
47
|
+
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
48
|
+
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
49
|
+
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
50
|
+
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
51
|
+
//
|
52
|
+
// ...
|
53
|
+
// }
|
54
|
+
//
|
55
|
+
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
56
|
+
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
57
|
+
//
|
58
|
+
// {
|
59
|
+
// ...
|
60
|
+
//
|
61
|
+
// struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
62
|
+
// ggml_build_forward_expand(gf, f);
|
63
|
+
//
|
64
|
+
// // set the input variable and parameter values
|
65
|
+
// ggml_set_f32(x, 2.0f);
|
66
|
+
// ggml_set_f32(a, 3.0f);
|
67
|
+
// ggml_set_f32(b, 4.0f);
|
68
|
+
//
|
69
|
+
// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
|
70
|
+
//
|
71
|
+
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
72
|
+
//
|
73
|
+
// ...
|
74
|
+
// }
|
75
|
+
//
|
76
|
+
// The actual computation is performed in the ggml_graph_compute() function.
|
77
|
+
//
|
78
|
+
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
79
|
+
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
80
|
+
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
81
|
+
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
82
|
+
// actually needed.
|
83
|
+
//
|
84
|
+
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
85
|
+
// differentiation and optimization algorithms.
|
86
|
+
//
|
87
|
+
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
88
|
+
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
89
|
+
// the user can avoid the memory allocation overhead at runtime.
|
90
|
+
//
|
91
|
+
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
92
|
+
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
93
|
+
//
|
94
|
+
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
95
|
+
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
96
|
+
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
97
|
+
// yet, but a few examples are demonstrated in the following operations:
|
98
|
+
//
|
99
|
+
// - ggml_permute()
|
100
|
+
// - ggml_conv_1d_1s()
|
101
|
+
// - ggml_conv_1d_2s()
|
102
|
+
//
|
103
|
+
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
104
|
+
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
105
|
+
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
106
|
+
// calculus class, or watch the following video:
|
107
|
+
//
|
108
|
+
// What is Automatic Differentiation?
|
109
|
+
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
110
|
+
//
|
111
|
+
//
|
112
|
+
// ## Tensor data (struct ggml_tensor)
|
113
|
+
//
|
114
|
+
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
115
|
+
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
116
|
+
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
117
|
+
//
|
118
|
+
// {
|
119
|
+
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
120
|
+
//
|
121
|
+
// assert(c->src[0] == a);
|
122
|
+
// assert(c->src[1] == b);
|
123
|
+
// }
|
124
|
+
//
|
125
|
+
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
126
|
+
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
127
|
+
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
128
|
+
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
129
|
+
// contiguous in memory.
|
130
|
+
//
|
131
|
+
// The data of the tensor is accessed via the "data" pointer. For example:
|
132
|
+
//
|
133
|
+
// {
|
134
|
+
// const int nx = 2;
|
135
|
+
// const int ny = 3;
|
136
|
+
//
|
137
|
+
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
|
138
|
+
//
|
139
|
+
// for (int y = 0; y < ny; y++) {
|
140
|
+
// for (int x = 0; x < nx; x++) {
|
141
|
+
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
|
142
|
+
// }
|
143
|
+
// }
|
144
|
+
//
|
145
|
+
// ...
|
146
|
+
// }
|
147
|
+
//
|
148
|
+
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
149
|
+
//
|
150
|
+
// ## The matrix multiplication operator (ggml_mul_mat)
|
151
|
+
//
|
152
|
+
// TODO
|
153
|
+
//
|
154
|
+
//
|
155
|
+
// ## Multi-threading
|
156
|
+
//
|
157
|
+
// TODO
|
158
|
+
//
|
159
|
+
//
|
160
|
+
// ## Overview of ggml.c
|
161
|
+
//
|
162
|
+
// TODO
|
163
|
+
//
|
164
|
+
//
|
165
|
+
// ## SIMD optimizations
|
166
|
+
//
|
167
|
+
// TODO
|
168
|
+
//
|
169
|
+
//
|
170
|
+
// ## Debugging ggml
|
171
|
+
//
|
172
|
+
// TODO
|
173
|
+
//
|
174
|
+
//
|
175
|
+
|
176
|
+
#ifdef GGML_SHARED
|
177
|
+
# if defined(_WIN32) && !defined(__MINGW32__)
|
178
|
+
# ifdef GGML_BUILD
|
179
|
+
# define GGML_API __declspec(dllexport) extern
|
180
|
+
# else
|
181
|
+
# define GGML_API __declspec(dllimport) extern
|
182
|
+
# endif
|
183
|
+
# else
|
184
|
+
# define GGML_API __attribute__ ((visibility ("default"))) extern
|
185
|
+
# endif
|
186
|
+
#else
|
187
|
+
# define GGML_API extern
|
188
|
+
#endif
|
189
|
+
|
190
|
+
// TODO: support for clang
|
191
|
+
#ifdef __GNUC__
|
192
|
+
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
193
|
+
#elif defined(_MSC_VER)
|
194
|
+
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
195
|
+
#else
|
196
|
+
# define GGML_DEPRECATED(func, hint) func
|
197
|
+
#endif
|
198
|
+
|
199
|
+
#ifndef __GNUC__
|
200
|
+
# define GGML_ATTRIBUTE_FORMAT(...)
|
201
|
+
#elif defined(__MINGW32__)
|
202
|
+
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
203
|
+
#else
|
204
|
+
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
205
|
+
#endif
|
206
|
+
|
207
|
+
#include <stdbool.h>
|
208
|
+
#include <stddef.h>
|
209
|
+
#include <stdint.h>
|
210
|
+
#include <stdio.h>
|
211
|
+
|
212
|
+
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
213
|
+
#define GGML_FILE_VERSION 2
|
214
|
+
|
215
|
+
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
216
|
+
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
217
|
+
|
218
|
+
#define GGML_MAX_DIMS 4
|
219
|
+
#define GGML_MAX_PARAMS 2048
|
220
|
+
#define GGML_MAX_SRC 10
|
221
|
+
#define GGML_MAX_N_THREADS 512
|
222
|
+
#define GGML_MAX_OP_PARAMS 64
|
223
|
+
|
224
|
+
#ifndef GGML_MAX_NAME
|
225
|
+
# define GGML_MAX_NAME 64
|
226
|
+
#endif
|
227
|
+
|
228
|
+
#define GGML_DEFAULT_N_THREADS 4
|
229
|
+
#define GGML_DEFAULT_GRAPH_SIZE 2048
|
230
|
+
|
231
|
+
#if UINTPTR_MAX == 0xFFFFFFFF
|
232
|
+
#define GGML_MEM_ALIGN 4
|
233
|
+
#else
|
234
|
+
#define GGML_MEM_ALIGN 16
|
235
|
+
#endif
|
236
|
+
|
237
|
+
#define GGML_EXIT_SUCCESS 0
|
238
|
+
#define GGML_EXIT_ABORTED 1
|
239
|
+
|
240
|
+
#define GGML_ROPE_TYPE_NEOX 2
|
241
|
+
#define GGML_ROPE_TYPE_MROPE 8
|
242
|
+
#define GGML_ROPE_TYPE_VISION 24
|
243
|
+
|
244
|
+
#define GGUF_MAGIC "GGUF"
|
245
|
+
|
246
|
+
#define GGUF_VERSION 3
|
247
|
+
|
248
|
+
#define GGUF_DEFAULT_ALIGNMENT 32
|
249
|
+
|
250
|
+
#define GGML_UNUSED(x) (void)(x)
|
251
|
+
|
252
|
+
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
253
|
+
|
254
|
+
#ifndef NDEBUG
|
255
|
+
# define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
|
256
|
+
#elif defined(__GNUC__)
|
257
|
+
# define GGML_UNREACHABLE() __builtin_unreachable()
|
258
|
+
#elif defined(_MSC_VER)
|
259
|
+
# define GGML_UNREACHABLE() __assume(0)
|
260
|
+
#else
|
261
|
+
# define GGML_UNREACHABLE() ((void) 0)
|
262
|
+
#endif
|
263
|
+
|
264
|
+
#ifdef __cplusplus
|
265
|
+
# define GGML_NORETURN [[noreturn]]
|
266
|
+
#elif defined(_MSC_VER)
|
267
|
+
# define GGML_NORETURN __declspec(noreturn)
|
268
|
+
#else
|
269
|
+
# define GGML_NORETURN _Noreturn
|
270
|
+
#endif
|
271
|
+
|
272
|
+
#define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
|
273
|
+
#define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
|
274
|
+
|
275
|
+
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
276
|
+
// main purpose is to reduce code duplication and improve readability.
|
277
|
+
//
|
278
|
+
// example:
|
279
|
+
//
|
280
|
+
// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
281
|
+
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
|
282
|
+
//
|
283
|
+
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
|
284
|
+
const type prefix##0 = (pointer)->array[0]; \
|
285
|
+
GGML_UNUSED(prefix##0);
|
286
|
+
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
|
287
|
+
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
|
288
|
+
const type prefix##1 = (pointer)->array[1]; \
|
289
|
+
GGML_UNUSED(prefix##1);
|
290
|
+
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
|
291
|
+
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
|
292
|
+
const type prefix##2 = (pointer)->array[2]; \
|
293
|
+
GGML_UNUSED(prefix##2);
|
294
|
+
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
|
295
|
+
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
|
296
|
+
const type prefix##3 = (pointer)->array[3]; \
|
297
|
+
GGML_UNUSED(prefix##3);
|
298
|
+
|
299
|
+
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
300
|
+
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
301
|
+
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
302
|
+
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
303
|
+
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
304
|
+
|
305
|
+
#define GGML_TENSOR_BINARY_OP_LOCALS \
|
306
|
+
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
307
|
+
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
308
|
+
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
309
|
+
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
310
|
+
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
311
|
+
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
312
|
+
|
313
|
+
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
|
314
|
+
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
315
|
+
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
316
|
+
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
317
|
+
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
318
|
+
|
319
|
+
#ifdef __cplusplus
|
320
|
+
extern "C" {
|
321
|
+
#endif
|
322
|
+
|
323
|
+
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
|
324
|
+
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
|
325
|
+
|
326
|
+
enum ggml_status {
|
327
|
+
GGML_STATUS_ALLOC_FAILED = -2,
|
328
|
+
GGML_STATUS_FAILED = -1,
|
329
|
+
GGML_STATUS_SUCCESS = 0,
|
330
|
+
GGML_STATUS_ABORTED = 1,
|
331
|
+
};
|
332
|
+
|
333
|
+
// get ggml_status name string
|
334
|
+
GGML_API const char * ggml_status_to_string(enum ggml_status status);
|
335
|
+
|
336
|
+
// ieee 754-2008 half-precision float16
|
337
|
+
// todo: make this not an integral type
|
338
|
+
typedef uint16_t ggml_fp16_t;
|
339
|
+
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
|
340
|
+
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
|
341
|
+
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
|
342
|
+
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
|
343
|
+
|
344
|
+
// google brain half-precision bfloat16
|
345
|
+
typedef struct { uint16_t bits; } ggml_bf16_t;
|
346
|
+
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
|
347
|
+
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
|
348
|
+
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
|
349
|
+
GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
|
350
|
+
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
|
351
|
+
|
352
|
+
struct ggml_object;
|
353
|
+
struct ggml_context;
|
354
|
+
struct ggml_cgraph;
|
355
|
+
|
356
|
+
// NOTE: always add types at the end of the enum to keep backward compatibility
|
357
|
+
enum ggml_type {
|
358
|
+
GGML_TYPE_F32 = 0,
|
359
|
+
GGML_TYPE_F16 = 1,
|
360
|
+
GGML_TYPE_Q4_0 = 2,
|
361
|
+
GGML_TYPE_Q4_1 = 3,
|
362
|
+
// GGML_TYPE_Q4_2 = 4, support has been removed
|
363
|
+
// GGML_TYPE_Q4_3 = 5, support has been removed
|
364
|
+
GGML_TYPE_Q5_0 = 6,
|
365
|
+
GGML_TYPE_Q5_1 = 7,
|
366
|
+
GGML_TYPE_Q8_0 = 8,
|
367
|
+
GGML_TYPE_Q8_1 = 9,
|
368
|
+
GGML_TYPE_Q2_K = 10,
|
369
|
+
GGML_TYPE_Q3_K = 11,
|
370
|
+
GGML_TYPE_Q4_K = 12,
|
371
|
+
GGML_TYPE_Q5_K = 13,
|
372
|
+
GGML_TYPE_Q6_K = 14,
|
373
|
+
GGML_TYPE_Q8_K = 15,
|
374
|
+
GGML_TYPE_IQ2_XXS = 16,
|
375
|
+
GGML_TYPE_IQ2_XS = 17,
|
376
|
+
GGML_TYPE_IQ3_XXS = 18,
|
377
|
+
GGML_TYPE_IQ1_S = 19,
|
378
|
+
GGML_TYPE_IQ4_NL = 20,
|
379
|
+
GGML_TYPE_IQ3_S = 21,
|
380
|
+
GGML_TYPE_IQ2_S = 22,
|
381
|
+
GGML_TYPE_IQ4_XS = 23,
|
382
|
+
GGML_TYPE_I8 = 24,
|
383
|
+
GGML_TYPE_I16 = 25,
|
384
|
+
GGML_TYPE_I32 = 26,
|
385
|
+
GGML_TYPE_I64 = 27,
|
386
|
+
GGML_TYPE_F64 = 28,
|
387
|
+
GGML_TYPE_IQ1_M = 29,
|
388
|
+
GGML_TYPE_BF16 = 30,
|
389
|
+
// GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
|
390
|
+
// GGML_TYPE_Q4_0_4_8 = 32,
|
391
|
+
// GGML_TYPE_Q4_0_8_8 = 33,
|
392
|
+
GGML_TYPE_TQ1_0 = 34,
|
393
|
+
GGML_TYPE_TQ2_0 = 35,
|
394
|
+
// GGML_TYPE_IQ4_NL_4_4 = 36,
|
395
|
+
// GGML_TYPE_IQ4_NL_4_8 = 37,
|
396
|
+
// GGML_TYPE_IQ4_NL_8_8 = 38,
|
397
|
+
GGML_TYPE_COUNT = 39,
|
398
|
+
};
|
399
|
+
|
400
|
+
// precision
|
401
|
+
enum ggml_prec {
|
402
|
+
GGML_PREC_DEFAULT,
|
403
|
+
GGML_PREC_F32,
|
404
|
+
};
|
405
|
+
|
406
|
+
enum ggml_backend_type {
|
407
|
+
GGML_BACKEND_TYPE_CPU = 0,
|
408
|
+
GGML_BACKEND_TYPE_GPU = 10,
|
409
|
+
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
|
410
|
+
};
|
411
|
+
|
412
|
+
// model file types
|
413
|
+
enum ggml_ftype {
|
414
|
+
GGML_FTYPE_UNKNOWN = -1,
|
415
|
+
GGML_FTYPE_ALL_F32 = 0,
|
416
|
+
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
417
|
+
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
418
|
+
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
419
|
+
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
420
|
+
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
421
|
+
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
422
|
+
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
423
|
+
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
424
|
+
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
|
425
|
+
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
|
426
|
+
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
|
427
|
+
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
428
|
+
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
429
|
+
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
430
|
+
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
431
|
+
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
432
|
+
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
433
|
+
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
434
|
+
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
435
|
+
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
436
|
+
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
437
|
+
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
|
438
|
+
};
|
439
|
+
|
440
|
+
// available tensor operations:
|
441
|
+
enum ggml_op {
|
442
|
+
GGML_OP_NONE = 0,
|
443
|
+
|
444
|
+
GGML_OP_DUP,
|
445
|
+
GGML_OP_ADD,
|
446
|
+
GGML_OP_ADD1,
|
447
|
+
GGML_OP_ACC,
|
448
|
+
GGML_OP_SUB,
|
449
|
+
GGML_OP_MUL,
|
450
|
+
GGML_OP_DIV,
|
451
|
+
GGML_OP_SQR,
|
452
|
+
GGML_OP_SQRT,
|
453
|
+
GGML_OP_LOG,
|
454
|
+
GGML_OP_SIN,
|
455
|
+
GGML_OP_COS,
|
456
|
+
GGML_OP_SUM,
|
457
|
+
GGML_OP_SUM_ROWS,
|
458
|
+
GGML_OP_MEAN,
|
459
|
+
GGML_OP_ARGMAX,
|
460
|
+
GGML_OP_COUNT_EQUAL,
|
461
|
+
GGML_OP_REPEAT,
|
462
|
+
GGML_OP_REPEAT_BACK,
|
463
|
+
GGML_OP_CONCAT,
|
464
|
+
GGML_OP_SILU_BACK,
|
465
|
+
GGML_OP_NORM, // normalize
|
466
|
+
GGML_OP_RMS_NORM,
|
467
|
+
GGML_OP_RMS_NORM_BACK,
|
468
|
+
GGML_OP_GROUP_NORM,
|
469
|
+
|
470
|
+
GGML_OP_MUL_MAT,
|
471
|
+
GGML_OP_MUL_MAT_ID,
|
472
|
+
GGML_OP_OUT_PROD,
|
473
|
+
|
474
|
+
GGML_OP_SCALE,
|
475
|
+
GGML_OP_SET,
|
476
|
+
GGML_OP_CPY,
|
477
|
+
GGML_OP_CONT,
|
478
|
+
GGML_OP_RESHAPE,
|
479
|
+
GGML_OP_VIEW,
|
480
|
+
GGML_OP_PERMUTE,
|
481
|
+
GGML_OP_TRANSPOSE,
|
482
|
+
GGML_OP_GET_ROWS,
|
483
|
+
GGML_OP_GET_ROWS_BACK,
|
484
|
+
GGML_OP_DIAG,
|
485
|
+
GGML_OP_DIAG_MASK_INF,
|
486
|
+
GGML_OP_DIAG_MASK_ZERO,
|
487
|
+
GGML_OP_SOFT_MAX,
|
488
|
+
GGML_OP_SOFT_MAX_BACK,
|
489
|
+
GGML_OP_ROPE,
|
490
|
+
GGML_OP_ROPE_BACK,
|
491
|
+
GGML_OP_CLAMP,
|
492
|
+
GGML_OP_CONV_TRANSPOSE_1D,
|
493
|
+
GGML_OP_IM2COL,
|
494
|
+
GGML_OP_IM2COL_BACK,
|
495
|
+
GGML_OP_CONV_TRANSPOSE_2D,
|
496
|
+
GGML_OP_POOL_1D,
|
497
|
+
GGML_OP_POOL_2D,
|
498
|
+
GGML_OP_POOL_2D_BACK,
|
499
|
+
GGML_OP_UPSCALE, // nearest interpolate
|
500
|
+
GGML_OP_PAD,
|
501
|
+
GGML_OP_PAD_REFLECT_1D,
|
502
|
+
GGML_OP_ARANGE,
|
503
|
+
GGML_OP_TIMESTEP_EMBEDDING,
|
504
|
+
GGML_OP_ARGSORT,
|
505
|
+
GGML_OP_LEAKY_RELU,
|
506
|
+
|
507
|
+
GGML_OP_FLASH_ATTN_EXT,
|
508
|
+
GGML_OP_FLASH_ATTN_BACK,
|
509
|
+
GGML_OP_SSM_CONV,
|
510
|
+
GGML_OP_SSM_SCAN,
|
511
|
+
GGML_OP_WIN_PART,
|
512
|
+
GGML_OP_WIN_UNPART,
|
513
|
+
GGML_OP_GET_REL_POS,
|
514
|
+
GGML_OP_ADD_REL_POS,
|
515
|
+
GGML_OP_RWKV_WKV6,
|
516
|
+
|
517
|
+
GGML_OP_UNARY,
|
518
|
+
|
519
|
+
GGML_OP_MAP_UNARY,
|
520
|
+
GGML_OP_MAP_BINARY,
|
521
|
+
|
522
|
+
GGML_OP_MAP_CUSTOM1_F32,
|
523
|
+
GGML_OP_MAP_CUSTOM2_F32,
|
524
|
+
GGML_OP_MAP_CUSTOM3_F32,
|
525
|
+
|
526
|
+
GGML_OP_MAP_CUSTOM1,
|
527
|
+
GGML_OP_MAP_CUSTOM2,
|
528
|
+
GGML_OP_MAP_CUSTOM3,
|
529
|
+
|
530
|
+
GGML_OP_CROSS_ENTROPY_LOSS,
|
531
|
+
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
532
|
+
GGML_OP_OPT_STEP_ADAMW,
|
533
|
+
|
534
|
+
GGML_OP_COUNT,
|
535
|
+
};
|
536
|
+
|
537
|
+
enum ggml_unary_op {
|
538
|
+
GGML_UNARY_OP_ABS,
|
539
|
+
GGML_UNARY_OP_SGN,
|
540
|
+
GGML_UNARY_OP_NEG,
|
541
|
+
GGML_UNARY_OP_STEP,
|
542
|
+
GGML_UNARY_OP_TANH,
|
543
|
+
GGML_UNARY_OP_ELU,
|
544
|
+
GGML_UNARY_OP_RELU,
|
545
|
+
GGML_UNARY_OP_SIGMOID,
|
546
|
+
GGML_UNARY_OP_GELU,
|
547
|
+
GGML_UNARY_OP_GELU_QUICK,
|
548
|
+
GGML_UNARY_OP_SILU,
|
549
|
+
GGML_UNARY_OP_HARDSWISH,
|
550
|
+
GGML_UNARY_OP_HARDSIGMOID,
|
551
|
+
GGML_UNARY_OP_EXP,
|
552
|
+
|
553
|
+
GGML_UNARY_OP_COUNT,
|
554
|
+
};
|
555
|
+
|
556
|
+
enum ggml_object_type {
|
557
|
+
GGML_OBJECT_TYPE_TENSOR,
|
558
|
+
GGML_OBJECT_TYPE_GRAPH,
|
559
|
+
GGML_OBJECT_TYPE_WORK_BUFFER
|
560
|
+
};
|
561
|
+
|
562
|
+
enum ggml_log_level {
|
563
|
+
GGML_LOG_LEVEL_NONE = 0,
|
564
|
+
GGML_LOG_LEVEL_DEBUG = 1,
|
565
|
+
GGML_LOG_LEVEL_INFO = 2,
|
566
|
+
GGML_LOG_LEVEL_WARN = 3,
|
567
|
+
GGML_LOG_LEVEL_ERROR = 4,
|
568
|
+
GGML_LOG_LEVEL_CONT = 5, // continue previous log
|
569
|
+
};
|
570
|
+
|
571
|
+
// this tensor...
|
572
|
+
enum ggml_tensor_flag {
|
573
|
+
GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
|
574
|
+
GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
|
575
|
+
GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
|
576
|
+
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
|
577
|
+
};
|
578
|
+
|
579
|
+
struct ggml_init_params {
|
580
|
+
// memory pool
|
581
|
+
size_t mem_size; // bytes
|
582
|
+
void * mem_buffer; // if NULL, memory will be allocated internally
|
583
|
+
bool no_alloc; // don't allocate memory for the tensor data
|
584
|
+
};
|
585
|
+
|
586
|
+
// n-dimensional tensor
|
587
|
+
struct ggml_tensor {
|
588
|
+
enum ggml_type type;
|
589
|
+
|
590
|
+
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
591
|
+
|
592
|
+
struct ggml_backend_buffer * buffer;
|
593
|
+
|
594
|
+
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
595
|
+
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
596
|
+
// nb[0] = ggml_type_size(type)
|
597
|
+
// nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
|
598
|
+
// nb[i] = nb[i-1] * ne[i-1]
|
599
|
+
|
600
|
+
// compute data
|
601
|
+
enum ggml_op op;
|
602
|
+
|
603
|
+
// op params - allocated as int32_t for alignment
|
604
|
+
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
605
|
+
|
606
|
+
int32_t flags;
|
607
|
+
|
608
|
+
struct ggml_tensor * src[GGML_MAX_SRC];
|
609
|
+
|
610
|
+
// source tensor and offset for views
|
611
|
+
struct ggml_tensor * view_src;
|
612
|
+
size_t view_offs;
|
613
|
+
|
614
|
+
void * data;
|
615
|
+
|
616
|
+
char name[GGML_MAX_NAME];
|
617
|
+
|
618
|
+
void * extra; // extra things e.g. for ggml-cuda.cu
|
619
|
+
|
620
|
+
char padding[8];
|
621
|
+
};
|
622
|
+
|
623
|
+
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
624
|
+
|
625
|
+
// Abort callback
|
626
|
+
// If not NULL, called before ggml computation
|
627
|
+
// If it returns true, the computation is aborted
|
628
|
+
typedef bool (*ggml_abort_callback)(void * data);
|
629
|
+
|
630
|
+
|
631
|
+
//
|
632
|
+
// GUID
|
633
|
+
//
|
634
|
+
|
635
|
+
// GUID types
|
636
|
+
typedef uint8_t ggml_guid[16];
|
637
|
+
typedef ggml_guid * ggml_guid_t;
|
638
|
+
|
639
|
+
GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
|
640
|
+
|
641
|
+
// misc
|
642
|
+
|
643
|
+
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
644
|
+
GGML_API int64_t ggml_time_ms(void);
|
645
|
+
GGML_API int64_t ggml_time_us(void);
|
646
|
+
GGML_API int64_t ggml_cycles(void);
|
647
|
+
GGML_API int64_t ggml_cycles_per_ms(void);
|
648
|
+
|
649
|
+
// accepts a UTF-8 path, even on Windows
|
650
|
+
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
|
651
|
+
|
652
|
+
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
653
|
+
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
654
|
+
|
655
|
+
GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
656
|
+
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
657
|
+
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
658
|
+
GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
659
|
+
|
660
|
+
GGML_API int64_t ggml_blck_size(enum ggml_type type);
|
661
|
+
GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
662
|
+
GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
663
|
+
|
664
|
+
GGML_DEPRECATED(
|
665
|
+
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
|
666
|
+
"use ggml_row_size() instead");
|
667
|
+
|
668
|
+
GGML_API const char * ggml_type_name(enum ggml_type type);
|
669
|
+
GGML_API const char * ggml_op_name (enum ggml_op op);
|
670
|
+
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
671
|
+
|
672
|
+
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
673
|
+
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
674
|
+
|
675
|
+
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
676
|
+
|
677
|
+
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
678
|
+
|
679
|
+
// TODO: temporary until model loading of ggml examples is refactored
|
680
|
+
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
681
|
+
|
682
|
+
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
683
|
+
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
684
|
+
GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
|
685
|
+
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
686
|
+
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
687
|
+
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
688
|
+
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
689
|
+
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
690
|
+
|
691
|
+
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
692
|
+
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
693
|
+
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
694
|
+
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
695
|
+
|
696
|
+
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
697
|
+
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
698
|
+
|
699
|
+
GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
700
|
+
|
701
|
+
// use this to compute the memory overhead of a tensor
|
702
|
+
GGML_API size_t ggml_tensor_overhead(void);
|
703
|
+
|
704
|
+
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
|
705
|
+
|
706
|
+
// main
|
707
|
+
|
708
|
+
GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
|
709
|
+
GGML_API void ggml_reset(struct ggml_context * ctx);
|
710
|
+
GGML_API void ggml_free (struct ggml_context * ctx);
|
711
|
+
|
712
|
+
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
713
|
+
|
714
|
+
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
|
715
|
+
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
716
|
+
|
717
|
+
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
|
718
|
+
GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
|
719
|
+
GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
|
720
|
+
|
721
|
+
GGML_API struct ggml_tensor * ggml_new_tensor(
|
722
|
+
struct ggml_context * ctx,
|
723
|
+
enum ggml_type type,
|
724
|
+
int n_dims,
|
725
|
+
const int64_t *ne);
|
726
|
+
|
727
|
+
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
|
728
|
+
struct ggml_context * ctx,
|
729
|
+
enum ggml_type type,
|
730
|
+
int64_t ne0);
|
731
|
+
|
732
|
+
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
|
733
|
+
struct ggml_context * ctx,
|
734
|
+
enum ggml_type type,
|
735
|
+
int64_t ne0,
|
736
|
+
int64_t ne1);
|
737
|
+
|
738
|
+
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
|
739
|
+
struct ggml_context * ctx,
|
740
|
+
enum ggml_type type,
|
741
|
+
int64_t ne0,
|
742
|
+
int64_t ne1,
|
743
|
+
int64_t ne2);
|
744
|
+
|
745
|
+
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
|
746
|
+
struct ggml_context * ctx,
|
747
|
+
enum ggml_type type,
|
748
|
+
int64_t ne0,
|
749
|
+
int64_t ne1,
|
750
|
+
int64_t ne2,
|
751
|
+
int64_t ne3);
|
752
|
+
|
753
|
+
GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
|
754
|
+
|
755
|
+
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
756
|
+
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
757
|
+
|
758
|
+
// Context tensor enumeration and lookup
|
759
|
+
GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
|
760
|
+
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
|
761
|
+
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
762
|
+
|
763
|
+
// Converts a flat index into coordinates
|
764
|
+
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
765
|
+
|
766
|
+
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
767
|
+
|
768
|
+
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
769
|
+
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
770
|
+
|
771
|
+
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
772
|
+
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
773
|
+
GGML_ATTRIBUTE_FORMAT(2, 3)
|
774
|
+
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
|
775
|
+
|
776
|
+
// Tensor flags
|
777
|
+
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
778
|
+
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
779
|
+
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
|
780
|
+
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
|
781
|
+
|
782
|
+
//
|
783
|
+
// operations on tensors with backpropagation
|
784
|
+
//
|
785
|
+
|
786
|
+
GGML_API struct ggml_tensor * ggml_dup(
|
787
|
+
struct ggml_context * ctx,
|
788
|
+
struct ggml_tensor * a);
|
789
|
+
|
790
|
+
// in-place, returns view(a)
|
791
|
+
GGML_API struct ggml_tensor * ggml_dup_inplace(
|
792
|
+
struct ggml_context * ctx,
|
793
|
+
struct ggml_tensor * a);
|
794
|
+
|
795
|
+
GGML_API struct ggml_tensor * ggml_add(
|
796
|
+
struct ggml_context * ctx,
|
797
|
+
struct ggml_tensor * a,
|
798
|
+
struct ggml_tensor * b);
|
799
|
+
|
800
|
+
GGML_API struct ggml_tensor * ggml_add_inplace(
|
801
|
+
struct ggml_context * ctx,
|
802
|
+
struct ggml_tensor * a,
|
803
|
+
struct ggml_tensor * b);
|
804
|
+
|
805
|
+
GGML_API struct ggml_tensor * ggml_add_cast(
|
806
|
+
struct ggml_context * ctx,
|
807
|
+
struct ggml_tensor * a,
|
808
|
+
struct ggml_tensor * b,
|
809
|
+
enum ggml_type type);
|
810
|
+
|
811
|
+
GGML_API struct ggml_tensor * ggml_add1(
|
812
|
+
struct ggml_context * ctx,
|
813
|
+
struct ggml_tensor * a,
|
814
|
+
struct ggml_tensor * b);
|
815
|
+
|
816
|
+
GGML_API struct ggml_tensor * ggml_add1_inplace(
|
817
|
+
struct ggml_context * ctx,
|
818
|
+
struct ggml_tensor * a,
|
819
|
+
struct ggml_tensor * b);
|
820
|
+
|
821
|
+
// dst = a
|
822
|
+
// view(dst, nb1, nb2, nb3, offset) += b
|
823
|
+
// return dst
|
824
|
+
GGML_API struct ggml_tensor * ggml_acc(
|
825
|
+
struct ggml_context * ctx,
|
826
|
+
struct ggml_tensor * a,
|
827
|
+
struct ggml_tensor * b,
|
828
|
+
size_t nb1,
|
829
|
+
size_t nb2,
|
830
|
+
size_t nb3,
|
831
|
+
size_t offset);
|
832
|
+
|
833
|
+
GGML_API struct ggml_tensor * ggml_acc_inplace(
|
834
|
+
struct ggml_context * ctx,
|
835
|
+
struct ggml_tensor * a,
|
836
|
+
struct ggml_tensor * b,
|
837
|
+
size_t nb1,
|
838
|
+
size_t nb2,
|
839
|
+
size_t nb3,
|
840
|
+
size_t offset);
|
841
|
+
|
842
|
+
GGML_API struct ggml_tensor * ggml_sub(
|
843
|
+
struct ggml_context * ctx,
|
844
|
+
struct ggml_tensor * a,
|
845
|
+
struct ggml_tensor * b);
|
846
|
+
|
847
|
+
GGML_API struct ggml_tensor * ggml_sub_inplace(
|
848
|
+
struct ggml_context * ctx,
|
849
|
+
struct ggml_tensor * a,
|
850
|
+
struct ggml_tensor * b);
|
851
|
+
|
852
|
+
GGML_API struct ggml_tensor * ggml_mul(
|
853
|
+
struct ggml_context * ctx,
|
854
|
+
struct ggml_tensor * a,
|
855
|
+
struct ggml_tensor * b);
|
856
|
+
|
857
|
+
GGML_API struct ggml_tensor * ggml_mul_inplace(
|
858
|
+
struct ggml_context * ctx,
|
859
|
+
struct ggml_tensor * a,
|
860
|
+
struct ggml_tensor * b);
|
861
|
+
|
862
|
+
GGML_API struct ggml_tensor * ggml_div(
|
863
|
+
struct ggml_context * ctx,
|
864
|
+
struct ggml_tensor * a,
|
865
|
+
struct ggml_tensor * b);
|
866
|
+
|
867
|
+
GGML_API struct ggml_tensor * ggml_div_inplace(
|
868
|
+
struct ggml_context * ctx,
|
869
|
+
struct ggml_tensor * a,
|
870
|
+
struct ggml_tensor * b);
|
871
|
+
|
872
|
+
GGML_API struct ggml_tensor * ggml_sqr(
|
873
|
+
struct ggml_context * ctx,
|
874
|
+
struct ggml_tensor * a);
|
875
|
+
|
876
|
+
GGML_API struct ggml_tensor * ggml_sqr_inplace(
|
877
|
+
struct ggml_context * ctx,
|
878
|
+
struct ggml_tensor * a);
|
879
|
+
|
880
|
+
GGML_API struct ggml_tensor * ggml_sqrt(
|
881
|
+
struct ggml_context * ctx,
|
882
|
+
struct ggml_tensor * a);
|
883
|
+
|
884
|
+
GGML_API struct ggml_tensor * ggml_sqrt_inplace(
|
885
|
+
struct ggml_context * ctx,
|
886
|
+
struct ggml_tensor * a);
|
887
|
+
|
888
|
+
GGML_API struct ggml_tensor * ggml_log(
|
889
|
+
struct ggml_context * ctx,
|
890
|
+
struct ggml_tensor * a);
|
891
|
+
|
892
|
+
GGML_API struct ggml_tensor * ggml_log_inplace(
|
893
|
+
struct ggml_context * ctx,
|
894
|
+
struct ggml_tensor * a);
|
895
|
+
|
896
|
+
GGML_API struct ggml_tensor * ggml_sin(
|
897
|
+
struct ggml_context * ctx,
|
898
|
+
struct ggml_tensor * a);
|
899
|
+
|
900
|
+
GGML_API struct ggml_tensor * ggml_sin_inplace(
|
901
|
+
struct ggml_context * ctx,
|
902
|
+
struct ggml_tensor * a);
|
903
|
+
|
904
|
+
GGML_API struct ggml_tensor * ggml_cos(
|
905
|
+
struct ggml_context * ctx,
|
906
|
+
struct ggml_tensor * a);
|
907
|
+
|
908
|
+
GGML_API struct ggml_tensor * ggml_cos_inplace(
|
909
|
+
struct ggml_context * ctx,
|
910
|
+
struct ggml_tensor * a);
|
911
|
+
|
912
|
+
// return scalar
|
913
|
+
GGML_API struct ggml_tensor * ggml_sum(
|
914
|
+
struct ggml_context * ctx,
|
915
|
+
struct ggml_tensor * a);
|
916
|
+
|
917
|
+
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
|
918
|
+
GGML_API struct ggml_tensor * ggml_sum_rows(
|
919
|
+
struct ggml_context * ctx,
|
920
|
+
struct ggml_tensor * a);
|
921
|
+
|
922
|
+
// mean along rows
|
923
|
+
GGML_API struct ggml_tensor * ggml_mean(
|
924
|
+
struct ggml_context * ctx,
|
925
|
+
struct ggml_tensor * a);
|
926
|
+
|
927
|
+
// argmax along rows
|
928
|
+
GGML_API struct ggml_tensor * ggml_argmax(
|
929
|
+
struct ggml_context * ctx,
|
930
|
+
struct ggml_tensor * a);
|
931
|
+
|
932
|
+
// count number of equal elements in a and b
|
933
|
+
GGML_API struct ggml_tensor * ggml_count_equal(
|
934
|
+
struct ggml_context * ctx,
|
935
|
+
struct ggml_tensor * a,
|
936
|
+
struct ggml_tensor * b);
|
937
|
+
|
938
|
+
// if a is the same shape as b, and a is not parameter, return a
|
939
|
+
// otherwise, return a new tensor: repeat(a) to fit in b
|
940
|
+
GGML_API struct ggml_tensor * ggml_repeat(
|
941
|
+
struct ggml_context * ctx,
|
942
|
+
struct ggml_tensor * a,
|
943
|
+
struct ggml_tensor * b);
|
944
|
+
|
945
|
+
// sums repetitions in a into shape of b
|
946
|
+
GGML_API struct ggml_tensor * ggml_repeat_back(
|
947
|
+
struct ggml_context * ctx,
|
948
|
+
struct ggml_tensor * a,
|
949
|
+
struct ggml_tensor * b);
|
950
|
+
|
951
|
+
// concat a and b along dim
|
952
|
+
// used in stable-diffusion
|
953
|
+
GGML_API struct ggml_tensor * ggml_concat(
|
954
|
+
struct ggml_context * ctx,
|
955
|
+
struct ggml_tensor * a,
|
956
|
+
struct ggml_tensor * b,
|
957
|
+
int dim);
|
958
|
+
|
959
|
+
GGML_API struct ggml_tensor * ggml_abs(
|
960
|
+
struct ggml_context * ctx,
|
961
|
+
struct ggml_tensor * a);
|
962
|
+
|
963
|
+
GGML_API struct ggml_tensor * ggml_abs_inplace(
|
964
|
+
struct ggml_context * ctx,
|
965
|
+
struct ggml_tensor * a);
|
966
|
+
|
967
|
+
GGML_API struct ggml_tensor * ggml_sgn(
|
968
|
+
struct ggml_context * ctx,
|
969
|
+
struct ggml_tensor * a);
|
970
|
+
|
971
|
+
GGML_API struct ggml_tensor * ggml_sgn_inplace(
|
972
|
+
struct ggml_context * ctx,
|
973
|
+
struct ggml_tensor * a);
|
974
|
+
|
975
|
+
GGML_API struct ggml_tensor * ggml_neg(
|
976
|
+
struct ggml_context * ctx,
|
977
|
+
struct ggml_tensor * a);
|
978
|
+
|
979
|
+
GGML_API struct ggml_tensor * ggml_neg_inplace(
|
980
|
+
struct ggml_context * ctx,
|
981
|
+
struct ggml_tensor * a);
|
982
|
+
|
983
|
+
GGML_API struct ggml_tensor * ggml_step(
|
984
|
+
struct ggml_context * ctx,
|
985
|
+
struct ggml_tensor * a);
|
986
|
+
|
987
|
+
GGML_API struct ggml_tensor * ggml_step_inplace(
|
988
|
+
struct ggml_context * ctx,
|
989
|
+
struct ggml_tensor * a);
|
990
|
+
|
991
|
+
GGML_API struct ggml_tensor * ggml_tanh(
|
992
|
+
struct ggml_context * ctx,
|
993
|
+
struct ggml_tensor * a);
|
994
|
+
|
995
|
+
GGML_API struct ggml_tensor * ggml_tanh_inplace(
|
996
|
+
struct ggml_context * ctx,
|
997
|
+
struct ggml_tensor * a);
|
998
|
+
|
999
|
+
GGML_API struct ggml_tensor * ggml_elu(
|
1000
|
+
struct ggml_context * ctx,
|
1001
|
+
struct ggml_tensor * a);
|
1002
|
+
|
1003
|
+
GGML_API struct ggml_tensor * ggml_elu_inplace(
|
1004
|
+
struct ggml_context * ctx,
|
1005
|
+
struct ggml_tensor * a);
|
1006
|
+
|
1007
|
+
GGML_API struct ggml_tensor * ggml_relu(
|
1008
|
+
struct ggml_context * ctx,
|
1009
|
+
struct ggml_tensor * a);
|
1010
|
+
|
1011
|
+
GGML_API struct ggml_tensor * ggml_leaky_relu(
|
1012
|
+
struct ggml_context * ctx,
|
1013
|
+
struct ggml_tensor * a, float negative_slope, bool inplace);
|
1014
|
+
|
1015
|
+
GGML_API struct ggml_tensor * ggml_relu_inplace(
|
1016
|
+
struct ggml_context * ctx,
|
1017
|
+
struct ggml_tensor * a);
|
1018
|
+
|
1019
|
+
GGML_API struct ggml_tensor * ggml_sigmoid(
|
1020
|
+
struct ggml_context * ctx,
|
1021
|
+
struct ggml_tensor * a);
|
1022
|
+
|
1023
|
+
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
|
1024
|
+
struct ggml_context * ctx,
|
1025
|
+
struct ggml_tensor * a);
|
1026
|
+
|
1027
|
+
GGML_API struct ggml_tensor * ggml_gelu(
|
1028
|
+
struct ggml_context * ctx,
|
1029
|
+
struct ggml_tensor * a);
|
1030
|
+
|
1031
|
+
GGML_API struct ggml_tensor * ggml_gelu_inplace(
|
1032
|
+
struct ggml_context * ctx,
|
1033
|
+
struct ggml_tensor * a);
|
1034
|
+
|
1035
|
+
GGML_API struct ggml_tensor * ggml_gelu_quick(
|
1036
|
+
struct ggml_context * ctx,
|
1037
|
+
struct ggml_tensor * a);
|
1038
|
+
|
1039
|
+
GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
|
1040
|
+
struct ggml_context * ctx,
|
1041
|
+
struct ggml_tensor * a);
|
1042
|
+
|
1043
|
+
GGML_API struct ggml_tensor * ggml_silu(
|
1044
|
+
struct ggml_context * ctx,
|
1045
|
+
struct ggml_tensor * a);
|
1046
|
+
|
1047
|
+
GGML_API struct ggml_tensor * ggml_silu_inplace(
|
1048
|
+
struct ggml_context * ctx,
|
1049
|
+
struct ggml_tensor * a);
|
1050
|
+
|
1051
|
+
// a - x
|
1052
|
+
// b - dy
|
1053
|
+
GGML_API struct ggml_tensor * ggml_silu_back(
|
1054
|
+
struct ggml_context * ctx,
|
1055
|
+
struct ggml_tensor * a,
|
1056
|
+
struct ggml_tensor * b);
|
1057
|
+
|
1058
|
+
// hardswish(x) = x * relu6(x + 3) / 6
|
1059
|
+
GGML_API struct ggml_tensor * ggml_hardswish(
|
1060
|
+
struct ggml_context * ctx,
|
1061
|
+
struct ggml_tensor * a);
|
1062
|
+
|
1063
|
+
// hardsigmoid(x) = relu6(x + 3) / 6
|
1064
|
+
GGML_API struct ggml_tensor * ggml_hardsigmoid(
|
1065
|
+
struct ggml_context * ctx,
|
1066
|
+
struct ggml_tensor * a);
|
1067
|
+
|
1068
|
+
GGML_API struct ggml_tensor * ggml_exp(
|
1069
|
+
struct ggml_context * ctx,
|
1070
|
+
struct ggml_tensor * a);
|
1071
|
+
|
1072
|
+
GGML_API struct ggml_tensor * ggml_exp_inplace(
|
1073
|
+
struct ggml_context * ctx,
|
1074
|
+
struct ggml_tensor * a);
|
1075
|
+
|
1076
|
+
// normalize along rows
|
1077
|
+
GGML_API struct ggml_tensor * ggml_norm(
|
1078
|
+
struct ggml_context * ctx,
|
1079
|
+
struct ggml_tensor * a,
|
1080
|
+
float eps);
|
1081
|
+
|
1082
|
+
GGML_API struct ggml_tensor * ggml_norm_inplace(
|
1083
|
+
struct ggml_context * ctx,
|
1084
|
+
struct ggml_tensor * a,
|
1085
|
+
float eps);
|
1086
|
+
|
1087
|
+
GGML_API struct ggml_tensor * ggml_rms_norm(
|
1088
|
+
struct ggml_context * ctx,
|
1089
|
+
struct ggml_tensor * a,
|
1090
|
+
float eps);
|
1091
|
+
|
1092
|
+
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
|
1093
|
+
struct ggml_context * ctx,
|
1094
|
+
struct ggml_tensor * a,
|
1095
|
+
float eps);
|
1096
|
+
|
1097
|
+
// group normalize along ne0*ne1*n_groups
|
1098
|
+
// used in stable-diffusion
|
1099
|
+
GGML_API struct ggml_tensor * ggml_group_norm(
|
1100
|
+
struct ggml_context * ctx,
|
1101
|
+
struct ggml_tensor * a,
|
1102
|
+
int n_groups,
|
1103
|
+
float eps);
|
1104
|
+
|
1105
|
+
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
|
1106
|
+
struct ggml_context * ctx,
|
1107
|
+
struct ggml_tensor * a,
|
1108
|
+
int n_groups,
|
1109
|
+
float eps);
|
1110
|
+
|
1111
|
+
// a - x
|
1112
|
+
// b - dy
|
1113
|
+
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
1114
|
+
struct ggml_context * ctx,
|
1115
|
+
struct ggml_tensor * a,
|
1116
|
+
struct ggml_tensor * b,
|
1117
|
+
float eps);
|
1118
|
+
|
1119
|
+
// A: k columns, n rows => [ne03, ne02, n, k]
|
1120
|
+
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
|
1121
|
+
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
|
1122
|
+
GGML_API struct ggml_tensor * ggml_mul_mat(
|
1123
|
+
struct ggml_context * ctx,
|
1124
|
+
struct ggml_tensor * a,
|
1125
|
+
struct ggml_tensor * b);
|
1126
|
+
|
1127
|
+
// change the precision of a matrix multiplication
|
1128
|
+
// set to GGML_PREC_F32 for higher precision (useful for phi-2)
|
1129
|
+
GGML_API void ggml_mul_mat_set_prec(
|
1130
|
+
struct ggml_tensor * a,
|
1131
|
+
enum ggml_prec prec);
|
1132
|
+
|
1133
|
+
// indirect matrix multiplication
|
1134
|
+
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
1135
|
+
struct ggml_context * ctx,
|
1136
|
+
struct ggml_tensor * as,
|
1137
|
+
struct ggml_tensor * b,
|
1138
|
+
struct ggml_tensor * ids);
|
1139
|
+
|
1140
|
+
// A: m columns, n rows,
|
1141
|
+
// B: p columns, n rows,
|
1142
|
+
// result is m columns, p rows
|
1143
|
+
GGML_API struct ggml_tensor * ggml_out_prod(
|
1144
|
+
struct ggml_context * ctx,
|
1145
|
+
struct ggml_tensor * a,
|
1146
|
+
struct ggml_tensor * b);
|
1147
|
+
|
1148
|
+
//
|
1149
|
+
// operations on tensors without backpropagation
|
1150
|
+
//
|
1151
|
+
|
1152
|
+
GGML_API struct ggml_tensor * ggml_scale(
|
1153
|
+
struct ggml_context * ctx,
|
1154
|
+
struct ggml_tensor * a,
|
1155
|
+
float s);
|
1156
|
+
|
1157
|
+
// in-place, returns view(a)
|
1158
|
+
GGML_API struct ggml_tensor * ggml_scale_inplace(
|
1159
|
+
struct ggml_context * ctx,
|
1160
|
+
struct ggml_tensor * a,
|
1161
|
+
float s);
|
1162
|
+
|
1163
|
+
// b -> view(a,offset,nb1,nb2,3), return modified a
|
1164
|
+
GGML_API struct ggml_tensor * ggml_set(
|
1165
|
+
struct ggml_context * ctx,
|
1166
|
+
struct ggml_tensor * a,
|
1167
|
+
struct ggml_tensor * b,
|
1168
|
+
size_t nb1,
|
1169
|
+
size_t nb2,
|
1170
|
+
size_t nb3,
|
1171
|
+
size_t offset); // in bytes
|
1172
|
+
|
1173
|
+
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
1174
|
+
GGML_API struct ggml_tensor * ggml_set_inplace(
|
1175
|
+
struct ggml_context * ctx,
|
1176
|
+
struct ggml_tensor * a,
|
1177
|
+
struct ggml_tensor * b,
|
1178
|
+
size_t nb1,
|
1179
|
+
size_t nb2,
|
1180
|
+
size_t nb3,
|
1181
|
+
size_t offset); // in bytes
|
1182
|
+
|
1183
|
+
GGML_API struct ggml_tensor * ggml_set_1d(
|
1184
|
+
struct ggml_context * ctx,
|
1185
|
+
struct ggml_tensor * a,
|
1186
|
+
struct ggml_tensor * b,
|
1187
|
+
size_t offset); // in bytes
|
1188
|
+
|
1189
|
+
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
|
1190
|
+
struct ggml_context * ctx,
|
1191
|
+
struct ggml_tensor * a,
|
1192
|
+
struct ggml_tensor * b,
|
1193
|
+
size_t offset); // in bytes
|
1194
|
+
|
1195
|
+
// b -> view(a,offset,nb1,nb2,3), return modified a
|
1196
|
+
GGML_API struct ggml_tensor * ggml_set_2d(
|
1197
|
+
struct ggml_context * ctx,
|
1198
|
+
struct ggml_tensor * a,
|
1199
|
+
struct ggml_tensor * b,
|
1200
|
+
size_t nb1,
|
1201
|
+
size_t offset); // in bytes
|
1202
|
+
|
1203
|
+
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
1204
|
+
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
|
1205
|
+
struct ggml_context * ctx,
|
1206
|
+
struct ggml_tensor * a,
|
1207
|
+
struct ggml_tensor * b,
|
1208
|
+
size_t nb1,
|
1209
|
+
size_t offset); // in bytes
|
1210
|
+
|
1211
|
+
// a -> b, return view(b)
|
1212
|
+
GGML_API struct ggml_tensor * ggml_cpy(
|
1213
|
+
struct ggml_context * ctx,
|
1214
|
+
struct ggml_tensor * a,
|
1215
|
+
struct ggml_tensor * b);
|
1216
|
+
|
1217
|
+
GGML_API struct ggml_tensor * ggml_cast(
|
1218
|
+
struct ggml_context * ctx,
|
1219
|
+
struct ggml_tensor * a,
|
1220
|
+
enum ggml_type type);
|
1221
|
+
|
1222
|
+
// make contiguous
|
1223
|
+
GGML_API struct ggml_tensor * ggml_cont(
|
1224
|
+
struct ggml_context * ctx,
|
1225
|
+
struct ggml_tensor * a);
|
1226
|
+
|
1227
|
+
// make contiguous, with new shape
|
1228
|
+
GGML_API struct ggml_tensor * ggml_cont_1d(
|
1229
|
+
struct ggml_context * ctx,
|
1230
|
+
struct ggml_tensor * a,
|
1231
|
+
int64_t ne0);
|
1232
|
+
|
1233
|
+
GGML_API struct ggml_tensor * ggml_cont_2d(
|
1234
|
+
struct ggml_context * ctx,
|
1235
|
+
struct ggml_tensor * a,
|
1236
|
+
int64_t ne0,
|
1237
|
+
int64_t ne1);
|
1238
|
+
|
1239
|
+
GGML_API struct ggml_tensor * ggml_cont_3d(
|
1240
|
+
struct ggml_context * ctx,
|
1241
|
+
struct ggml_tensor * a,
|
1242
|
+
int64_t ne0,
|
1243
|
+
int64_t ne1,
|
1244
|
+
int64_t ne2);
|
1245
|
+
|
1246
|
+
GGML_API struct ggml_tensor * ggml_cont_4d(
|
1247
|
+
struct ggml_context * ctx,
|
1248
|
+
struct ggml_tensor * a,
|
1249
|
+
int64_t ne0,
|
1250
|
+
int64_t ne1,
|
1251
|
+
int64_t ne2,
|
1252
|
+
int64_t ne3);
|
1253
|
+
|
1254
|
+
// return view(a), b specifies the new shape
|
1255
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
1256
|
+
GGML_API struct ggml_tensor * ggml_reshape(
|
1257
|
+
struct ggml_context * ctx,
|
1258
|
+
struct ggml_tensor * a,
|
1259
|
+
struct ggml_tensor * b);
|
1260
|
+
|
1261
|
+
// return view(a)
|
1262
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
1263
|
+
GGML_API struct ggml_tensor * ggml_reshape_1d(
|
1264
|
+
struct ggml_context * ctx,
|
1265
|
+
struct ggml_tensor * a,
|
1266
|
+
int64_t ne0);
|
1267
|
+
|
1268
|
+
GGML_API struct ggml_tensor * ggml_reshape_2d(
|
1269
|
+
struct ggml_context * ctx,
|
1270
|
+
struct ggml_tensor * a,
|
1271
|
+
int64_t ne0,
|
1272
|
+
int64_t ne1);
|
1273
|
+
|
1274
|
+
// return view(a)
|
1275
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
1276
|
+
GGML_API struct ggml_tensor * ggml_reshape_3d(
|
1277
|
+
struct ggml_context * ctx,
|
1278
|
+
struct ggml_tensor * a,
|
1279
|
+
int64_t ne0,
|
1280
|
+
int64_t ne1,
|
1281
|
+
int64_t ne2);
|
1282
|
+
|
1283
|
+
GGML_API struct ggml_tensor * ggml_reshape_4d(
|
1284
|
+
struct ggml_context * ctx,
|
1285
|
+
struct ggml_tensor * a,
|
1286
|
+
int64_t ne0,
|
1287
|
+
int64_t ne1,
|
1288
|
+
int64_t ne2,
|
1289
|
+
int64_t ne3);
|
1290
|
+
|
1291
|
+
// offset in bytes
|
1292
|
+
GGML_API struct ggml_tensor * ggml_view_1d(
|
1293
|
+
struct ggml_context * ctx,
|
1294
|
+
struct ggml_tensor * a,
|
1295
|
+
int64_t ne0,
|
1296
|
+
size_t offset);
|
1297
|
+
|
1298
|
+
GGML_API struct ggml_tensor * ggml_view_2d(
|
1299
|
+
struct ggml_context * ctx,
|
1300
|
+
struct ggml_tensor * a,
|
1301
|
+
int64_t ne0,
|
1302
|
+
int64_t ne1,
|
1303
|
+
size_t nb1, // row stride in bytes
|
1304
|
+
size_t offset);
|
1305
|
+
|
1306
|
+
GGML_API struct ggml_tensor * ggml_view_3d(
|
1307
|
+
struct ggml_context * ctx,
|
1308
|
+
struct ggml_tensor * a,
|
1309
|
+
int64_t ne0,
|
1310
|
+
int64_t ne1,
|
1311
|
+
int64_t ne2,
|
1312
|
+
size_t nb1, // row stride in bytes
|
1313
|
+
size_t nb2, // slice stride in bytes
|
1314
|
+
size_t offset);
|
1315
|
+
|
1316
|
+
GGML_API struct ggml_tensor * ggml_view_4d(
|
1317
|
+
struct ggml_context * ctx,
|
1318
|
+
struct ggml_tensor * a,
|
1319
|
+
int64_t ne0,
|
1320
|
+
int64_t ne1,
|
1321
|
+
int64_t ne2,
|
1322
|
+
int64_t ne3,
|
1323
|
+
size_t nb1, // row stride in bytes
|
1324
|
+
size_t nb2, // slice stride in bytes
|
1325
|
+
size_t nb3,
|
1326
|
+
size_t offset);
|
1327
|
+
|
1328
|
+
GGML_API struct ggml_tensor * ggml_permute(
|
1329
|
+
struct ggml_context * ctx,
|
1330
|
+
struct ggml_tensor * a,
|
1331
|
+
int axis0,
|
1332
|
+
int axis1,
|
1333
|
+
int axis2,
|
1334
|
+
int axis3);
|
1335
|
+
|
1336
|
+
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
1337
|
+
GGML_API struct ggml_tensor * ggml_transpose(
|
1338
|
+
struct ggml_context * ctx,
|
1339
|
+
struct ggml_tensor * a);
|
1340
|
+
|
1341
|
+
// supports 3D: a->ne[2] == b->ne[1]
|
1342
|
+
GGML_API struct ggml_tensor * ggml_get_rows(
|
1343
|
+
struct ggml_context * ctx,
|
1344
|
+
struct ggml_tensor * a, // data
|
1345
|
+
struct ggml_tensor * b); // row indices
|
1346
|
+
|
1347
|
+
GGML_API struct ggml_tensor * ggml_get_rows_back(
|
1348
|
+
struct ggml_context * ctx,
|
1349
|
+
struct ggml_tensor * a, // gradients of ggml_get_rows result
|
1350
|
+
struct ggml_tensor * b, // row indices
|
1351
|
+
struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
|
1352
|
+
|
1353
|
+
GGML_API struct ggml_tensor * ggml_diag(
|
1354
|
+
struct ggml_context * ctx,
|
1355
|
+
struct ggml_tensor * a);
|
1356
|
+
|
1357
|
+
// set elements above the diagonal to -INF
|
1358
|
+
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
|
1359
|
+
struct ggml_context * ctx,
|
1360
|
+
struct ggml_tensor * a,
|
1361
|
+
int n_past);
|
1362
|
+
|
1363
|
+
// in-place, returns view(a)
|
1364
|
+
GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
1365
|
+
struct ggml_context * ctx,
|
1366
|
+
struct ggml_tensor * a,
|
1367
|
+
int n_past);
|
1368
|
+
|
1369
|
+
// set elements above the diagonal to 0
|
1370
|
+
GGML_API struct ggml_tensor * ggml_diag_mask_zero(
|
1371
|
+
struct ggml_context * ctx,
|
1372
|
+
struct ggml_tensor * a,
|
1373
|
+
int n_past);
|
1374
|
+
|
1375
|
+
// in-place, returns view(a)
|
1376
|
+
GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
|
1377
|
+
struct ggml_context * ctx,
|
1378
|
+
struct ggml_tensor * a,
|
1379
|
+
int n_past);
|
1380
|
+
|
1381
|
+
GGML_API struct ggml_tensor * ggml_soft_max(
|
1382
|
+
struct ggml_context * ctx,
|
1383
|
+
struct ggml_tensor * a);
|
1384
|
+
|
1385
|
+
// in-place, returns view(a)
|
1386
|
+
GGML_API struct ggml_tensor * ggml_soft_max_inplace(
|
1387
|
+
struct ggml_context * ctx,
|
1388
|
+
struct ggml_tensor * a);
|
1389
|
+
|
1390
|
+
// fused soft_max(a*scale + mask*(ALiBi slope))
|
1391
|
+
// mask is optional
|
1392
|
+
// max_bias = 0.0f for no ALiBi
|
1393
|
+
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
1394
|
+
struct ggml_context * ctx,
|
1395
|
+
struct ggml_tensor * a,
|
1396
|
+
struct ggml_tensor * mask,
|
1397
|
+
float scale,
|
1398
|
+
float max_bias);
|
1399
|
+
|
1400
|
+
GGML_API struct ggml_tensor * ggml_soft_max_back(
|
1401
|
+
struct ggml_context * ctx,
|
1402
|
+
struct ggml_tensor * a,
|
1403
|
+
struct ggml_tensor * b);
|
1404
|
+
|
1405
|
+
// in-place, returns view(a)
|
1406
|
+
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
|
1407
|
+
struct ggml_context * ctx,
|
1408
|
+
struct ggml_tensor * a,
|
1409
|
+
struct ggml_tensor * b);
|
1410
|
+
|
1411
|
+
// rotary position embedding
|
1412
|
+
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
|
1413
|
+
// if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
|
1414
|
+
//
|
1415
|
+
// b is an int32 vector with size a->ne[2], it contains the positions
|
1416
|
+
GGML_API struct ggml_tensor * ggml_rope(
|
1417
|
+
struct ggml_context * ctx,
|
1418
|
+
struct ggml_tensor * a,
|
1419
|
+
struct ggml_tensor * b,
|
1420
|
+
int n_dims,
|
1421
|
+
int mode);
|
1422
|
+
|
1423
|
+
// in-place, returns view(a)
|
1424
|
+
GGML_API struct ggml_tensor * ggml_rope_inplace(
|
1425
|
+
struct ggml_context * ctx,
|
1426
|
+
struct ggml_tensor * a,
|
1427
|
+
struct ggml_tensor * b,
|
1428
|
+
int n_dims,
|
1429
|
+
int mode);
|
1430
|
+
|
1431
|
+
// custom RoPE
|
1432
|
+
// c is freq factors (e.g. phi3-128k), (optional)
|
1433
|
+
GGML_API struct ggml_tensor * ggml_rope_ext(
|
1434
|
+
struct ggml_context * ctx,
|
1435
|
+
struct ggml_tensor * a,
|
1436
|
+
struct ggml_tensor * b,
|
1437
|
+
struct ggml_tensor * c,
|
1438
|
+
int n_dims,
|
1439
|
+
int mode,
|
1440
|
+
int n_ctx_orig,
|
1441
|
+
float freq_base,
|
1442
|
+
float freq_scale,
|
1443
|
+
float ext_factor,
|
1444
|
+
float attn_factor,
|
1445
|
+
float beta_fast,
|
1446
|
+
float beta_slow);
|
1447
|
+
|
1448
|
+
GGML_API struct ggml_tensor * ggml_rope_multi(
|
1449
|
+
struct ggml_context * ctx,
|
1450
|
+
struct ggml_tensor * a,
|
1451
|
+
struct ggml_tensor * b,
|
1452
|
+
struct ggml_tensor * c,
|
1453
|
+
int n_dims,
|
1454
|
+
int sections[4],
|
1455
|
+
int mode,
|
1456
|
+
int n_ctx_orig,
|
1457
|
+
float freq_base,
|
1458
|
+
float freq_scale,
|
1459
|
+
float ext_factor,
|
1460
|
+
float attn_factor,
|
1461
|
+
float beta_fast,
|
1462
|
+
float beta_slow);
|
1463
|
+
|
1464
|
+
// in-place, returns view(a)
|
1465
|
+
GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
|
1466
|
+
struct ggml_context * ctx,
|
1467
|
+
struct ggml_tensor * a,
|
1468
|
+
struct ggml_tensor * b,
|
1469
|
+
struct ggml_tensor * c,
|
1470
|
+
int n_dims,
|
1471
|
+
int mode,
|
1472
|
+
int n_ctx_orig,
|
1473
|
+
float freq_base,
|
1474
|
+
float freq_scale,
|
1475
|
+
float ext_factor,
|
1476
|
+
float attn_factor,
|
1477
|
+
float beta_fast,
|
1478
|
+
float beta_slow);
|
1479
|
+
|
1480
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
|
1481
|
+
struct ggml_context * ctx,
|
1482
|
+
struct ggml_tensor * a,
|
1483
|
+
struct ggml_tensor * b,
|
1484
|
+
int n_dims,
|
1485
|
+
int mode,
|
1486
|
+
int n_ctx_orig,
|
1487
|
+
float freq_base,
|
1488
|
+
float freq_scale,
|
1489
|
+
float ext_factor,
|
1490
|
+
float attn_factor,
|
1491
|
+
float beta_fast,
|
1492
|
+
float beta_slow),
|
1493
|
+
"use ggml_rope_ext instead");
|
1494
|
+
|
1495
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
1496
|
+
struct ggml_context * ctx,
|
1497
|
+
struct ggml_tensor * a,
|
1498
|
+
struct ggml_tensor * b,
|
1499
|
+
int n_dims,
|
1500
|
+
int mode,
|
1501
|
+
int n_ctx_orig,
|
1502
|
+
float freq_base,
|
1503
|
+
float freq_scale,
|
1504
|
+
float ext_factor,
|
1505
|
+
float attn_factor,
|
1506
|
+
float beta_fast,
|
1507
|
+
float beta_slow),
|
1508
|
+
"use ggml_rope_ext_inplace instead");
|
1509
|
+
|
1510
|
+
// compute correction dims for YaRN RoPE scaling
|
1511
|
+
GGML_API void ggml_rope_yarn_corr_dims(
|
1512
|
+
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
1513
|
+
|
1514
|
+
// rotary position embedding backward, i.e compute dx from dy
|
1515
|
+
// a - dy
|
1516
|
+
GGML_API struct ggml_tensor * ggml_rope_back(
|
1517
|
+
struct ggml_context * ctx,
|
1518
|
+
struct ggml_tensor * a, // gradients of ggml_rope result
|
1519
|
+
struct ggml_tensor * b, // positions
|
1520
|
+
struct ggml_tensor * c, // freq factors
|
1521
|
+
int n_dims,
|
1522
|
+
int mode,
|
1523
|
+
int n_ctx_orig,
|
1524
|
+
float freq_base,
|
1525
|
+
float freq_scale,
|
1526
|
+
float ext_factor,
|
1527
|
+
float attn_factor,
|
1528
|
+
float beta_fast,
|
1529
|
+
float beta_slow);
|
1530
|
+
|
1531
|
+
// clamp
|
1532
|
+
// in-place, returns view(a)
|
1533
|
+
GGML_API struct ggml_tensor * ggml_clamp(
|
1534
|
+
struct ggml_context * ctx,
|
1535
|
+
struct ggml_tensor * a,
|
1536
|
+
float min,
|
1537
|
+
float max);
|
1538
|
+
|
1539
|
+
// im2col
|
1540
|
+
// converts data into a format that effectively results in a convolution when combined with matrix multiplication
|
1541
|
+
GGML_API struct ggml_tensor * ggml_im2col(
|
1542
|
+
struct ggml_context * ctx,
|
1543
|
+
struct ggml_tensor * a, // convolution kernel
|
1544
|
+
struct ggml_tensor * b, // data
|
1545
|
+
int s0, // stride dimension 0
|
1546
|
+
int s1, // stride dimension 1
|
1547
|
+
int p0, // padding dimension 0
|
1548
|
+
int p1, // padding dimension 1
|
1549
|
+
int d0, // dilation dimension 0
|
1550
|
+
int d1, // dilation dimension 1
|
1551
|
+
bool is_2D,
|
1552
|
+
enum ggml_type dst_type);
|
1553
|
+
|
1554
|
+
GGML_API struct ggml_tensor * ggml_im2col_back(
|
1555
|
+
struct ggml_context * ctx,
|
1556
|
+
struct ggml_tensor * a, // convolution kernel
|
1557
|
+
struct ggml_tensor * b, // gradient of im2col output
|
1558
|
+
int64_t * ne, // shape of im2col input
|
1559
|
+
int s0, // stride dimension 0
|
1560
|
+
int s1, // stride dimension 1
|
1561
|
+
int p0, // padding dimension 0
|
1562
|
+
int p1, // padding dimension 1
|
1563
|
+
int d0, // dilation dimension 0
|
1564
|
+
int d1, // dilation dimension 1
|
1565
|
+
bool is_2D);
|
1566
|
+
|
1567
|
+
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
|
1568
|
+
struct ggml_context * ctx,
|
1569
|
+
struct ggml_tensor * a, // convolution kernel
|
1570
|
+
struct ggml_tensor * b, // data
|
1571
|
+
int s0, // stride dimension 0
|
1572
|
+
int s1, // stride dimension 1
|
1573
|
+
int p0, // padding dimension 0
|
1574
|
+
int p1, // padding dimension 1
|
1575
|
+
int d0, // dilation dimension 0
|
1576
|
+
int d1); // dilation dimension 1
|
1577
|
+
|
1578
|
+
GGML_API struct ggml_tensor * ggml_conv_1d(
|
1579
|
+
struct ggml_context * ctx,
|
1580
|
+
struct ggml_tensor * a, // convolution kernel
|
1581
|
+
struct ggml_tensor * b, // data
|
1582
|
+
int s0, // stride
|
1583
|
+
int p0, // padding
|
1584
|
+
int d0); // dilation
|
1585
|
+
|
1586
|
+
// conv_1d with padding = half
|
1587
|
+
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
1588
|
+
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
1589
|
+
struct ggml_context * ctx,
|
1590
|
+
struct ggml_tensor * a, // convolution kernel
|
1591
|
+
struct ggml_tensor * b, // data
|
1592
|
+
int s, // stride
|
1593
|
+
int d); // dilation
|
1594
|
+
|
1595
|
+
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
|
1596
|
+
struct ggml_context * ctx,
|
1597
|
+
struct ggml_tensor * a, // convolution kernel
|
1598
|
+
struct ggml_tensor * b, // data
|
1599
|
+
int s0, // stride
|
1600
|
+
int p0, // padding
|
1601
|
+
int d0); // dilation
|
1602
|
+
|
1603
|
+
GGML_API struct ggml_tensor * ggml_conv_2d(
|
1604
|
+
struct ggml_context * ctx,
|
1605
|
+
struct ggml_tensor * a, // convolution kernel
|
1606
|
+
struct ggml_tensor * b, // data
|
1607
|
+
int s0, // stride dimension 0
|
1608
|
+
int s1, // stride dimension 1
|
1609
|
+
int p0, // padding dimension 0
|
1610
|
+
int p1, // padding dimension 1
|
1611
|
+
int d0, // dilation dimension 0
|
1612
|
+
int d1); // dilation dimension 1
|
1613
|
+
|
1614
|
+
|
1615
|
+
// kernel size is a->ne[0] x a->ne[1]
|
1616
|
+
// stride is equal to kernel size
|
1617
|
+
// padding is zero
|
1618
|
+
// example:
|
1619
|
+
// a: 16 16 3 768
|
1620
|
+
// b: 1024 1024 3 1
|
1621
|
+
// res: 64 64 768 1
|
1622
|
+
// used in sam
|
1623
|
+
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
|
1624
|
+
struct ggml_context * ctx,
|
1625
|
+
struct ggml_tensor * a,
|
1626
|
+
struct ggml_tensor * b);
|
1627
|
+
|
1628
|
+
// kernel size is a->ne[0] x a->ne[1]
|
1629
|
+
// stride is 1
|
1630
|
+
// padding is half
|
1631
|
+
// example:
|
1632
|
+
// a: 3 3 256 256
|
1633
|
+
// b: 64 64 256 1
|
1634
|
+
// res: 64 64 256 1
|
1635
|
+
// used in sam
|
1636
|
+
GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
|
1637
|
+
struct ggml_context * ctx,
|
1638
|
+
struct ggml_tensor * a,
|
1639
|
+
struct ggml_tensor * b);
|
1640
|
+
|
1641
|
+
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
|
1642
|
+
struct ggml_context * ctx,
|
1643
|
+
struct ggml_tensor * a,
|
1644
|
+
struct ggml_tensor * b,
|
1645
|
+
int stride);
|
1646
|
+
|
1647
|
+
enum ggml_op_pool {
|
1648
|
+
GGML_OP_POOL_MAX,
|
1649
|
+
GGML_OP_POOL_AVG,
|
1650
|
+
GGML_OP_POOL_COUNT,
|
1651
|
+
};
|
1652
|
+
|
1653
|
+
GGML_API struct ggml_tensor * ggml_pool_1d(
|
1654
|
+
struct ggml_context * ctx,
|
1655
|
+
struct ggml_tensor * a,
|
1656
|
+
enum ggml_op_pool op,
|
1657
|
+
int k0, // kernel size
|
1658
|
+
int s0, // stride
|
1659
|
+
int p0); // padding
|
1660
|
+
|
1661
|
+
// the result will have 2*p0 padding for the first dimension
|
1662
|
+
// and 2*p1 padding for the second dimension
|
1663
|
+
GGML_API struct ggml_tensor * ggml_pool_2d(
|
1664
|
+
struct ggml_context * ctx,
|
1665
|
+
struct ggml_tensor * a,
|
1666
|
+
enum ggml_op_pool op,
|
1667
|
+
int k0,
|
1668
|
+
int k1,
|
1669
|
+
int s0,
|
1670
|
+
int s1,
|
1671
|
+
float p0,
|
1672
|
+
float p1);
|
1673
|
+
|
1674
|
+
GGML_API struct ggml_tensor * ggml_pool_2d_back(
|
1675
|
+
struct ggml_context * ctx,
|
1676
|
+
struct ggml_tensor * a,
|
1677
|
+
struct ggml_tensor * af, // "a"/input used in forward pass
|
1678
|
+
enum ggml_op_pool op,
|
1679
|
+
int k0,
|
1680
|
+
int k1,
|
1681
|
+
int s0,
|
1682
|
+
int s1,
|
1683
|
+
float p0,
|
1684
|
+
float p1);
|
1685
|
+
|
1686
|
+
// nearest interpolate
|
1687
|
+
// multiplies ne0 and ne1 by scale factor
|
1688
|
+
// used in stable-diffusion
|
1689
|
+
GGML_API struct ggml_tensor * ggml_upscale(
|
1690
|
+
struct ggml_context * ctx,
|
1691
|
+
struct ggml_tensor * a,
|
1692
|
+
int scale_factor);
|
1693
|
+
|
1694
|
+
// nearest interpolate
|
1695
|
+
// nearest interpolate to specified dimensions
|
1696
|
+
// used in tortoise.cpp
|
1697
|
+
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
1698
|
+
struct ggml_context * ctx,
|
1699
|
+
struct ggml_tensor * a,
|
1700
|
+
int ne0,
|
1701
|
+
int ne1,
|
1702
|
+
int ne2,
|
1703
|
+
int ne3);
|
1704
|
+
|
1705
|
+
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
1706
|
+
GGML_API struct ggml_tensor * ggml_pad(
|
1707
|
+
struct ggml_context * ctx,
|
1708
|
+
struct ggml_tensor * a,
|
1709
|
+
int p0,
|
1710
|
+
int p1,
|
1711
|
+
int p2,
|
1712
|
+
int p3);
|
1713
|
+
|
1714
|
+
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
|
1715
|
+
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
|
1716
|
+
struct ggml_context * ctx,
|
1717
|
+
struct ggml_tensor * a,
|
1718
|
+
int p0,
|
1719
|
+
int p1);
|
1720
|
+
|
1721
|
+
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
1722
|
+
// timesteps: [N,]
|
1723
|
+
// return: [N, dim]
|
1724
|
+
GGML_API struct ggml_tensor * ggml_timestep_embedding(
|
1725
|
+
struct ggml_context * ctx,
|
1726
|
+
struct ggml_tensor * timesteps,
|
1727
|
+
int dim,
|
1728
|
+
int max_period);
|
1729
|
+
|
1730
|
+
// sort rows
|
1731
|
+
enum ggml_sort_order {
|
1732
|
+
GGML_SORT_ORDER_ASC,
|
1733
|
+
GGML_SORT_ORDER_DESC,
|
1734
|
+
};
|
1735
|
+
|
1736
|
+
GGML_API struct ggml_tensor * ggml_argsort(
|
1737
|
+
struct ggml_context * ctx,
|
1738
|
+
struct ggml_tensor * a,
|
1739
|
+
enum ggml_sort_order order);
|
1740
|
+
|
1741
|
+
GGML_API struct ggml_tensor * ggml_arange(
|
1742
|
+
struct ggml_context * ctx,
|
1743
|
+
float start,
|
1744
|
+
float stop,
|
1745
|
+
float step);
|
1746
|
+
|
1747
|
+
// top k elements per row
|
1748
|
+
GGML_API struct ggml_tensor * ggml_top_k(
|
1749
|
+
struct ggml_context * ctx,
|
1750
|
+
struct ggml_tensor * a,
|
1751
|
+
int k);
|
1752
|
+
|
1753
|
+
#define GGML_KQ_MASK_PAD 32
|
1754
|
+
|
1755
|
+
// q: [n_embd, n_batch, n_head, 1]
|
1756
|
+
// k: [n_embd, n_kv, n_head_kv, 1]
|
1757
|
+
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
|
1758
|
+
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
1759
|
+
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
|
1760
|
+
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
|
1761
|
+
struct ggml_context * ctx,
|
1762
|
+
struct ggml_tensor * q,
|
1763
|
+
struct ggml_tensor * k,
|
1764
|
+
struct ggml_tensor * v,
|
1765
|
+
struct ggml_tensor * mask,
|
1766
|
+
float scale,
|
1767
|
+
float max_bias,
|
1768
|
+
float logit_softcap);
|
1769
|
+
|
1770
|
+
GGML_API void ggml_flash_attn_ext_set_prec(
|
1771
|
+
struct ggml_tensor * a,
|
1772
|
+
enum ggml_prec prec);
|
1773
|
+
|
1774
|
+
GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
|
1775
|
+
const struct ggml_tensor * a);
|
1776
|
+
|
1777
|
+
// TODO: needs to be adapted to ggml_flash_attn_ext
|
1778
|
+
GGML_API struct ggml_tensor * ggml_flash_attn_back(
|
1779
|
+
struct ggml_context * ctx,
|
1780
|
+
struct ggml_tensor * q,
|
1781
|
+
struct ggml_tensor * k,
|
1782
|
+
struct ggml_tensor * v,
|
1783
|
+
struct ggml_tensor * d,
|
1784
|
+
bool masked);
|
1785
|
+
|
1786
|
+
GGML_API struct ggml_tensor * ggml_ssm_conv(
|
1787
|
+
struct ggml_context * ctx,
|
1788
|
+
struct ggml_tensor * sx,
|
1789
|
+
struct ggml_tensor * c);
|
1790
|
+
|
1791
|
+
GGML_API struct ggml_tensor * ggml_ssm_scan(
|
1792
|
+
struct ggml_context * ctx,
|
1793
|
+
struct ggml_tensor * s,
|
1794
|
+
struct ggml_tensor * x,
|
1795
|
+
struct ggml_tensor * dt,
|
1796
|
+
struct ggml_tensor * A,
|
1797
|
+
struct ggml_tensor * B,
|
1798
|
+
struct ggml_tensor * C);
|
1799
|
+
|
1800
|
+
// partition into non-overlapping windows with padding if needed
|
1801
|
+
// example:
|
1802
|
+
// a: 768 64 64 1
|
1803
|
+
// w: 14
|
1804
|
+
// res: 768 14 14 25
|
1805
|
+
// used in sam
|
1806
|
+
GGML_API struct ggml_tensor * ggml_win_part(
|
1807
|
+
struct ggml_context * ctx,
|
1808
|
+
struct ggml_tensor * a,
|
1809
|
+
int w);
|
1810
|
+
|
1811
|
+
// reverse of ggml_win_part
|
1812
|
+
// used in sam
|
1813
|
+
GGML_API struct ggml_tensor * ggml_win_unpart(
|
1814
|
+
struct ggml_context * ctx,
|
1815
|
+
struct ggml_tensor * a,
|
1816
|
+
int w0,
|
1817
|
+
int h0,
|
1818
|
+
int w);
|
1819
|
+
|
1820
|
+
GGML_API struct ggml_tensor * ggml_unary(
|
1821
|
+
struct ggml_context * ctx,
|
1822
|
+
struct ggml_tensor * a,
|
1823
|
+
enum ggml_unary_op op);
|
1824
|
+
|
1825
|
+
GGML_API struct ggml_tensor * ggml_unary_inplace(
|
1826
|
+
struct ggml_context * ctx,
|
1827
|
+
struct ggml_tensor * a,
|
1828
|
+
enum ggml_unary_op op);
|
1829
|
+
|
1830
|
+
// used in sam
|
1831
|
+
GGML_API struct ggml_tensor * ggml_get_rel_pos(
|
1832
|
+
struct ggml_context * ctx,
|
1833
|
+
struct ggml_tensor * a,
|
1834
|
+
int qh,
|
1835
|
+
int kh);
|
1836
|
+
|
1837
|
+
// used in sam
|
1838
|
+
GGML_API struct ggml_tensor * ggml_add_rel_pos(
|
1839
|
+
struct ggml_context * ctx,
|
1840
|
+
struct ggml_tensor * a,
|
1841
|
+
struct ggml_tensor * pw,
|
1842
|
+
struct ggml_tensor * ph);
|
1843
|
+
|
1844
|
+
GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
|
1845
|
+
struct ggml_context * ctx,
|
1846
|
+
struct ggml_tensor * a,
|
1847
|
+
struct ggml_tensor * pw,
|
1848
|
+
struct ggml_tensor * ph);
|
1849
|
+
|
1850
|
+
GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
|
1851
|
+
struct ggml_context * ctx,
|
1852
|
+
struct ggml_tensor * k,
|
1853
|
+
struct ggml_tensor * v,
|
1854
|
+
struct ggml_tensor * r,
|
1855
|
+
struct ggml_tensor * tf,
|
1856
|
+
struct ggml_tensor * td,
|
1857
|
+
struct ggml_tensor * state);
|
1858
|
+
|
1859
|
+
// custom operators
|
1860
|
+
|
1861
|
+
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
1862
|
+
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
1863
|
+
|
1864
|
+
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
1865
|
+
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
1866
|
+
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
1867
|
+
|
1868
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
1869
|
+
struct ggml_context * ctx,
|
1870
|
+
struct ggml_tensor * a,
|
1871
|
+
ggml_unary_op_f32_t fun),
|
1872
|
+
"use ggml_map_custom1 instead");
|
1873
|
+
|
1874
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
1875
|
+
struct ggml_context * ctx,
|
1876
|
+
struct ggml_tensor * a,
|
1877
|
+
ggml_unary_op_f32_t fun),
|
1878
|
+
"use ggml_map_custom1_inplace instead");
|
1879
|
+
|
1880
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
1881
|
+
struct ggml_context * ctx,
|
1882
|
+
struct ggml_tensor * a,
|
1883
|
+
struct ggml_tensor * b,
|
1884
|
+
ggml_binary_op_f32_t fun),
|
1885
|
+
"use ggml_map_custom2 instead");
|
1886
|
+
|
1887
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
1888
|
+
struct ggml_context * ctx,
|
1889
|
+
struct ggml_tensor * a,
|
1890
|
+
struct ggml_tensor * b,
|
1891
|
+
ggml_binary_op_f32_t fun),
|
1892
|
+
"use ggml_map_custom2_inplace instead");
|
1893
|
+
|
1894
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
1895
|
+
struct ggml_context * ctx,
|
1896
|
+
struct ggml_tensor * a,
|
1897
|
+
ggml_custom1_op_f32_t fun),
|
1898
|
+
"use ggml_map_custom1 instead");
|
1899
|
+
|
1900
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
1901
|
+
struct ggml_context * ctx,
|
1902
|
+
struct ggml_tensor * a,
|
1903
|
+
ggml_custom1_op_f32_t fun),
|
1904
|
+
"use ggml_map_custom1_inplace instead");
|
1905
|
+
|
1906
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
1907
|
+
struct ggml_context * ctx,
|
1908
|
+
struct ggml_tensor * a,
|
1909
|
+
struct ggml_tensor * b,
|
1910
|
+
ggml_custom2_op_f32_t fun),
|
1911
|
+
"use ggml_map_custom2 instead");
|
1912
|
+
|
1913
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
1914
|
+
struct ggml_context * ctx,
|
1915
|
+
struct ggml_tensor * a,
|
1916
|
+
struct ggml_tensor * b,
|
1917
|
+
ggml_custom2_op_f32_t fun),
|
1918
|
+
"use ggml_map_custom2_inplace instead");
|
1919
|
+
|
1920
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
1921
|
+
struct ggml_context * ctx,
|
1922
|
+
struct ggml_tensor * a,
|
1923
|
+
struct ggml_tensor * b,
|
1924
|
+
struct ggml_tensor * c,
|
1925
|
+
ggml_custom3_op_f32_t fun),
|
1926
|
+
"use ggml_map_custom3 instead");
|
1927
|
+
|
1928
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
1929
|
+
struct ggml_context * ctx,
|
1930
|
+
struct ggml_tensor * a,
|
1931
|
+
struct ggml_tensor * b,
|
1932
|
+
struct ggml_tensor * c,
|
1933
|
+
ggml_custom3_op_f32_t fun),
|
1934
|
+
"use ggml_map_custom3_inplace instead");
|
1935
|
+
|
1936
|
+
// custom operators v2
|
1937
|
+
|
1938
|
+
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
1939
|
+
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
1940
|
+
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
1941
|
+
|
1942
|
+
#define GGML_N_TASKS_MAX (-1)
|
1943
|
+
// n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
|
1944
|
+
|
1945
|
+
GGML_API struct ggml_tensor * ggml_map_custom1(
|
1946
|
+
struct ggml_context * ctx,
|
1947
|
+
struct ggml_tensor * a,
|
1948
|
+
ggml_custom1_op_t fun,
|
1949
|
+
int n_tasks,
|
1950
|
+
void * userdata);
|
1951
|
+
|
1952
|
+
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
|
1953
|
+
struct ggml_context * ctx,
|
1954
|
+
struct ggml_tensor * a,
|
1955
|
+
ggml_custom1_op_t fun,
|
1956
|
+
int n_tasks,
|
1957
|
+
void * userdata);
|
1958
|
+
|
1959
|
+
GGML_API struct ggml_tensor * ggml_map_custom2(
|
1960
|
+
struct ggml_context * ctx,
|
1961
|
+
struct ggml_tensor * a,
|
1962
|
+
struct ggml_tensor * b,
|
1963
|
+
ggml_custom2_op_t fun,
|
1964
|
+
int n_tasks,
|
1965
|
+
void * userdata);
|
1966
|
+
|
1967
|
+
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
|
1968
|
+
struct ggml_context * ctx,
|
1969
|
+
struct ggml_tensor * a,
|
1970
|
+
struct ggml_tensor * b,
|
1971
|
+
ggml_custom2_op_t fun,
|
1972
|
+
int n_tasks,
|
1973
|
+
void * userdata);
|
1974
|
+
|
1975
|
+
GGML_API struct ggml_tensor * ggml_map_custom3(
|
1976
|
+
struct ggml_context * ctx,
|
1977
|
+
struct ggml_tensor * a,
|
1978
|
+
struct ggml_tensor * b,
|
1979
|
+
struct ggml_tensor * c,
|
1980
|
+
ggml_custom3_op_t fun,
|
1981
|
+
int n_tasks,
|
1982
|
+
void * userdata);
|
1983
|
+
|
1984
|
+
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
|
1985
|
+
struct ggml_context * ctx,
|
1986
|
+
struct ggml_tensor * a,
|
1987
|
+
struct ggml_tensor * b,
|
1988
|
+
struct ggml_tensor * c,
|
1989
|
+
ggml_custom3_op_t fun,
|
1990
|
+
int n_tasks,
|
1991
|
+
void * userdata);
|
1992
|
+
|
1993
|
+
// loss function
|
1994
|
+
|
1995
|
+
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
|
1996
|
+
struct ggml_context * ctx,
|
1997
|
+
struct ggml_tensor * a, // logits
|
1998
|
+
struct ggml_tensor * b); // labels
|
1999
|
+
|
2000
|
+
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
|
2001
|
+
struct ggml_context * ctx,
|
2002
|
+
struct ggml_tensor * a, // logits
|
2003
|
+
struct ggml_tensor * b, // labels
|
2004
|
+
struct ggml_tensor * c); // gradients of cross_entropy_loss result
|
2005
|
+
|
2006
|
+
// AdamW optimizer step
|
2007
|
+
// Paper: https://arxiv.org/pdf/1711.05101v3.pdf
|
2008
|
+
// PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
|
2009
|
+
GGML_API struct ggml_tensor * ggml_opt_step_adamw(
|
2010
|
+
struct ggml_context * ctx,
|
2011
|
+
struct ggml_tensor * a,
|
2012
|
+
struct ggml_tensor * grad,
|
2013
|
+
struct ggml_tensor * m,
|
2014
|
+
struct ggml_tensor * v,
|
2015
|
+
struct ggml_tensor * adamw_params); // parameters such a the learning rate
|
2016
|
+
|
2017
|
+
//
|
2018
|
+
// automatic differentiation
|
2019
|
+
//
|
2020
|
+
|
2021
|
+
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
2022
|
+
GGML_API void ggml_build_backward_expand(
|
2023
|
+
struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
|
2024
|
+
struct ggml_context * ctx_compute, // context for gradient computation
|
2025
|
+
struct ggml_cgraph * cgraph,
|
2026
|
+
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
|
2027
|
+
|
2028
|
+
// graph allocation in a context
|
2029
|
+
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
2030
|
+
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
|
2031
|
+
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
2032
|
+
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
2033
|
+
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
|
2034
|
+
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
2035
|
+
|
2036
|
+
GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
|
2037
|
+
GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
|
2038
|
+
GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
|
2039
|
+
GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
|
2040
|
+
|
2041
|
+
GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
2042
|
+
|
2043
|
+
GGML_API size_t ggml_graph_overhead(void);
|
2044
|
+
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
2045
|
+
|
2046
|
+
GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
|
2047
|
+
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
|
2048
|
+
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
|
2049
|
+
|
2050
|
+
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
2051
|
+
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
2052
|
+
|
2053
|
+
// print info and performance information for the graph
|
2054
|
+
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
2055
|
+
|
2056
|
+
// dump the graph into a file using the dot format
|
2057
|
+
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
2058
|
+
|
2059
|
+
// TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
|
2060
|
+
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
2061
|
+
|
2062
|
+
// Set callback for all future logging events.
|
2063
|
+
// If this is not called, or NULL is supplied, everything is output on stderr.
|
2064
|
+
GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
|
2065
|
+
|
2066
|
+
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
2067
|
+
|
2068
|
+
//
|
2069
|
+
// quantization
|
2070
|
+
//
|
2071
|
+
|
2072
|
+
// - ggml_quantize_init can be called multiple times with the same type
|
2073
|
+
// it will only initialize the quantization tables for the first call or after ggml_quantize_free
|
2074
|
+
// automatically called by ggml_quantize_chunk for convenience
|
2075
|
+
//
|
2076
|
+
// - ggml_quantize_free will free any memory allocated by ggml_quantize_init
|
2077
|
+
// call this at the end of the program to avoid memory leaks
|
2078
|
+
//
|
2079
|
+
// note: these are thread-safe
|
2080
|
+
//
|
2081
|
+
GGML_API void ggml_quantize_init(enum ggml_type type);
|
2082
|
+
GGML_API void ggml_quantize_free(void);
|
2083
|
+
|
2084
|
+
// some quantization type cannot be used without an importance matrix
|
2085
|
+
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
|
2086
|
+
|
2087
|
+
// calls ggml_quantize_init internally (i.e. can allocate memory)
|
2088
|
+
GGML_API size_t ggml_quantize_chunk(
|
2089
|
+
enum ggml_type type,
|
2090
|
+
const float * src,
|
2091
|
+
void * dst,
|
2092
|
+
int64_t start,
|
2093
|
+
int64_t nrows,
|
2094
|
+
int64_t n_per_row,
|
2095
|
+
const float * imatrix);
|
2096
|
+
|
2097
|
+
//
|
2098
|
+
// gguf
|
2099
|
+
//
|
2100
|
+
|
2101
|
+
enum gguf_type {
|
2102
|
+
GGUF_TYPE_UINT8 = 0,
|
2103
|
+
GGUF_TYPE_INT8 = 1,
|
2104
|
+
GGUF_TYPE_UINT16 = 2,
|
2105
|
+
GGUF_TYPE_INT16 = 3,
|
2106
|
+
GGUF_TYPE_UINT32 = 4,
|
2107
|
+
GGUF_TYPE_INT32 = 5,
|
2108
|
+
GGUF_TYPE_FLOAT32 = 6,
|
2109
|
+
GGUF_TYPE_BOOL = 7,
|
2110
|
+
GGUF_TYPE_STRING = 8,
|
2111
|
+
GGUF_TYPE_ARRAY = 9,
|
2112
|
+
GGUF_TYPE_UINT64 = 10,
|
2113
|
+
GGUF_TYPE_INT64 = 11,
|
2114
|
+
GGUF_TYPE_FLOAT64 = 12,
|
2115
|
+
GGUF_TYPE_COUNT, // marks the end of the enum
|
2116
|
+
};
|
2117
|
+
|
2118
|
+
struct gguf_context;
|
2119
|
+
|
2120
|
+
struct gguf_init_params {
|
2121
|
+
bool no_alloc;
|
2122
|
+
|
2123
|
+
// if not NULL, create a ggml_context and allocate the tensor data in it
|
2124
|
+
struct ggml_context ** ctx;
|
2125
|
+
};
|
2126
|
+
|
2127
|
+
GGML_API struct gguf_context * gguf_init_empty(void);
|
2128
|
+
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
2129
|
+
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
2130
|
+
|
2131
|
+
GGML_API void gguf_free(struct gguf_context * ctx);
|
2132
|
+
|
2133
|
+
GGML_API const char * gguf_type_name(enum gguf_type type);
|
2134
|
+
|
2135
|
+
GGML_API int gguf_get_version (const struct gguf_context * ctx);
|
2136
|
+
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
|
2137
|
+
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
|
2138
|
+
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
|
2139
|
+
|
2140
|
+
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
2141
|
+
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
2142
|
+
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
|
2143
|
+
|
2144
|
+
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
|
2145
|
+
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
|
2146
|
+
|
2147
|
+
// will abort if the wrong type is used for the key
|
2148
|
+
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
|
2149
|
+
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
|
2150
|
+
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
|
2151
|
+
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
|
2152
|
+
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
|
2153
|
+
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
|
2154
|
+
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
|
2155
|
+
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
|
2156
|
+
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
|
2157
|
+
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
|
2158
|
+
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
|
2159
|
+
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
|
2160
|
+
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
|
2161
|
+
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
|
2162
|
+
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
|
2163
|
+
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
2164
|
+
|
2165
|
+
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
2166
|
+
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
|
2167
|
+
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
|
2168
|
+
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
|
2169
|
+
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
|
2170
|
+
|
2171
|
+
// removes key if it exists
|
2172
|
+
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
|
2173
|
+
|
2174
|
+
// overrides existing values or adds a new one
|
2175
|
+
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
2176
|
+
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
2177
|
+
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
|
2178
|
+
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
|
2179
|
+
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
|
2180
|
+
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
|
2181
|
+
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
|
2182
|
+
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
|
2183
|
+
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
|
2184
|
+
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
|
2185
|
+
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
|
2186
|
+
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
|
2187
|
+
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
|
2188
|
+
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
|
2189
|
+
|
2190
|
+
// set or add KV pairs from another context
|
2191
|
+
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
|
2192
|
+
|
2193
|
+
// manage tensor info
|
2194
|
+
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
2195
|
+
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
2196
|
+
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
|
2197
|
+
|
2198
|
+
// writing gguf files can be done in 2 ways:
|
2199
|
+
//
|
2200
|
+
// - write the entire gguf_context to a binary file in a single pass:
|
2201
|
+
//
|
2202
|
+
// gguf_write_to_file(ctx, fname);
|
2203
|
+
//
|
2204
|
+
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
|
2205
|
+
//
|
2206
|
+
// FILE * f = fopen(fname, "wb");
|
2207
|
+
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
|
2208
|
+
// fwrite(f, ...);
|
2209
|
+
// void * data = gguf_meta_get_meta_data(ctx);
|
2210
|
+
// fseek(f, 0, SEEK_SET);
|
2211
|
+
// fwrite(f, data, gguf_get_meta_size(ctx));
|
2212
|
+
// free(data);
|
2213
|
+
// fclose(f);
|
2214
|
+
//
|
2215
|
+
|
2216
|
+
// write the entire context to a binary file
|
2217
|
+
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
|
2218
|
+
|
2219
|
+
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
2220
|
+
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
2221
|
+
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
2222
|
+
|
2223
|
+
#ifdef __cplusplus
|
2224
|
+
// restrict not standard in C++
|
2225
|
+
# if defined(__GNUC__)
|
2226
|
+
# define GGML_RESTRICT __restrict__
|
2227
|
+
# elif defined(__clang__)
|
2228
|
+
# define GGML_RESTRICT __restrict
|
2229
|
+
# elif defined(_MSC_VER)
|
2230
|
+
# define GGML_RESTRICT __restrict
|
2231
|
+
# else
|
2232
|
+
# define GGML_RESTRICT
|
2233
|
+
# endif
|
2234
|
+
#else
|
2235
|
+
# define GGML_RESTRICT restrict
|
2236
|
+
#endif
|
2237
|
+
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
2238
|
+
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
2239
|
+
|
2240
|
+
struct ggml_type_traits {
|
2241
|
+
const char * type_name;
|
2242
|
+
int64_t blck_size;
|
2243
|
+
int64_t blck_size_interleave; // interleave elements in blocks
|
2244
|
+
size_t type_size;
|
2245
|
+
bool is_quantized;
|
2246
|
+
ggml_to_float_t to_float;
|
2247
|
+
ggml_from_float_t from_float_ref;
|
2248
|
+
};
|
2249
|
+
|
2250
|
+
GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
|
2251
|
+
|
2252
|
+
// ggml threadpool
|
2253
|
+
// TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
|
2254
|
+
// the goal should be to create an API that other backends can use move everything to the ggml base
|
2255
|
+
|
2256
|
+
// scheduling priorities
|
2257
|
+
enum ggml_sched_priority {
|
2258
|
+
GGML_SCHED_PRIO_NORMAL,
|
2259
|
+
GGML_SCHED_PRIO_MEDIUM,
|
2260
|
+
GGML_SCHED_PRIO_HIGH,
|
2261
|
+
GGML_SCHED_PRIO_REALTIME
|
2262
|
+
};
|
2263
|
+
|
2264
|
+
// threadpool params
|
2265
|
+
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
|
2266
|
+
struct ggml_threadpool_params {
|
2267
|
+
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
|
2268
|
+
int n_threads; // number of threads
|
2269
|
+
enum ggml_sched_priority prio; // thread priority
|
2270
|
+
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
|
2271
|
+
bool strict_cpu; // strict cpu placement
|
2272
|
+
bool paused; // start in paused state
|
2273
|
+
};
|
2274
|
+
|
2275
|
+
struct ggml_threadpool; // forward declaration, see ggml.c
|
2276
|
+
|
2277
|
+
typedef struct ggml_threadpool * ggml_threadpool_t;
|
2278
|
+
|
2279
|
+
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
2280
|
+
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
2281
|
+
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
2282
|
+
|
2283
|
+
#ifdef __cplusplus
|
2284
|
+
}
|
2285
|
+
#endif
|