whispercpp 1.2.0.2 → 1.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +46 -86
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -7
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/ggml/include/ggml.h +2285 -0
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/include/whisper.h +672 -0
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1608 -159
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/src/whisper.cpp +7393 -0
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -8616
- data/ext/ggml.h +0 -748
- data/ext/whisper.cpp +0 -4829
- data/ext/whisper.h +0 -402
@@ -0,0 +1,216 @@
|
|
1
|
+
#include "kernel_operator.h"
|
2
|
+
|
3
|
+
using namespace AscendC;
|
4
|
+
#ifdef ASCEND_310P // 310P not support f32->8bit quantization
|
5
|
+
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
6
|
+
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
7
|
+
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
8
|
+
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
9
|
+
printf("Ascend310P not support f32->8bit quantization.\n");
|
10
|
+
}
|
11
|
+
#else
|
12
|
+
|
13
|
+
#define BUFFER_NUM 2
|
14
|
+
#define QK8_0 32
|
15
|
+
|
16
|
+
class QUANTIZE_F32_Q8_0 {
|
17
|
+
public:
|
18
|
+
__aicore__ inline QUANTIZE_F32_Q8_0() {}
|
19
|
+
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
20
|
+
int64_t *input_ne_ub, size_t *input_nb_ub,
|
21
|
+
int64_t *output_ne_ub) {
|
22
|
+
int64_t op_block_num = GetBlockNum();
|
23
|
+
int64_t op_block_idx = GetBlockIdx();
|
24
|
+
|
25
|
+
for (int i = 0; i < 4; i++) {
|
26
|
+
input_ne[i] = input_ne_ub[i];
|
27
|
+
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
28
|
+
|
29
|
+
output_ne[i] = output_ne_ub[i];
|
30
|
+
}
|
31
|
+
|
32
|
+
output_stride[0] = 1;
|
33
|
+
for (int i = 1; i < 4; i++) {
|
34
|
+
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
35
|
+
}
|
36
|
+
|
37
|
+
scale_ne = input_ne;
|
38
|
+
scale_stride[0] = 1;
|
39
|
+
scale_stride[1] = input_ne[0] / QK8_0;
|
40
|
+
for (int i = 2; i < 4; i++) {
|
41
|
+
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
42
|
+
}
|
43
|
+
|
44
|
+
// split input tensor by rows.
|
45
|
+
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
46
|
+
dr = nr / op_block_num;
|
47
|
+
|
48
|
+
uint64_t tails = nr % op_block_num;
|
49
|
+
if (op_block_idx < tails) {
|
50
|
+
dr += 1;
|
51
|
+
ir = dr * op_block_idx;
|
52
|
+
} else {
|
53
|
+
ir = dr * op_block_idx + tails;
|
54
|
+
}
|
55
|
+
|
56
|
+
group_size_in_row = scale_stride[1];
|
57
|
+
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
|
58
|
+
output_ne[3] * sizeof(uint8_t);
|
59
|
+
|
60
|
+
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
61
|
+
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
62
|
+
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size +
|
63
|
+
ir * group_size_in_row *
|
64
|
+
sizeof(half)));
|
65
|
+
|
66
|
+
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(float));
|
67
|
+
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
68
|
+
pipe.InitBuffer(work_queue, 1, 32);
|
69
|
+
pipe.InitBuffer(max_queue, 1, 32);
|
70
|
+
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
|
71
|
+
pipe.InitBuffer(cast_queue, 1, QK8_0 * sizeof(half));
|
72
|
+
pipe.InitBuffer(scale_queue, 1, 32);
|
73
|
+
}
|
74
|
+
|
75
|
+
__aicore__ inline void copy_in(uint32_t offset) {
|
76
|
+
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
77
|
+
DataCopy(input_local, input_gm[offset], QK8_0);
|
78
|
+
input_queue.EnQue(input_local);
|
79
|
+
}
|
80
|
+
|
81
|
+
__aicore__ inline void copy_out(uint32_t offset) {
|
82
|
+
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
|
83
|
+
DataCopy(output_gm[offset], output_local, QK8_0);
|
84
|
+
output_queue.FreeTensor(output_local);
|
85
|
+
}
|
86
|
+
|
87
|
+
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
88
|
+
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
89
|
+
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
90
|
+
const int64_t i1 =
|
91
|
+
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
92
|
+
|
93
|
+
const int64_t input_offset = i1 * input_stride[1] +
|
94
|
+
i2 * input_stride[2] +
|
95
|
+
i3 * input_stride[3] + QK8_0 * group;
|
96
|
+
|
97
|
+
const int64_t output_offset = i1 * output_stride[1] +
|
98
|
+
i2 * output_stride[2] +
|
99
|
+
i3 * output_stride[3] + QK8_0 * group;
|
100
|
+
|
101
|
+
copy_in(input_offset);
|
102
|
+
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
103
|
+
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
|
104
|
+
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
105
|
+
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
|
106
|
+
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
107
|
+
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
108
|
+
|
109
|
+
Abs(abs_local, input_local, QK8_0);
|
110
|
+
ReduceMax(max_local, abs_local, work_local, QK8_0);
|
111
|
+
pipe_barrier(PIPE_ALL);
|
112
|
+
float d = max_local.GetValue(0);
|
113
|
+
d = d / ((1 << 7) - 1);
|
114
|
+
if (d != 0) {
|
115
|
+
Muls(input_local, input_local, 1.0f / d, QK8_0);
|
116
|
+
}
|
117
|
+
|
118
|
+
Cast(input_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
119
|
+
Cast(cast_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
120
|
+
Cast(output_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
121
|
+
output_queue.EnQue(output_local);
|
122
|
+
copy_out(output_offset);
|
123
|
+
|
124
|
+
input_queue.FreeTensor(input_local);
|
125
|
+
work_queue.FreeTensor(work_local);
|
126
|
+
abs_queue.FreeTensor(abs_local);
|
127
|
+
max_queue.FreeTensor(max_local);
|
128
|
+
cast_queue.FreeTensor(cast_local);
|
129
|
+
|
130
|
+
return (half)d;
|
131
|
+
}
|
132
|
+
|
133
|
+
__aicore__ inline void calculate() {
|
134
|
+
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
135
|
+
uint32_t scale_local_offset = 0;
|
136
|
+
uint32_t scale_global_offset = 0;
|
137
|
+
for (int64_t i = ir; i < ir + dr; i++) {
|
138
|
+
for (int64_t j = 0; j < group_size_in_row; j++) {
|
139
|
+
half scale = calculate_group(i, j);
|
140
|
+
scale_local.SetValue(scale_local_offset++, scale);
|
141
|
+
if (scale_local_offset == 16) {
|
142
|
+
scale_local_offset = 0;
|
143
|
+
// TODO: OPTIMIZE ME
|
144
|
+
pipe_barrier(PIPE_ALL);
|
145
|
+
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
|
146
|
+
pipe_barrier(PIPE_ALL);
|
147
|
+
scale_global_offset += 16;
|
148
|
+
}
|
149
|
+
}
|
150
|
+
}
|
151
|
+
|
152
|
+
if (scale_local_offset != 0) {
|
153
|
+
pipe_barrier(PIPE_ALL);
|
154
|
+
DataCopyExtParams dataCopyParams;
|
155
|
+
dataCopyParams.blockCount = 1;
|
156
|
+
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
157
|
+
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
158
|
+
dataCopyParams);
|
159
|
+
pipe_barrier(PIPE_ALL);
|
160
|
+
}
|
161
|
+
}
|
162
|
+
|
163
|
+
private:
|
164
|
+
int64_t input_ne[4];
|
165
|
+
size_t input_stride[4];
|
166
|
+
|
167
|
+
int64_t *scale_ne;
|
168
|
+
size_t scale_stride[4];
|
169
|
+
|
170
|
+
int64_t output_ne[4];
|
171
|
+
size_t output_stride[4];
|
172
|
+
|
173
|
+
int64_t group_size_in_row;
|
174
|
+
|
175
|
+
int64_t ir;
|
176
|
+
int64_t dr;
|
177
|
+
|
178
|
+
TPipe pipe;
|
179
|
+
GlobalTensor<float> input_gm;
|
180
|
+
GlobalTensor<half> scale_gm;
|
181
|
+
GlobalTensor<int8_t> output_gm;
|
182
|
+
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
183
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
184
|
+
TQue<QuePosition::VECIN, 1> work_queue;
|
185
|
+
TQue<QuePosition::VECOUT, 1> max_queue;
|
186
|
+
TQue<QuePosition::VECIN, 1> abs_queue;
|
187
|
+
TQue<QuePosition::VECIN, 1> cast_queue;
|
188
|
+
TQue<QuePosition::VECOUT, 1> scale_queue;
|
189
|
+
};
|
190
|
+
|
191
|
+
template <typename T>
|
192
|
+
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
193
|
+
auto gm_ptr = (__gm__ uint8_t *)gm;
|
194
|
+
auto ub_ptr = (uint8_t *)(ub);
|
195
|
+
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
196
|
+
*ub_ptr = *gm_ptr;
|
197
|
+
}
|
198
|
+
}
|
199
|
+
|
200
|
+
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
201
|
+
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
202
|
+
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
203
|
+
int64_t input_ne_ub[4];
|
204
|
+
size_t input_nb_ub[4];
|
205
|
+
int64_t output_ne_ub[4];
|
206
|
+
|
207
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
208
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
209
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
210
|
+
|
211
|
+
QUANTIZE_F32_Q8_0 op;
|
212
|
+
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
213
|
+
op.calculate();
|
214
|
+
}
|
215
|
+
|
216
|
+
#endif // #ifdef ASCEND_310P
|
@@ -0,0 +1,295 @@
|
|
1
|
+
#include "kernel_operator.h"
|
2
|
+
|
3
|
+
using namespace AscendC;
|
4
|
+
#ifdef ASCEND_310P // 310P not support float->4bit quantization
|
5
|
+
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
6
|
+
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
7
|
+
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
8
|
+
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
9
|
+
printf("Ascend310P not support f32->4bit quantization.\n");
|
10
|
+
}
|
11
|
+
|
12
|
+
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
13
|
+
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
14
|
+
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
15
|
+
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
16
|
+
printf("Ascend310P not support f16->4bit quantization.\n");
|
17
|
+
}
|
18
|
+
#else
|
19
|
+
|
20
|
+
#define BUFFER_NUM 2
|
21
|
+
#define Group_Size 32
|
22
|
+
|
23
|
+
template <typename SRC_T>
|
24
|
+
class QUANTIZE_FLOAT_TO_Q4_0 {
|
25
|
+
public:
|
26
|
+
__aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
|
27
|
+
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
28
|
+
int64_t *input_ne_ub, size_t *input_nb_ub,
|
29
|
+
int64_t *output_ne_ub) {
|
30
|
+
// TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4],
|
31
|
+
// permute=[0,0,0,0]):
|
32
|
+
// [CPY] NMSE = 0.000008343 > 0.000001000 FAIL
|
33
|
+
int64_t op_block_num = GetBlockNum();
|
34
|
+
int64_t op_block_idx = GetBlockIdx();
|
35
|
+
|
36
|
+
// input stride of data elements
|
37
|
+
for (int i = 0; i < 4; i++) {
|
38
|
+
input_ne[i] = input_ne_ub[i];
|
39
|
+
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
40
|
+
output_ne[i] = output_ne_ub[i];
|
41
|
+
}
|
42
|
+
|
43
|
+
// output stride of data elements
|
44
|
+
output_stride[0] = 1;
|
45
|
+
for (int i = 1; i < 4; i++) {
|
46
|
+
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
47
|
+
}
|
48
|
+
|
49
|
+
// scale saved one by one after data:. [group1_scale, group2_scale, ...]
|
50
|
+
scale_ne = input_ne;
|
51
|
+
scale_stride[0] = 1;
|
52
|
+
scale_stride[1] = input_ne[0] / Group_Size;
|
53
|
+
for (int i = 2; i < 4; i++) {
|
54
|
+
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
55
|
+
}
|
56
|
+
|
57
|
+
// split input tensor by rows.
|
58
|
+
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
59
|
+
dr = nr / op_block_num;
|
60
|
+
|
61
|
+
uint64_t tails = nr % op_block_num;
|
62
|
+
if (op_block_idx < tails) {
|
63
|
+
dr += 1;
|
64
|
+
ir = dr * op_block_idx;
|
65
|
+
} else {
|
66
|
+
ir = dr * op_block_idx + tails;
|
67
|
+
}
|
68
|
+
|
69
|
+
group_size_in_row = scale_stride[1];
|
70
|
+
int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
|
71
|
+
output_ne[3] * sizeof(uint8_t) / 2;
|
72
|
+
|
73
|
+
input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
|
74
|
+
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
75
|
+
scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
|
76
|
+
group_size_in_row *
|
77
|
+
sizeof(half)));
|
78
|
+
|
79
|
+
pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
|
80
|
+
pipe.InitBuffer(output_queue, BUFFER_NUM,
|
81
|
+
Group_Size * sizeof(int8_t) / 2);
|
82
|
+
pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float));
|
83
|
+
pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float));
|
84
|
+
pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float));
|
85
|
+
pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float));
|
86
|
+
pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half));
|
87
|
+
pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t));
|
88
|
+
pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half));
|
89
|
+
}
|
90
|
+
|
91
|
+
__aicore__ inline void copy_in(uint32_t offset) {
|
92
|
+
LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
|
93
|
+
DataCopy(input_local, input_gm[offset], Group_Size);
|
94
|
+
input_queue.EnQue(input_local);
|
95
|
+
}
|
96
|
+
|
97
|
+
__aicore__ inline void copy_out(uint32_t offset) {
|
98
|
+
// reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
|
99
|
+
// and using DataCopyPad to avoid 32 bits align.
|
100
|
+
LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
|
101
|
+
LocalTensor<int8_t> output_int8_local =
|
102
|
+
output_local.ReinterpretCast<int8_t>();
|
103
|
+
|
104
|
+
DataCopyExtParams dataCopyParams;
|
105
|
+
dataCopyParams.blockCount = 1;
|
106
|
+
dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t);
|
107
|
+
DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);
|
108
|
+
|
109
|
+
output_queue.FreeTensor(output_local);
|
110
|
+
}
|
111
|
+
|
112
|
+
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
|
113
|
+
LocalTensor<float> input_local) {
|
114
|
+
DataCopy(cast_local, input_local, Group_Size);
|
115
|
+
}
|
116
|
+
|
117
|
+
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
|
118
|
+
LocalTensor<half> input_local) {
|
119
|
+
Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
|
120
|
+
}
|
121
|
+
|
122
|
+
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
123
|
+
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
124
|
+
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
125
|
+
const int64_t i1 =
|
126
|
+
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
127
|
+
|
128
|
+
const int64_t input_offset = i1 * input_stride[1] +
|
129
|
+
i2 * input_stride[2] +
|
130
|
+
i3 * input_stride[3] + Group_Size * group;
|
131
|
+
|
132
|
+
// output_offset is stride for output_gm which datatype is int8_t and
|
133
|
+
// divided by 2 is needed for int4b_t.
|
134
|
+
const int64_t output_offset = (i1 * output_stride[1] +
|
135
|
+
i2 * output_stride[2] +
|
136
|
+
i3 * output_stride[3] +
|
137
|
+
Group_Size * group) / 2;
|
138
|
+
copy_in(input_offset);
|
139
|
+
|
140
|
+
LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
|
141
|
+
LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
|
142
|
+
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
|
143
|
+
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
144
|
+
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
145
|
+
LocalTensor<float> min_local = min_queue.AllocTensor<float>();
|
146
|
+
LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
|
147
|
+
LocalTensor<half> half_local = half_queue.AllocTensor<half>();
|
148
|
+
|
149
|
+
input_to_cast(cast_local, input_local);
|
150
|
+
|
151
|
+
ReduceMax(max_local, cast_local, work_local, Group_Size);
|
152
|
+
ReduceMin(min_local, cast_local, work_local, Group_Size);
|
153
|
+
const float max_value = max_local.GetValue(0);
|
154
|
+
const float min_value = min_local.GetValue(0);
|
155
|
+
float d = max_value;
|
156
|
+
if (min_value < 0 && (-1 * min_value) > max_value) {
|
157
|
+
d = min_value;
|
158
|
+
}
|
159
|
+
|
160
|
+
d = d / (-8);
|
161
|
+
if (d != 0) {
|
162
|
+
Muls(cast_local, cast_local, 1.0f / d, Group_Size);
|
163
|
+
}
|
164
|
+
|
165
|
+
// range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
|
166
|
+
float scalar = 8.5f;
|
167
|
+
Adds(cast_local, cast_local, scalar, Group_Size);
|
168
|
+
Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
|
169
|
+
scalar = 15.0f;
|
170
|
+
Mins(cast_local, cast_local, scalar, Group_Size);
|
171
|
+
scalar = -8.0f;
|
172
|
+
Adds(cast_local, cast_local, scalar, Group_Size);
|
173
|
+
|
174
|
+
// float->half->int4b
|
175
|
+
Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
|
176
|
+
Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);
|
177
|
+
|
178
|
+
output_queue.EnQue(output_local);
|
179
|
+
copy_out(output_offset);
|
180
|
+
|
181
|
+
input_queue.FreeTensor(input_local);
|
182
|
+
work_queue.FreeTensor(work_local);
|
183
|
+
max_queue.FreeTensor(max_local);
|
184
|
+
min_queue.FreeTensor(min_local);
|
185
|
+
int8_queue.FreeTensor(int8_local);
|
186
|
+
half_queue.FreeTensor(half_local);
|
187
|
+
cast_queue.FreeTensor(cast_local);
|
188
|
+
return (half)d;
|
189
|
+
}
|
190
|
+
|
191
|
+
__aicore__ inline void calculate() {
|
192
|
+
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
193
|
+
uint32_t scale_local_offset = 0;
|
194
|
+
uint32_t scale_global_offset = 0;
|
195
|
+
for (int64_t i = ir; i < ir + dr; i++) {
|
196
|
+
for (int64_t j = 0; j < group_size_in_row; j++) {
|
197
|
+
half scale = calculate_group(i, j);
|
198
|
+
scale_local.SetValue(scale_local_offset++, scale);
|
199
|
+
// Copy Group_Size/2 length data each time.
|
200
|
+
if (scale_local_offset == Group_Size / 2) {
|
201
|
+
scale_local_offset = 0;
|
202
|
+
// TODO: OPTIMIZE ME
|
203
|
+
pipe_barrier(PIPE_ALL);
|
204
|
+
DataCopy(scale_gm[scale_global_offset], scale_local,
|
205
|
+
Group_Size / 2);
|
206
|
+
pipe_barrier(PIPE_ALL);
|
207
|
+
scale_global_offset += Group_Size / 2;
|
208
|
+
}
|
209
|
+
}
|
210
|
+
}
|
211
|
+
|
212
|
+
if (scale_local_offset != 0) {
|
213
|
+
pipe_barrier(PIPE_ALL);
|
214
|
+
DataCopyExtParams dataCopyParams;
|
215
|
+
dataCopyParams.blockCount = 1;
|
216
|
+
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
217
|
+
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
218
|
+
dataCopyParams);
|
219
|
+
pipe_barrier(PIPE_ALL);
|
220
|
+
}
|
221
|
+
scale_queue.FreeTensor(scale_local);
|
222
|
+
}
|
223
|
+
|
224
|
+
private:
|
225
|
+
int64_t input_ne[4];
|
226
|
+
size_t input_stride[4];
|
227
|
+
|
228
|
+
int64_t *scale_ne;
|
229
|
+
size_t scale_stride[4];
|
230
|
+
|
231
|
+
int64_t output_ne[4];
|
232
|
+
size_t output_stride[4];
|
233
|
+
|
234
|
+
int64_t group_size_in_row;
|
235
|
+
|
236
|
+
int64_t ir;
|
237
|
+
int64_t dr;
|
238
|
+
|
239
|
+
TPipe pipe;
|
240
|
+
GlobalTensor<SRC_T> input_gm;
|
241
|
+
GlobalTensor<half> scale_gm;
|
242
|
+
GlobalTensor<int8_t> output_gm;
|
243
|
+
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
244
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
245
|
+
TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
|
246
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
|
247
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
|
248
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
|
249
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
|
250
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
|
251
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
|
252
|
+
};
|
253
|
+
|
254
|
+
template <typename T>
|
255
|
+
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
256
|
+
auto gm_ptr = (__gm__ uint8_t *)gm;
|
257
|
+
auto ub_ptr = (uint8_t *)(ub);
|
258
|
+
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
259
|
+
*ub_ptr = *gm_ptr;
|
260
|
+
}
|
261
|
+
}
|
262
|
+
|
263
|
+
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
264
|
+
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
265
|
+
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
266
|
+
int64_t input_ne_ub[4];
|
267
|
+
size_t input_nb_ub[4];
|
268
|
+
int64_t output_ne_ub[4];
|
269
|
+
|
270
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
271
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
272
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
273
|
+
|
274
|
+
QUANTIZE_FLOAT_TO_Q4_0<half> op;
|
275
|
+
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
276
|
+
op.calculate();
|
277
|
+
}
|
278
|
+
|
279
|
+
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
280
|
+
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
281
|
+
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
282
|
+
int64_t input_ne_ub[4];
|
283
|
+
size_t input_nb_ub[4];
|
284
|
+
int64_t output_ne_ub[4];
|
285
|
+
|
286
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
287
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
288
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
289
|
+
|
290
|
+
QUANTIZE_FLOAT_TO_Q4_0<float> op;
|
291
|
+
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
292
|
+
op.calculate();
|
293
|
+
}
|
294
|
+
|
295
|
+
#endif // #ifdef ASCEND_310P
|