whispercpp 1.2.0.2 → 1.3.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (135) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +5 -0
  3. data/LICENSE +1 -1
  4. data/README.md +165 -434
  5. data/Rakefile +46 -86
  6. data/ext/.gitignore +13 -0
  7. data/ext/cpu.mk +9 -0
  8. data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
  9. data/ext/extconf.rb +185 -7
  10. data/ext/ggml/include/ggml-alloc.h +76 -0
  11. data/ext/ggml/include/ggml-backend.h +352 -0
  12. data/ext/ggml/include/ggml-blas.h +25 -0
  13. data/ext/ggml/include/ggml-cann.h +123 -0
  14. data/ext/ggml/include/ggml-cpp.h +38 -0
  15. data/ext/ggml/include/ggml-cpu.h +135 -0
  16. data/ext/ggml/include/ggml-cuda.h +47 -0
  17. data/ext/ggml/include/ggml-kompute.h +50 -0
  18. data/ext/ggml/include/ggml-metal.h +66 -0
  19. data/ext/ggml/include/ggml-opencl.h +26 -0
  20. data/ext/ggml/include/ggml-opt.h +216 -0
  21. data/ext/ggml/include/ggml-rpc.h +28 -0
  22. data/ext/ggml/include/ggml-sycl.h +49 -0
  23. data/ext/ggml/include/ggml-vulkan.h +31 -0
  24. data/ext/ggml/include/ggml.h +2285 -0
  25. data/ext/ggml/src/ggml-alloc.c +1037 -0
  26. data/ext/ggml/src/ggml-amx/common.h +94 -0
  27. data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
  28. data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
  29. data/ext/ggml/src/ggml-amx/mmq.h +17 -0
  30. data/ext/ggml/src/ggml-backend-impl.h +256 -0
  31. data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
  32. data/ext/ggml/src/ggml-backend.cpp +1999 -0
  33. data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
  34. data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
  35. data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
  36. data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
  37. data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
  38. data/ext/ggml/src/ggml-cann/common.h +286 -0
  39. data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
  40. data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
  41. data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
  42. data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
  43. data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
  44. data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
  45. data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
  46. data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
  47. data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
  48. data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
  49. data/ext/ggml/src/ggml-common.h +1853 -0
  50. data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
  51. data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
  52. data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
  53. data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
  54. data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
  55. data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
  56. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
  57. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
  58. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
  59. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
  60. data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
  61. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
  62. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
  63. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
  64. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
  65. data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
  66. data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
  67. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
  68. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
  69. data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
  70. data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
  71. data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
  72. data/ext/ggml/src/ggml-impl.h +556 -0
  73. data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
  74. data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
  75. data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
  76. data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
  77. data/ext/ggml/src/ggml-opt.cpp +854 -0
  78. data/ext/ggml/src/ggml-quants.c +5238 -0
  79. data/ext/ggml/src/ggml-quants.h +100 -0
  80. data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
  81. data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
  82. data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
  83. data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
  84. data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
  85. data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
  86. data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
  87. data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
  88. data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
  89. data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
  90. data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
  91. data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
  92. data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
  93. data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
  94. data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
  95. data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
  96. data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
  97. data/ext/ggml/src/ggml-threading.cpp +12 -0
  98. data/ext/ggml/src/ggml-threading.h +14 -0
  99. data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
  100. data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
  101. data/ext/ggml/src/ggml.c +7694 -0
  102. data/ext/include/whisper.h +672 -0
  103. data/ext/metal-embed.mk +17 -0
  104. data/ext/metal.mk +6 -0
  105. data/ext/ruby_whisper.cpp +1608 -159
  106. data/ext/ruby_whisper.h +10 -0
  107. data/ext/scripts/get-flags.mk +38 -0
  108. data/ext/src/coreml/whisper-decoder-impl.h +146 -0
  109. data/ext/src/coreml/whisper-decoder-impl.m +201 -0
  110. data/ext/src/coreml/whisper-encoder-impl.h +142 -0
  111. data/ext/src/coreml/whisper-encoder-impl.m +197 -0
  112. data/ext/src/coreml/whisper-encoder.h +26 -0
  113. data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
  114. data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
  115. data/ext/src/whisper.cpp +7393 -0
  116. data/extsources.rb +6 -0
  117. data/lib/whisper/model/uri.rb +157 -0
  118. data/lib/whisper.rb +2 -0
  119. data/tests/helper.rb +7 -0
  120. data/tests/jfk_reader/.gitignore +5 -0
  121. data/tests/jfk_reader/extconf.rb +3 -0
  122. data/tests/jfk_reader/jfk_reader.c +68 -0
  123. data/tests/test_callback.rb +160 -0
  124. data/tests/test_error.rb +20 -0
  125. data/tests/test_model.rb +71 -0
  126. data/tests/test_package.rb +31 -0
  127. data/tests/test_params.rb +160 -0
  128. data/tests/test_segment.rb +83 -0
  129. data/tests/test_whisper.rb +211 -123
  130. data/whispercpp.gemspec +36 -0
  131. metadata +137 -11
  132. data/ext/ggml.c +0 -8616
  133. data/ext/ggml.h +0 -748
  134. data/ext/whisper.cpp +0 -4829
  135. data/ext/whisper.h +0 -402
@@ -0,0 +1,2510 @@
1
+
2
+ #if defined(__GNUC__)
3
+ #pragma GCC diagnostic ignored "-Wpedantic"
4
+ #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
5
+ #endif
6
+
7
+ #include "mmq.h"
8
+ #include "ggml-impl.h"
9
+ #include "ggml-quants.h"
10
+ #include <algorithm>
11
+ #include <type_traits>
12
+
13
+ #if defined(__gnu_linux__)
14
+ #include <sys/syscall.h>
15
+ #include <unistd.h>
16
+ #endif
17
+
18
+ #if defined(_OPENMP)
19
+ #include <omp.h>
20
+ #endif
21
+
22
+ #if (defined(_WIN32) || defined(_WIN64))
23
+ #define RESTRICT __restrict
24
+ #else
25
+ #define RESTRICT __restrict__
26
+ #endif
27
+
28
+ #if (defined(_WIN32) || defined(_WIN64))
29
+ #define ALWAYS_INLINE __forceinline
30
+ #elif __has_attribute(always_inline) || defined(__GNUC__)
31
+ #define ALWAYS_INLINE __attribute__((__always_inline__)) inline
32
+ #else
33
+ #define ALWAYS_INLINE inline
34
+ #endif
35
+
36
+ #if defined(__AMX_INT8__)
37
+
38
+ namespace {
39
+
40
+ // Forced unrolling
41
+ template <int n>
42
+ struct Unroll {
43
+ template <typename Func, typename... Args>
44
+ ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
45
+ Unroll<n - 1>{}(f, args...);
46
+ f(std::integral_constant<int, n - 1>{}, args...);
47
+ }
48
+ };
49
+
50
+ template <>
51
+ struct Unroll<1> {
52
+ template <typename Func, typename... Args>
53
+ ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
54
+ f(std::integral_constant<int, 0>{}, args...);
55
+ }
56
+ };
57
+
58
+ // type traits
59
+ template <typename T> struct PackedTypes {};
60
+ template <> struct PackedTypes<block_q4_0> { using type = int8_t; };
61
+ template <> struct PackedTypes<block_q4_1> { using type = uint8_t; };
62
+ template <> struct PackedTypes<block_q8_0> { using type = int8_t; };
63
+ template <typename T> using packed_B_type = typename PackedTypes<T>::type;
64
+
65
+ template <typename T>
66
+ struct do_compensate : std::integral_constant<bool,
67
+ std::is_same<T, block_q8_0>::value> {};
68
+
69
+ template <typename T>
70
+ struct do_unpack : std::integral_constant<bool,
71
+ std::is_same<T, block_q4_0>::value ||
72
+ std::is_same<T, block_q4_1>::value> {};
73
+
74
+ template <typename T>
75
+ struct is_type_qkk : std::integral_constant<bool,
76
+ std::is_same<T, block_q4_K>::value ||
77
+ std::is_same<T, block_q5_K>::value ||
78
+ std::is_same<T, block_q6_K>::value ||
79
+ std::is_same<T, block_iq4_xs>::value> {};
80
+
81
+ #define GGML_DISPATCH_FLOATING_TYPES(TYPE, ...) \
82
+ [&] { \
83
+ switch (TYPE) { \
84
+ case GGML_TYPE_F16: { \
85
+ using type = ggml_fp16_t; \
86
+ constexpr int blck_size = 16; \
87
+ return __VA_ARGS__(); \
88
+ } \
89
+ case GGML_TYPE_BF16: { \
90
+ using type = ggml_bf16_t; \
91
+ constexpr int blck_size = 32; \
92
+ return __VA_ARGS__(); \
93
+ } \
94
+ default: \
95
+ fprintf(stderr, "Unsupported floating data type\n"); \
96
+ } \
97
+ }()
98
+
99
+ #define GGML_DISPATCH_QTYPES(QT, ...) \
100
+ [&] { \
101
+ switch (QT) { \
102
+ case GGML_TYPE_Q4_0: { \
103
+ using type = block_q4_0; \
104
+ using vec_dot_type = block_q8_0; \
105
+ constexpr int blck_size = QK4_0; \
106
+ return __VA_ARGS__(); \
107
+ } \
108
+ case GGML_TYPE_Q4_1: { \
109
+ using type = block_q4_1; \
110
+ using vec_dot_type = block_q8_1; \
111
+ constexpr int blck_size = QK4_1; \
112
+ return __VA_ARGS__(); \
113
+ } \
114
+ case GGML_TYPE_Q8_0: { \
115
+ using type = block_q8_0; \
116
+ using vec_dot_type = block_q8_0; \
117
+ constexpr int blck_size = QK8_0; \
118
+ return __VA_ARGS__(); \
119
+ } \
120
+ case GGML_TYPE_Q4_K: { \
121
+ using type = block_q4_K; \
122
+ using vec_dot_type = block_q8_K; \
123
+ constexpr int blck_size = QK_K; \
124
+ return __VA_ARGS__(); \
125
+ } \
126
+ case GGML_TYPE_Q5_K: { \
127
+ using type = block_q5_K; \
128
+ using vec_dot_type = block_q8_K; \
129
+ constexpr int blck_size = QK_K; \
130
+ return __VA_ARGS__(); \
131
+ } \
132
+ case GGML_TYPE_Q6_K: { \
133
+ using type = block_q6_K; \
134
+ using vec_dot_type = block_q8_K; \
135
+ constexpr int blck_size = QK_K; \
136
+ return __VA_ARGS__(); \
137
+ } \
138
+ case GGML_TYPE_IQ4_XS: { \
139
+ using type = block_iq4_xs; \
140
+ using vec_dot_type = block_q8_K; \
141
+ constexpr int blck_size = QK_K; \
142
+ return __VA_ARGS__(); \
143
+ } \
144
+ default: \
145
+ fprintf(stderr, "Unsupported quantized data type: %d\n", int(TYPE)); \
146
+ } \
147
+ }()
148
+
149
+ #define GGML_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \
150
+ [&] { \
151
+ if (BOOL_V) { \
152
+ constexpr bool BOOL_NAME = true; \
153
+ return __VA_ARGS__(); \
154
+ } else { \
155
+ constexpr bool BOOL_NAME = false; \
156
+ return __VA_ARGS__(); \
157
+ } \
158
+ }()
159
+
160
+ // define amx tile config data structure
161
+ struct tile_config_t{
162
+ uint8_t palette_id = 0;
163
+ uint8_t start_row = 0;
164
+ uint8_t reserved_0[14] = {0};
165
+ uint16_t colsb[16] = {0};
166
+ uint8_t rows[16] = {0};
167
+ };
168
+
169
+ // Notes: amx tile config
170
+ //
171
+ // Typically, TMUL calculates A and B of size 16 x 64 containing INT8 values,
172
+ // and accumulate the result to a 16 x 16 matrix C containing INT32 values,
173
+ //
174
+ // As many GGUF quantized types as `block_size` of 32, so a 16-16-32 config is used
175
+ // instead of the normally used 16-16-64 config.
176
+ //
177
+ // Block A: {16, 32}, dtype = int8_t
178
+ // Block B: {16, 32}, dtype = uint8_t/int8_t
179
+ // Block C: {16, 16}, dtype = int32_t
180
+ //
181
+ // Block B needs to be prepacked to vnni format before feeding into TMUL:
182
+ // packed_B: from {n, k} to {k/vnni_blk, n, vnni_blck}, viewed in 2d, we get {8, 64}
183
+ //
184
+ // Therefore, we get tileconfig:
185
+ // A B C
186
+ // rows 16 8 16
187
+ // colsb 32 64 16
188
+ //
189
+ // For tile distribution, follow a 2-2-4 pattern, e.g. A used TMM2-TMM3, B used TMM0-TMM1,
190
+ // C used TMM4-TMM7:
191
+ // B TMM0 B TMM1
192
+ // A TMM2 C TMM4 C TMM6
193
+ // A TMM3 C TMM5 C TMM7
194
+ //
195
+ // Each `amx` kernel handles 4 blocks at a time: 2MB * 2NB, when m < 2 * BLOCK_M, unpack A
196
+ // will be needed.
197
+ //
198
+ // Here another commonly used pattern 1-3-3 is skipped, as it is mostly used when m <=16;
199
+ // and the sinlge batch gemm (m=1) has a special fast path with `avx512-vnni`.
200
+ //
201
+ // ref: https://www.intel.com/content/www/us/en/developer/articles/code-sample/
202
+ // advanced-matrix-extensions-intrinsics-functions.html
203
+ //
204
+
205
+ #define TC_CONFIG_TILE(i, r, cb) tc.rows[i] = r; tc.colsb[i] = cb
206
+ void ggml_tile_config_init(void) {
207
+ static thread_local bool is_first_time = true;
208
+
209
+ if (!is_first_time) {
210
+ return;
211
+ }
212
+
213
+ static thread_local tile_config_t tc;
214
+ tile_config_t current_tc;
215
+ _tile_storeconfig(&current_tc);
216
+
217
+ // load only when config changes
218
+ if (tc.palette_id == 0 || (memcmp(&current_tc.colsb, &tc.colsb, sizeof(uint16_t) * 8) != 0 &&
219
+ memcmp(&current_tc.rows, &tc.rows, sizeof(uint8_t) * 8) != 0)) {
220
+ tc.palette_id = 1;
221
+ tc.start_row = 0;
222
+ TC_CONFIG_TILE(TMM0, 8, 64);
223
+ TC_CONFIG_TILE(TMM1, 8, 64);
224
+ TC_CONFIG_TILE(TMM2, 16, 32);
225
+ TC_CONFIG_TILE(TMM3, 16, 32);
226
+ TC_CONFIG_TILE(TMM4, 16, 64);
227
+ TC_CONFIG_TILE(TMM5, 16, 64);
228
+ TC_CONFIG_TILE(TMM6, 16, 64);
229
+ TC_CONFIG_TILE(TMM7, 16, 64);
230
+ _tile_loadconfig(&tc);
231
+ }
232
+
233
+ is_first_time = false;
234
+ }
235
+
236
+ // we need an extra 16 * 4B (TILE_N * int32_t) for each NB/KB block for compensation.
237
+ // See the notes `s8s8 igemm compensation in avx512-vnni` for detail.
238
+ template <typename TB>
239
+ int get_tile_size() {
240
+ int tile_size = TILE_N * sizeof(TB);
241
+ if (do_compensate<TB>::value) {
242
+ tile_size += TILE_N * sizeof(int32_t);
243
+ }
244
+ if (std::is_same<TB, block_q4_K>::value ||
245
+ std::is_same<TB, block_q5_K>::value) {
246
+ tile_size += TILE_N * 4;
247
+ }
248
+ if (std::is_same<TB, block_iq4_xs>::value) {
249
+ tile_size += TILE_N * 2;
250
+ }
251
+ return tile_size;
252
+ }
253
+
254
+ template <typename TB, int BLOCK_K>
255
+ int get_row_size(int K) {
256
+ int KB = K / BLOCK_K;
257
+ int row_size = KB * sizeof(TB);
258
+ if (do_compensate<TB>::value) {
259
+ row_size += KB * sizeof(int32_t);
260
+ }
261
+ if (std::is_same<TB, block_q4_K>::value ||
262
+ std::is_same<TB, block_q5_K>::value) {
263
+ row_size += KB * 4;
264
+ }
265
+ if (std::is_same<TB, block_iq4_xs>::value) {
266
+ row_size += KB * 2;
267
+ }
268
+ return row_size;
269
+ }
270
+
271
+ // vectorized dtype conversion
272
+ inline float FP16_TO_FP32(ggml_half val) {
273
+ __m256i v = _mm256_setr_epi16(
274
+ val, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
275
+ __m512 o = _mm512_cvtph_ps(v);
276
+ return _mm512_cvtss_f32(o);
277
+ }
278
+
279
+ inline __m512 FP16_TO_FP32_VEC(ggml_half val) {
280
+ __m256i v = _mm256_set1_epi16(val);
281
+ return _mm512_cvtph_ps(v);
282
+ }
283
+
284
+ // horizontal reduce
285
+ inline float _mm512_reduce_max_ps(const __m512 x) {
286
+ __m512 v = x;
287
+ __m512 v1 = _mm512_shuffle_f32x4(v, v, 0x4E);
288
+ v = _mm512_max_ps(v, v1);
289
+ v1 = _mm512_shuffle_f32x4(v, v, 0xB1);
290
+ v = _mm512_max_ps(v, v1);
291
+ v1 = _mm512_shuffle_ps(v, v, 0x4E);
292
+ v = _mm512_max_ps(v, v1);
293
+ v1 = _mm512_shuffle_ps(v, v, 0xB1);
294
+ v = _mm512_max_ps(v, v1);
295
+ return _mm512_cvtss_f32(v);
296
+ }
297
+
298
+ // transpose utils
299
+ #define SHUFFLE_EPI32(a, b, mask) \
300
+ _mm256_castps_si256(_mm256_shuffle_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b), mask))
301
+ inline void transpose_8x8_32bit(__m256i * v, __m256i * v1) {
302
+ // unpacking and 32-bit elements
303
+ v1[0] = _mm256_unpacklo_epi32(v[0], v[1]);
304
+ v1[1] = _mm256_unpackhi_epi32(v[0], v[1]);
305
+ v1[2] = _mm256_unpacklo_epi32(v[2], v[3]);
306
+ v1[3] = _mm256_unpackhi_epi32(v[2], v[3]);
307
+ v1[4] = _mm256_unpacklo_epi32(v[4], v[5]);
308
+ v1[5] = _mm256_unpackhi_epi32(v[4], v[5]);
309
+ v1[6] = _mm256_unpacklo_epi32(v[6], v[7]);
310
+ v1[7] = _mm256_unpackhi_epi32(v[6], v[7]);
311
+
312
+ // shuffling the 32-bit elements
313
+ v[0] = SHUFFLE_EPI32(v1[0], v1[2], 0x44);
314
+ v[1] = SHUFFLE_EPI32(v1[0], v1[2], 0xee);
315
+ v[2] = SHUFFLE_EPI32(v1[4], v1[6], 0x44);
316
+ v[3] = SHUFFLE_EPI32(v1[4], v1[6], 0xee);
317
+ v[4] = SHUFFLE_EPI32(v1[1], v1[3], 0x44);
318
+ v[5] = SHUFFLE_EPI32(v1[1], v1[3], 0xee);
319
+ v[6] = SHUFFLE_EPI32(v1[5], v1[7], 0x44);
320
+ v[7] = SHUFFLE_EPI32(v1[5], v1[7], 0xee);
321
+
322
+ // shuffling 128-bit elements
323
+ v1[0] = _mm256_permute2f128_si256(v[2], v[0], 0x02);
324
+ v1[1] = _mm256_permute2f128_si256(v[3], v[1], 0x02);
325
+ v1[2] = _mm256_permute2f128_si256(v[6], v[4], 0x02);
326
+ v1[3] = _mm256_permute2f128_si256(v[7], v[5], 0x02);
327
+ v1[4] = _mm256_permute2f128_si256(v[2], v[0], 0x13);
328
+ v1[5] = _mm256_permute2f128_si256(v[3], v[1], 0x13);
329
+ v1[6] = _mm256_permute2f128_si256(v[6], v[4], 0x13);
330
+ v1[7] = _mm256_permute2f128_si256(v[7], v[5], 0x13);
331
+ }
332
+
333
+ inline void transpose_16x4_32bit(__m512i * r, __m512i * d) {
334
+
335
+ static const __m512i index1 = _mm512_set_epi32(
336
+ 0x0f, 0x0b, 0x07, 0x03,
337
+ 0x0e, 0x0a, 0x06, 0x02,
338
+ 0x0d, 0x09, 0x05, 0x01,
339
+ 0x0c, 0x08, 0x04, 0x00);
340
+
341
+ d[0] = _mm512_permutexvar_epi32(index1, r[0]);
342
+ d[1] = _mm512_permutexvar_epi32(index1, r[1]);
343
+ d[2] = _mm512_permutexvar_epi32(index1, r[2]);
344
+ d[3] = _mm512_permutexvar_epi32(index1, r[3]);
345
+
346
+ r[0] = _mm512_shuffle_i32x4(d[0], d[1], 0x44);
347
+ r[1] = _mm512_shuffle_i32x4(d[0], d[1], 0xee);
348
+ r[2] = _mm512_shuffle_i32x4(d[2], d[3], 0x44);
349
+ r[3] = _mm512_shuffle_i32x4(d[2], d[3], 0xee);
350
+
351
+ d[0] = _mm512_shuffle_i32x4(r[0], r[2], 0x88);
352
+ d[1] = _mm512_shuffle_i32x4(r[0], r[2], 0xdd);
353
+ d[2] = _mm512_shuffle_i32x4(r[1], r[3], 0x88);
354
+ d[3] = _mm512_shuffle_i32x4(r[1], r[3], 0xdd);
355
+ }
356
+
357
+ inline void transpose_16x16_32bit(__m512i * v) {
358
+ __m512i v1[16];
359
+ v1[0] = _mm512_unpacklo_epi32(v[0], v[1]);
360
+ v1[1] = _mm512_unpackhi_epi32(v[0], v[1]);
361
+ v1[2] = _mm512_unpacklo_epi32(v[2], v[3]);
362
+ v1[3] = _mm512_unpackhi_epi32(v[2], v[3]);
363
+ v1[4] = _mm512_unpacklo_epi32(v[4], v[5]);
364
+ v1[5] = _mm512_unpackhi_epi32(v[4], v[5]);
365
+ v1[6] = _mm512_unpacklo_epi32(v[6], v[7]);
366
+ v1[7] = _mm512_unpackhi_epi32(v[6], v[7]);
367
+ v1[8] = _mm512_unpacklo_epi32(v[8], v[9]);
368
+ v1[9] = _mm512_unpackhi_epi32(v[8], v[9]);
369
+ v1[10] = _mm512_unpacklo_epi32(v[10], v[11]);
370
+ v1[11] = _mm512_unpackhi_epi32(v[10], v[11]);
371
+ v1[12] = _mm512_unpacklo_epi32(v[12], v[13]);
372
+ v1[13] = _mm512_unpackhi_epi32(v[12], v[13]);
373
+ v1[14] = _mm512_unpacklo_epi32(v[14], v[15]);
374
+ v1[15] = _mm512_unpackhi_epi32(v[14], v[15]);
375
+
376
+ v[0] = _mm512_unpacklo_epi64(v1[0], v1[2]);
377
+ v[1] = _mm512_unpackhi_epi64(v1[0], v1[2]);
378
+ v[2] = _mm512_unpacklo_epi64(v1[1], v1[3]);
379
+ v[3] = _mm512_unpackhi_epi64(v1[1], v1[3]);
380
+ v[4] = _mm512_unpacklo_epi64(v1[4], v1[6]);
381
+ v[5] = _mm512_unpackhi_epi64(v1[4], v1[6]);
382
+ v[6] = _mm512_unpacklo_epi64(v1[5], v1[7]);
383
+ v[7] = _mm512_unpackhi_epi64(v1[5], v1[7]);
384
+ v[8] = _mm512_unpacklo_epi64(v1[8], v1[10]);
385
+ v[9] = _mm512_unpackhi_epi64(v1[8], v1[10]);
386
+ v[10] = _mm512_unpacklo_epi64(v1[9], v1[11]);
387
+ v[11] = _mm512_unpackhi_epi64(v1[9], v1[11]);
388
+ v[12] = _mm512_unpacklo_epi64(v1[12], v1[14]);
389
+ v[13] = _mm512_unpackhi_epi64(v1[12], v1[14]);
390
+ v[14] = _mm512_unpacklo_epi64(v1[13], v1[15]);
391
+ v[15] = _mm512_unpackhi_epi64(v1[13], v1[15]);
392
+
393
+ v1[0] = _mm512_shuffle_i32x4(v[0], v[4], 0x88);
394
+ v1[1] = _mm512_shuffle_i32x4(v[1], v[5], 0x88);
395
+ v1[2] = _mm512_shuffle_i32x4(v[2], v[6], 0x88);
396
+ v1[3] = _mm512_shuffle_i32x4(v[3], v[7], 0x88);
397
+ v1[4] = _mm512_shuffle_i32x4(v[0], v[4], 0xdd);
398
+ v1[5] = _mm512_shuffle_i32x4(v[1], v[5], 0xdd);
399
+ v1[6] = _mm512_shuffle_i32x4(v[2], v[6], 0xdd);
400
+ v1[7] = _mm512_shuffle_i32x4(v[3], v[7], 0xdd);
401
+ v1[8] = _mm512_shuffle_i32x4(v[8], v[12], 0x88);
402
+ v1[9] = _mm512_shuffle_i32x4(v[9], v[13], 0x88);
403
+ v1[10] = _mm512_shuffle_i32x4(v[10], v[14], 0x88);
404
+ v1[11] = _mm512_shuffle_i32x4(v[11], v[15], 0x88);
405
+ v1[12] = _mm512_shuffle_i32x4(v[8], v[12], 0xdd);
406
+ v1[13] = _mm512_shuffle_i32x4(v[9], v[13], 0xdd);
407
+ v1[14] = _mm512_shuffle_i32x4(v[10], v[14], 0xdd);
408
+ v1[15] = _mm512_shuffle_i32x4(v[11], v[15], 0xdd);
409
+
410
+ v[0] = _mm512_shuffle_i32x4(v1[0], v1[8], 0x88);
411
+ v[1] = _mm512_shuffle_i32x4(v1[1], v1[9], 0x88);
412
+ v[2] = _mm512_shuffle_i32x4(v1[2], v1[10], 0x88);
413
+ v[3] = _mm512_shuffle_i32x4(v1[3], v1[11], 0x88);
414
+ v[4] = _mm512_shuffle_i32x4(v1[4], v1[12], 0x88);
415
+ v[5] = _mm512_shuffle_i32x4(v1[5], v1[13], 0x88);
416
+ v[6] = _mm512_shuffle_i32x4(v1[6], v1[14], 0x88);
417
+ v[7] = _mm512_shuffle_i32x4(v1[7], v1[15], 0x88);
418
+ v[8] = _mm512_shuffle_i32x4(v1[0], v1[8], 0xdd);
419
+ v[9] = _mm512_shuffle_i32x4(v1[1], v1[9], 0xdd);
420
+ v[10] = _mm512_shuffle_i32x4(v1[2], v1[10], 0xdd);
421
+ v[11] = _mm512_shuffle_i32x4(v1[3], v1[11], 0xdd);
422
+ v[12] = _mm512_shuffle_i32x4(v1[4], v1[12], 0xdd);
423
+ v[13] = _mm512_shuffle_i32x4(v1[5], v1[13], 0xdd);
424
+ v[14] = _mm512_shuffle_i32x4(v1[6], v1[14], 0xdd);
425
+ v[15] = _mm512_shuffle_i32x4(v1[7], v1[15], 0xdd);
426
+ }
427
+
428
+ void quantize_row_q8_K_vnni(const float * RESTRICT x, void * RESTRICT vy, int64_t k) {
429
+ assert(k % QK_K == 0);
430
+ const int KB = k / QK_K;
431
+ constexpr int kVecs = QK_K / 16;
432
+
433
+ block_q8_K * y = reinterpret_cast<block_q8_K *>(vy);
434
+
435
+ // hold 16 float vecs from x
436
+ __m512 v[kVecs];
437
+
438
+ // hold the quants vecs
439
+ __m512i vq[kVecs / 4];
440
+
441
+ // hold the packed quants vecs
442
+ __m512i vq_packed[kVecs / 4];
443
+
444
+ const __m512 signBit = _mm512_set1_ps(-0.f);
445
+
446
+ for (int i = 0; i < KB; ++i) {
447
+ // Compute max(abs(e)) for the block
448
+ __m512 vamax = _mm512_set1_ps(0.f);
449
+ for (int j = 0; j < kVecs; ++j) {
450
+ v[j] = _mm512_loadu_ps(x); x += 16;
451
+ vamax = _mm512_max_ps(vamax, _mm512_andnot_ps(signBit, v[j]));
452
+ }
453
+ const float amax = _mm512_reduce_max_ps(vamax);
454
+
455
+ // Quantize these floats
456
+ const float iscale = 127.f / amax;
457
+ y[i].d = GGML_FP32_TO_FP16(1 / iscale);
458
+ const float id = ( amax != 0.0f ) ? iscale : 0.f;
459
+ const __m512 vscale = _mm512_set1_ps(id);
460
+
461
+ // Apply multiplier and round to nearest integer
462
+ for (int j = 0; j < kVecs; ++j) {
463
+ v[j] = _mm512_mul_ps(v[j], vscale);
464
+ v[j] = _mm512_roundscale_ps(v[j], (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
465
+ }
466
+
467
+ // Pack to epi8 vecs
468
+ for (int j = 0; j < kVecs / 4; ++j) {
469
+ __m128i q8_0 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 0]));
470
+ __m128i q8_1 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 1]));
471
+ __m128i q8_2 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 2]));
472
+ __m128i q8_3 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 3]));
473
+
474
+ __m256i q8_01 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_0), (q8_1), 1);
475
+ __m256i q8_23 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_2), (q8_3), 1);
476
+
477
+ vq[j] = _mm512_inserti32x8(_mm512_castsi256_si512(q8_01), q8_23, 1);
478
+ _mm512_storeu_si512((__m512i *)(y[i].qs + j * 64), vq[j]);
479
+ }
480
+
481
+ // Compute the bsums with vnni
482
+ transpose_16x4_32bit(vq, vq_packed);
483
+
484
+ const __m512i one = _mm512_set1_epi8(1);
485
+ __m512i sum = _mm512_setzero_si512();
486
+ for (int k = 0; k < 4; ++k) {
487
+ sum = _mm512_dpbusd_epi32(sum, one, vq_packed[k]);
488
+ }
489
+ _mm256_storeu_si256((__m256i *)(y[i].bsums), _mm512_cvtepi32_epi16(sum));
490
+ }
491
+ }
492
+
493
+ // quantize A from float to `vec_dot_type`
494
+ template <typename T>
495
+ inline void from_float(const float * x, char * vy, int64_t k);
496
+
497
+ template <>
498
+ inline void from_float<block_q8_0>(const float * x, char * vy, int64_t k) {
499
+ // FIXME: using unoptimized reference impl until moved to CPU backend
500
+ quantize_row_q8_0_ref(x, (block_q8_0 *)vy, k);
501
+ }
502
+
503
+ template <>
504
+ inline void from_float<block_q8_1>(const float * x, char * vy, int64_t k) {
505
+ quantize_row_q8_1_ref(x, (block_q8_1 *)vy, k);
506
+ }
507
+
508
+ template <>
509
+ inline void from_float<block_q8_K>(const float * x, char * vy, int64_t k) {
510
+ #if 1
511
+ // TODO: this is reference impl!
512
+ quantize_row_q8_K_ref(x, (block_q8_K *)vy, k);
513
+ #else
514
+ quantize_row_q8_K_vnni(x, vy, k);
515
+ #endif
516
+ }
517
+
518
+ // load A from memory to array when nrows can not fill in whole tile
519
+ void unpack_A(int8_t * RESTRICT tile, const block_q8_0 * RESTRICT A, int lda, int nr) {
520
+ assert(nr != TILE_M);
521
+ for (int m = 0; m < nr; ++m) {
522
+ const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs));
523
+ _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v);
524
+ }
525
+ }
526
+
527
+ void unpack_A(int8_t * RESTRICT tile, const block_q8_1 * RESTRICT A, int lda, int nr) {
528
+ assert(nr != TILE_M);
529
+ for (int m = 0; m < nr; ++m) {
530
+ const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs));
531
+ _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v);
532
+ }
533
+ }
534
+
535
+ template <typename TB>
536
+ void unpack_A(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) {
537
+ assert(nr <= TILE_M);
538
+ for (int m = 0; m < nr; ++m) {
539
+ const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs + k * 32));
540
+ _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v);
541
+ }
542
+ }
543
+
544
+ template <>
545
+ void unpack_A<block_q6_K>(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) {
546
+ assert(nr <= TILE_M);
547
+ // zero padding k from 16 to 32, so that we don't have to re-config amx
548
+ const __m128i zero = _mm_setzero_si128();
549
+ for (int m = 0; m < nr; ++m) {
550
+ const __m128i v = _mm_loadu_si128((const __m128i *)(A[m * lda].qs + k * 16));
551
+ const __m256i r = _mm256_insertf128_si256(_mm256_castsi128_si256(v), zero, 1);
552
+ _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), r);
553
+ }
554
+ }
555
+
556
+ #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
557
+ inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
558
+ const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
559
+ const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
560
+ const __m256i lowMask = _mm256_set1_epi8(0xF);
561
+ return _mm256_and_si256(lowMask, bytes);
562
+ }
563
+
564
+ // used for block_q4_K
565
+ inline __m512i bytes_from_nibbles_64(const uint8_t * rsi) {
566
+ const __m256i tmp = _mm256_loadu_si256((const __m256i *)rsi);
567
+ const __m256i lowMask = _mm256_set1_epi8(0xF);
568
+ const __m256i q4l = _mm256_and_si256(tmp, lowMask);
569
+ const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(tmp, 4), lowMask);
570
+ return _mm512_inserti32x8(_mm512_castsi256_si512(q4l), q4h, 1);
571
+ }
572
+
573
+ // used for block_q5_K
574
+ inline __m512i bytes_from_nibbles_64(const uint8_t * qs, const uint8_t * qh, int k) {
575
+ const __m256i lowMask = _mm256_set1_epi8(0xF);
576
+ __m256i hmask = _mm256_set1_epi8(1);
577
+ hmask = _mm256_slli_epi16(hmask, k);
578
+
579
+ const __m256i q5bits = _mm256_loadu_si256((const __m256i *)qs);
580
+ const __m256i hbits = _mm256_loadu_si256((const __m256i *)qh);
581
+
582
+ const __m256i q5l_0 = _mm256_and_si256(q5bits, lowMask);
583
+ const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 0), 4);
584
+ const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
585
+ hmask = _mm256_slli_epi16(hmask, 1);
586
+
587
+ const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), lowMask);
588
+ const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 1), 4);
589
+ const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
590
+
591
+ return _mm512_inserti32x8(_mm512_castsi256_si512(q5_0), q5_1, 1);
592
+ }
593
+
594
+ // used for block_q6_K
595
+ inline void bytes_from_nibbles_128(__m512i& r0, __m512i& r1, const uint8_t * qs, const uint8_t * qh) {
596
+ const __m256i m4 = _mm256_set1_epi8(0xF);
597
+ const __m256i m2 = _mm256_set1_epi8(0x3);
598
+
599
+ const __m256i q6bits1 = _mm256_loadu_si256((const __m256i *)qs);
600
+ const __m256i q6bits2 = _mm256_loadu_si256((const __m256i *)(qs + 32));
601
+ const __m256i q6bitsH = _mm256_loadu_si256((const __m256i *)qh);
602
+
603
+ const __m256i q6h_0 = _mm256_slli_epi16(_mm256_and_si256( q6bitsH, m2), 4);
604
+ const __m256i q6h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 2), m2), 4);
605
+ const __m256i q6h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 4), m2), 4);
606
+ const __m256i q6h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 6), m2), 4);
607
+
608
+ const __m256i q6_0 = _mm256_or_si256(_mm256_and_si256(q6bits1, m4), q6h_0);
609
+ const __m256i q6_1 = _mm256_or_si256(_mm256_and_si256(q6bits2, m4), q6h_1);
610
+ const __m256i q6_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits1, 4), m4), q6h_2);
611
+ const __m256i q6_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits2, 4), m4), q6h_3);
612
+
613
+ r0 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_0), q6_1, 1);
614
+ r1 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_2), q6_3, 1);
615
+ }
616
+
617
+ inline __m512i packNibbles(__m512i r0, __m512i r1) {
618
+ return _mm512_or_si512(r0, _mm512_slli_epi16(r1, 4));
619
+ }
620
+
621
+ template <typename TB>
622
+ inline void pack_qs(void * RESTRICT packed_B, const TB * RESTRICT B, int KB) {
623
+ int8_t tmp[8 * 64];
624
+ __m256i v[8], v2[8];
625
+ for (int n = 0; n < 8; ++n) {
626
+ v[n] = bytes_from_nibbles_32(B[n * KB].qs);
627
+ }
628
+ transpose_8x8_32bit(v, v2);
629
+ for (int n = 0; n < 8; ++n) {
630
+ _mm256_storeu_si256((__m256i *)(tmp + n * 64), v2[n]);
631
+ }
632
+ for (int n = 0; n < 8; ++n) {
633
+ v[n] = bytes_from_nibbles_32(B[(n + 8) * KB].qs);
634
+ }
635
+ transpose_8x8_32bit(v, v2);
636
+ for (int n = 0; n < 8; ++n) {
637
+ _mm256_storeu_si256((__m256i *)(tmp + n * 64 + 32), v2[n]);
638
+ }
639
+
640
+ // pack again with 128 to fully utilize vector length
641
+ for (int n = 0; n < 8; n += 2) {
642
+ __m512i r0 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64));
643
+ __m512i r1 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64 + 64));
644
+ __m512i r1r0 = packNibbles(r0, r1);
645
+ _mm512_storeu_si512((__m512i *)((char *)packed_B + n * 32), r1r0);
646
+ }
647
+ }
648
+
649
+ template <>
650
+ inline void pack_qs<block_q8_0>(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) {
651
+ __m256i v[8], v2[8];
652
+ for (int n = 0; n < 8; ++n) {
653
+ v[n] = _mm256_loadu_si256((const __m256i *)(B[n * KB].qs));
654
+ }
655
+ transpose_8x8_32bit(v, v2);
656
+ for (int n = 0; n < 8; ++n) {
657
+ _mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64), v2[n]);
658
+ }
659
+ for (int n = 0; n < 8; ++n) {
660
+ v[n] = _mm256_loadu_si256((const __m256i *)(B[(n + 8) * KB].qs));
661
+ }
662
+ transpose_8x8_32bit(v, v2);
663
+ for (int n = 0; n < 8; ++n) {
664
+ _mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64 + 32), v2[n]);
665
+ }
666
+ }
667
+
668
+ template <>
669
+ inline void pack_qs<block_q4_K>(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) {
670
+ __m512i v[16];
671
+ // QK_K 256 with 8 groups, handle 2 groups at a time
672
+ char * pb = (char *)packed_B;
673
+ for (int k = 0; k < QK_K / 64; ++k) {
674
+ // pack 2 groups { n, g, k} to {g, k/4, 4n}
675
+ // e.g. {16, 2, 32} to {2, 8, 64}
676
+ for (int n = 0; n < TILE_N; ++n) {
677
+ v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32);
678
+ }
679
+
680
+ transpose_16x16_32bit(v);
681
+
682
+ // pack again with 128 to fully utilize vector length
683
+ for (int n = 0; n < TILE_N; n += 2) {
684
+ _mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1]));
685
+ pb += 64;
686
+ }
687
+ }
688
+ }
689
+
690
+ template <>
691
+ inline void pack_qs<block_q5_K>(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) {
692
+ __m512i v[16];
693
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
694
+ // QK_K 256 with 8 groups, handle 2 groups at a time
695
+ char * pb = (char *)packed_B;
696
+ char * ph = (char *)packed_B + (QK_K / 2) * TILE_N;
697
+ for (int k = 0; k < QK_K / 64; ++k) {
698
+ // pack 2 groups { n, g, k} to {g, k/4, 4n}
699
+ // e.g. {16, 2, 32} to {2, 8, 64}
700
+ for (int n = 0; n < TILE_N; ++n) {
701
+ v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32, B[n * KB].qh, /* group */2 * k);
702
+ }
703
+
704
+ transpose_16x16_32bit(v);
705
+
706
+ // 1. pack lower 4bits with 2 groups
707
+ for (int n = 0; n < TILE_N; n += 2) {
708
+ // get lower 4 bits
709
+ const __m512i r0 = _mm512_and_si512(v[n], lowMask);
710
+ const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask);
711
+ _mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64;
712
+ }
713
+
714
+ // 2. pack higher 1bit with 2 groups
715
+ const __m512i hmask = _mm512_set1_epi8(0x10);
716
+ for (int g = 0; g < 2; ++g) {
717
+ __m512i hbits = _mm512_setzero_si512();
718
+ hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 0], hmask), 4));
719
+ hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 1], hmask), 3));
720
+ hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 2], hmask), 2));
721
+ hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 3], hmask), 1));
722
+ hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 8 + 4], hmask) );
723
+ hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 5], hmask), 1));
724
+ hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 6], hmask), 2));
725
+ hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 7], hmask), 3));
726
+ _mm512_storeu_si512((__m512i *)ph, hbits); ph += 64;
727
+ }
728
+ }
729
+ }
730
+
731
+ template <>
732
+ inline void pack_qs<block_q6_K>(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) {
733
+ __m512i v[32];
734
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
735
+ // QK_K 256 with 8 groups, handle 4 groups at a time
736
+ char * pb = (char *)packed_B;
737
+ char * ph = (char *)packed_B + (QK_K / 2) * TILE_N;
738
+ for (int k = 0; k < QK_K / 128; ++k) {
739
+ for (int n = 0; n < TILE_N; ++n) {
740
+ bytes_from_nibbles_128(v[n], v[n + 16], B[n * KB].ql + k * 64, B[n * KB].qh + k * 32);
741
+ }
742
+
743
+ // top half: group 0,1 or 4,5; bottom half: group 2,3 or 6,7
744
+ transpose_16x16_32bit(v);
745
+ transpose_16x16_32bit(v + 16);
746
+
747
+ // 1. pack lower 4bits with 4 groups
748
+ for (int n = 0; n < 32; n += 2) {
749
+ const __m512i r0 = _mm512_and_si512(v[n], lowMask);
750
+ const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask);
751
+ _mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64;
752
+ }
753
+
754
+ // 2. pack higher 2bit with 4 groups
755
+ const __m512i hmask = _mm512_set1_epi8(0x30);
756
+ for (int g = 0; g < 8; ++g) {
757
+ __m512i hbits = _mm512_setzero_si512();
758
+ hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 0], hmask), 4));
759
+ hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 1], hmask), 2));
760
+ hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 4 + 2], hmask) );
761
+ hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 4 + 3], hmask), 2));
762
+ _mm512_storeu_si512((__m512i *)ph, hbits); ph += 64;
763
+ }
764
+ }
765
+ }
766
+
767
+ template <>
768
+ inline void pack_qs<block_iq4_xs>(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) {
769
+ __m512i v[16];
770
+ char * pb = (char *)packed_B;
771
+ for (int k = 0; k < QK_K / 64; ++k) {
772
+ for (int n = 0; n < TILE_N; ++n) {
773
+ __m256i r0 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 0);
774
+ __m256i r1 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 16);
775
+ v[n] = _mm512_inserti32x8(_mm512_castsi256_si512(r0), r1, 1);
776
+ }
777
+
778
+ transpose_16x16_32bit(v);
779
+
780
+ // pack again with 128 to fully utilize vector length
781
+ for (int n = 0; n < TILE_N; n += 2) {
782
+ _mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1]));
783
+ pb += 64;
784
+ }
785
+ }
786
+ }
787
+
788
+ // pack B to vnni formats in 4bits or 8 bits
789
+ void pack_B(void * RESTRICT packed_B, const block_q4_0 * RESTRICT B, int KB) {
790
+ pack_qs(packed_B, B, KB);
791
+ ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K / 2);
792
+ for (int n = 0; n < TILE_N; ++n) {
793
+ d0[n] = B[n * KB].d;
794
+ }
795
+ }
796
+
797
+ void pack_B(void * RESTRICT packed_B, const block_q4_1 * RESTRICT B, int KB) {
798
+ pack_qs(packed_B, B, KB);
799
+ ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K / 2);
800
+ ggml_half * m0 = d0 + TILE_N;
801
+ for (int n = 0; n < TILE_N; ++n) {
802
+ d0[n] = B[n * KB].d;
803
+ m0[n] = B[n * KB].m;
804
+ }
805
+ }
806
+
807
+ inline void s8s8_compensation(void * RESTRICT packed_B) {
808
+ // packed_B layout:
809
+ // quants {TILE_N, TILEK} int8_t
810
+ // d0 {TILE_N} ggml_half
811
+ // comp {TILE_N} int32_t
812
+ const int offset = TILE_N * TILE_K + TILE_N * sizeof(ggml_half);
813
+ __m512i vcomp = _mm512_setzero_si512();
814
+ const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80));
815
+ for (int k = 0; k < 8; ++k) {
816
+ __m512i vb = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + k * 64));
817
+ vcomp = _mm512_dpbusd_epi32(vcomp, off, vb);
818
+ }
819
+ _mm512_storeu_si512((__m512i *)((char *)(packed_B) + offset), vcomp);
820
+ }
821
+
822
+ void pack_B(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) {
823
+ pack_qs(packed_B, B, KB);
824
+ ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K);
825
+ for (int n = 0; n < TILE_N; ++n) {
826
+ d0[n] = B[n * KB].d;
827
+ }
828
+ s8s8_compensation(packed_B);
829
+ }
830
+
831
+ // convert 8 * {min, scale} from int6 to int8
832
+ inline void unpack_mins_and_scales(const uint8_t * scales, uint32_t * utmp) {
833
+ const uint32_t kmask1 = 0x3f3f3f3f;
834
+ const uint32_t kmask2 = 0x0f0f0f0f;
835
+ const uint32_t kmask3 = 0x03030303;
836
+
837
+ memcpy(utmp, scales, 12);
838
+ utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
839
+ const uint32_t uaux = utmp[1] & kmask1;
840
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
841
+ utmp[2] = uaux;
842
+ utmp[0] &= kmask1;
843
+ }
844
+
845
+ // packed_B layout:
846
+ // quants {8, TILE_N, 16} uint8
847
+ // scales {8, TILE_N} uint8
848
+ // mins {8, TILE_N} uint8
849
+ // d {TILE_N} ggml_half
850
+ // dmin {TILE_N} ggml_half
851
+ void pack_B(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) {
852
+ pack_qs(packed_B, B, KB);
853
+
854
+ uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N);
855
+ uint8_t * mins = scales + 8 * TILE_N;
856
+ ggml_half * d = reinterpret_cast<ggml_half *>(mins + 8 * TILE_N);
857
+ ggml_half * dmin = d + TILE_N;
858
+
859
+ union {
860
+ uint32_t u32[4];
861
+ uint8_t u8[16];
862
+ } s;
863
+
864
+ for (int n = 0; n < TILE_N; ++n) {
865
+ unpack_mins_and_scales(B[n * KB].scales, s.u32);
866
+ for (int k = 0; k < 8; ++k) {
867
+ scales[k * TILE_N + n] = s.u8[k];
868
+ mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8];
869
+ }
870
+ d[n] = B[n * KB].d;
871
+ dmin[n] = B[n * KB].dmin;
872
+ }
873
+ }
874
+
875
+ // packed_B layout:
876
+ // quants {8, TILE_N, 16} uint8
877
+ // qh {8, TILE_N, 4} uint8
878
+ // scales {8, TILE_N} uint8
879
+ // mins {8, TILE_N} uint8
880
+ // d {TILE_N} ggml_half
881
+ // dmin {TILE_N} ggml_half
882
+ void pack_B(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) {
883
+ pack_qs(packed_B, B, KB);
884
+
885
+ uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N);
886
+ uint8_t * mins = scales + 8 * TILE_N;
887
+ ggml_half * d = reinterpret_cast<ggml_half *>(mins + 8 * TILE_N);
888
+ ggml_half * dmin = d + TILE_N;
889
+
890
+ union {
891
+ uint32_t u32[4];
892
+ uint8_t u8[16];
893
+ } s;
894
+
895
+ for (int n = 0; n < TILE_N; ++n) {
896
+ unpack_mins_and_scales(B[n * KB].scales, s.u32);
897
+ for (int k = 0; k < 8; ++k) {
898
+ scales[k * TILE_N + n] = s.u8[k];
899
+ mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8];
900
+ }
901
+ d[n] = B[n * KB].d;
902
+ dmin[n] = B[n * KB].dmin;
903
+ }
904
+ }
905
+
906
+ // packed_B layout:
907
+ // quants {16, TILE_N, 8} uint8
908
+ // qh {16, TILE_N, 4} uint8
909
+ // scales {16, TILE_N} uint8
910
+ // d {TILE_N} ggml_half
911
+ void pack_B(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) {
912
+ pack_qs(packed_B, B, KB);
913
+
914
+ uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N);
915
+ ggml_half * d = reinterpret_cast<ggml_half *>(scales + 16 * TILE_N);
916
+ for (int n = 0; n < TILE_N; ++n) {
917
+ const int8_t * ps = B[n * KB].scales;
918
+ for (int k = 0; k < 16; ++k) {
919
+ scales[k * TILE_N + n] = ps[k];
920
+ }
921
+ d[n] = B[n * KB].d;
922
+ }
923
+ }
924
+
925
+ // packed_B layout:
926
+ // quants {8, TILE_N, 16} uint8
927
+ // scales {8, TILE_N} int8
928
+ // d {TILE_N} ggml_half
929
+ void pack_B(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) {
930
+ pack_qs(packed_B, B, KB);
931
+
932
+ int8_t * scales = reinterpret_cast<int8_t *>((char *)packed_B + (QK_K / 2) * TILE_N);
933
+ ggml_half * d = reinterpret_cast<ggml_half *>(scales + 8 * TILE_N);
934
+
935
+ // pack the scales
936
+ for (int n = 0; n < TILE_N; ++n) {
937
+ uint16_t sh = B[n * KB].scales_h;
938
+ for (int k = 0; k < 8; k += 2) {
939
+ const int16_t ls1 = ((B[n * KB].scales_l[k / 2] & 0xf) | ((sh << 4) & 0x30)) - 32;
940
+ const int16_t ls2 = ((B[n * KB].scales_l[k / 2] >> 4) | ((sh << 2) & 0x30)) - 32;
941
+ scales[(k + 0) * TILE_N + n] = ls1;
942
+ scales[(k + 1) * TILE_N + n] = ls2;
943
+ sh >>= 4;
944
+ }
945
+ d[n] = B[n * KB].d;
946
+ }
947
+ }
948
+
949
+ template<typename TB, typename packed_B_t = packed_B_type<TB>>
950
+ void unpack_B(packed_B_t * RESTRICT tile, const void * RESTRICT packed_B) {
951
+ GGML_UNUSED(tile);
952
+ GGML_UNUSED(packed_B);
953
+ };
954
+
955
+ template <>
956
+ void unpack_B<block_q4_0>(int8_t * RESTRICT tile, const void * RESTRICT packed_B) {
957
+ const __m512i off = _mm512_set1_epi8(8);
958
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
959
+ for (int n = 0; n < 8; n += 2) {
960
+ __m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32));
961
+ const __m512i r0 = _mm512_sub_epi8(_mm512_and_si512(bytes, lowMask), off);
962
+ const __m512i r1 = _mm512_sub_epi8(_mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask), off);
963
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
964
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
965
+ }
966
+ }
967
+
968
+ template <>
969
+ void unpack_B<block_q4_1>(uint8_t * RESTRICT tile, const void * RESTRICT packed_B) {
970
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
971
+ for (int n = 0; n < 8; n += 2) {
972
+ __m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32));
973
+ const __m512i r0 = _mm512_and_si512(bytes, lowMask);
974
+ const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
975
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
976
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
977
+ }
978
+ }
979
+
980
+ // packed_B_t for QKK is int8_t
981
+ template <typename TB>
982
+ void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) {
983
+ const int packed_B_group_size = QK_K / 2 * TILE_N / 8;
984
+ const char * packed_B_group = (const char *)packed_B + k * packed_B_group_size;
985
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
986
+ for (int n = 0; n < 8; n += 2) {
987
+ __m512i bytes = _mm512_loadu_si512(packed_B_group + n * 32);
988
+ const __m512i r0 = _mm512_and_si512(bytes, lowMask);
989
+ const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
990
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
991
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
992
+ }
993
+ }
994
+
995
+ template <>
996
+ void unpack_B<block_q5_K>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) {
997
+ // lower 4bits, stride 256 bytes
998
+ const int packed_l4_group_size = QK_K / 2 * TILE_N / 8;
999
+ const char * pb = (const char *)packed_B + k * packed_l4_group_size;
1000
+
1001
+ // higher 1bit, stride 64 bytes
1002
+ const int packed_h1_group_size = QK_K / 8 * TILE_N / 8;
1003
+ const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h1_group_size;
1004
+ const __m512i hbits = _mm512_loadu_si512(ph);
1005
+
1006
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1007
+ __m512i hmask0 = _mm512_set1_epi8(0x1);
1008
+ __m512i hmask1 = _mm512_set1_epi8(0x2);
1009
+
1010
+ for (int n = 0; n < 8; n += 2) {
1011
+ __m512i bytes = _mm512_loadu_si512(pb + n * 32);
1012
+ __m512i r0 = _mm512_and_si512(bytes, lowMask);
1013
+ __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1014
+ __m512i h0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), n), 4);
1015
+ __m512i h1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), n + 1), 4);
1016
+
1017
+ hmask0 = _mm512_slli_epi16(hmask0, 2);
1018
+ hmask1 = _mm512_slli_epi16(hmask1, 2);
1019
+ r0 = _mm512_add_epi8(r0, h0);
1020
+ r1 = _mm512_add_epi8(r1, h1);
1021
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
1022
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
1023
+ }
1024
+ }
1025
+
1026
+ template <>
1027
+ void unpack_B<block_q6_K>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) {
1028
+ // lower 4bits, stride 128 bytes
1029
+ const int packed_l4_group_size = QK_K / 2 * TILE_N / 16;
1030
+ const char * pb = (const char *)packed_B + k * packed_l4_group_size;
1031
+
1032
+ // higher 2bits, stride 64 bytes
1033
+ const int packed_h2_group_size = QK_K / 4 * TILE_N / 16;
1034
+ const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h2_group_size;
1035
+ const __m512i hbits = _mm512_loadu_si512(ph);
1036
+
1037
+ const __m512i off = _mm512_set1_epi8(32);
1038
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1039
+ __m512i hmask0 = _mm512_set1_epi8(0x3); // 0011
1040
+ __m512i hmask1 = _mm512_set1_epi8(0xC); // 1100
1041
+
1042
+ // notes: skip zero padding from row4 to row7 as we have done so in `unpack_A`
1043
+ __m512i bytes = _mm512_loadu_si512(pb);
1044
+ __m512i r0 = _mm512_and_si512(bytes, lowMask);
1045
+ __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1046
+ __m512i h0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask0), 4);
1047
+ __m512i h1 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask1), 2);
1048
+ _mm512_storeu_si512((__m512i *)(tile + 0), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off));
1049
+ _mm512_storeu_si512((__m512i *)(tile + 64), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off));
1050
+
1051
+ hmask0 = _mm512_slli_epi16(hmask0, 4);
1052
+ hmask1 = _mm512_slli_epi16(hmask1, 4);
1053
+
1054
+ bytes = _mm512_loadu_si512(pb + 64);
1055
+ r0 = _mm512_and_si512(bytes, lowMask);
1056
+ r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1057
+ h0 = _mm512_and_si512(hbits, hmask0);
1058
+ h1 = _mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), 2);
1059
+ _mm512_storeu_si512((__m512i *)(tile + 128), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off));
1060
+ _mm512_storeu_si512((__m512i *)(tile + 192), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off));
1061
+ }
1062
+
1063
+ template <>
1064
+ void unpack_B<block_iq4_xs>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) {
1065
+ static const __m512i values128 = _mm512_set_epi8(
1066
+ 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
1067
+ 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
1068
+ 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
1069
+ 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127
1070
+ );
1071
+
1072
+ const int packed_B_group_size = QK_K / 2 * TILE_N / 8;
1073
+ const char * pb = (const char *)packed_B + k * packed_B_group_size;
1074
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1075
+
1076
+ for (int n = 0; n < 8; n += 2) {
1077
+ __m512i bytes = _mm512_loadu_si512(pb + n * 32);
1078
+ const __m512i r0 = _mm512_shuffle_epi8(values128, _mm512_and_si512(bytes, lowMask));
1079
+ const __m512i r1 = _mm512_shuffle_epi8(values128, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask));
1080
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
1081
+ _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
1082
+ }
1083
+ }
1084
+
1085
+ template <typename TA, typename TB, bool is_acc>
1086
+ struct acc_C {};
1087
+
1088
+ template <bool is_acc>
1089
+ struct acc_C<block_q8_0, block_q4_0, is_acc> {
1090
+ static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) {
1091
+ const int offset = TILE_N * TILE_K / 2;
1092
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
1093
+
1094
+ for (int m = 0; m < nr; ++m) {
1095
+ const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
1096
+ const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
1097
+
1098
+ __m512 vsum;
1099
+ if (is_acc) {
1100
+ vsum = _mm512_loadu_ps(C + m * ldc);
1101
+ } else {
1102
+ vsum = _mm512_set1_ps(0.f);
1103
+ }
1104
+ vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum);
1105
+ _mm512_storeu_ps(C + m * ldc, vsum);
1106
+ }
1107
+ }
1108
+ };
1109
+
1110
+ template <bool is_acc>
1111
+ struct acc_C<block_q8_1, block_q4_1, is_acc> {
1112
+ static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_1 * A, int lda, const void * packed_B, int nr) {
1113
+ const int offset = TILE_N * TILE_K / 2;
1114
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
1115
+ const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset + TILE_N * sizeof(ggml_half))));
1116
+
1117
+ for (int m = 0; m < nr; ++m) {
1118
+ const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
1119
+ const __m512 vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].s));
1120
+ const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
1121
+
1122
+ __m512 vsum;
1123
+ if (is_acc) {
1124
+ vsum = _mm512_loadu_ps(C + m * ldc);
1125
+ } else {
1126
+ vsum = _mm512_set1_ps(0.f);
1127
+ }
1128
+ vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum);
1129
+ vsum = _mm512_fmadd_ps(vm0, vs1, vsum);
1130
+ _mm512_storeu_ps(C + m * ldc, vsum);
1131
+ }
1132
+ }
1133
+ };
1134
+
1135
+ template <bool is_acc>
1136
+ struct acc_C<block_q8_0, block_q8_0, is_acc> {
1137
+ static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) {
1138
+ const int offset = TILE_N * TILE_K;
1139
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
1140
+
1141
+ for (int m = 0; m < nr; ++m) {
1142
+ const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
1143
+ const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
1144
+
1145
+ __m512 vsum;
1146
+ if (is_acc) {
1147
+ vsum = _mm512_loadu_ps(C + m * ldc);
1148
+ } else {
1149
+ vsum = _mm512_set1_ps(0.f);
1150
+ }
1151
+ vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum);
1152
+ _mm512_storeu_ps(C + m * ldc, vsum);
1153
+ }
1154
+ }
1155
+ };
1156
+
1157
+ template <bool is_acc>
1158
+ struct acc_C<block_q8_K, block_q4_K, is_acc> {
1159
+ static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) {
1160
+ const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N);
1161
+ const uint8_t * mins = scales + 8 * TILE_N;
1162
+ const ggml_half * d0 = reinterpret_cast<const ggml_half *>(mins + 8 * TILE_N);
1163
+ const ggml_half * dmin = d0 + TILE_N;
1164
+
1165
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0));
1166
+ const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin));
1167
+
1168
+ for (int m = 0; m < nr; ++m) {
1169
+ const float d1 = A[m * lda].d;
1170
+ const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0);
1171
+ const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin);
1172
+ const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
1173
+
1174
+ __m512 vsum;
1175
+ if (is_acc) {
1176
+ vsum = _mm512_loadu_ps(C + m * ldc);
1177
+ } else {
1178
+ vsum = _mm512_set1_ps(0.f);
1179
+ }
1180
+
1181
+ const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums);
1182
+ const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
1183
+
1184
+ __m512i acc_m = _mm512_setzero_si512();
1185
+ for (int k = 0; k < 4; ++k) {
1186
+ __m512i vmask = _mm512_set1_epi32(k);
1187
+ __m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s));
1188
+ __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32)));
1189
+ acc_m = _mm512_dpwssds_epi32(acc_m, va, vb);
1190
+ }
1191
+
1192
+ vsum = _mm512_fmadd_ps(vtile, vd, vsum);
1193
+ vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum);
1194
+ _mm512_storeu_ps(C + m * ldc, vsum);
1195
+ }
1196
+ }
1197
+ };
1198
+
1199
+ template <bool is_acc>
1200
+ struct acc_C<block_q8_K, block_q5_K, is_acc> {
1201
+ static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) {
1202
+ const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N);
1203
+ const uint8_t * mins = scales + 8 * TILE_N;
1204
+ const ggml_half * d0 = reinterpret_cast<const ggml_half *>(mins + 8 * TILE_N);
1205
+ const ggml_half * dmin = d0 + TILE_N;
1206
+
1207
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0));
1208
+ const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin));
1209
+
1210
+ for (int m = 0; m < nr; ++m) {
1211
+ const float d1 = A[m * lda].d;
1212
+ const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0);
1213
+ const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin);
1214
+ const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
1215
+
1216
+ __m512 vsum;
1217
+ if (is_acc) {
1218
+ vsum = _mm512_loadu_ps(C + m * ldc);
1219
+ } else {
1220
+ vsum = _mm512_set1_ps(0.f);
1221
+ }
1222
+
1223
+ const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums);
1224
+ const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
1225
+
1226
+ __m512i acc_m = _mm512_setzero_si512();
1227
+ for (int k = 0; k < 4; ++k) {
1228
+ __m512i vmask = _mm512_set1_epi32(k);
1229
+ __m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s));
1230
+ __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32)));
1231
+ acc_m = _mm512_dpwssds_epi32(acc_m, va, vb);
1232
+ }
1233
+
1234
+ vsum = _mm512_fmadd_ps(vtile, vd, vsum);
1235
+ vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum);
1236
+ _mm512_storeu_ps(C + m * ldc, vsum);
1237
+ }
1238
+ }
1239
+ };
1240
+
1241
+ template <bool is_acc>
1242
+ struct acc_C<block_q8_K, block_q6_K, is_acc> {
1243
+ static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) {
1244
+ const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N);
1245
+ const ggml_half * d0 = reinterpret_cast<const ggml_half *>(scales + 16 * TILE_N);
1246
+
1247
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0));
1248
+
1249
+ for (int m = 0; m < nr; ++m) {
1250
+ const float d1 = A[m * lda].d;
1251
+ const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0);
1252
+ const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
1253
+
1254
+ __m512 vsum;
1255
+ if (is_acc) {
1256
+ vsum = _mm512_loadu_ps(C + m * ldc);
1257
+ } else {
1258
+ vsum = _mm512_set1_ps(0.f);
1259
+ }
1260
+
1261
+ vsum = _mm512_fmadd_ps(vtile, vd, vsum);
1262
+ _mm512_storeu_ps(C + m * ldc, vsum);
1263
+ }
1264
+ }
1265
+ };
1266
+
1267
+ template <bool is_acc>
1268
+ struct acc_C<block_q8_K, block_iq4_xs, is_acc> {
1269
+ static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) {
1270
+ const int8_t * scales = reinterpret_cast<const int8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N);
1271
+ const ggml_half * d0 = reinterpret_cast<const ggml_half *>(scales + 8 * TILE_N);
1272
+
1273
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0));
1274
+
1275
+ for (int m = 0; m < nr; ++m) {
1276
+ const float d1 = A[m * lda].d;
1277
+ const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0);
1278
+ const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
1279
+
1280
+ __m512 vsum;
1281
+ if (is_acc) {
1282
+ vsum = _mm512_loadu_ps(C + m * ldc);
1283
+ } else {
1284
+ vsum = _mm512_set1_ps(0.f);
1285
+ }
1286
+
1287
+ vsum = _mm512_fmadd_ps(vtile, vd, vsum);
1288
+ _mm512_storeu_ps(C + m * ldc, vsum);
1289
+ }
1290
+ }
1291
+ };
1292
+
1293
+ template <typename TB> constexpr int get_quants_size();
1294
+ template <> constexpr int get_quants_size<block_q4_K>() { return (QK_K / 2) * TILE_N; }
1295
+ template <> constexpr int get_quants_size<block_q5_K>() { return (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N; }
1296
+ template <> constexpr int get_quants_size<block_q6_K>() { return (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N; }
1297
+ template <> constexpr int get_quants_size<block_iq4_xs>() { return (QK_K / 2) * TILE_N; }
1298
+
1299
+ // used for QKK format
1300
+ template <typename TB, bool is_acc,
1301
+ typename std::enable_if<is_type_qkk<TB>::value, int>::type = 0>
1302
+ inline void scale_C(const int32_t * RESTRICT tile, int32_t * RESTRICT sumi, const void * packed_B, int k, int nr) {
1303
+ const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + get_quants_size<TB>());
1304
+ const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(scales + k * TILE_N)));
1305
+
1306
+ for (int m = 0; m < nr; ++m) {
1307
+ __m512i vsumi;
1308
+ if (is_acc) {
1309
+ vsumi = _mm512_loadu_si512(sumi + m * TILE_N);
1310
+ } else {
1311
+ vsumi = _mm512_setzero_si512();
1312
+ }
1313
+ __m512i vtile = _mm512_loadu_si512(tile + m * TILE_N);
1314
+ vsumi = _mm512_add_epi32(vsumi, _mm512_mullo_epi32(vtile, vscale));
1315
+ _mm512_storeu_si512((__m512i *)(sumi + m * TILE_N), vsumi);
1316
+ }
1317
+ }
1318
+
1319
+ template <typename TA, typename TB, typename TC, int BLOCK_M, int BLOCK_N, int BLOCK_K>
1320
+ struct tinygemm_kernel_avx {
1321
+ static void apply(int K, const TA * RESTRICT A, const TB * RESTRICT B, TC * RESTRICT C, int ldc) {
1322
+ GGML_UNUSED(K);
1323
+ GGML_UNUSED(A);
1324
+ GGML_UNUSED(B);
1325
+ GGML_UNUSED(C);
1326
+ GGML_UNUSED(ldc);
1327
+ }
1328
+ };
1329
+
1330
+ template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
1331
+ struct tinygemm_kernel_avx<float, ggml_fp16_t, float, BLOCK_M, BLOCK_N, BLOCK_K> {
1332
+ static void apply(int K, const float * RESTRICT A, const ggml_fp16_t * RESTRICT B, float * RESTRICT C, int ldc) {
1333
+ constexpr int ROWS = BLOCK_M;
1334
+ constexpr int COLS = BLOCK_N;
1335
+ assert(BLOCK_K == 16);
1336
+
1337
+ __m512 va;
1338
+ __m512 vb[COLS];
1339
+ __m512 vc[ROWS * COLS];
1340
+
1341
+ auto loadc = [&](int idx) {
1342
+ vc[idx] = _mm512_setzero_ps();
1343
+ };
1344
+ Unroll<ROWS * COLS>{}(loadc);
1345
+
1346
+ auto compute = [&](int idx, int k) {
1347
+ // TODO: use `constexpr` here to get rid of interger div
1348
+ // when upgraded to C++17
1349
+ const int row = idx / COLS;
1350
+ const int col = idx % COLS;
1351
+
1352
+ if (col == 0) {
1353
+ va = _mm512_loadu_ps(A + row * K + k);
1354
+ }
1355
+ if (row == 0) {
1356
+ vb[col] = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(B + col * K + k)));
1357
+ }
1358
+ vc[idx] = _mm512_fmadd_ps(va, vb[col], vc[idx]);
1359
+ };
1360
+
1361
+ for (int k = 0; k < K; k += 16) {
1362
+ Unroll<ROWS * COLS>{}(compute, k);
1363
+ }
1364
+
1365
+ auto storec = [&](int idx) {
1366
+ const int row = idx / COLS;
1367
+ const int col = idx % COLS;
1368
+ C[row * ldc + col] = _mm512_reduce_add_ps(vc[idx]);
1369
+ };
1370
+ Unroll<ROWS * COLS>{}(storec);
1371
+ }
1372
+ };
1373
+
1374
+ #define LAUNCH_TINYGEMM_KERNEL_AVX(MB_SIZE, NB_SIZE) \
1375
+ tinygemm_kernel_avx<float, type, float, MB_SIZE, NB_SIZE, blck_size>::apply( \
1376
+ K, (const float *)src1->data + mb_start * K, \
1377
+ (const type *)src0->data + nb_start * K, \
1378
+ (float *)dst->data + mb_start * ldc + nb_start, ldc);
1379
+
1380
+
1381
+ // re-organize in the format {NB, KB, TILE_SIZE}:
1382
+ #define PACKED_INDEX(n, k, KB, tile_size) (n * KB + k) * tile_size
1383
+
1384
+ template<typename TB, int BLOCK_K>
1385
+ void convert_B_packed_format(void * RESTRICT packed_B, const TB * RESTRICT B, int N, int K, int n_threads) {
1386
+ const int NB = N / TILE_N;
1387
+ const int KB = K / BLOCK_K;
1388
+ const int TILE_SIZE = get_tile_size<TB>();
1389
+
1390
+ // parallel on NB should be enough
1391
+ parallel_for(n_threads, NB, [&](int begin, int end) {
1392
+ for (int n = begin; n < end; ++n) {
1393
+ for (int k = 0; k < KB; ++k) {
1394
+ int n0 = n * TILE_N;
1395
+ pack_B((char *)packed_B + PACKED_INDEX(n, k, KB, TILE_SIZE), &B[n0 * KB + k], KB);
1396
+ }
1397
+ }
1398
+ });
1399
+ }
1400
+
1401
+ template <typename TA, typename TB, typename TC, int BLOCK_M, int BLOCK_N, int BLOCK_K>
1402
+ struct tinygemm_kernel_vnni {};
1403
+
1404
+ template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
1405
+ struct tinygemm_kernel_vnni<block_q8_0, block_q4_0, float, BLOCK_M, BLOCK_N, BLOCK_K> {
1406
+ static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
1407
+
1408
+ constexpr int COLS = BLOCK_N / 16;
1409
+ const int TILE_SIZE = TILE_N * sizeof(block_q4_0);
1410
+
1411
+ const block_q8_0 * RESTRICT A = static_cast<const block_q8_0 *>(_A);
1412
+ const char * RESTRICT B = static_cast<const char *>(_B);
1413
+
1414
+ __m512i va[8];
1415
+ __m512 vc[COLS];
1416
+ __m512 vd1;
1417
+
1418
+ // sum of offsets, shared across COLS
1419
+ //
1420
+ // avx512-vnni does not have `_mm512_dpbssd_epi32`,
1421
+ // need to transfrom ss to us:
1422
+ // a * (b - 8) is equavilent to b * a - 8 * a
1423
+ // s u u u s u s
1424
+ //
1425
+ __m512i vcomp;
1426
+
1427
+ const __m512i off = _mm512_set1_epi8(8);
1428
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1429
+
1430
+ auto loadc = [&](int col) {
1431
+ vc[col] = _mm512_setzero_ps();
1432
+ };
1433
+ Unroll<COLS>{}(loadc);
1434
+
1435
+ auto compute = [&](int col, int i) {
1436
+ // load a and compute compensation
1437
+ if (col == 0) {
1438
+ const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs);
1439
+ vcomp = _mm512_setzero_si512();
1440
+ for (int k = 0; k < 8; ++k) {
1441
+ va[k] = _mm512_set1_epi32(a_ptr[k]);
1442
+ vcomp = _mm512_dpbusd_epi32(vcomp, off, va[k]);
1443
+ }
1444
+ vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
1445
+ }
1446
+
1447
+ // load b
1448
+ __m512i vsum = _mm512_setzero_si512();
1449
+ const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
1450
+ for (int k = 0; k < 8; k += 2) {
1451
+ __m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32));
1452
+ __m512i vb0 = _mm512_and_si512(bytes, lowMask);
1453
+ vsum = _mm512_dpbusd_epi32(vsum, vb0, va[k + 0]);
1454
+ __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1455
+ vsum = _mm512_dpbusd_epi32(vsum, vb1, va[k + 1]);
1456
+ }
1457
+ const int offset = TILE_N * TILE_K / 2;
1458
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset)));
1459
+ vsum = _mm512_sub_epi32(vsum, vcomp);
1460
+
1461
+ vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]);
1462
+ };
1463
+
1464
+ for (int i = 0; i < KB; ++i) {
1465
+ Unroll<COLS>{}(compute, i);
1466
+ }
1467
+
1468
+ //store to C
1469
+ auto storec = [&](int col) {
1470
+ _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
1471
+ };
1472
+ Unroll<COLS>{}(storec);
1473
+ }
1474
+ };
1475
+
1476
+ template <int BLOCK_N, int BLOCK_K>
1477
+ struct tinygemm_kernel_vnni<block_q8_1, block_q4_1, float, 1, BLOCK_N, BLOCK_K> {
1478
+ static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
1479
+
1480
+ constexpr int COLS = BLOCK_N / 16;
1481
+ const int TILE_SIZE = TILE_N * sizeof(block_q4_1);
1482
+
1483
+ const block_q8_1 * RESTRICT A = static_cast<const block_q8_1 *>(_A);
1484
+ const char * RESTRICT B = static_cast<const char *>(_B);
1485
+
1486
+ __m512i va[8];
1487
+ __m512i vb[8];
1488
+ __m512 vc[COLS];
1489
+ __m512 vd1, vs1;
1490
+
1491
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1492
+
1493
+ auto loadc = [&](int col) {
1494
+ vc[col] = _mm512_setzero_ps();
1495
+ };
1496
+ Unroll<COLS>{}(loadc);
1497
+
1498
+ auto compute = [&](int col, int i) {
1499
+ // load a
1500
+ if (col == 0) {
1501
+ const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs);
1502
+ for (int k = 0; k < 8; ++k) {
1503
+ va[k] = _mm512_set1_epi32(a_ptr[k]);
1504
+ }
1505
+ vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
1506
+ vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].s));
1507
+ }
1508
+
1509
+ // load b
1510
+ const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
1511
+ for (int k = 0; k < 8; k += 2) {
1512
+ __m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32));
1513
+ vb[k + 0] = _mm512_and_si512(bytes, lowMask);
1514
+ vb[k + 1] = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1515
+ }
1516
+ const int offset = TILE_N * TILE_K / 2;
1517
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset)));
1518
+ const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset + TILE_N * sizeof(ggml_half))));
1519
+
1520
+ __m512i vsum = _mm512_setzero_si512();
1521
+ for (int k = 0; k < 8; ++k) {
1522
+ vsum = _mm512_dpbusd_epi32(vsum, vb[k], va[k]);
1523
+ }
1524
+
1525
+ vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]);
1526
+ vc[col] = _mm512_fmadd_ps(vm0, vs1, vc[col]);
1527
+ };
1528
+
1529
+ for (int i = 0; i < KB; ++i) {
1530
+ Unroll<COLS>{}(compute, i);
1531
+ }
1532
+
1533
+ //store to C
1534
+ auto storec = [&](int col) {
1535
+ _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
1536
+ };
1537
+ Unroll<COLS>{}(storec);
1538
+ }
1539
+ };
1540
+
1541
+ template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
1542
+ struct tinygemm_kernel_vnni<block_q8_0, block_q8_0, float, BLOCK_M, BLOCK_N, BLOCK_K> {
1543
+ static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
1544
+
1545
+ constexpr int COLS = BLOCK_N / 16;
1546
+ const int TILE_SIZE = TILE_N * sizeof(block_q8_0) + TILE_N * sizeof(int32_t);
1547
+
1548
+ const block_q8_0 * RESTRICT A = static_cast<const block_q8_0 *>(_A);
1549
+ const char * RESTRICT B = static_cast<const char *>(_B);
1550
+
1551
+ __m512i va[8];
1552
+ __m512i vb[8];
1553
+ __m512 vc[COLS];
1554
+ __m512 vd1;
1555
+
1556
+ // Notes: s8s8 igemm compensation in avx512-vnni
1557
+ // change s8s8 to u8s8 with compensate
1558
+ // a * b = (a + 128) * b - 128 * b
1559
+ // s s u s u s
1560
+ //
1561
+ // (128 * b is pre-computed when packing B to vnni formats)
1562
+ //
1563
+ const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80));
1564
+
1565
+ auto loadc = [&](int col) {
1566
+ vc[col] = _mm512_setzero_ps();
1567
+ };
1568
+ Unroll<COLS>{}(loadc);
1569
+
1570
+ auto compute = [&](int col, int i) {
1571
+ // load a and add offset 128
1572
+ if (col == 0) {
1573
+ const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs);
1574
+ for (int k = 0; k < 8; ++k) {
1575
+ va[k] = _mm512_set1_epi32(a_ptr[k]);
1576
+ va[k] = _mm512_add_epi8(va[k], off);
1577
+ }
1578
+ vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
1579
+ }
1580
+
1581
+ // load b
1582
+ const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
1583
+ for (int k = 0; k < 8; ++k) {
1584
+ vb[k] = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 64));
1585
+ }
1586
+ const int offset = TILE_N * TILE_K;
1587
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset)));
1588
+ const int offset2 = TILE_N * TILE_K + TILE_N * sizeof(ggml_half);
1589
+ const __m512i vcomp = _mm512_loadu_si512((const __m512i *)(b_ptr + offset2));
1590
+
1591
+ __m512i vsum = _mm512_setzero_si512();
1592
+ for (int k = 0; k < 8; ++k) {
1593
+ vsum = _mm512_dpbusd_epi32(vsum, va[k], vb[k]);
1594
+ }
1595
+ vsum = _mm512_sub_epi32(vsum, vcomp);
1596
+
1597
+ vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]);
1598
+ };
1599
+
1600
+ for (int i = 0; i < KB; ++i) {
1601
+ Unroll<COLS>{}(compute, i);
1602
+ }
1603
+
1604
+ //store to C
1605
+ auto storec = [&](int col) {
1606
+ _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
1607
+ };
1608
+ Unroll<COLS>{}(storec);
1609
+ }
1610
+ };
1611
+
1612
+ template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
1613
+ struct tinygemm_kernel_vnni<block_q8_K, block_q4_K, float, BLOCK_M, BLOCK_N, BLOCK_K> {
1614
+ static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
1615
+
1616
+ constexpr int COLS = BLOCK_N / 16;
1617
+ const int TILE_SIZE = TILE_N * sizeof(block_q4_K) + TILE_N * 4;
1618
+
1619
+ const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A);
1620
+ const char * RESTRICT B = static_cast<const char *>(_B);
1621
+
1622
+ // a.qs: 8 groups, 32 bytes each group (m256i)
1623
+ __m512i va[8];
1624
+ // a.bsum: 8 groups, 2 bytes each group (m128i)
1625
+ __m512i va_bsum;
1626
+ __m512 vc[COLS];
1627
+ __m512 vd1;
1628
+
1629
+ // packed_B:
1630
+ const int offset_scales = (QK_K / 2) * TILE_N;
1631
+ const int offset_mins = (QK_K / 2) * TILE_N + 8 * TILE_N;
1632
+ const int offset_d0 = (QK_K / 2) * TILE_N + 16 * TILE_N;
1633
+ const int offset_dmin = (QK_K / 2) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half);
1634
+
1635
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1636
+
1637
+ auto loadc = [&](int col) {
1638
+ vc[col] = _mm512_setzero_ps();
1639
+ };
1640
+ Unroll<COLS>{}(loadc);
1641
+
1642
+ // Notes: vnni formats in QK_K
1643
+ // a) quants vnni format
1644
+ // int8 {k/4, n, 4}, viewed as 2d {k/4, 4n}, k = 32
1645
+ // from {16, 32} to {8, 64}
1646
+ //
1647
+ // b) min vnni format
1648
+ // int16 {k/2, n, 2}, viewed as 2d {k/2, 2n}, k = 8
1649
+ // from {16, 8} to {4, 32}
1650
+ //
1651
+ auto compute = [&](int col, int i) {
1652
+ // load a
1653
+ if (col == 0) {
1654
+ for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
1655
+ va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32)));
1656
+ }
1657
+ const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums);
1658
+ const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
1659
+ va_bsum = _mm512_castsi128_si512(q8s);
1660
+ vd1 = _mm512_set1_ps(A[0 * KB + i].d);
1661
+ }
1662
+
1663
+ // step 1: accumultate the quants
1664
+ __m512i acc = _mm512_setzero_si512();
1665
+ const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
1666
+ const char * b_qs = b_ptr;
1667
+ for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
1668
+ __m512i vsum = _mm512_setzero_si512();
1669
+ for (int k = 0; k < 8; k += 2) {
1670
+ __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]);
1671
+ __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]);
1672
+
1673
+ __m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs);
1674
+ __m512i vb0 = _mm512_and_si512(bytes, lowMask);
1675
+ vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
1676
+ __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1677
+ vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
1678
+
1679
+ b_qs += 64;
1680
+ }
1681
+ // vacc += scale * (q8 @ q4)
1682
+ const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N)));
1683
+ acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale));
1684
+ }
1685
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0)));
1686
+ vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]);
1687
+
1688
+ // step 2: accumulate the mins
1689
+ __m512i acc_m = _mm512_setzero_si512();
1690
+ for (int k = 0; k < 4; ++k) {
1691
+ __m512i vmask = _mm512_set1_epi32(k);
1692
+ __m512i va = _mm512_permutexvar_epi32(vmask, va_bsum);
1693
+ __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32)));
1694
+ acc_m = _mm512_dpwssds_epi32(acc_m, va, vb);
1695
+ }
1696
+ const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin)));
1697
+ vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]);
1698
+ };
1699
+
1700
+ for (int i = 0; i < KB; ++i) {
1701
+ Unroll<COLS>{}(compute, i);
1702
+ }
1703
+
1704
+ //store to C
1705
+ auto storec = [&](int col) {
1706
+ _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
1707
+ };
1708
+ Unroll<COLS>{}(storec);
1709
+ }
1710
+ };
1711
+
1712
+ template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
1713
+ struct tinygemm_kernel_vnni<block_q8_K, block_q5_K, float, BLOCK_M, BLOCK_N, BLOCK_K> {
1714
+ static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
1715
+
1716
+ constexpr int COLS = BLOCK_N / 16;
1717
+ const int TILE_SIZE = TILE_N * sizeof(block_q5_K) + TILE_N * 4;
1718
+
1719
+ const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A);
1720
+ const char * RESTRICT B = static_cast<const char *>(_B);
1721
+
1722
+ // a.qs: 8 groups, 32 bytes each group (m256i)
1723
+ __m512i va[8];
1724
+ // a.bsum: 8 groups, 2 bytes each group (m128i)
1725
+ __m512i va_bsum;
1726
+ __m512 vc[COLS];
1727
+ __m512 vd1;
1728
+
1729
+ // packed_B:
1730
+ const int offset_qh = (QK_K / 2) * TILE_N;
1731
+ const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N;
1732
+ const int offset_mins = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 8 * TILE_N;
1733
+ const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N;
1734
+ const int offset_dmin = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half);
1735
+
1736
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1737
+
1738
+ auto loadc = [&](int col) {
1739
+ vc[col] = _mm512_setzero_ps();
1740
+ };
1741
+ Unroll<COLS>{}(loadc);
1742
+
1743
+ // Q5_K and Q4_K shares the same vnni formats, refer to notes above.
1744
+ auto compute = [&](int col, int i) {
1745
+ // load a
1746
+ if (col == 0) {
1747
+ for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
1748
+ va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32)));
1749
+ }
1750
+ const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums);
1751
+ const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
1752
+ va_bsum = _mm512_castsi128_si512(q8s);
1753
+ vd1 = _mm512_set1_ps(A[0 * KB + i].d);
1754
+ }
1755
+
1756
+ // step 1: accumultate the quants
1757
+ __m512i acc = _mm512_setzero_si512();
1758
+ const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
1759
+ const char * b_qs = b_ptr;
1760
+ const char * b_qh = b_ptr + offset_qh;
1761
+ for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
1762
+ __m512i vsum = _mm512_setzero_si512();
1763
+ __m512i hmask0 = _mm512_set1_epi8(0x1);
1764
+ __m512i hmask1 = _mm512_set1_epi8(0x2);
1765
+ __m512i hbits = _mm512_loadu_si512((const __m512i *)(b_qh + k_group * 64));
1766
+ for (int k = 0; k < 8; k += 2) {
1767
+ __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]);
1768
+ __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]);
1769
+
1770
+ __m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs);
1771
+ __m512i vb0 = _mm512_and_si512(bytes, lowMask);
1772
+ __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1773
+
1774
+ __m512i vh0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), k), 4);
1775
+ __m512i vh1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), k + 1), 4);
1776
+
1777
+ hmask0 = _mm512_slli_epi16(hmask0, 2);
1778
+ hmask1 = _mm512_slli_epi16(hmask1, 2);
1779
+ vb0 = _mm512_add_epi8(vb0, vh0);
1780
+ vb1 = _mm512_add_epi8(vb1, vh1);
1781
+
1782
+ vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
1783
+ vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
1784
+
1785
+ b_qs += 64;
1786
+ }
1787
+ // vacc += scale * (q8 @ q5)
1788
+ const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N)));
1789
+ acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale));
1790
+ }
1791
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0)));
1792
+ vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]);
1793
+
1794
+ // step 2: accumulate the mins
1795
+ __m512i acc_m = _mm512_setzero_si512();
1796
+ for (int k = 0; k < 4; ++k) {
1797
+ __m512i vmask = _mm512_set1_epi32(k);
1798
+ __m512i va = _mm512_permutexvar_epi32(vmask, va_bsum);
1799
+ __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32)));
1800
+ acc_m = _mm512_dpwssds_epi32(acc_m, va, vb);
1801
+ }
1802
+ const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin)));
1803
+ vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]);
1804
+ };
1805
+
1806
+ for (int i = 0; i < KB; ++i) {
1807
+ Unroll<COLS>{}(compute, i);
1808
+ }
1809
+
1810
+ //store to C
1811
+ auto storec = [&](int col) {
1812
+ _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
1813
+ };
1814
+ Unroll<COLS>{}(storec);
1815
+ }
1816
+ };
1817
+
1818
+ template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
1819
+ struct tinygemm_kernel_vnni<block_q8_K, block_q6_K, float, BLOCK_M, BLOCK_N, BLOCK_K> {
1820
+ static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
1821
+
1822
+ constexpr int COLS = BLOCK_N / 16;
1823
+ const int TILE_SIZE = TILE_N * sizeof(block_q6_K);
1824
+
1825
+ const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A);
1826
+ const char * RESTRICT B = static_cast<const char *>(_B);
1827
+
1828
+ // load the 256 bytes from A to 4 avx512 vectors
1829
+ __m512i va[4];
1830
+ __m512 vc[COLS];
1831
+ __m512 vd1;
1832
+
1833
+ // packed_B:
1834
+ const int offset_qh = (QK_K / 2) * TILE_N;
1835
+ const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N;
1836
+ const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N + 16 * TILE_N;
1837
+
1838
+ // compensation
1839
+ __m512i vcomp;
1840
+
1841
+ const __m512i m32s = _mm512_set1_epi32(32);
1842
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1843
+
1844
+ auto loadc = [&](int col) {
1845
+ vc[col] = _mm512_setzero_ps();
1846
+ };
1847
+ Unroll<COLS>{}(loadc);
1848
+
1849
+ auto compute = [&](int col, int i) {
1850
+ if (col == 0) {
1851
+ // load a
1852
+ va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0));
1853
+ va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64));
1854
+ va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128));
1855
+ va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192));
1856
+
1857
+ const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums);
1858
+ vcomp = _mm512_mullo_epi32(_mm512_cvtepi16_epi32(q8sums), m32s);
1859
+ vd1 = _mm512_set1_ps(A[0 * KB + i].d);
1860
+ }
1861
+
1862
+ // accmulate the quants
1863
+ __m512i acc = _mm512_setzero_si512();
1864
+ const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
1865
+ const char * b_qs = b_ptr;
1866
+ const char * b_qh = b_ptr + offset_qh;
1867
+ int mask = 0;
1868
+ for (int k_group = 0; k_group < QK_K / 16; ++k_group) {
1869
+ int r = k_group >> 2;
1870
+ __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
1871
+ __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
1872
+
1873
+ __m512i vsum = _mm512_setzero_si512();
1874
+ __m512i hmask = _mm512_set1_epi8(0x3);
1875
+
1876
+ __m512i bytes = _mm512_loadu_si512(b_qs);
1877
+ __m512i hbits = _mm512_loadu_si512(b_qh);
1878
+ __m512i vb0 = _mm512_and_si512(bytes, lowMask);
1879
+ __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1880
+ __m512i vh0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask), 4);
1881
+ __m512i vh1 = _mm512_slli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 2)), 2);
1882
+
1883
+ vb0 = _mm512_add_epi8(vb0, vh0);
1884
+ vb1 = _mm512_add_epi8(vb1, vh1);
1885
+ vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
1886
+ vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
1887
+ b_qs += 64;
1888
+
1889
+ va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
1890
+ va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
1891
+
1892
+ bytes = _mm512_loadu_si512(b_qs);
1893
+ vb0 = _mm512_and_si512(bytes, lowMask);
1894
+ vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
1895
+ vh0 = _mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 4));
1896
+ vh1 = _mm512_srli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 6)), 2);
1897
+ vb0 = _mm512_add_epi8(vb0, vh0);
1898
+ vb1 = _mm512_add_epi8(vb1, vh1);
1899
+ vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
1900
+ vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
1901
+ b_qs += 64;
1902
+ b_qh += 64;
1903
+
1904
+ // B * A - 32 * A
1905
+ __m512i vmask = _mm512_set1_epi32(k_group);
1906
+ vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp));
1907
+
1908
+ // vacc += scale * (q8 @ q6)
1909
+ const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N)));
1910
+ acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale));
1911
+ }
1912
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0)));
1913
+ vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]);
1914
+ };
1915
+
1916
+ for (int i = 0; i < KB; ++i) {
1917
+ Unroll<COLS>{}(compute, i);
1918
+ }
1919
+
1920
+ //store to C
1921
+ auto storec = [&](int col) {
1922
+ _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
1923
+ };
1924
+ Unroll<COLS>{}(storec);
1925
+ }
1926
+ };
1927
+
1928
+ template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
1929
+ struct tinygemm_kernel_vnni<block_q8_K, block_iq4_xs, float, BLOCK_M, BLOCK_N, BLOCK_K> {
1930
+ static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
1931
+
1932
+ constexpr int COLS = BLOCK_N / 16;
1933
+ const int TILE_SIZE = TILE_N * sizeof(block_iq4_xs) + TILE_N * 2;
1934
+
1935
+ const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A);
1936
+ const char * RESTRICT B = static_cast<const char *>(_B);
1937
+
1938
+ // load the 256 bytes from A to 4 avx512 vectors
1939
+ __m512i va[4];
1940
+ __m512 vc[COLS];
1941
+ __m512 vd1;
1942
+
1943
+ // packed_B:
1944
+ const int offset_scales = (QK_K / 2) * TILE_N ;
1945
+ const int offset_d0 = (QK_K / 2) * TILE_N + 8 * TILE_N;
1946
+
1947
+ // compensation
1948
+ __m512i vcomp;
1949
+
1950
+ const __m256i m128s = _mm256_set1_epi16(128);
1951
+ const __m512i lowMask = _mm512_set1_epi8(0xF);
1952
+
1953
+ const __m512i values128 = _mm512_set_epi8(
1954
+ 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
1955
+ 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
1956
+ 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
1957
+ 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127
1958
+ );
1959
+ const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80));
1960
+ const __m512i values256 = _mm512_add_epi8(values128, off);
1961
+
1962
+ auto loadc = [&](int col) {
1963
+ vc[col] = _mm512_setzero_ps();
1964
+ };
1965
+ Unroll<COLS>{}(loadc);
1966
+
1967
+ auto compute = [&](int col, int i) {
1968
+ if (col == 0) {
1969
+ // load a
1970
+ va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0));
1971
+ va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64));
1972
+ va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128));
1973
+ va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192));
1974
+
1975
+ // compensation: 128 * A
1976
+ const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums);
1977
+ vcomp = _mm512_castsi256_si512(_mm256_madd_epi16(q8sums, m128s));
1978
+ vd1 = _mm512_set1_ps(A[0 * KB + i].d);
1979
+ }
1980
+
1981
+ // accmulate the quants
1982
+ __m512i acc = _mm512_setzero_si512();
1983
+ const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
1984
+ const char * b_qs = b_ptr;
1985
+ int mask = 0;
1986
+ for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
1987
+ int r = k_group >> 1;
1988
+ __m512i vmask = _mm512_set1_epi32(k_group);
1989
+ __m512i vsum = _mm512_setzero_si512();
1990
+ for (int k = 0; k < 8; k += 2) {
1991
+ __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
1992
+ __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
1993
+
1994
+ __m512i bytes = _mm512_loadu_si512(b_qs);
1995
+ __m512i vb0 = _mm512_shuffle_epi8(values256, _mm512_and_si512(bytes, lowMask));
1996
+ __m512i vb1 = _mm512_shuffle_epi8(values256, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask));
1997
+
1998
+ vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
1999
+ vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
2000
+ b_qs += 64;
2001
+ }
2002
+ // (B + 128) * A - 128 * A
2003
+ vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp));
2004
+
2005
+ // vacc += scale * (q8 @ q4)
2006
+ const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N)));
2007
+ acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale));
2008
+ }
2009
+ const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0)));
2010
+ vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]);
2011
+ };
2012
+
2013
+ for (int i = 0; i < KB; ++i) {
2014
+ Unroll<COLS>{}(compute, i);
2015
+ }
2016
+
2017
+ //store to C
2018
+ auto storec = [&](int col) {
2019
+ _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
2020
+ };
2021
+ Unroll<COLS>{}(storec);
2022
+ }
2023
+ };
2024
+
2025
+ #define LAUNCH_TINYGEMM_KERNEL_VNNI(NB_SIZE) \
2026
+ tinygemm_kernel_vnni<vec_dot_type, type, float, 1, NB_SIZE, blck_size>::apply( \
2027
+ KB, (const char *)wdata + 0 * row_size_A, \
2028
+ (const char *)src0->data + PACKED_INDEX(nb * kTilesN, 0, KB, TILE_SIZE), \
2029
+ (float *) dst->data + 0 * N + nb_start, ldc)
2030
+
2031
+ template <typename TA, typename TB, typename TC, int BLOCK_K,
2032
+ typename std::enable_if<!is_type_qkk<TB>::value, int>::type = 0>
2033
+ void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, TC * RESTRICT C, int ldc) {
2034
+ using packed_B_t = packed_B_type<TB>;
2035
+ const int TILE_SIZE = get_tile_size<TB>();
2036
+ const bool need_unpack = do_unpack<TB>::value;
2037
+
2038
+ GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N);
2039
+ const TA * RESTRICT A = static_cast<const TA *>(_A);
2040
+ const char * RESTRICT B = static_cast<const char *>(_B);
2041
+
2042
+ const int m0 = std::min(M, TILE_M);
2043
+ const int m1 = std::max(M - TILE_M, 0);
2044
+ const int lda = KB * sizeof(TA);
2045
+ //const int ldb = KB * sizeof(TB);
2046
+
2047
+ static thread_local packed_B_t Tile0[TILE_N * TILE_K];
2048
+ static thread_local packed_B_t Tile1[TILE_N * TILE_K];
2049
+ static thread_local int8_t Tile23[TILE_M * TILE_K];
2050
+
2051
+ static thread_local int32_t TileC0[TILE_M * TILE_N * 4];
2052
+ static thread_local int32_t TileC1[TILE_M * TILE_N * 4];
2053
+
2054
+ // double buffering C to interleave avx512 and amx
2055
+ int32_t * C_cur = TileC0;
2056
+ int32_t * C_pre = TileC1;
2057
+
2058
+ auto Tile4 = [&](int32_t * base) { return base; };
2059
+ auto Tile5 = [&](int32_t * base) { return base + TILE_M * TILE_N; };
2060
+ auto Tile6 = [&](int32_t * base) { return base + 2 * TILE_M * TILE_N; };
2061
+ auto Tile7 = [&](int32_t * base) { return base + 3 * TILE_M * TILE_N; };
2062
+
2063
+ if (M == 2 * TILE_M) {
2064
+ // i = 0
2065
+ const char * B_blk0 = B + PACKED_INDEX(0, 0, KB, TILE_SIZE);
2066
+ const char * B_blk1 = B + PACKED_INDEX(1, 0, KB, TILE_SIZE);
2067
+ if (need_unpack) {
2068
+ unpack_B<TB>(Tile0, B_blk0);
2069
+ _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK);
2070
+ } else {
2071
+ _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK);
2072
+ }
2073
+
2074
+ _tile_zero(TMM4);
2075
+ _tile_loadd(TMM2, A[0].qs, lda);
2076
+ _tile_dpbssd(TMM4, TMM2, TMM0);
2077
+ _tile_stored(TMM4, Tile4(C_pre), TILE_N * sizeof(int32_t));
2078
+
2079
+ _tile_zero(TMM5);
2080
+ _tile_loadd(TMM3, A[TILE_M * KB + 0].qs, lda);
2081
+ _tile_dpbssd(TMM5, TMM3, TMM0);
2082
+ _tile_stored(TMM5, Tile5(C_pre), TILE_N * sizeof(int32_t));
2083
+
2084
+ if (need_unpack) {
2085
+ unpack_B<TB>(Tile1, B_blk0);
2086
+ _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK);
2087
+ } else {
2088
+ _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK);
2089
+ }
2090
+
2091
+ _tile_zero(TMM6);
2092
+ _tile_dpbssd(TMM6, TMM2, TMM1);
2093
+ _tile_stored(TMM6, Tile6(C_pre), TILE_N * sizeof(int32_t));
2094
+
2095
+ _tile_zero(TMM7);
2096
+ _tile_dpbssd(TMM7, TMM3, TMM1);
2097
+ _tile_stored(TMM7, Tile7(C_pre), TILE_N * sizeof(int32_t));
2098
+
2099
+ for (int i = 1; i < KB; ++i) {
2100
+ // index of previous iter
2101
+ const int ii = i - 1;
2102
+ const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE);
2103
+ const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE);
2104
+ GGML_DISPATCH_BOOL(ii > 0, is_acc, [&] {
2105
+ if (need_unpack) {
2106
+ unpack_B<TB>(Tile0, B_blk0);
2107
+ _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK);
2108
+ } else {
2109
+ _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK);
2110
+ }
2111
+ _tile_zero(TMM4);
2112
+ _tile_loadd(TMM2, A[i].qs, lda);
2113
+ acc_C<TA, TB, is_acc>::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M);
2114
+
2115
+ _tile_dpbssd(TMM4, TMM2, TMM0);
2116
+ _tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t));
2117
+
2118
+ _tile_zero(TMM5);
2119
+ _tile_loadd(TMM3, A[TILE_M * KB + i].qs, lda);
2120
+ acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M);
2121
+
2122
+ _tile_dpbssd(TMM5, TMM3, TMM0);
2123
+ _tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t));
2124
+
2125
+ if (need_unpack) {
2126
+ unpack_B<TB>(Tile1, B_blk1);
2127
+ _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK);
2128
+ } else {
2129
+ _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK);
2130
+ }
2131
+ _tile_zero(TMM6);
2132
+ acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M);
2133
+
2134
+ _tile_dpbssd(TMM6, TMM2, TMM1);
2135
+ _tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t));
2136
+
2137
+ _tile_zero(TMM7);
2138
+ acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M);
2139
+
2140
+ _tile_dpbssd(TMM7, TMM3, TMM1);
2141
+ _tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t));
2142
+
2143
+ std::swap(C_cur, C_pre);
2144
+ });
2145
+ }
2146
+ // final accumulation
2147
+ {
2148
+ int ii = KB - 1;
2149
+ acc_C<TA, TB, true>::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M);
2150
+ acc_C<TA, TB, true>::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M);
2151
+ acc_C<TA, TB, true>::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M);
2152
+ acc_C<TA, TB, true>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M);
2153
+ }
2154
+ } else {
2155
+ for (int i = 0; i < KB; ++i) {
2156
+ _tile_zero(TMM4);
2157
+ _tile_zero(TMM6);
2158
+ if (m1 != 0) {
2159
+ _tile_zero(TMM5);
2160
+ _tile_zero(TMM7);
2161
+ }
2162
+
2163
+ const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE);
2164
+ const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE);
2165
+ if (need_unpack) {
2166
+ unpack_B<TB>(Tile0, B_blk0);
2167
+ _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK);
2168
+ } else {
2169
+ _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK);
2170
+ }
2171
+
2172
+ if (need_unpack) {
2173
+ unpack_B<TB>(Tile1, B_blk1);
2174
+ _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK);
2175
+ } else {
2176
+ _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK);
2177
+ }
2178
+
2179
+ if (m0 == TILE_M) {
2180
+ _tile_loadd(TMM2, A[i].qs, lda);
2181
+ } else {
2182
+ unpack_A(Tile23, &A[i], KB, m0);
2183
+ _tile_loadd(TMM2, Tile23, TILE_K);
2184
+ }
2185
+
2186
+ _tile_dpbssd(TMM4, TMM2, TMM0);
2187
+ _tile_dpbssd(TMM6, TMM2, TMM1);
2188
+
2189
+ _tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t));
2190
+ _tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t));
2191
+
2192
+ GGML_DISPATCH_BOOL(i > 0, is_acc, [&] {
2193
+ acc_C<TA, TB, is_acc>::apply(C, ldc, Tile4(C_cur), &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0);
2194
+ acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Tile6(C_cur), &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0);
2195
+ });
2196
+
2197
+ if (m1 != 0) {
2198
+ unpack_A(Tile23, &A[TILE_M * KB + i], KB, m1);
2199
+ _tile_loadd(TMM3, Tile23, TILE_K);
2200
+
2201
+ _tile_dpbssd(TMM5, TMM3, TMM0);
2202
+ _tile_dpbssd(TMM7, TMM3, TMM1);
2203
+ _tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t));
2204
+ _tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t));
2205
+ GGML_DISPATCH_BOOL(i > 0, is_acc, [&] {
2206
+ acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Tile5(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1);
2207
+ acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1);
2208
+ });
2209
+ }
2210
+ }
2211
+ }
2212
+ return;
2213
+ }
2214
+
2215
+ template <typename TA, typename TB, typename TC, int BLOCK_K,
2216
+ typename std::enable_if<is_type_qkk<TB>::value, int>::type = 0>
2217
+ void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
2218
+ static_assert(std::is_same<TA, block_q8_K>::value);
2219
+ const int TILE_SIZE = get_tile_size<TB>();
2220
+
2221
+ GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N);
2222
+ const TA * RESTRICT A = static_cast<const TA *>(_A);
2223
+ const char * RESTRICT B = static_cast<const char *>(_B);
2224
+
2225
+ const int m0 = std::min(M, TILE_M);
2226
+ const int m1 = std::max(M - TILE_M, 0);
2227
+ //const int lda = KB * sizeof(TA);
2228
+
2229
+ static thread_local int8_t Tile0[TILE_N * TILE_K];
2230
+ static thread_local int8_t Tile1[TILE_N * TILE_K];
2231
+ static thread_local int8_t Tile23[TILE_M * TILE_K];
2232
+
2233
+ // mat mul result for each group
2234
+ static thread_local int32_t Tile4[TILE_M * TILE_N];
2235
+ static thread_local int32_t Tile5[TILE_M * TILE_N];
2236
+ static thread_local int32_t Tile6[TILE_M * TILE_N];
2237
+ static thread_local int32_t Tile7[TILE_M * TILE_N];
2238
+
2239
+ // sum of each QK_K block, contains 8 groups, int32
2240
+ static thread_local int32_t Sumi4[TILE_M * TILE_N];
2241
+ static thread_local int32_t Sumi5[TILE_M * TILE_N];
2242
+ static thread_local int32_t Sumi6[TILE_M * TILE_N];
2243
+ static thread_local int32_t Sumi7[TILE_M * TILE_N];
2244
+
2245
+ const int k_group_size = std::is_same<TB, block_q6_K>::value ? 16 : 32;
2246
+ for (int i = 0; i < KB; ++i) {
2247
+ // step 1: accumulate the quants across 8 groups, each group with 32
2248
+ for (int k = 0; k < QK_K / k_group_size; ++k) {
2249
+ GGML_DISPATCH_BOOL(k > 0, is_acc, [&] {
2250
+ _tile_zero(TMM4);
2251
+ _tile_zero(TMM6);
2252
+
2253
+ unpack_B<TB>(Tile0, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k);
2254
+ _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK);
2255
+
2256
+ unpack_B<TB>(Tile1, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k);
2257
+ _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK);
2258
+
2259
+ unpack_A<TB>(Tile23, &A[i], KB, k, m0);
2260
+ _tile_loadd(TMM2, Tile23, TILE_K);
2261
+
2262
+ _tile_dpbssd(TMM4, TMM2, TMM0);
2263
+ _tile_dpbssd(TMM6, TMM2, TMM1);
2264
+
2265
+ _tile_stored(TMM4, Tile4, TILE_N * sizeof(int32_t));
2266
+ _tile_stored(TMM6, Tile6, TILE_N * sizeof(int32_t));
2267
+
2268
+ scale_C<TB, is_acc>(Tile4, Sumi4, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m0);
2269
+ scale_C<TB, is_acc>(Tile6, Sumi6, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m0);
2270
+
2271
+ if (m1 != 0) {
2272
+ _tile_zero(TMM5);
2273
+ _tile_zero(TMM7);
2274
+
2275
+ unpack_A<TB>(Tile23, &A[TILE_M * KB + i], KB, k, m1);
2276
+ _tile_loadd(TMM3, Tile23, TILE_K);
2277
+
2278
+ _tile_dpbssd(TMM5, TMM3, TMM0);
2279
+ _tile_dpbssd(TMM7, TMM3, TMM1);
2280
+
2281
+ _tile_stored(TMM5, Tile5, TILE_N * sizeof(int32_t));
2282
+ _tile_stored(TMM7, Tile7, TILE_N * sizeof(int32_t));
2283
+
2284
+ scale_C<TB, is_acc>(Tile5, Sumi5, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m1);
2285
+ scale_C<TB, is_acc>(Tile7, Sumi7, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m1);
2286
+ }
2287
+ });
2288
+ }
2289
+
2290
+ // step 2: accmulate the mins
2291
+ GGML_DISPATCH_BOOL(i > 0, is_acc, [&] {
2292
+ acc_C<TA, TB, is_acc>::apply(C, ldc, Sumi4, &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0);
2293
+ acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Sumi6, &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0);
2294
+ if (m1 != 0) {
2295
+ acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Sumi5, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1);
2296
+ acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Sumi7, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1);
2297
+ }
2298
+ });
2299
+ }
2300
+ return;
2301
+ }
2302
+
2303
+ } // anonymous namespace
2304
+
2305
+ // get the packed tensor size for quantized weights
2306
+ size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor) {
2307
+ const enum ggml_type TYPE = tensor->type;
2308
+
2309
+ const int K = tensor->ne[0]; // ne0: in_features
2310
+ const int N = tensor->ne[1]; // ne1: out_features
2311
+
2312
+ auto get_tensor_size = [&] {
2313
+ size_t row_size_B{0};
2314
+ GGML_DISPATCH_QTYPES(TYPE, [&] {
2315
+ row_size_B = get_row_size<type, blck_size>(K);
2316
+ });
2317
+ return N * row_size_B;
2318
+ };
2319
+
2320
+ if (qtype_has_amx_kernels(TYPE)) {
2321
+ return get_tensor_size();
2322
+ } else {
2323
+ // for f16, bf16 we don't do packing
2324
+ return ggml_nbytes(tensor);
2325
+ }
2326
+ }
2327
+
2328
+ // pack weight to vnni format
2329
+ void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
2330
+
2331
+ size_t alloc_size = ggml_backend_amx_get_alloc_size(tensor);
2332
+ GGML_ASSERT(alloc_size == size);
2333
+
2334
+ const enum ggml_type TYPE = tensor->type;
2335
+
2336
+ const int K = tensor->ne[0]; // ne0: in_features
2337
+ const int N = tensor->ne[1]; // ne1: out_features
2338
+
2339
+ #if defined(_OPENMP)
2340
+ // the buffer ctx is not initialized when .set_tensor is called
2341
+ int n_threads = omp_get_num_threads();
2342
+ #else
2343
+ int n_threads = 1;
2344
+ #endif
2345
+
2346
+ GGML_DISPATCH_QTYPES(TYPE, [&] {
2347
+ convert_B_packed_format<type, blck_size>((void *)((char *)tensor->data + offset), (const type *)data, N, K, n_threads);
2348
+ });
2349
+ }
2350
+
2351
+ // NB: mixed dtype gemm with Advanced Matrix Extensions (Intel AMX)
2352
+ //
2353
+ // src0: weight in shape of {N, K}, quantized
2354
+ // src1: input in shape of {M, K}, float32
2355
+ // dst: output in shape of {M, N}, float32
2356
+ //
2357
+ // the function performs: dst = src1 @ src0.T
2358
+ //
2359
+ void ggml_backend_amx_mul_mat(ggml_backend_amx_context * ctx, struct ggml_tensor * dst) {
2360
+ struct ggml_tensor * src0 = dst->src[0];
2361
+ struct ggml_tensor * src1 = dst->src[1];
2362
+
2363
+ const enum ggml_type TYPE = src0->type;
2364
+
2365
+ const int n_threads = ctx->n_threads;
2366
+
2367
+ // f16 only has avx512 kernels for now,
2368
+ // amx kernels will be added once 6th gen xeon is released.
2369
+ const bool is_floating_type = TYPE == GGML_TYPE_F16;
2370
+
2371
+ const int M = dst->ne[1];
2372
+ const int N = dst->ne[0];
2373
+ const int K = src0->ne[0];
2374
+ const int ldc = dst->nb[1] / dst->nb[0];
2375
+
2376
+ if (is_floating_type) {
2377
+ constexpr int BLOCK_M = 4;
2378
+ constexpr int BLOCK_N = 6;
2379
+ const int MB = div_up(M, BLOCK_M);
2380
+ const int NB = div_up(N, BLOCK_N);
2381
+
2382
+ parallel_for(n_threads, MB * NB, [&](int begin, int end) {
2383
+ GGML_DISPATCH_FLOATING_TYPES(TYPE, [&] {
2384
+ for (int i = begin; i < end; ++i) {
2385
+ int mb = i / NB;
2386
+ int nb = i % NB;
2387
+
2388
+ int mb_start = mb * BLOCK_M;
2389
+ int mb_size = std::min(BLOCK_M, M - mb_start);
2390
+ int nb_start = nb * BLOCK_N;
2391
+ int nb_size = std::min(BLOCK_N, N - nb_start);
2392
+
2393
+ switch (mb_size << 4 | nb_size) {
2394
+ case 0x12: LAUNCH_TINYGEMM_KERNEL_AVX(1, 2); break;
2395
+ case 0x14: LAUNCH_TINYGEMM_KERNEL_AVX(1, 4); break;
2396
+ case 0x16: LAUNCH_TINYGEMM_KERNEL_AVX(1, 6); break;
2397
+ case 0x22: LAUNCH_TINYGEMM_KERNEL_AVX(2, 2); break;
2398
+ case 0x24: LAUNCH_TINYGEMM_KERNEL_AVX(2, 4); break;
2399
+ case 0x26: LAUNCH_TINYGEMM_KERNEL_AVX(2, 6); break;
2400
+ case 0x32: LAUNCH_TINYGEMM_KERNEL_AVX(3, 2); break;
2401
+ case 0x34: LAUNCH_TINYGEMM_KERNEL_AVX(3, 4); break;
2402
+ case 0x36: LAUNCH_TINYGEMM_KERNEL_AVX(3, 6); break;
2403
+ case 0x42: LAUNCH_TINYGEMM_KERNEL_AVX(4, 2); break;
2404
+ case 0x44: LAUNCH_TINYGEMM_KERNEL_AVX(4, 4); break;
2405
+ case 0x46: LAUNCH_TINYGEMM_KERNEL_AVX(4, 6); break;
2406
+ default: fprintf(stderr, "Unexpected block size!\n");
2407
+ }
2408
+ }
2409
+ });
2410
+ });
2411
+ return;
2412
+ }
2413
+
2414
+ // pointer to work space, used convert A from float to quantized type
2415
+ void * wdata = nullptr;
2416
+
2417
+ //TODO: performance improvement: merge quant A
2418
+ GGML_DISPATCH_QTYPES(TYPE, [&] {
2419
+ const size_t row_size_A = K / blck_size * sizeof(vec_dot_type);
2420
+ const size_t desired_wsize = M * row_size_A;
2421
+ if (ctx->work_size < desired_wsize) {
2422
+ ctx->work_data.reset(new char[desired_wsize]);
2423
+ ctx->work_size = desired_wsize;
2424
+ }
2425
+ wdata = ctx->work_data.get();
2426
+
2427
+ // Q4_0, Q4_1, Q8_0 handles 1 TILE_K per blck_size
2428
+ // Q4_K, Q5_K, Q6_K, IQ4_XS handles 8 TILE_K per blck_size
2429
+ GGML_ASSERT(TILE_K == blck_size || TILE_K * 8 == blck_size);
2430
+
2431
+ const float * A_data = static_cast<const float *>(src1->data);
2432
+ for (int m = 0; m < M; ++m) {
2433
+ from_float<vec_dot_type>(A_data + m * K, (char *)wdata + m * row_size_A, K);
2434
+ }
2435
+ });
2436
+
2437
+ if (M == 1) {
2438
+ // MB = 1 and handle 8 tiles in each block
2439
+ constexpr int kTilesN = 4;
2440
+ constexpr int BLOCK_N = TILE_N * kTilesN;
2441
+ const int NB = div_up(N, BLOCK_N);
2442
+
2443
+ parallel_for(n_threads, NB, [&](int begin, int end) {
2444
+ GGML_DISPATCH_QTYPES(TYPE, [&] {
2445
+ const int KB = K / blck_size;
2446
+ const int TILE_SIZE = get_tile_size<type>();
2447
+ const int row_size_A = KB * sizeof(vec_dot_type);
2448
+ for (int i = begin; i < end; ++i) {
2449
+ int nb = i;
2450
+ int nb_start = nb * BLOCK_N;
2451
+ int nb_size = std::min(BLOCK_N, N - nb_start); // 32, 64, 96
2452
+
2453
+ switch (nb_size) {
2454
+ //case 160: LAUNCH_TINYGEMM_KERNEL_VNNI(160); break;
2455
+ case 128: LAUNCH_TINYGEMM_KERNEL_VNNI(128); break;
2456
+ case 96: LAUNCH_TINYGEMM_KERNEL_VNNI(96); break;
2457
+ case 64: LAUNCH_TINYGEMM_KERNEL_VNNI(64); break;
2458
+ case 32: LAUNCH_TINYGEMM_KERNEL_VNNI(32); break;
2459
+ default: fprintf(stderr, "Unexpected n block size!\n");
2460
+ }
2461
+ }
2462
+ });
2463
+ });
2464
+ return;
2465
+ }
2466
+
2467
+ // handle 4 tiles at a tile
2468
+ constexpr int BLOCK_M = TILE_M * 2;
2469
+ constexpr int BLOCK_N = TILE_N * 2;
2470
+ const int MB = div_up(M, BLOCK_M);
2471
+ const int NB = div_up(N, BLOCK_N);
2472
+
2473
+ parallel_for(n_threads, MB * NB, [&](int begin, int end) {
2474
+ // init tile config for each thread
2475
+ ggml_tile_config_init();
2476
+
2477
+ GGML_DISPATCH_QTYPES(TYPE, [&] {
2478
+ const int KB = K / blck_size;
2479
+ const int TILE_SIZE = get_tile_size<type>();
2480
+ const int row_size_A = KB * sizeof(vec_dot_type);
2481
+
2482
+ for (int i = begin; i < end; ++i) {
2483
+ int mb = i / NB;
2484
+ int nb = i % NB;
2485
+
2486
+ int mb_start = mb * BLOCK_M;
2487
+ int mb_size = std::min(BLOCK_M, M - mb_start);
2488
+ int nb_start = nb * BLOCK_N;
2489
+ int nb_size = BLOCK_N;
2490
+
2491
+ tinygemm_kernel_amx<vec_dot_type, type, float, blck_size>(
2492
+ mb_size, nb_size, KB,
2493
+ (const char *)wdata + mb_start * row_size_A,
2494
+ (const char *)src0->data + PACKED_INDEX(nb * 2, 0, KB, TILE_SIZE),
2495
+ (float *) dst->data + mb_start * N + nb_start, ldc);
2496
+ }
2497
+ });
2498
+ });
2499
+ }
2500
+
2501
+ #else // if defined(__AMX_INT8__)
2502
+
2503
+ void ggml_backend_amx_mul_mat(ggml_backend_amx_context * ctx, struct ggml_tensor * dst) {
2504
+ fprintf(stderr, "GGML is not compiled with AMX support!\n");
2505
+
2506
+ GGML_UNUSED(ctx);
2507
+ GGML_UNUSED(dst);
2508
+ }
2509
+
2510
+ #endif // if defined(__AMX_INT8__)